1
|
Song A, Mao Y, Wei H. GLUT5: structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1519-1538. [PMID: 37674366 PMCID: PMC10582729 DOI: 10.3724/abbs.2023158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 09/08/2023] Open
Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Aqian Song
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Yuanpeng Mao
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| | - Hongshan Wei
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| |
Collapse
|
2
|
Investigation of the multi-targeted protection potential of tannic acid against doxorubicin-induced kidney damage in rats. Chem Biol Interact 2022; 365:110111. [PMID: 35987278 DOI: 10.1016/j.cbi.2022.110111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Doxorubicin (DOX) is an antitumor drug that is powerful but can cause worse outcomes, including nephrotoxicity, and therefore has limited clinical use. Therefore, it is necessary to identify safer agents that can minimize the damage caused by the drug without shifting the treatment performance, in addition to clarifying the underlying mechanisms of DOX-induced aberrant in vivo renal activation. In this study, we tested the prophylactic capacity and mechanisms of action of tannic acid (TA) against DOX-mediated kidney damage in rats and evaluated the nephrotoxic activity of DOX when used with TA. Rats were treated during the two weeks with cumulative (18 mg/kg with six different injections) DOX, daily TA (50 mg/kg), and the DOX + TA combination. Changes in major metabolites and components involved in antioxidant metabolism were evaluated in the kidney tissues of all animals. Further, the gene expression levels of regulatory factors that have critical importance in cell metabolism, inflammation, and apoptosis were investigated. Both biochemical and molecular examinations showed that TA improved DOX-induced dysregulations at both protein and gene levels in the kidneys. Increased lipid peroxidation and decreased glutathione levels were reversed. Consistent with oxidative stress marker metabolites, suppressed antioxidant enzyme activities and transcript levels of antioxidant system members were restored. Of note, combination treatment with TA could overcome doxorubicin-induced gene expressions markedly altered by DOX, suggesting that nephroprotection conferred by TA involved the remodeling of stress resistance, cell metabolism, inflammation, and apoptosis. Collectively, the present in vivo study suggests that TA could be used as a multitarget and effective agent for the mitigation of doxorubicin-induced nephrotoxicity without changing the therapeutic efficacy of the drug.
Collapse
|
3
|
Ladinsky MS, Araujo LP, Zhang X, Veltri J, Galan-Diez M, Soualhi S, Lee C, Irie K, Pinker EY, Narushima S, Bandyopadhyay S, Nagayama M, Elhenawy W, Coombes BK, Ferraris RP, Honda K, Iliev ID, Gao N, Bjorkman PJ, Ivanov II. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science 2019; 363:eaat4042. [PMID: 30846568 PMCID: PMC6708280 DOI: 10.1126/science.aat4042] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/11/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Commensal bacteria influence host physiology, without invading host tissues. We show that proteins from segmented filamentous bacteria (SFB) are transferred into intestinal epithelial cells (IECs) through adhesion-directed endocytosis that is distinct from the clathrin-dependent endocytosis of invasive pathogens. This process transfers microbial cell wall-associated proteins, including an antigen that stimulates mucosal T helper 17 (TH17) cell differentiation, into the cytosol of IECs in a cell division control protein 42 homolog (CDC42)-dependent manner. Removal of CDC42 activity in vivo led to disruption of endocytosis induced by SFB and decreased epithelial antigen acquisition, with consequent loss of mucosal TH17 cells. Our findings demonstrate direct communication between a resident gut microbe and the host and show that under physiological conditions, IECs acquire antigens from commensal bacteria for generation of T cell responses to the resident microbiota.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leandro P Araujo
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - John Veltri
- Department of Pharmacology, Physiology and Neurosciences, Rutgers University, Newark, NJ 07103, USA
| | - Marta Galan-Diez
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Salima Soualhi
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carolyn Lee
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Koichiro Irie
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Elisha Y Pinker
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Seiko Narushima
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | | | - Manabu Nagayama
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Wael Elhenawy
- Department of Biochemistry & Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Brian K Coombes
- Department of Biochemistry & Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, Rutgers University, Newark, NJ 07103, USA
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Iliyan D Iliev
- Department of Microbiology and Immunology and The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ivaylo I Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Patel C, Douard V, Yu S, Gao N, Ferraris RP. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. FASEB J 2015; 29:4046-58. [PMID: 26071406 PMCID: PMC4550372 DOI: 10.1096/fj.15-272195] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/02/2015] [Indexed: 01/03/2023]
Abstract
Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.
