1
|
Hong SY, Qin BL. The Altered Proteomic Landscape in Renal Tubular Epithelial Cells under High Oxalate Stimulation. BIOLOGY 2024; 13:814. [PMID: 39452123 PMCID: PMC11505525 DOI: 10.3390/biology13100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Our study aimed to apply a proteomic approach to investigate the molecular mechanisms underlying the effects of oxalate on rat renal tubular epithelial cells. NRK-52E cells were treated with or without oxalate and subjected to quantitative proteomics to identify key proteins and key pathological changes under high oxalate stimulation. A total of 268 differentially expressed proteins (DEPs) between oxalate-treated and control groups were identified, with 132 up-regulated and 136 down-regulated proteins. Functional enrichment analysis revealed that DEPs are associated with oxidative stress, apoptosis, ferroptosis, pro-inflammatory cytokines, vitamin D, and biomineralization. SPP1, MFGE8, ANKS1A, and NAP1L1 were up-regulated in the oxalate-treated cells and the hyperoxaluric stone-forming rats, while SUB1, RNPS1, and DGLUCY were down-regulated in both cases. This altered proteomic landscape sheds light on the pathological processes involved in oxalate-induced renal damage and identifies potential biomarkers and therapeutic targets to mitigate the effects of hyperoxaluria and reduce the risk of CaOx stone formation.
Collapse
Affiliation(s)
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Li S, Wu W, Yang B, Liu Z, Duan X, Sun X, Liu H, Zhang S, Zhou Y, Wu W. Histone deacetylase 6 suppression of renal tubular epithelial cell promotes interstitial mineral deposition via alpha-tubulin acetylation. Cell Signal 2024; 116:111057. [PMID: 38242268 DOI: 10.1016/j.cellsig.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Randall's plaque (RP) is derived from interstitial mineral deposition and is highly prevalent in renal calcium oxalate (CaOx) stone disease, which is predictive of recurrence. This study shows that histone deacetylase 6 (HDAC6) levels are suppressed in renal tubular epithelial cells in RP samples, in kidney tissues of hyperoxaluria rats, and in hyper-oxalate-treated or mineralized cultured renal tubular epithelial (MDCK) cells in vitro. Mineral deposition in MDCK cells was exacerbated by HDAC6 inhibition but alleviated by HDAC6 overexpression. Surprisingly, the expression of some osteogenic-associated proteins, were not increased along with the increasing of mineral deposition, and result of single-cell RNA sequencing of renal papillae samples revealed that epithelial cells possess lower calcific activity, suggesting that osteogenic-transdifferentiation may not have actually occurred in tubular epithelial cells despite mineral deposition. The initial mineral depositions facilitated by HDAC6 inhibitor were localized in extracellular dome rather than inside the cells, moreover, suppression of HDAC6 significantly increased the calcium content of co-cultured renal interstitial fibroblasts (NRK49F) and enhanced mineral deposition of indirectly co-cultured NRK49F cells, suggesting that HDAC6 may influence trans-MDCK monolayer secretion of mineral. Further experiments revealed that this regulatory role was partially alpha-tubulinLys40 acetylation dependent. Collectively, these results suggest that hyper-oxalate exposure led to HDAC6 suppression in renal tubular epithelial cells, which may contribute to interstitial mineral deposition by promoting alpha-tubulinLys40 acetylation. Therapeutic agents that influence HDAC6 activity may be beneficial in preventing RP and CaOx stone formation.
Collapse
Affiliation(s)
- Shujue Li
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China; Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Baotong Yang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Zezhen Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China
| | - Xinyuan Sun
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China
| | - Hongxing Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China
| | - Shike Zhang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Yuhao Zhou
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Wenqi Wu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China; Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| |
Collapse
|
3
|
Deng JW, Li CY, Huang YP, Liu WF, Zhang Q, Long J, Wu WQ, Huang LH, Zeng GH, Sun XY. Mechanism of Porphyra Yezoensis Polysaccharides in Inhibiting Hyperoxalate-Induced Renal Injury and Crystal Deposition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6372-6388. [PMID: 38471112 DOI: 10.1021/acs.jafc.3c09152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Oxidative damage to the kidneys is a primary factor in the occurrence of kidney stones. This study explores the inhibitory effect of Porphyra yezoensis polysaccharides (PYP) on oxalate-induced renal injury by detecting levels of oxidative damage, expression of adhesion molecules, and damage to intracellular organelles and revealed the molecular mechanism by molecular biology methods. Additionally, we validated the role of PYP in vivo using a crystallization model of hyperoxalate-induced rats. PYP effectively scavenged the overproduction of reactive oxygen species (ROS) in HK-2 cells, inhibited the adhesion of calcium oxalate (CaOx) crystals on the cell surface, unblocked the cell cycle, restored the depolarization of the mitochondrial membrane potential, and inhibited cell death. PYP upregulated the expression of antioxidant proteins, including Nrf2, HO-1, SOD, and CAT, while decreasing the expression of Keap-1, thereby activating the Keap1/Nrf2 signaling pathway. PYP inhibited CaOx deposition in renal tubules in the rat crystallization model, significantly reduced high oxalate-induced renal injury, decreased the levels of the cell surface adhesion proteins, improved renal function in rats, and ultimately inhibited the formation of kidney stones. Therefore, PYP, which has crystallization inhibition and antioxidant properties, may be a therapeutic option for the treatment of kidney stones.
Collapse
Affiliation(s)
- Ji-Wang Deng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Chun-Yao Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Ya-Peng Huang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Wei-Feng Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Quan Zhang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Jun Long
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Wen-Qi Wu
- Department of Urology, Guangdong Key Laboratory of Urology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Ling-Hong Huang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Guo-Hua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
4
|
Hong SY, Qin BL. The Protective Role of Dietary Polyphenols in Urolithiasis: Insights into Antioxidant Effects and Mechanisms of Action. Nutrients 2023; 15:3753. [PMID: 37686790 PMCID: PMC10490426 DOI: 10.3390/nu15173753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Urolithiasis is a common urological disease with increasing prevalence and high recurrence rates around the world. Numerous studies have indicated reactive oxygen species (ROS) and oxidative stress (OS) were crucial pathogenic factors in stone formation. Dietary polyphenols are a large group of natural antioxidant compounds widely distributed in plant-based foods and beverages. Their diverse health benefits have attracted growing scientific attention in recent decades. Many literatures have reported the effectiveness of dietary polyphenols against stone formation. The antiurolithiatic mechanisms of polyphenols have been explained by their antioxidant potential to scavenge free radicals and ROS, modulate the expression and the activity of endogenous antioxidant and prooxidant enzymes, regulate signaling pathways associated with OS, and maintain cell morphology and function. In this review, we first describe OS and its pathogenic effects in urolithiasis and summarize the classification and sources of dietary polyphenols. Then, we focus on the current evidence defining their antioxidant potential against stone formation and put forward challenges and future perspectives of dietary polyphenols. To conclude, dietary polyphenols offer potential applications in the treatment and prevention of urolithiasis.
Collapse
Affiliation(s)
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Khan SR, Canales BK. Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence. Asian J Urol 2023; 10:246-257. [PMID: 37538166 PMCID: PMC10394280 DOI: 10.1016/j.ajur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Prevalence of kidney stone disease continues to increase globally with recurrence rates between 30% and 50% despite technological and scientific advances. Reduction in recurrence would improve patient outcomes and reduce cost and stone morbidities. Our objective was to review results of experimental studies performed to determine the efficacy of readily available compounds that can be used to prevent recurrence. Methods All relevant literature up to October 2020, listed in PubMed is reviewed. Results Clinical guidelines endorse the use of evidence-based medications, such as alkaline agents and thiazides, to reduce urinary mineral supersaturation and recurrence. However, there may be additional steps during stone pathogenesis where medications could moderate stone risk. Idiopathic calcium oxalate stones grow attached to Randall's plaques or plugs. Results of clinical and experimental studies suggest involvement of reactive oxygen species and oxidative stress in the formation of both the plaques and plugs. The renin-angiotensin-aldosterone system (RAAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mitochondria, and NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome have all been implicated at specific steps during stone pathogenesis in animal models. Conclusion In addition to supersaturation-reducing therapies, the use of anti-oxidants, free radical scavengers, and inhibitors of NADPH oxidase, NLRP3 inflammasome, and RAAS may prove beneficial for stone prevention. Compounds such as statins and angiotensin converting enzyme inhibitors are already in use as therapeutics for hypertension and cardio-vascular disease and have previously shown to reduce calcium oxalate nephrolithiasis in rats. Although clinical evidence for their use in stone prevention in humans is limited, experimental data support they be considered along with standard evidence-based medications and clinical expertise when patients are being counselled for stone prevention.
Collapse
Affiliation(s)
- Saeed R. Khan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
6
|
Deng J, Yu B, Chang Z, Wu S, Li G, Chen W, Li S, Duan X, Wu W, Sun X, Zeng G, Liu H. Cerium oxide-based nanozyme suppresses kidney calcium oxalate crystal depositions via reversing hyperoxaluria-induced oxidative stress damage. J Nanobiotechnology 2022; 20:516. [PMID: 36482378 PMCID: PMC9733203 DOI: 10.1186/s12951-022-01726-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress damage to renal epithelial cells is the main pathological factor of calcium oxalate calculi formation. The development of medicine that could alleviate oxidative damage has become the key to the prevention and treatment of urolithiasis. Herein, porous nanorods CeO2 nanoparticles (CNPs) were selected from CeO2 with different morphologies as an antioxidant reagent to suppress kidney calcium oxalate crystal depositions with excellent oxidation resistance due to its larger specific surface area. The reversible transformation from Ce3+ to Ce4+ could catalyze the decomposition of excess free radicals and act as a biological antioxidant enzyme basing on its strong ability to scavenge free radicals. The protection capability of CNPS against oxalate-induced damage and the effect of CNPS on calcium oxalate crystallization were studied. CNPS could effectively reduce reactive oxygen species production, restore mitochondrial membrane potential polarity, recover cell cycle progression, reduce cell death, and inhibit the formation of calcium oxalate crystals on the cell surface in vitro. The results of high-throughput sequencing of mRNA showed that CNPs could protect renal epithelial cells from oxidative stress damage caused by high oxalate by suppressing the expression gene of cell surface adhesion proteins. In addition, CNPS can significantly reduce the pathological damage of renal tubules and inhibit the deposition of calcium oxalate crystals in rat kidneys while having no significant side effect on other organs and physiological indicators in vivo. Our results provide a new strategy for CNPS as a potential for clinical prevention of crystalline kidney injury and crystal deposition.
Collapse
Affiliation(s)
- Jiwang Deng
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Bangxian Yu
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhenglin Chang
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Sicheng Wu
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Guanlin Li
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wenzhe Chen
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shujue Li
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wenqi Wu
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xinyuan Sun
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Guohua Zeng
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Hongxing Liu
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Loots DT, Adeniji AA, Van Reenen M, Ozturk M, Brombacher F, Parihar SP. The metabolomics of a protein kinase C delta (PKCδ) knock-out mouse model. Metabolomics 2022; 18:92. [PMID: 36371785 PMCID: PMC9660189 DOI: 10.1007/s11306-022-01949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION PKCδ is ubiquitously expressed in mammalian cells and its dysregulation plays a key role in the onset of several incurable diseases and metabolic disorders. However, much remains unknown about the metabolic pathways and disturbances induced by PKC deficiency, as well as the metabolic mechanisms involved. OBJECTIVES This study aims to use metabolomics to further characterize the function of PKC from a metabolomics standpoint, by comparing the full serum metabolic profiles of PKC deficient mice to those of wild-type mice. METHODS The serum metabolomes of PKCδ knock-out mice were compared to that of a wild-type strain using a GCxGC-TOFMS metabolomics research approach and various univariate and multivariate statistical analyses. RESULTS Thirty-seven serum metabolite markers best describing the difference between PKCδ knock-out and wild-type mice were identified based on a PCA power value > 0.9, a t-test p-value < 0.05, or an effect size > 1. XERp prediction was also done to accurately select the metabolite markers within the 2 sample groups. Of the metabolite markers identified, 78.4% (29/37) were elevated and 48.65% of these markers were fatty acids (18/37). It is clear that a total loss of PKCδ functionality results in an inhibition of glycolysis, the TCA cycle, and steroid synthesis, accompanied by upregulation of the pentose phosphate pathway, fatty acids oxidation, cholesterol transport/storage, single carbon and sulphur-containing amino acid synthesis, branched-chain amino acids (BCAA), ketogenesis, and an increased cell signalling via N-acetylglucosamine. CONCLUSION The charaterization of the dysregulated serum metabolites in this study, may represent an additional tool for the early detection and screening of PKCδ-deficiencies or abnormalities.
Collapse
Affiliation(s)
- Du Toit Loots
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa.
| | | | - Mari Van Reenen
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa
| | - Mumin Ozturk
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa
| | - Frank Brombacher
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Center for Infectious Disease Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P Parihar
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa.
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Wellcome Center for Infectious Disease Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Characterization of the Striatal Extracellular Matrix in a Mouse Model of Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10071095. [PMID: 34356328 PMCID: PMC8301085 DOI: 10.3390/antiox10071095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinson’s disease’s etiology is unknown, although evidence suggests the involvement of oxidative modifications of intracellular components in disease pathobiology. Despite the known involvement of the extracellular matrix in physiology and disease, the influence of oxidative stress on the matrix has been neglected. The chemical modifications that might accumulate in matrix components due to their long half-live and the low amount of extracellular antioxidants could also contribute to the disease and explain ineffective cellular therapies. The enriched striatal extracellular matrix from a mouse model of Parkinson’s disease was characterized by Raman spectroscopy. We found a matrix fingerprint of increased oxalate content and oxidative modifications. To uncover the effects of these changes on brain cells, we morphologically characterized the primary microglia used to repopulate this matrix and further quantified the effects on cellular mechanical stress by an intracellular fluorescence resonance energy transfer (FRET)-mechanosensor using the U-2 OS cell line. Our data suggest changes in microglia survival and morphology, and a decrease in cytoskeletal tension in response to the modified matrix from both hemispheres of 6-hydroxydopamine (6-OHDA)-lesioned animals. Collectively, these data suggest that the extracellular matrix is modified, and underscore the need for its thorough investigation, which may reveal new ways to improve therapies or may even reveal new therapies.
Collapse
|
9
|
TRPV1 Hyperfunction Contributes to Renal Inflammation in Oxalate Nephropathy. Int J Mol Sci 2021; 22:ijms22126204. [PMID: 34201387 PMCID: PMC8228656 DOI: 10.3390/ijms22126204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation worsens oxalate nephropathy by exacerbating tubular damage. The transient receptor potential vanilloid 1 (TRPV1) channel is present in kidney and has a polymodal sensing ability. Here, we tested whether TRPV1 plays a role in hyperoxaluria-induced renal inflammation. In TRPV1-expressed proximal tubular cells LLC-PK1, oxalate could induce cell damage in a time- and dose-dependent manner; this was associated with increased arachidonate 12-lipoxygenase (ALOX12) expression and synthesis of endovanilloid 12(S)-hydroxyeicosatetraenoic acid for TRPV1 activation. Inhibition of ALOX12 or TRPV1 attenuated oxalate-mediated cell damage. We further showed that increases in intracellular Ca2+ and protein kinase C α activation are downstream of TRPV1 for NADPH oxidase 4 upregulation and reactive oxygen species formation. These trigger tubular cell inflammation via increased NLR family pyrin domain-containing 3 expression, caspase-1 activation, and interleukin (IL)-1β release, and were alleviated by TRPV1 inhibition. Male hyperoxaluric rats demonstrated urinary supersaturation, tubular damage, and oxidative stress in a time-dependent manner. Chronic TRPV1 inhibition did not affect hyperoxaluria and urinary supersaturation, but markedly reduced tubular damage and calcium oxalate crystal deposition by lowering oxidative stress and inflammatory signaling. Taking all these results together, we conclude that TRPV1 hyperfunction contributes to oxalate-induced renal inflammation. Blunting TRPV1 function attenuates hyperoxaluric nephropathy.
Collapse
|
10
|
Tseng YS, Liao CH, Wu WB, Ma MC. N-methyl-d-aspartate receptor hyperfunction contributes to d-serine-mediated renal insufficiency. Am J Physiol Renal Physiol 2021; 320:F799-F813. [PMID: 33749324 DOI: 10.1152/ajprenal.00461.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
Glutamate N-methyl-d-aspartate receptor (NMDAR) hyperfunction is known to contribute to acute renal failure due to ischemia-reperfusion and endotoxemia. d-Serine is a coagonist for NMDAR activation, but whether NMDARs play a role in d-serine-mediated nephrotoxicity remains unclear. Here, we demonstrate that NMDAR blockade ameliorated d-serine-induced renal injury. In NMDAR-expressing LLC-PK1 cells, which were used as a proximal tubule model, d-serine but not l-serine induced cytotoxicity in a dose-dependent manner, which was abrogated by the selective NMDAR blockers MK-801 and AP-5. Time-dependent oxidative stress, evidenced by gradually increased superoxide and H2O2 production, was associated with d-serine-mediated cytotoxicity; these reactive oxygen species could be alleviated not only after NMDAR inhibition but also by NADPH oxidase (NOX) inhibition. Activation of protein kinase C (PKC)-δ and PKC-ζ is a downstream signal for NMDAR-mediated NOX activation because PKC inhibition diminishes the NOX activity that is induced by d-serine. Renal injury was further confirmed in male Wistar rats that intraperitoneally received d-serine but not l-serine. Peak changes in glucosuria, proteinuria, and urinary excretion of lactate dehydrogenase and malondialdehyde were found after 24 h of treatment. Persistent tubular damage was observed after 7 days of treatment. Cotreatment with the NMDAR blocker MK-801 for 24 h abolished d-serine-induced functional insufficiency and tubular damage. MK-801 attenuated renal superoxide formation by lowering NOX activity and protein upregulation of NOX4 but not NOX2. These results reveal that NMDAR hyperfunction underlies d-serine-induced renal injury via the effects of NOX4 on triggering oxidative stress.NEW & NOTEWORTHY Ionotropic N-methyl-d-aspartate receptors (NMDARs) are not only present in the nervous system but also expressed in the kidney. Overstimulation of renal NMDARs leads to oxidative stress via the signal pathway of calcium/protein kinase C/NADPH oxidase in d-serine-mediated tubular cell damage. Intervention of NMDAR blockade may prevent acute renal injury caused by d-serine.
Collapse
Affiliation(s)
- Yi-Shiou Tseng
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Chun-Hou Liao
- Divisions of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
11
|
Small intestine resection increases oxalate and citrate transporter expression and calcium oxalate crystal formation in rat hyperoxaluric kidneys. Clin Sci (Lond) 2021; 134:2565-2580. [PMID: 33006369 PMCID: PMC7557498 DOI: 10.1042/cs20200973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Short bowel (SB) increases the risk of kidney stones. However, the underlying mechanism is unclear. Here, we examined how SB affected renal oxalate and citrate handlings for in vivo hyperoxaluric rats and in vitro tubular cells. SB was induced by small intestine resection in male Wistar rats. Sham-operated controls had no resection. After 7 days of recovery, the rats were divided into control, SB (both fed with distilled water), ethylene glycol (EG), and SB+EG (both fed with 0.75% EG for hyperoxaluric induction) groups for 28 days. We collected the plasma, 24 h of urine, kidney, and intestine tissues for analysis. Hypocitraturia was found and persisted up to 28 days for the SB group. Hypocalcemia and high plasma parathyroid hormone (PTH) levels were found in the 28-day SB rats. SB aggravated EG-mediated oxalate nephropathy by fostering hyperoxaluria and hypocitraturia, and increasing the degree of supersaturation and calcium oxalate (CaOx) crystal deposition. These effects were associated with renal up-regulations of the oxalate transporter solute carrier family 26 (Slc26)a6 and citrate transporter sodium-dependent dicarboxylate cotransporter-1 (NaDC-1) but not Slc26a2. The effects of PTH on the SB kidneys were then examined in NRK-52E tubular cells. Recombinant PTH attenuated oxalate-mediated cell injury and up-regulated NaDC-1 via protein kinase A (PKA) activation. PTH, however, showed no additive effects on oxalate-induced Slc26a6 and NaDC-1 up-regulation. Together, these results demonstrated that renal NaDC-1 upregulation-induced hypocitraturia weakened the defense against Slc26a6-mediated hyperoxaluria in SB kidneys for excess CaOx crystal formation. Increased tubular NaDC-1 expression caused by SB relied on PTH.