Collapse
Affiliation(s)
- Chirag Patel
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Veronique Douard
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shiyan Yu
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Nan Gao
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ronaldo P Ferraris
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
5
|
Patel C, Douard V, Yu S, Tharabenjasin P, Gao N, Ferraris RP. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am J Physiol Regul Integr Comp Physiol 2015; 309:R499-509. [PMID: 26084694 DOI: 10.1152/ajpregu.00128.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Veronique Douard
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Shiyan Yu
- Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey
| | - Phuntila Tharabenjasin
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Nan Gao
- Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey
| | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| |
Collapse
|
6
|
Keklikoglu N. c-Jun, Fra-2, and ATF-2 immunoreactivity in the jejunal tissues of the healthy rat. Dig Dis Sci 2008; 53:2680-6. [PMID: 18320311 DOI: 10.1007/s10620-008-0218-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/12/2008] [Indexed: 12/09/2022]
Abstract
The aim of this study was to compare the localization of some activator protein-1 (AP-1) proteins in healthy rat jejunum. For this purpose, the AP-1 members c-Jun, Fra-2, and ATF-2 immunoreactivity (c-Jun-IR, Fra-2-IR, ATF-2-IR) in villus epithelial cells (ECs), intravillous lamina propria cells (LPCs), crypt cells (CCs), and smooth muscle cells (SMCs) were analyzed by immunohistochemical methods. Among all the cell groups, the lowest positivity ratio was found in c-Jun-IR and the highest positivity ratio was found in ATF-2-IR. For each group of ECs, LPCs, CCs, and SMCs, c-Jun-IR, Fra-2-IR, and ATF-2-IR were compared and statistically significant differences found. There were no significant differences among the cell groups with respect to c-Jun-IR and Fra-2-IR, but there was a statistically significant difference in ATF-2-IR. These findings suggest that each member of AP-1 is expressed differently and that ATF-2 is more active than c-Jun and Fra-2 in physiological conditions in healthy rat jejunum.
Collapse
Affiliation(s)
- Nurullah Keklikoglu
- Faculty of Dentistry, Department of Histology and Embryology, Istanbul University, Capa, Istanbul, Turkey.
| |
Collapse
|
7
|
Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am J Clin Nutr 2008; 87:1028-38. [PMID: 18400728 PMCID: PMC2430509 DOI: 10.1093/ajcn/87.4.1028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. OBJECTIVE We tested the hypothesis that luminal fructose regulates NaPi-2b. DESIGN We perfused into the intestine fructose, glucose, and nonmetabolizable or poorly transported glucose analogs as well as phlorizin. RESULTS NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were approximately 30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)-activator AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) enhanced and the fatty acid synthase-AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylenebutyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. CONCLUSIONS Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies approximately 10% of caloric intake by Americans clearly affects absorption of Pi and may promote Pi homeostasis in patients with impaired renal function.
Collapse
Affiliation(s)
- Séverine Kirchner
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
8
|
Glauser DA, Schlegel W. Mechanisms of transcriptional regulation underlying temporal integration of signals. Nucleic Acids Res 2006; 34:5175-83. [PMID: 16998184 PMCID: PMC1636431 DOI: 10.1093/nar/gkl654] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
How cells convert the duration of signals into differential adaptation of gene expression is a poorly understood issue. Signal-induced immediate-early gene (IEG) expression couples early signals to late expression of downstream <target> genes. Here we study how kinetic features of the IEG-<target> system allow temporal integration of stimuli in a pancreatic beta cell model of metabolic stimulation. Gene expression profiling revealed that beta cells produce drastically different transcriptional outputs in response to different stimuli durations. Noteworthy, most genes (87%) regulated by a sustained stimulation (4 h) were not regulated by a transient stimulation (1 h followed by 3 h without stimulus). We analyzed the induction kinetics of several previously identified IEGs and <targets>. IEG expression persisted as long as stimulation was maintained, but was rapidly lost upon stimuli removal, abolishing the delayed <target> induction. The molecular mechanisms coupling the duration of stimuli to quantitative <target> transcription were demonstrated for the AP-1 transcription factor. In conclusion, we propose that the network composed of IEGs and their <targets> dynamically functions to convert signal inputs of different durations into quantitative differences in global transcriptional adaptation. These findings provide a novel and more comprehensive view of dynamic gene regulation.