Collapse
|
12
|
Xu W, Wang Y, Quan H, Liu D, Zhang H, Qi Y, Li Q, Liao J, Gao HM, Zhou H, Huang J. Double-stranded RNA-induced dopaminergic neuronal loss in the substantia nigra in the presence of Mac1 receptor. Biochem Biophys Res Commun 2020; 533:1148-1154. [PMID: 33046245 DOI: 10.1016/j.bbrc.2020.09.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The underlying mechanism of viral infection as a risk factor for Parkinson's disease (PD), the second most common neurodegenerative disease, remains unclear. OBJECTIVE We used Mac-1-/- and gp91phox-/- transgene animal models to investigate the mechanisms by which poly I:C, a mimic of virus double-stranded RNA, induces PD neurodegeneration. METHOD Poly I:C was stereotaxically injected into the substantia nigra (SN) of wild-type (WT), Mac-1-knockout (Mac-1-/-) and gp91 phox-knockout (gp91 phox-/-) mice (10 μg/μl), and nigral dopaminergic neurodegeneration, α-synuclein accumulation and neuroinflammation were evaluated. RESULT Dopaminergic neurons in the nigra and striatum were markedly reduced in WT mice after administration of poly I:C together with abundant microglial activation in the SN, and the expression of α-synuclein was also elevated. However, these pathological changes were greatly dampened in Mac-1-/- and gp91 phox-/- mice. CONCLUSIONS Our findings demonstrated that viral infection could result in the activation of microglia as well as NADPH oxidase, which may lead to neuron loss and the development of Parkinson's-like symptoms. Mac-1 is a key receptor during this process.
Collapse
Affiliation(s)
- Weixing Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Yinxi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Huihui Quan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Dan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Huifeng Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Qingru Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Jieying Liao
- Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361024, China
| | - Hui-Ming Gao
- Model Animal Research Center of Nanjing University, Nanjing, 211800, China
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China.
| |
Collapse
|
13
|
Bahia PK, Hadley SH, Barannikov I, Sowells I, Kim SH, Taylor-Clark TE. Antimycin A increases bronchopulmonary C-fiber excitability via protein kinase C alpha. Respir Physiol Neurobiol 2020; 278:103446. [PMID: 32360368 DOI: 10.1016/j.resp.2020.103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022]
Abstract
Inflammation can increase the excitability of bronchopulmonary C-fibers leading to excessive sensations and reflexes (e.g. wheeze and cough). We have previously shown modulation of peripheral nerve terminal mitochondria by antimycin A causes hyperexcitability in TRPV1-expressing bronchopulmonary C-fibers through the activation of protein kinase C (PKC). Here, we have investigated the PKC isoform responsible for this signaling. We found PKCβ1, PKCδ and PKCε were expressed by many vagal neurons, with PKCα and PKCβ2 expressed by subsets of vagal neurons. In dissociated vagal neurons, antimycin A caused translocation of PKCα but not the other isoforms, and only in TRPV1-lineage neurons. In bronchopulmonary C-fiber recordings, antimycin A increased the number of action potentials evoked by α,β-methylene ATP. Selective inhibition of PKCα, PKCβ1 and PKCβ2 with 50 nM bisindolylmaleimide I prevented the antimycin-induced bronchopulmonary C-fiber hyperexcitability, whereas selective inhibition of only PKCβ1 and PKCβ2 with 50 nM LY333531 had no effect. We therefore conclude that PKCα is required for antimycin-induced increases in bronchopulmonary C-fiber excitability.
Collapse
Affiliation(s)
- Parmvir K Bahia
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephen H Hadley
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ivan Barannikov
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Isobel Sowells
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Seol-Hee Kim
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
14
|
Hosohata K, Mise N, Kayama F, Iwanaga K. Augmentation of cadmium-induced oxidative cytotoxicity by pioglitazone in renal tubular epithelial cells. Toxicol Ind Health 2019; 35:530-536. [DOI: 10.1177/0748233719869548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to examine whether a peroxisome proliferator-activated receptor (PPAR)-γ agonist could affect cadmium (Cd)-induced cytotoxicity via the increased expression of megalin, one of the uptake pathways, using renal epithelial LLC-PK1 cells. The treatment with 1 µM Cd for 24 h was not cytotoxic; however, when the cells were pretreated with 0.1 µM pioglitazone for 12 h and then exposed to 1 µM Cd for 24 h, significant accumulation of Cd and cytotoxicity were detected, with an increase in megalin mRNA expression. In addition, pretreatment with pioglitazone significantly increased the Cd-induced generation of hydrogen peroxide and cell apoptosis. The augmented Cd-induced cytotoxicity and apoptosis on preincubation with pioglitazone were inhibited by prior treatment with GW 9662 (PPAR-γ antagonist). These findings suggest that a PPAR-γ agonist could augment Cd-induced oxidative injury and cell apoptosis, possibly dependent on the expression level of the uptake pathway.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Fujio Kayama
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazunori Iwanaga
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| |
Collapse
|
15
|
The Protective Roles of Estrogen Receptor β in Renal Calcium Oxalate Crystal Formation via Reducing the Liver Oxalate Biosynthesis and Renal Oxidative Stress-Mediated Cell Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5305014. [PMID: 31178964 PMCID: PMC6501165 DOI: 10.1155/2019/5305014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022]
Abstract
Females develop kidney stones less frequently than males do. However, it is unclear if this gender difference is related to altered estrogen/estrogen receptor (ER) signaling. Here, we found that ER beta (ERβ) signals could suppress hepatic oxalate biosynthesis via transcriptional upregulation of the glyoxylate aminotransferase (AGT1) expression. Results from multiple in vitro renal cell lines also found that ERβ could function via suppressing the oxalate-induced injury through increasing the reactive oxygen species (ROS) production that led to a decrease of the renal calcium oxalate (CaOx) crystal deposition. Mechanism study results showed that ERβ suppressed oxalate-induced oxidative stress via transcriptional suppression of the NADPH oxidase subunit 2 (NOX2) through direct binding to the estrogen response elements (EREs) on the NOX2 5′ promoter. We further applied two in vivo mouse models with glyoxylate-induced renal CaOx crystal deposition and one rat model with 5% hydroxyl-L-proline-induced renal CaOx crystal deposition. Our data demonstrated that mice lacking ERβ (ERβKO) as well as mice or rats treated with ERβ antagonist PHTPP had increased renal CaOx crystal deposition with increased urinary oxalate excretion and renal ROS production. Importantly, targeting ERβ-regulated NOX2 with the NADPH oxidase inhibitor, apocynin, can suppress the renal CaOx crystal deposition in the in vivo mouse model. Together, results from multiple in vitro cell lines and in vivo mouse/rat models all demonstrate that ERβ may protect against renal CaOx crystal deposition via inhibiting the hepatic oxalate biosynthesis and oxidative stress-induced renal injury.
Collapse
|
16
|
Vitamin D and calcium kidney stones: a review and a proposal. Int Urol Nephrol 2018; 51:101-111. [DOI: 10.1007/s11255-018-1965-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
|
17
|
Duan X, Kong Z, Mai X, Lan Y, Liu Y, Yang Z, Zhao Z, Deng T, Zeng T, Cai C, Li S, Zhong W, Wu W, Zeng G. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 2018; 16:414-425. [PMID: 29653411 PMCID: PMC5953241 DOI: 10.1016/j.redox.2018.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/26/2022] Open
Abstract
Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time.
Collapse
Affiliation(s)
- Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Zhenzhen Kong
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Xin Mai
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Yu Lan
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Yang Liu
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Zhou Yang
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Tuo Deng
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Shujue Li
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Wen Zhong
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China.
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China.
| |
Collapse
|
18
|
Panigrahi PN, Dey S, Sahoo M, Dan A. Antiurolithiatic and antioxidant efficacy of Musa paradisiaca pseudostem on ethylene glycol-induced nephrolithiasis in rat. Indian J Pharmacol 2017; 49:77-83. [PMID: 28458427 PMCID: PMC5351243 DOI: 10.4103/0253-7613.201026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Musa paradisiaca has been used in the treatment of urolithiasis by the rural people in South India. Therefore, we plan to evaluate its efficacy and possible mechanism of antiurolithiatic effect to rationalize its medicinal use. MATERIALS AND METHODS Urolithiasis was induced in hyperoxaluric rat model by giving 0.75% ethylene glycol (EG) for 28 days along with 1% ammonium chloride (AC) for the first 14 days. Antiurolithiatic effect of aqueous-ethanol extract of M. paradisiaca pseudostem (MUSA) was evaluated based on urine and serum biochemistry, microscopy of urine, oxidative/nitrosative indices, kidney calcium content, and histopathology. RESULTS Administration of EG and AC resulted in increased crystalluria and oxaluria, hypercalciuria, polyuria, crystal deposition in urine, raised serum urea, and creatinine as well as nitric oxide concentration and erythrocytic lipid peroxidation in lithiatic group. However, MUSA treatment significantly restored the impairment in above kidney function test as that of standard treatment, cystone in a dose-dependent manner. CONCLUSIONS The present findings demonstrate the efficacy of MUSA in EG-induced urolithiasis, which might be mediated through inhibiting various pathways involved in renal calcium oxalate formation, antioxidant effect, and potential to inhibit biochemical markers of renal impairment.
Collapse
Affiliation(s)
- Padma Nibash Panigrahi
- Division of Medicine, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.,Division of Veterinary Medicine, Faculty of Veterinary and Animal Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sahadeb Dey
- Division of Medicine, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Ananya Dan
- Division of Medicine, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
19
|
Shelly A, Banerjee C, Saurav GK, Ray A, Rana VS, Raman R, Mazumder S. Aeromonas hydrophila-induced alterations in cytosolic calcium activate pro-apoptotic cPKC-MEK1/2-TNFα axis in infected headkidney macrophages of Clarias gariepinus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:392-402. [PMID: 28713009 DOI: 10.1016/j.dci.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Alterations in intracellular-calcium (Ca2+)i homeostasis is critical to Aeromonas hydrophila-induced headkidney macrophages (HKM) apoptosis of Clarias gariepinus, though the implications are poorly understood. Here, we describe the role of intermediate molecules of Ca2+-signaling pathway that are involved in HKM apoptosis. We observed phosphoinositide-3-kinase/phospholipase C is critical for (Ca2+)i release in infected HKM. Heightened protein kinase-C (PKC) activity and phosphorylation of MEK1/2-ERK1/2 was noted which declined in presence of 2-APB, Go6976 and PD98059, inhibitors to IP3-receptor, conventional PKC isoforms (cPKC) and MEK1/2 respectively implicating Ca2+/cPKC/MEK-ERK1/2 axis imperative in A. hydrophila-induced HKM apoptosis. Significant tumor necrosis factor-α (TNFα) production and its subsequent reduction in presence of MEK-ERK1/2 inhibitor U0126 suggested TNFα production downstream to cPKC-mediated signaling via MEK1/2-ERK1/2 pathway. RNAi and inhibitor studies established the role of TNFα in inducing caspase-8-mediated apoptosis of infected HKM. We conclude, alterations in A. hydrophila-induced (Ca2+)i alterations activate cPKC-MEK1/2-ERK1/2-TNFα signaling cascade triggering HKM apoptosis.
Collapse
Affiliation(s)
- Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Gunjan Kumar Saurav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vipin Singh Rana
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Rajagopal Raman
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
20
|
Chhiber N, Kaur T, Singla S. Rottlerin, a polyphenolic compound from the fruits of Mallotus phillipensis (Lam.) Müll.Arg., impedes oxalate/calcium oxalate induced pathways of oxidative stress in male wistar rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:989-97. [PMID: 27444343 DOI: 10.1016/j.phymed.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Oxalate and/or calcium oxalate, is known to induce free radical production, subsequently leading to renal epithelial injury. Oxidative stress and mitochondrial dysfunction have emerged as new targets for managing oxalate induced renal injury. HYPOTHESIS Plant products and antioxidants have gained tremendous attention in the prevention of lithiatic disease. Rottlerin, a polyphenolic compound from the fruits of Mallotus phillipensis (Lam.) Müll.Arg., has shown free radical scavenging, antioxidant activity and has been reported to interfere in signaling pathways leading to inflammation and apoptosis. In this study, the potential role of rottlerin, in rats exposed to hyperoxaluric environment was explored. METHODS Hyperoxaluria was induced by administering 0.4% ethylene glycol and 1% ammonium chloride in drinking water to male wistar rats for 9 days. Rottlerin was administered intraperitoneally at 1mg/kg/day along with the hyperoxaluric agent. Prophylactic efficacy of rottlerin to diminish hyperoxaluria induced renal dysfunctionality and crystal load was examined along with its effect on free radicals generating pathways in hyperoxaluric rats. RESULTS 0.4% ethylene glycol and 1% ammonium chloride led to induction of hyperoxaluria, oxiadtive stress and mitochondrial damage in rats. Rottlerin treatment reduced NADPH oxidase activity, prevented mitochondrial dysfunction and maintained antioxidant environment. It also refurbished renal functioning, tissue integrity and diminished urinary crystal load in hyperoxaluric rats treated with rottlerin. CONCLUSIONS Thus, the present investigation suggests that rottlerin evidently reduced hyperoxaluric consequences and the probable mechanism of action of this drug could be attributed to its ability to quench free radicals by itself and interrupting signaling pathways involved in pathogenesis of stone formation.
Collapse
Affiliation(s)
- Nirlep Chhiber
- Department of Biochemistry, Panjab University, Chandigarh-160015, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh-160015, India
| | - Surinder Singla
- Department of Biochemistry, Panjab University, Chandigarh-160015, India.
| |
Collapse
|
21
|
Urinary MCP-1、HMGB1 increased in calcium nephrolithiasis patients and the influence of hypercalciuria on the production of the two cytokines. Urolithiasis 2016; 45:159-175. [PMID: 27393275 DOI: 10.1007/s00240-016-0902-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
The study aims to observe the urinary excretion of monocyte chemoattractant-1 (MCP-1) and high-mobility group box 1 (HMGB1) in patients with calcium nephrolithiasis and to determine the influence of hypercalciuria on the production of the two cytokines. 81 cases of patients with calcium nephrolithiasis (group CN) and 30 healthy controls (group C) were involved in this study. To observe the influence of urinary calcium on the excretion of those cytokines, the patients were subdivided according to their 24-h urinary calcium level: ≥4 mg/kg/day (group H) and <4 mg/kg/day (group N). MCP-1 and HMGB1 in urina sanguinis were determined for all subjects. In addition, in vitro study was done to determine the production of the two cytokines and index of apoptosis and oxidative injuries in human kidney epithelial cells (HK-2) exposed to three high levels of calcium. Data showed that both urinary MCP-1 and HMGB1 in group CN were higher than that of group C. When the patients were subdivided, comparisons among the three groups showed that both MCP-1 and HMGB1 in group H and group N were higher than group C, but there was no significant statistical difference between the two stone groups. In vitro study, the apoptosis rate of cells, the lactate dehydrogenase activities, the hydrogen peroxide, and 8-isoprostane concentrations in the medium all increased in accordance with the increased concentration of calcium supplemented. Compared with the control, mRNA expressions of MCP-1 and HMGB1 in cells and the protein concentrations of the two cytokines in the medium of calcium-supplemented groups increased significantly. Results showed that urinary MCP-1 and HMGB1 increased in calcium nephrolithiasis patients and hypercalciuria might affect the identical pathways (through the reactive oxygen species) with other factors in stimulating the production of MCP-1 and HMGB1 in vivo.
Collapse
|
22
|
Datta D, Khatri P, Banerjee C, Singh A, Meena R, Saha DR, Raman R, Rajamani P, Mitra A, Mazumder S. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages. PLoS One 2016; 11:e0146554. [PMID: 26752289 PMCID: PMC4713470 DOI: 10.1371/journal.pone.0146554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/19/2015] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium fortuitum causes ‘mycobacteriosis’ in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.
Collapse
Affiliation(s)
- Debika Datta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Preeti Khatri
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ambika Singh
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ramavatar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, India
| | - Dhira Rani Saha
- Microscopy Laboratory, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rajagopal Raman
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, India
| | - Abhijit Mitra
- Genome Analysis Laboratory, Animal Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
23
|
Mittal A, Tandon S, Singla SK, Tandon C. In vitro inhibition of calcium oxalate crystallization and crystal adherence to renal tubular epithelial cells by Terminalia arjuna. Urolithiasis 2015; 44:117-25. [DOI: 10.1007/s00240-015-0822-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/07/2015] [Indexed: 11/24/2022]
|
24
|
Joshi S, Clapp WL, Wang W, Khan SR. Osteogenic changes in kidneys of hyperoxaluric rats. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2000-12. [PMID: 26122267 DOI: 10.1016/j.bbadis.2015.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/30/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Many calcium oxalate (CaOx) kidney stones develop attached to renal papillary sub-epithelial deposits of calcium phosphate (CaP), called Randall's plaque (RP). Pathogenesis of the plaques is not fully understood. We hypothesize that abnormal urinary environment in stone forming kidneys leads to epithelial cells losing their identity and becoming osteogenic. To test our hypothesis male rats were made hyperoxaluric by administration of hydroxy-l-proline (HLP). After 28days, rat kidneys were extracted. We performed genome wide analyses of differentially expressed genes and determined changes consistent with dedifferentiation of epithelial cells into osteogenic phenotype. Selected molecules were further analyzed using quantitative-PCR and immunohistochemistry. Genes for runt related transcription factors (RUNX1 and 2), zinc finger protein Osterix, bone morphogenetic proteins (BMP2 and 7), bone morphogenetic protein receptor (BMPR2), collagen, osteocalcin, osteonectin, osteopontin (OPN), matrix-gla-protein (MGP), osteoprotegrin (OPG), cadherins, fibronectin (FN) and vimentin (VIM) were upregulated while those for alkaline phosphatase (ALP) and cytokeratins 10 and 18 were downregulated. In conclusion, epithelial cells of hyperoxaluric kidneys acquire a number of osteoblastic features but without CaP deposition, perhaps a result of downregulation of ALP and upregulation of OPN and MGP. Plaque formation may additionally require localized increases in calcium and phosphate and decrease in mineralization inhibitory potential.
Collapse
Affiliation(s)
- Sunil Joshi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - William L Clapp
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Wei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States; Department of Urology, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
25
|
Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. World J Urol 2015; 34:89-95. [PMID: 25981400 DOI: 10.1007/s00345-015-1563-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION AND OBJECTIVES Reactive oxygen species (ROS) are produced during the interaction between oxalate/calcium oxalate monohydrate (COM) crystals and renal epithelial cells and are responsible for the various cellular responses through the activation of NADPH oxidase (Nox). Ox and COM also activate the renin-angiotensin-aldosterone system (RAAS). Aldosterone stimulates ROS production through activation of Nox with the involvement of mineralocorticoid receptor (MR), Rac1 and mitogen-activated protein kinases (MAPK). We investigated RAAS pathways in vivo in an animal model of hyperoxaluria and in vitro by exposing renal epithelial cells to COM crystals. METHODS Hyperoxaluria was induced in male SD rats by administering ethylene glycol. One group of rats was additionally given spironolactone. Total RNA was extracted and subjected to genomic microarrays to obtain global transcriptome data. Normal rat kidney cell line (NRK-52E) was incubated with aldosterone(10(-7) M) and COM(67 μg/cm(2)) with or without spironolactone(10(-5) M), a selective inhibitor of SRC family of kinases; protein phosphatase 2(pp2) (10(-5) M) and Nox inhibitor; diphenylene iodonium (DPI) (10(-5) M). RESULTS Relative expression of genes encoding for AGT, angiotensin receptors 1b and 2, Renin 1, Cyp11b, HSD11B2, Nr3c2, NOx4 and Rac1 was upregulated in the kidneys of rats with hyperoxaluria. Treatment with spironolactone reversed the effect of hyperoxaluria. Both aldosterone and COM crystals activated Nox and Rac1 expression in NRK52E, while spironolactone inhibited Nox and Rac1 expression. Increased Rac1 expression was significantly attenuated by treatment with PP2 and spironolactone. CONCLUSIONS Results indicate that hyperoxaluria-induced production of ROS, injury and inflammation are in part associated with the activation of Nox through renin-angiotensin-aldosterone pathway.