Collapse
Affiliation(s)
| | - Werner Schlegel
- To whom correspondence should be addressed at Fondation pour Recherches Médicales, Avenue de la Roseraie 64, 1211 Geneva, Switzerland. Tel: +41 22 382 38 11; Fax: +41 22 347 59 79;
| |
Collapse
|
9
|
Cui XL, Soteropoulos P, Tolias P, Ferraris RP. Fructose-responsive genes in the small intestine of neonatal rats. Physiol Genomics 2004; 18:206-17. [PMID: 15150374 DOI: 10.1152/physiolgenomics.00056.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intestinal brush border fructose transporter GLUT5 (SLC2A5) typically appears in rats after weaning is completed. However, precocious consumption of dietary fructose or in vivo perfusion for 4 h of the small intestine with high fructose (HF) specifically stimulates de novo synthesis of GLUT5 mRNA and protein before weaning is completed. Intermediary signals linking the substrate, fructose, to GLUT5 transcription are not known but should also respond to fructose perfusion. Hence, we used microarray hybridization and RT-PCR to identify genes whose expression levels change during HF relative to high-glucose (HG) perfusion. Expression of GLUT5 and NaPi2b, the intestinal Na+-dependent phosphate transporter, dramatically increased and decreased, respectively, with HF perfusion for 4 h. Expression of >20 genes, including two key gluconeogenic enzymes, glucose-6-phosphatase (G6P) and fructose-1,6-bisphosphatase, also increased markedly, along with fructose-2,6-bisphosphatase, an enzyme unique to fructose metabolism and regulating fructose-1,6-bisphosphatase activity. GLUT5 and G6P mRNA abundance, which increased dramatically with HF relative to HG, α-methylglucose, and normal Ringer perfusion, may be tightly and specifically linked to changes in intestinal luminal fructose but not glucose concentrations. G6P but not GLUT5 mRNA abundance increased after just 20 min of HF perfusion. This cluster of gluconeogenic enzymes and their common metabolic intermediate fructose-6-phosphate may regulate fructose metabolism and GLUT5 expression in the small intestine.
Collapse
Affiliation(s)
- Xue-Lin Cui
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark 07103-2714, USA
| | | | | | | |
Collapse
|
10
|
Coloso RM, King K, Fletcher JW, Weis P, Werner A, Ferraris RP. Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture. J Comp Physiol B 2003; 173:519-30. [PMID: 12851780 DOI: 10.1007/s00360-003-0360-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2003] [Indexed: 11/26/2022]
Abstract
Phosphate utilization by fish is an important issue because of its critical roles in fish growth and aquatic environmental pollution. High dietary phosphorus (P) levels typically decrease the efficiency of P utilization, thereby increasing the amount of P excreted as metabolic waste in effluents emanating from rainbow trout aquaculture. In mammals, vitamin D3 is a known regulator of P utilization but in fish, its regulatory role is unclear. Moreover, the effects of dietary P and vitamin D3 on expression of enzymatic and transport systems potentially involved in phosphate utilization are little known. We therefore monitored production of effluent P, levels of plasma vitamin D3 metabolites, as well as expression of phosphatases and the sodium phosphate cotransporter (NaPi2) in trout fed semipu diets that varied in dietary P and vitamin D3 levels. Mean soluble P concentrations varied markedly with dietary P but not with vitamin D3, and constituted 40-70% of total effluent P production by trout. Particulate P concentrations accounted for 25-50% of effluent P production, but did not vary with dietary P or vitamin D3. P in settleable wastes accounted for <10% of effluent P. The stronger effect of dietary P on effluent P levels is paralleled by its striking effects on phosphatases and NaPi2. The mRNA abundance of the intestinal and renal sodium phosphate transporters increased in fish fed low dietary P; vitamin D3 had no effect. Low-P diets reduced plasma phosphate concentrations. Intracellular phytase activity increased but brushborder alkaline phosphatase activity decreased in the intestine, pyloric caeca, and gills of trout fed diets containing low dietary P. Vitamin D3 had no effect on enzyme activities. Moreover, plasma concentrations of 25-hydroxyvitamin D3 and of 1,25-dihydroxyvitamin D3 were unaffected by dietary P and vitamin D3 levels. The major regulator of P metabolism, and ultimately of levels of P in the effluent from trout culture, is dietary P.