Collapse
|
26
|
Sodium thiosulfate ameliorates oxidative stress and preserves renal function in hyperoxaluric rats. PLoS One 2015; 10:e0124881. [PMID: 25928142 PMCID: PMC4415920 DOI: 10.1371/journal.pone.0124881] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/18/2015] [Indexed: 01/16/2023] Open
Abstract
Background Hyperoxaluria causes crystal deposition in the kidney, which leads to oxidative stress and to injury and damage of the renal epithelium. Sodium thiosulfate (STS, Na2S2O3) is an anti-oxidant, which has been used in human medicine for decades. The effect of STS on hyperoxaluria-induced renal damage is not known. Methods Hyperoxaluria and renal injury were induced in healthy male Wistar rats by chronic exposure to ethylene glycol (EG, 0.75%) in the drinking water for 4 weeks. The treatment effects of STS, NaCl or Na2SO4 were compared. Furthermore, the effects of STS on oxalate-induced oxidative stress were investigated in vitro in renal LLC-PK1 cells. Results Chronic EG exposure led to hyperoxaluria, oxidative stress, calcium oxalate crystalluria and crystal deposition in the kidneys. Whereas all tested compounds significantly reduced crystal load, only STS-treatment maintained tissue superoxide dismutase activity and urine 8-isoprostaglandin levels in vivo and preserved renal function. In in vitro studies, STS showed the ability to scavenge oxalate-induced ROS accumulation dose dependently, reduced cell-released hydrogen peroxide and preserved superoxide dismutase activity. As a mechanism explaining this finding, STS was able to directly inactivate hydrogen peroxide in cell-free experiments. Conclusions STS is an antioxidant, which preserves renal function in a chronic EG rat model. Its therapeutic use in oxidative-stress induced renal-failure should be considered.
Collapse
|
27
|
Rayabarapu N, Patel BM. Beneficial role of tamoxifen in isoproterenol-induced myocardial infarction. Can J Physiol Pharmacol 2014; 92:849-57. [DOI: 10.1139/cjpp-2013-0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ER-α and ER-β agonist 17β-estradiol is reported to attenuate cardiac hypertrophy. Tamoxifen is a selective estrogen receptor modulator. Hence, the objective of this study was to investigate the effects of tamoxifen in myocardial infarction. For this, tamoxifen was administered to Sprague–Dawley rats for 1–14 days, and isoproterenol (ISO) (100 mg·(kg body mass)−1·day−1) was administered subcutaneously on the 13th and 14th days of the study in order to induce myocardial infarction, after which, various biochemical, cardiac, and morphometric parameters were evaluated. ISO produced significant dyslipidemia, hypertension, bradycardia, oxidative stress, and an increase in serum cardiac markers. Treatment with tamoxifen significantly controlled dyslipidemia, hypertension, bradycardia, oxidative stress, and reduced serum cardiac markers. The ISO control rats exhibited significant increases in the infarct size of the left ventricle (LV), LV cavity area, cardiac and LV hypertrophic indices, LV-wall thickness, cardiomyocyte diameter, and area. Treatment with tamoxifen significantly reduced infarction as well as hypertrophic and morphometric parameters. ISO also produced significant increases in the LV collagen level, decreases in Na+K+ATPase activity, and a reduction in the rate of pressure development and decay, which were prevented by tamoxifen treatment. The protective effect of tamoxifen on myocardial infarct was further confirmed by histopathological examination. Our data thus suggest that tamoxifen exerts beneficial effects in ISO-induced myocardial infarction.
Collapse
Affiliation(s)
- Nihar Rayabarapu
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| | - Bhoomika M. Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| |
Collapse
|
28
|
Thamilselvan V, Menon M, Thamilselvan S. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid. BJU Int 2014; 114:140-50. [PMID: 24460843 DOI: 10.1111/bju.12642] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To test our hypothesis that physiological levels of urinary oxalate induce oxidative renal cell injury, as studies to date have shown that oxalate causes oxidative injury only at supra-physiological levels. To study the combined effect of α-tocopherol and ascorbic acid against oxalate-induced oxidative injury, as oxalate-induced oxidative cell injury is known to promote initial attachment of calcium oxalate crystals to injured renal tubules and subsequent development of kidney stones. MATERIALS AND METHODS Cultures of normal (antioxidant-undepleted) and antioxidant-depleted LLC-PK1 cells were exposed to oxalate at human physiological urine concentrations. After exposure, markers of oxidative stress and cell injury were measured in the cells and media, respectively. In addition, we also evaluated the combined effects of α-tocopherol and ascorbic acid on oxalate-induced oxidative cell injury. RESULTS Exposure of renal cells to oxalate at urinary physiological levels increased the oxidative cell injury as assessed by increased lactate dehydrogenase (LDH) leakage and increased lipid hydroperoxide in the renal cells; however, this effect was not seen until 24 h after oxalate exposure, at which point the injury was milder. On the other hand, when cellular reduced glutathione (GSH) and catalase were depleted in renal epithelial cells with pharmacological inhibitors, the physiological levels of urinary oxalate caused significant oxidative cell injury at 24 h, and remarkably, when additional endogenous antioxidants were depleted, the oxalate at the upper limit of normal 24 h urine caused a significant amount of cell injury in a shorter period of time, which was comparable to that seen in cells exposed to higher levels of oxalate. Exposure of LLC-PK1 cells to oxalate resulted in increased levels of H2 O2 and lipid hydroperoxide, correlating with increased release of cell injury markers, including LDH, alkaline phosphate, and γ-glutamyl transpeptidase from renal tubular epithelial cells. Oxalate exposure decreased the activity and protein expression of superoxide dismutase and glutathione peroxidase in a time-dependent manner. LLC-PK1 cells treated with oxalate and either α-tocopherol or ascorbic acid alone exhibited a significant decrease in oxidative cell injury and restored endogenous renal antioxidants towards normal levels, and interestingly, combined treatment with α-tocopherol and ascorbic was more efficient at preventing oxalate-induced toxicity than treatment with either agent alone. CONCLUSION To our knowledge this is the first study to show that oxalate alone at human physiological urine concentrations (in the absence of calcium oxalate crystal formation), induced oxidative renal injury in renal epithelial cells when endogenous antioxidants are depleted. Our data further suggests that a combination of α-tocopherol and ascorbic acid may be more effective than each individual agent in reducing oxalate-induced oxidative renal injury and subsequent calcium oxalate crystal deposition in recurrent stone formers.
Collapse
|
29
|
Hong SH, Lee HJ, Sohn EJ, Ko HS, Shim BS, Ahn KS, Kim SH. Anti-nephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo. Pharmacol Rep 2014; 65:970-9. [PMID: 24145091 DOI: 10.1016/s1734-1140(13)71078-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/11/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Though resveratrol is known to have anti-cancer, anti-diabetic, anti-oxidant and anti-inflammatory activities, the inhibitory mechanism of resveratrol in kidney stone formation has not been elucidated so far. METHOD ELISA, flow cytometry, RT-PCR, and western blotting were performed. Human renal epithelial cells (HRCs) and rats with ethylene glycol (EG)-induced kidney stones were used. RESULTS A wound healing assay revealed that resveratrol significantly inhibited the oxalate-mediated migration of HRCs, considering oxalate mediates kidney stone formation. Also, resveratrol suppressed the mRNA expression of nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase subunits such as p22(phox) and p47(phox), monocyte chemoattractant protein 1 (MCP-1) and osteopontin (OPN) in oxalate-treated HRCs. Furthermore, western blotting showed that resveratrol downregulated the expression of MCP-1-related proteins including transforming growth factor(TGF-β1), TGFR-I or II and hyaluronan in oxalate-treated HRCs. Consistently, resveratrol reduced oxalate-mediated production of reactive oxygen species (ROS) and malondialdehyde (MDA) in oxalate-treated HRCs, while the activities of anti-oxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were enhanced by resveratrol in HRCs and EG-treated kidneys of rats. Consistently, resveratrol significantly reduced the number of urine calcium oxalate crystals and serum MDA, and attenuated the expression of OPN and hyaluroran in EG-treated rats. CONCLUSIONS Our findings suggest that resveratrol exerts anti-nephrolithic potential via inhibition of ROS, MCP-1 hyaluronan and OPN signaling.
Collapse
Affiliation(s)
- Sang Hyuk Hong
- College of Oriental Medicine, Kyung Hee University, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
30
|
Patel BM, Desai VJ. Beneficial role of tamoxifen in experimentally induced cardiac hypertrophy. Pharmacol Rep 2014; 66:264-72. [DOI: 10.1016/j.pharep.2014.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/22/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
|
31
|
Luna-López A, González-Puertos VY, Romero-Ontiveros J, Ventura-Gallegos JL, Zentella A, Gomez-Quiroz LE, Königsberg M. A noncanonical NF-κB pathway through the p50 subunit regulates Bcl-2 overexpression during an oxidative-conditioning hormesis response. Free Radic Biol Med 2013; 63:41-50. [PMID: 23648765 DOI: 10.1016/j.freeradbiomed.2013.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/27/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
Abstract
Cells can respond to damage and stress by activating various repair and survival pathways. One of these responses can be induced by preconditioning the cells with sublethal stress to provoke a prosurvival response that will prevent damage and death, and which is known as hormesis. Bcl-2, an antiapoptotic protein recognized by its antioxidant and prosurvival functions, has been documented to play an important role during oxidative-conditioning hormesis. Using an oxidative-hormetic model, which was previously established in the L929 cell line by subjecting the cells to a mild oxidative stress of 50 μM H₂O₂ for 9 h, we identified two different transductional mechanisms that participate in the regulation of Bcl-2 expression during the hormetic response. These mechanisms converge in activating the nuclear transcription factor NF-κB. Interestingly, the noncanonical p50 subunit of the NF-κB family is apparently the subunit that participates during the oxidative-hormetic response.
Collapse
|
32
|
Kanlaya R, Fong-ngern K, Thongboonkerd V. Cellular adaptive response of distal renal tubular cells to high-oxalate environment highlights surface alpha-enolase as the enhancer of calcium oxalate monohydrate crystal adhesion. J Proteomics 2013; 80:55-65. [DOI: 10.1016/j.jprot.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/07/2012] [Accepted: 01/07/2013] [Indexed: 01/14/2023]
|
33
|
Cheng D, Zhu X, Gillespie DG, Jackson EK. Role of RACK1 in the differential proliferative effects of neuropeptide Y(1-36) and peptide YY(1-36) in SHR vs. WKY preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 2013; 304:F770-80. [PMID: 23303411 DOI: 10.1152/ajprenal.00646.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies show that neuropeptide Y(1-36) (NPY(1-36)) and peptide YY(1-36) (PYY(1-36)), by engaging Y1 receptors, stimulate proliferation of spontaneous hypertensive rat (SHR) preglomerular vascular smooth muscle cells (PGVSMCs). In contrast, these peptides have little effect on proliferation of Wistar-Kyoto (WKY) PGVSMCs. Why SHR and WKY PGVSMCs differ in this regard is unknown. Because receptor for activated C kinase 1 (RACK1) can modulate cell proliferation, we tested the hypothesis that differences in RACK1 levels/localization may explain the differential response of SHR vs. WKY PGVSMCs to NPY(1-36) and PYY(1-36). Western blotting for RACK1 in subcellular fractions of cultured SHR and WKY PGVSMCs demonstrated increased levels of RACK1 in the membrane and cytoskeletal subcellular fractions of SHR vs. WKY PGVSMCs. NPY(1-36) and PYY(1-36) stimulated proliferation of SHR PGVSMCs, and siRNA knockdown of RACK1 abrogated this effect. Neither NPY(1-36) nor PYY(1-36) stimulated the proliferation of WKY PGVSMCs. However, in WKY PGVSMCs treated with a RACK1 plasmid, both NPY(1-36) and PYY(1-36) stimulated proliferation. In SHR PGVSMCs, inhibitors of the G(i)/phospholipase C/PKC pathway (a pathway known to be organized by RACK1) attenuated the ability of NPY(1-36) to stimulate the proliferation of SHR PGVSMCs. Our results suggest that RACK1 modulates the ability of PGVSMCs to respond to the proliferative actions of NPY(1-36) and PYY(1-36)and differences in RACK1 levels/localization account for, in part, differential proliferative responses to NPY(1-36) and PYY(1-36) in SHR vs. WKY PGVSMCs. Because dipeptidyl peptidase IV inhibitors increase NPY(1-36) and PYY(1-36) levels, our findings have implications for the use of such drugs in diabetic patients.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
34
|
Zhang HM, Lin N, Dong Y, Su Q, Luo M. Protein kinase Cα is involved in impaired perinatal hypothyroid rat brain development. J Neurosci Res 2012; 91:211-9. [PMID: 23152155 DOI: 10.1002/jnr.23125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/28/2012] [Accepted: 07/13/2012] [Indexed: 11/07/2022]
Abstract
Protein kinase Cα (PKCα) has been implicated in the regulation of a variety of cellular functions, such as proliferation, differentiation, and apoptosis, in response to a diverse range of stimuli. Activated PKCα mediates oxidative stress, apoptosis, and inflammatory reaction. Thyroid hormone (TH) is essential for the proper development of the mammalian central nervous system. TH deficiency during critical periods of brain development results in permanent cognitive and neurological impairments. In the present study, we attempted to explore whether PKCα is involved in impaired brain function in developing hypothyroid rat brain. Severe perinatal hypothyroidism was obtained by administration of 30 mg/day propylthiouracil to dams. Brain PKC activity in hypothyroid pups was increased significantly in cytosol and membrane fractions. The change of membrane PKC activity was more marked than that of cytosol, and hypothyroidism led to a higher ratio of membrane PKC activity to that in cytosol, which means abnormal activation of PKC in developing hypothyroid rat brain. Thyroxine replacement partially corrected these changes. After being treated with bisindolmaleimide XI, a mainly selective inhibitor for PKCα, the hypothyroid pups showed improved place navigation test results, and further Western blot analysis showed that PKCα expression in cytosol fractions was increased in hypothyroid rat brain with or without bisindolmaleimide XI treatment, but, after treatment with bisindolmaleimide XI, PKCα content in membrane fractions decreased almost to normal. Therefore, we conclude that PKCα appears to be involved in the impaired brain development observed in perinatal hypothyroid rat brain.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Endocrinology, Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Thamilselvan V, Menon M, Thamilselvan S. Carmustine enhances the anticancer activity of selenite in androgen-independent prostate cancer cells. Cancer Manag Res 2012. [PMID: 23204869 PMCID: PMC3508550 DOI: 10.2147/cmar.s38022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Apoptosis is one of the major mechanisms targeted in the development of therapies against various cancers, including prostate cancer. Resistance to chemotherapy poses a significant problem for the effective treatment of androgen-independent (hormone-refractory) prostate cancer. Although high concentrations of sodium selenite exert strong anticarcinogenic effects in several cell culture systems and animal models, the therapeutic potential of selenite in patients with advanced or metastatic prostate cancer is extremely limited by the genotoxicity of high-dose selenite. We examined the ability of nontoxic concentrations of selenite to promote apoptosis and inhibit proliferation in carmustine-sensitized androgen-independent human prostate cancer cells. Androgen-dependent LNCaP cells exhibited a significant decrease in cell viability when exposed to nontoxic concentrations of selenite, whereas androgen-independent PC-3 and DU145 cells showed a significant decrease in cell viability only at higher concentrations. Treatment of PC-3 cells with a combination of nontoxic selenite and carmustine resulted in greater increases in cytotoxicity, reactive oxygen species generation, growth inhibition, apoptosis, and DNA double-strand breaks, with concomitant decreases in DNA synthesis, glutathione, glutathione reductase, and antiapoptotic proteins. Combination treatment with carmustine and selenite triggered caspase-dependent apoptosis in PC-3 cells, which was not apparent when these cells were treated with selenite or carmustine alone. Genotoxicity in normal prostate epithelial cells was completely absent in the combination treatment of carmustine and selenite. In addition, carmustine decreased the induction of DNA double strand breaks by high-dose selenite in normal prostate epithelial cells. This is the first study to demonstrate that a nontoxic dose of selenite, in combination with carmustine, significantly induces apoptosis and growth inhibition in androgen-independent prostate cancer cells without causing undesirable genotoxicity in normal prostate epithelial cells, suggesting that this combination therapy may be a promising therapeutic approach in the treatment of patients with metastatic hormone-refractory prostate cancer.
Collapse
|
36
|
Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 2012; 189:803-11. [PMID: 23022011 DOI: 10.1016/j.juro.2012.05.078] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2012] [Indexed: 01/18/2023]
Abstract
PURPOSE Idiopathic calcium oxalate kidney stones form while attached to Randall plaques, the subepithelial deposits on renal papillary surfaces. Plaque formation and growth mechanisms are poorly understood. Plaque formation elsewhere in the body is triggered by reactive oxygen species and oxidative stress. This review explores possible reactive oxygen species involvement in plaque formation and calcium oxalate nephrolithiasis. MATERIALS AND METHODS A search of various databases for the last 8 years identified literature on reactive oxygen species involvement in calcium oxalate nephrolithiasis. The literature was reviewed and results are discussed. RESULTS Under normal conditions reactive oxygen species production is controlled, increasing as needed and regulating crystallization modulator production. Reactive oxygen species overproduction or decreased antioxidants lead to oxidative stress, inflammation and injury, and are involved in stone comorbidity. All major chronic inflammation markers are detectable in stone patient urine. Patients also have increased urinary excretion of the IαI and the thrombin protein families. Results of a recent study of 17,695 participants in NHANES III (National Health and Nutrition Examination Survey) showed significantly lower antioxidants, carotene and β-cryptoxanthin in those with a kidney stone history. Animal model and tissue culture studies revealed that high oxalate, calcium oxalate and calcium phosphate crystals provoked renal cell reactive oxygen species mediated inflammatory responses. Calcium oxalate crystals induce renin up-regulation and angiotensin II generation. Nonphagocytic NADPH oxidase leads to reactive oxygen species production mediated by protein kinase C. The P-38 MAPK/JNK transduction pathway is turned on. Transcriptional and growth factors, and generated secondary mediators become involved. Chemoattractant and osteopontin production is increased and macrophages infiltrate the renal interstitium around the crystal. Phagocytic NADPH oxidase is probably activated, producing additional reactive oxygen species. Localized inflammation, extracellular matrix and fibrosis develop. Crystallization modulators have a significant role in inflammation and tissue repair. CONCLUSIONS Based on available data, Randall plaque formation is similar to extracellular matrix mineralization at many body sites. Renal interstitial collagen becomes mineralized, assisting plaque growth through the interstitium until the mineralizing front reaches papillary surface epithelium. Plaque exposure to pelvic urine may also be a result of reactive oxygen species triggered epithelial sloughing.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| |
Collapse
|
37
|
Protein kinase cδ in apoptosis: a brief overview. Arch Immunol Ther Exp (Warsz) 2012; 60:361-72. [PMID: 22918451 DOI: 10.1007/s00005-012-0188-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/06/2012] [Indexed: 12/21/2022]
Abstract
Protein kinase C-delta (PKCδ), a member of the lipid-regulated serine/threonine PKC family, has been implicated in a wide range of important cellular processes. In the past decade, the critical role of PKCδ in the regulation of both intrinsic and extrinsic apoptosis pathways has been widely explored. In most cases, over-expression or activation of PKCδ results in the induction of apoptosis. The phosphorylations and multiple cell organelle translocations of PKCδ initiate apoptosis by targeting multiple downstream effectors. During apoptosis, PKCδ is proteolytically cleaved by caspase-3 to generate a constitutively activated catalytic fragment, which amplifies apoptosis cascades in nucleus and mitochondria. However, PKCδ also exerts its anti-apoptotic and pro-survival roles in some cases. Therefore, the complicated role of PKCδ in apoptosis appears to be stimulus and cell type dependent. This review is mainly focused on how PKCδ gets activated in diverse ways in response to apoptotic signals and how PKCδ targets different downstream regulators to sponsor or restrain apoptosis induction.