Collapse
Affiliation(s)
- R M Coloso
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
11
|
Cui XL, Jiang L, Ferraris RP. Regulation of rat intestinal GLUT2 mRNA abundance by luminal and systemic factors. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1612:178-85. [PMID: 12787936 DOI: 10.1016/s0005-2736(03)00129-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fructose in the lumen of the small intestine is transported across the brush border membrane by GLUT5, then across the basolateral membrane by GLUT2, which also transports glucose. Diets containing high fructose (HF) specifically enhance intestinal GLUT5 expression in neonatal rats, but there is little information concerning the dietary regulation of GLUT2 expression during early development. In this study, we perfused for 1-4 h 100 mM fructose, glucose (HG), alpha-methylglucose, or mannitol solutions into the jejunum of anaesthetized 20-day-old rat pups. GLUT2 mRNA abundance increased only in HF- and HG-perfused intestines, an effect inhibited by actinomycin D but not by cycloheximide. Bypassed (Thiry-Vella) intestinal loops were constructed, then pups were fed either HF or low-carbohydrate diets for 5 days. GLUT2 mRNA abundance increased significantly in both bypassed and anastomosed intestines of Thiry-Vella pups fed HF. In contrast, GLUT5 mRNA abundance increased only in the anastomosed segment. In sham-operated pups, GLUT2 and GLUT5 mRNA abundance increased in both intestinal regions that corresponded to the bypassed and anastomosed regions of Thiry-Vella pups. SGLT1 mRNA abundance was independent of diet and intestinal region in both Thiry-Vella and sham-operated pups. Unlike GLUT5 expression, which is regulated at the level of transcription only by luminal fructose, GLUT2 mRNA expression is transcriptionally regulated by luminal fructose and glucose as well as by systemic factors released during their absorption.
Collapse
Affiliation(s)
- Xue-Lin Cui
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
12
|
Abstract
The Na(+)-dependent glucose transporter SGLT1 and the facilitated fructose transporter GLUT5 absorb sugars from the intestinal lumen across the brush-border membrane into the cells. The activity of these transport systems is known to be regulated primarily by diet and development. The cloning of these transporters has led to a surge of studies on cellular mechanisms regulating intestinal sugar transport. However, the small intestine can be a difficult organ to study, because its cells are continuously differentiating along the villus, and because the function of absorptive cells depends on both their state of maturity and their location along the villus axis. In this review, I describe the typical patterns of regulation of transport activity by dietary carbohydrate, Na(+) and fibre, how these patterns are influenced by circadian rhythms, and how they vary in different species and during development. I then describe the molecular mechanisms underlying these regulatory patterns. The expression of these transporters is tightly linked to the villus architecture; hence, I also review the regulatory processes occurring along the crypt-villus axis. Regulation of glucose transport by diet may involve increased transcription of SGLT1 mainly in crypt cells. As cells migrate to the villus, the mRNA is degraded, and transporter proteins are then inserted into the membrane, leading to increases in glucose transport about a day after an increase in carbohydrate levels. In the SGLT1 model, transport activity in villus cells cannot be modulated by diet. In contrast, GLUT5 regulation by the diet seems to involve de novo synthesis of GLUT5 mRNA synthesis and protein in cells lining the villus, leading to increases in fructose transport a few hours after consumption of diets containing fructose. In the GLUT5 model, transport activity can be reprogrammed in mature enterocytes lining the villus column. Innovative experimental approaches are needed to increase our understanding of sugar transport regulation in the small intestine. I close by suggesting specific areas of research that may yield important information about this interesting, but difficult, topic.
Collapse
|
13
|
Abstract
The Na(+)-dependent glucose transporter SGLT1 and the facilitated fructose transporter GLUT5 absorb sugars from the intestinal lumen across the brush-border membrane into the cells. The activity of these transport systems is known to be regulated primarily by diet and development. The cloning of these transporters has led to a surge of studies on cellular mechanisms regulating intestinal sugar transport. However, the small intestine can be a difficult organ to study, because its cells are continuously differentiating along the villus, and because the function of absorptive cells depends on both their state of maturity and their location along the villus axis. In this review, I describe the typical patterns of regulation of transport activity by dietary carbohydrate, Na(+) and fibre, how these patterns are influenced by circadian rhythms, and how they vary in different species and during development. I then describe the molecular mechanisms underlying these regulatory patterns. The expression of these transporters is tightly linked to the villus architecture; hence, I also review the regulatory processes occurring along the crypt-villus axis. Regulation of glucose transport by diet may involve increased transcription of SGLT1 mainly in crypt cells. As cells migrate to the villus, the mRNA is degraded, and transporter proteins are then inserted into the membrane, leading to increases in glucose transport about a day after an increase in carbohydrate levels. In the SGLT1 model, transport activity in villus cells cannot be modulated by diet. In contrast, GLUT5 regulation by the diet seems to involve de novo synthesis of GLUT5 mRNA synthesis and protein in cells lining the villus, leading to increases in fructose transport a few hours after consumption of diets containing fructose. In the GLUT5 model, transport activity can be reprogrammed in mature enterocytes lining the villus column. Innovative experimental approaches are needed to increase our understanding of sugar transport regulation in the small intestine. I close by suggesting specific areas of research that may yield important information about this interesting, but difficult, topic.
Collapse
Affiliation(s)
- R P Ferraris
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07103-2714, USA.
| |
Collapse
|