Collapse
|
38
|
Effects of different concentrations of artemisinin and artemisinin-iron combination treatment on Madin Darby Canine Kidney (MDCK) cells. Interdiscip Toxicol 2012; 5:30-7. [PMID: 22783147 PMCID: PMC3389507 DOI: 10.2478/v10102-012-0006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/10/2012] [Accepted: 02/23/2012] [Indexed: 11/23/2022] Open
Abstract
Artemisinin is a sesquitrepenelactone with an endoperoxide bridge. It is a naturally occurring substance from Artemisia species plants. Artemisia species have been used in oriental medicine for centuries to treat malaria, gastrointestinal helminthosia, diarrhea, and as an antipyretic and sedative agent. Antileishmanial activity of the plants has been announced a few years ago. Dogs are the most important reservoir of leishmaniasis in some parts of the world. To use it as an antileishmanial drug in dogs, its side effects on different organs, among them the kidney as the organ of elimination have to be elucidated. Artemisinin with different concentrations (0.15, 0.3, 0.6 and 1.2 μg/ml) was added to the culture of MDCK (Madin darby canine kidney) cells with and without iron (86 μg/dl). All the changes were controlled and photographed every 12 hours using an invert microscope. After 60 hours, supernatants and cell extracts were examined for LDH (lactate dehydrogenase) concentration and total protein. Also TBARS (thiobarbituric acid reactive substances) test was performed on cell extracts. Some microscopic slides were prepared from the cells and stained with hematoxylin-eosin for microscopic exams. Biochemical parameters showed cellular reaction and injury in a concentration dependent manner. Cell injury was more severe in the iron-added groups. Microscopic exams showed cell and nuclear swelling, granular degeneration, vacuole and vesicle formation, cellular detachment, piknosis, karyorrhexis, cellular necrosis and inhibition of new mitosis. On using the drug for leishmaniasis treatment in the dog, it should be done with caution and supervision.
Collapse
|
39
|
Cao Y, Zhao Z, Eckert RL, Reece EA. The essential role of protein kinase Cδ in diabetes-induced neural tube defects. J Matern Fetal Neonatal Med 2012; 25:2020-4. [PMID: 22463764 DOI: 10.3109/14767058.2012.677963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Maternal diabetes causes neural tube defects (NTDs) in the embryos via activating protein kinase Cs (PKCs), which regulate programmed cell death (apoptosis). The aims of this study are to investigate the role of proapoptotic PKCδ in NTD formation and the underlying mechanisms. METHODS PKCδ heterozygous (pkcδ(+/-)) female mice were diabetic (DM) induced by intravenous injection of streptozotocin. Occurrence of NTDs was evaluated at embryonic day 11.5 and compared between wild type (WT) and PKCδ homozygous (pkcδ(-/-)) embryos. Changes in oxidative and endoplasmic reticulum (ER) stress-associated factors and stress-response c-Jun N-terminal kinases (JNKs) were assessed using Western blot assay. RESULTS Compared to DM/WT, the DM/PKCδ(-/-) embryos had significantly lower NTD rate and lower levels of oxidative and ER stress factors and JNK activation. These values were similar to those in the non-diabetic control group. CONCLUSION PKCδ plays a critical role in diabetes-induced NTDs, potentially through increasing oxidative and ER stress and JNK-associated stress-response pathways.
Collapse
Affiliation(s)
- Yuanning Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
40
|
Ruiz-Loredo AY, López E, López-Colomé AM. Thrombin stimulates stress fiber assembly in RPE cells by PKC/CPI-17-mediated MLCP inactivation. Exp Eye Res 2012; 96:13-23. [DOI: 10.1016/j.exer.2012.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 12/29/2022]
|
41
|
Batra S, Cai S, Balamayooran G, Jeyaseelan S. Intrapulmonary administration of leukotriene B(4) augments neutrophil accumulation and responses in the lung to Klebsiella infection in CXCL1 knockout mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:3458-68. [PMID: 22379035 DOI: 10.4049/jimmunol.1101985] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In prior studies, we demonstrated that 1) CXCL1/KC is essential for NF-κB and MAPK activation and expression of CXCL2/MIP-2 and CXCL5/LPS-induced CXC chemokine in Klebsiella-infected lungs, and 2) CXCL1 derived from hematopoietic and resident cells contributes to host immunity against Klebsiella. However, the role of CXCL1 in mediating neutrophil leukotriene B(4) (LTB(4)), reactive oxygen species (ROS), and reactive nitrogen species (RNS) production is unclear, as is the contribution of these factors to host immunity. In this study, we investigated 1) the role of CXCL1 in LTB(4), NADPH oxidase, and inducible NO synthase (iNOS) expression in lungs and neutrophils, and 2) whether LTB(4) postinfection reverses innate immune defects in CXCL1(-/-) mice via regulation of NADPH oxidase and iNOS. Our results demonstrate reduced neutrophil influx, attenuated LTB(4) levels, and decreased ROS and iNOS production in the lungs of CXCL1(-/-) mice after Klebsiella pneumoniae infection. Using neutrophil depletion and repletion, we found that neutrophils are the predominant source of pulmonary LTB(4) after infection. To treat immune defects in CXCL1(-/-) mice, we intrapulmonarily administered LTB(4). Postinfection, LTB(4) treatment reversed immune defects in CXCL1(-/-) mice and improved survival, neutrophil recruitment, cytokine/chemokine expression, NF-κB/MAPK activation, and ROS/RNS production. LTB(4) also enhanced myeloperoxidase, H(2)O(2,) RNS production, and bacterial killing in K. pneumoniae-infected CXCL1(-/-) neutrophils. These novel results uncover important roles for CXCL1 in generating ROS and RNS in neutrophils and in regulating host immunity against K. pneumoniae infection. Our findings suggest that LTB(4) could be used to correct defects in neutrophil recruitment and function in individuals lacking or expressing malfunctional CXCL1.
Collapse
Affiliation(s)
- Sanjay Batra
- Laboratory of Lung Biology, Department of Pathobiological Sciences, Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
42
|
Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? ACTA ACUST UNITED AC 2012; 40:95-112. [PMID: 22213019 DOI: 10.1007/s00240-011-0448-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/10/2011] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have provided the evidence for association between nephrolithiasis and a number of cardiovascular diseases including hypertension, diabetes, chronic kidney disease, metabolic syndrome. Many of the co-morbidities may not only lead to stone disease but also be triggered by it. Nephrolithiasis is a risk factor for development of hypertension and have higher prevalence of diabetes mellitus and some hypertensive and diabetic patients are at greater risk for stone formation. An analysis of the association between stone disease and other simultaneously appearing disorders, as well as factors involved in their pathogenesis, may provide an insight into stone formation and improved therapies for stone recurrence and prevention. It is our hypothesis that association between stone formation and development of co-morbidities is a result of certain common pathological features. Review of the recent literature indicates that production of reactive oxygen species (ROS) and development of oxidative stress (OS) may be such a common pathway. OS is a common feature of all cardiovascular diseases (CVD) including hypertension, diabetes mellitus, atherosclerosis and myocardial infarct. There is increasing evidence that ROS are also produced during idiopathic calcium oxalate (CaOx) nephrolithiasis. Both tissue culture and animal model studies demonstrate that ROS are produced during interaction between CaOx/calcium phosphate (CaP) crystals and renal epithelial cells. Clinical studies have also provided evidence for the development of oxidative stress in the kidneys of stone forming patients. Renal disorders which lead to OS appear to be a continuum. Stress produced by one disorder may trigger the other under the right circumstances.
Collapse
|
43
|
Selective Rac1 inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury. ACTA ACUST UNITED AC 2011; 40:415-23. [PMID: 21814770 DOI: 10.1007/s00240-011-0405-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
Abstract
Oxalate-induced oxidative cell injury is one of the major mechanisms implicated in calcium oxalate nucleation, aggregation and growth of kidney stones. We previously demonstrated that oxalate-induced NADPH oxidase-derived free radicals play a significant role in renal injury. Since NADPH oxidase activation requires several regulatory proteins, the primary goal of this study was to characterize the role of Rac GTPase in oxalate-induced NADPH oxidase-mediated oxidative injury in renal epithelial cells. Our results show that oxalate significantly increased membrane translocation of Rac1 and NADPH oxidase activity of renal epithelial cells in a time-dependent manner. We found that NSC23766, a selective inhibitor of Rac1, blocked oxalate-induced membrane translocation of Rac1 and NADPH oxidase activity. In the absence of Rac1 inhibitor, oxalate exposure significantly increased hydrogen peroxide formation and LDH release in renal epithelial cells. In contrast, Rac1 inhibitor pretreatment, significantly decreased oxalate-induced hydrogen peroxide production and LDH release. Furthermore, PKC α and δ inhibitor, oxalate exposure did not increase Rac1 protein translocation, suggesting that PKC resides upstream from Rac1 in the pathway that regulates NADPH oxidase. In conclusion, our data demonstrate for the first time that Rac1-dependent activation of NADPH oxidase might be a crucial mechanism responsible for oxalate-induced oxidative renal cell injury. These findings suggest that Rac1 signaling plays a key role in oxalate-induced renal injury, and may serve as a potential therapeutic target to prevent calcium oxalate crystal deposition in stone formers and reduce recurrence.
Collapse
|
44
|
Snow JB, Gonzalez Bosc LV, Kanagy NL, Walker BR, Resta TC. Role for PKCβ in enhanced endothelin-1-induced pulmonary vasoconstrictor reactivity following intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol 2011; 301:L745-54. [PMID: 21803871 DOI: 10.1152/ajplung.00020.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intermittent hypoxia (IH) resulting from sleep apnea causes both systemic and pulmonary hypertension. Enhanced endothelin-1 (ET-1)-induced vasoconstrictor reactivity is thought to play a central role in the systemic hypertensive response to IH. However, whether IH similarly increases pulmonary vasoreactivity and the signaling mechanisms involved are unknown. The objective of the present study was to test the hypothesis that IH augments ET-1-induced pulmonary vasoconstrictor reactivity through a PKCβ-dependent signaling pathway. Responses to ET-1 were assessed in endothelium-disrupted, pressurized pulmonary arteries (∼150 μm inner diameter) from eucapnic-IH [(E-IH) 3 min cycles, 5% O(2)-5% CO(2)/air flush, 7 h/day; 4 wk] and sham (air-cycled) rats. Arteries were loaded with fura-2 AM to monitor vascular smooth muscle (VSM) intracellular Ca(2+) concentration ([Ca(2+)](i)). E-IH increased vasoconstrictor reactivity without altering Ca(2+) responses, suggestive of myofilament Ca(2+) sensitization. Consistent with our hypothesis, inhibitors of both PKCα/β (myr-PKC) and PKCβ (LY-333-531) selectively decreased vasoconstriction to ET-1 in arteries from E-IH rats and normalized responses between groups, whereas Rho kinase (fasudil) and PKCδ (rottlerin) inhibition were without effect. Although E-IH did not alter arterial PKCα/β mRNA or protein expression, E-IH increased basal PKCβI/II membrane localization and caused ET-1-induced translocation of these isoforms away from the membrane fraction. We conclude that E-IH augments pulmonary vasoconstrictor reactivity to ET-1 through a novel PKCβ-dependent mechanism that is independent of altered PKC expression. These findings provide new insights into signaling mechanisms that contribute to vasoconstriction in the hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Jessica B Snow
- Dept. of Cell Biology and Physiology, Univ. of New Mexico Health Sciences Center, MSC 08-4750, 1 Univ. of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | |
Collapse
|
45
|
Yu SL, Gan XG, Huang JM, Cao Y, Wang YQ, Pan SH, Ma LY, Teng YQ, An RH. Oxalate impairs aminophospholipid translocase activity in renal epithelial cells via oxidative stress: implications for calcium oxalate urolithiasis. J Urol 2011; 186:1114-20. [PMID: 21784463 DOI: 10.1016/j.juro.2011.04.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Indexed: 12/25/2022]
Abstract
PURPOSE We evaluated the possible involvement of phospholipid transporters and reactive oxygen species in the oxalate induced redistribution of renal epithelial cell phosphatidylserine. MATERIALS AND METHODS Madin-Darby canine kidney cells were labeled with the fluorescent phospholipid NBD-PS in the inner or outer leaflet of the plasma membrane and then exposed to oxalate in the presence or absence of antioxidant. This probe was tracked using a fluorescent quenching assay to assess the bidirectional transmembrane movement of phosphatidylserine. Surface expressed phosphatidylserine was detected by annexin V binding assay. The cell permeable fluorogenic probe DCFH-DA was used to measure the intracellular reactive oxygen species level. RESULTS Oxalate produced a time and concentration dependent increase in phosphatidylserine, which may have resulted from impaired aminophospholipid translocase mediated, inward directed phosphatidylserine transport and from enhanced phosphatidylserine outward transport. Adding the antioxidant N-acetyl-L-cysteine significantly attenuated phosphatidylserine externalization by effectively rescuing aminophospholipid translocase activity. CONCLUSIONS To our knowledge our findings are the first to show that oxalate induced increased reactive oxygen species generation impairs aminophospholipid translocase activity and decreased aminophospholipid translocase activity has a role in hyperoxaluria promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells.
Collapse
Affiliation(s)
- Shi-Liang Yu
- Department of Urology, First Affiliated Hospital of Harbin Medical University, and Tumor Prevention and Cure Research Laboratory, Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cao W, Zhou QG, Nie J, Wang GB, Liu Y, Zhou ZM, Hou FF. Albumin overload activates intrarenal renin-angiotensin system through protein kinase C and NADPH oxidase-dependent pathway. J Hypertens 2011; 29:1411-1421. [PMID: 21558957 DOI: 10.1097/hjh.0b013e32834786f0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Inappropriate activation of the intrarenal renin-angiotensin system (RAS) plays an important role in the pathogenesis of hypertension and renal injury. However, the underlying mechanisms remain elusive. Proteinuria has been shown to elicit the renal activation of RAS. The present study was performed to test the intracellular signal pathway involved in albumin-triggered activation of RAS. DESIGN AND METHODS NRK52E cells, a rat renal proximal tubular cell line, were incubated with increased levels of albumin. The rat model of protein overload was established in female Wistar-Kyoto rats that were subjected to unilateral nephrectomy followed by daily intraperitoneal injection of BSA at various doses (0.5, 1.0, and 5.0 g/kg) or combination with intragastric administration of apocynin (100 mg/kg per day), an inhibitor of NADPH oxidase. RESULTS Exposure of the cells to high levels of albumin activated the RAS through the endocytic receptors megalin and cubilin. High levels of albumin triggered the production of intracellular reactive oxygen species by a protein kinase C (PKC)-NADPH oxidase-dependent pathway and this, in turn, led to activation of nuclear factor-κB (NF-κB) and activation protein-1 (AP-1). Inhibition of PKC or NADPH oxidase abolished albumin-induced activation of RAS. In a protein overload rat model, activation of RAS in renal proximal tubular cells was significantly increased, coincident with activation of PKC, NADPH oxidase, NF-κB, and AP-1. Chronic inhibition of NADPH oxidase by apocynin largely ameliorated intrarenal activation of RAS. CONCLUSION Exposure of renal tubular epithelial cells with high levels of albumin triggers activation of RAS via a PKC-NADPH oxidase-dependent pathway.
Collapse
Affiliation(s)
- Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Yu P, Han W, Villar VAM, Li H, Arnaldo FB, Concepcion GP, Felder RA, Quinn MT, Jose PA. Dopamine D1 receptor-mediated inhibition of NADPH oxidase activity in human kidney cells occurs via protein kinase A-protein kinase C cross talk. Free Radic Biol Med 2011; 50:832-40. [PMID: 21193028 PMCID: PMC3066436 DOI: 10.1016/j.freeradbiomed.2010.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/10/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022]
Abstract
Dopamine cellular signaling via the D(1) receptor (D(1)R) involves both protein kinase A (PKA) and protein kinase C (PKC), but the PKC isoform involved has not been determined. Therefore, we tested the hypothesis that the D(1)R-mediated inhibition of NADPH oxidase activity involves cross talk between PKA and a specific PKC isoform(s). In HEK-293 cells heterologously expressing human D(1)R (HEK-hD(1)), fenoldopam, a D(1)R agonist, and phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited oxidase activity in a time- and concentration-dependent manner. The D(1)R-mediated inhibition of oxidase activity (68.1±3.6%) was attenuated by two PKA inhibitors, H89 (10μmol/L; 88±8.1%) and Rp-cAMP (10μmol/L; 97.7±6.7%), and two PKC inhibitors, bisindolylmaleimide I (1μmol/L; 94±6%) and staurosporine (10nmol/L; 93±8%), which by themselves had no effect (n=4-8/group). The inhibitory effect of PMA (1μmol/L) on oxidase activity (73±3.2%) was blocked by H89 (100±7.8%; n=5 or 6/group). The PMA-mediated inhibition of NADPH oxidase activity was accompanied by an increase in PKCθ(S676), an effect that was also blocked by H89. Fenoldopam (1μmol/L) also increased PKCθ(S676) in HEK-hD(1) and human renal proximal tubule (RPT) cells. Knockdown of PKCθ with siRNA in RPT cells prevented the inhibitory effect of fenoldopam on NADPH oxidase activity. Our studies demonstrate for the first time that cross talk between PKA and PKCθ plays an important role in the D(1)R-mediated negative regulation of NADPH oxidase activity in human kidney cells.
Collapse
Affiliation(s)
- Peiying Yu
- Center for Molecular Physiology Research, Children's National Medical Center, Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Khan SR, Khan A, Byer KJ. Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplant 2010; 26:1778-85. [PMID: 21079197 DOI: 10.1093/ndt/gfq692] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Exposure of renal epithelial cells to oxalate (Ox) or calcium oxalate (CaOx) crystals leads to the production of reactive oxygen species and cell injury. We have hypothesized that Ox and CaOx crystals activate NADPH oxidase through upregulation of its various subunits. METHODS Human renal epithelial-derived cell line, HK-2, was exposed to 100 μmol Ox or 66.7 μg/cm(2) CaOx monohydrate crystals for 6, 12, 24 or 48 h. After exposure, the cells and media were processed to determine activation of NADPH oxidase, production of superoxide and 8-isoprostane (8IP), and release of lactate dehydrogenase (LDH). RT-PCR was performed to determine mRNA expression of NADPH subunits p22(phox), p40(phox), p47(phox), p67(phox) and gp91(phox) as well as Rac-GTPase. RESULTS Exposure to Ox and CaOx crystals resulted in increase in LDH release, production of 8-IP, NADPH oxidase activity and production of superoxide. Exposure to CaOx crystals resulted in significantly higher NADPH oxidase activity, production of superoxide and LDH release than Ox exposure. Exposure to Ox and CaOx crystals altered the expression of various subunits of NADPH oxidase. More consistent were increases in the expression of membrane-bound p22(phox) and cytosolic p47(phox). Significant and strong correlations were seen between NADPH oxidase activity, the expression of p22(phox) and p47(phox), production of superoxide and release of LDH when cells were exposed to CaOx crystals. The expressions of neither p22(phox) nor p47(phox) were significantly correlated with increased NADPH oxidase activity after the Ox exposure. CONCLUSIONS As hypothesized, exposure to Ox or CaOx crystals leads to significant increases in the expression of p22(phox) and p47(phox), leading to activation of NADPH oxidase. Increased NADPH oxidase activity is associated with increased superoxide production and lipid peroxidation. Different pathways appear to be involved in the stimulation of renal epithelial cells by exposure to Ox and CaOx crystals.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | | |
Collapse
|
49
|
Gongora MC, Harrison DG. NO solution for a radical problem: a TAL story. Am J Physiol Renal Physiol 2010; 298:F883-4. [DOI: 10.1152/ajprenal.00023.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Maria Carolina Gongora
- Department of Medicine and Division of Cardiology, Emory University School of Medicine and Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - David G. Harrison
- Department of Medicine and Division of Cardiology, Emory University School of Medicine and Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|