1
|
Seo S, Kim H, Hwang JT, Kim JE, Kim J, Jeon S, Song YJ, Choi KH, Sim G, Cho M, Yoon JW, Kim H. HL156A, an AMP-Activated Protein Kinase Activator, Inhibits Cyst Growth in Autosomal Dominant Polycystic Kidney Disease. Biomolecules 2024; 14:806. [PMID: 39062520 PMCID: PMC11274646 DOI: 10.3390/biom14070806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic kidney disorder. While metformin has demonstrated the ability to inhibit cyst growth in animal models of ADPKD via activation of adenosine monophosphate-activated protein kinase (AMPK), its effectiveness in humans is limited due to its low potency. This study explored the impact of HL156A, a new and more potent AMPK activator, in a mouse model of ADPKD. METHODS To investigate whether HL156A inhibits the proliferation of renal cyst cells in ADPKD in vitro, exogenous human telomerase reverse transcriptase (hTERT)-immortalized renal cyst cells from ADPKD patients were treated with HL156A, and an MTT (dimethylthiazol-diphenyltetrazolium bromide) assay was performed. To assess the cyst-inhibitory effect of HL156A in vivo, we generated Pkd1 conditional knockout (KO) mice with aquaporin 2 (AQP2)-Cre, which selectively expresses Cre recombinase in the collecting duct. The effectiveness of HL156A in inhibiting cyst growth and improving renal function was confirmed by measuring the number of cysts and blood urea nitrogen (BUN) levels in the collecting duct-specific Pkd1 KO mice. RESULTS When cyst cells were treated with up to 20 µM of metformin or HL156A, HL156A reduced cell viability by 25% starting at a concentration of 5 µM, whereas metformin showed no effect. When AQP2-Cre male mice were crossed with Pkd1flox/flox female mice, and when AQP2-Cre female mice were crossed with Pkd1flox/flox male mice, the number of litters produced by both groups was comparable. In collecting duct-specific Pkd1 KO mice, HL156A was found to inhibit cyst growth, reducing both the number and size of cysts. Furthermore, it was confirmed that kidney function improved as HL156A treatment led to a reduction in elevated BUN levels. Lastly, it was observed that the increase in AMPK phosphorylation induced by HL156A decreased ERK phosphorylation and α-SMA expression. CONCLUSION HL156A has potential as a drug that can restore kidney function in ADPKD patients by inhibiting cyst growth.
Collapse
Affiliation(s)
- Sujung Seo
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Hyunho Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Jung-Taek Hwang
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jin Eop Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jisu Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Sohyun Jeon
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Young-jin Song
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Kwang-ho Choi
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Gwangeon Sim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Myunkyu Cho
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jong-woo Yoon
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Hyunsuk Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| |
Collapse
|
2
|
Zhang J, Li H, Zhong H, Chen X, Hu ZX. Omega-3 polyunsaturated fatty acids protect peritoneal mesothelial cells from hyperglycolysis and mesothelial-mesenchymal transition through the FFAR4/CaMKKβ/AMPK/mTOR signaling pathway. Int Immunopharmacol 2024; 128:111561. [PMID: 38262160 DOI: 10.1016/j.intimp.2024.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Peritoneal fibrosis is a severe clinical complication associated with peritoneal dialysis (PD) and impacts its efficacy and patient outcomes. The process of mesothelial-mesenchymal transition (MMT) in peritoneal mesothelial cells plays a pivotal role in fibrogenesis, whereas metabolic reprogramming, characterized by excessive glycolysis, is essential in MMT development. No reliable therapies are available despite substantial progress made in understanding the mechanisms underlying peritoneal fibrosis. Protective effect of omega-3 polyunsaturated fatty acids (ω3 PUFAs) has been described in PD-induced peritoneal fibrosis, although the detailed mechanisms remain unknown. It is known that ω3 PUFAs bind to and activate the free fatty acid receptor 4 (FFAR4). However, the expression and role of FFAR4 in the peritoneum have not been investigated. Thus, we hypothesized that ω3 PUFAs would alleviate peritoneal fibrosis by inhibiting hyperglycolysis and MMT through FFAR4 activation. First, we determined FFAR4 expression in peritoneal mesothelium in humans and mice. FFAR4 expression was abnormally decreased in patients on PD and mice and HMrSV5 mesothelial cells exposed to PD fluid (PDF); this change was restored by the ω3 PUFAs (EPA and DHA). ω3 PUFAs significantly inhibited peritoneal hyperglycolysis, MMT, and fibrosis in PDF-treated mice and HMrSV5 mesothelial cells; these changes induced by ω3 PUFAs were blunted by treatment with the FFAR4 antagonist AH7614 and FFAR4 siRNA. Additionally, ω3 PUFAs induced FFAR4, Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ), and AMPK and suppressed mTOR, leading to the inhibition of hyperglycolysis, demonstrating that the ω3 PUFAs-mediated FFAR4 activation ameliorated peritoneal fibrosis by inhibiting hyperglycolysis and MMT via CaMKKβ/AMPK/mTOR signaling. As natural FFAR4 agonists, ω3 PUFAs may be considered for the treatment of PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhong
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang-Xue Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China; National Clinical Research Center for Geriatrics and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Jo CH, Kim S, Ha TK, Kang DH, Kim GH. Effects of sitagliptin on peritoneal membrane: The potential role of mesothelial cell tight junction proteins. Perit Dial Int 2023; 43:448-456. [PMID: 36998201 DOI: 10.1177/08968608231158224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The roles of tight junction (TJ) proteins in peritoneal membrane transport and peritoneal dialysis (PD) require further characterisation. Dipeptidyl peptidase-4 is expressed in mesothelial cells, and its activity may affect peritoneal membrane function and morphology. METHODS Human peritoneal mesothelial cells (HPMCs) were isolated and cultured from omentum obtained during abdominal surgery, and paracellular transport functions were evaluated by measuring transmesothelial electrical resistance (TMER) and dextran flux. Sprague-Dawley rats were infused daily with 4.25% peritoneal dialysate with and without sitagliptin administration for 8 weeks. At the end of this period, rat peritoneal mesothelial cells (RPMCs) were isolated to evaluate TJ protein expression. RESULTS In HPMCs, the protein expression of claudin-1, claudin-15, occludin and E-cadherin was decreased by TGF-β treatment but reversed by sitagliptin co-treatment. TMER was decreased by TGF-β treatment but improved by sitagliptin co-treatment. Consistent with this, dextran flux was increased by TGF-β treatment and reversed by sitagliptin co-treatment. In the animal experiment, sitagliptin-treated rats had a lower D2/D0 glucose ratio and a higher D2/P2 creatinine ratio than PD controls during the peritoneal equilibration test. Protein expression of claudin-1, claudin-15 and E-cadherin decreased in RPMCs from PD controls but was not affected in those from sitagliptin-treated rats. Peritoneal fibrosis was induced in PD controls but ameliorated in sitagliptin-treated rats. CONCLUSION The expression of TJ proteins including claudin-1 and claudin-15 was associated with transport function both in HPMCs and in a rat model of PD. Sitagliptin prevents peritoneal fibrosis in PD and can potentially restore peritoneal mesothelial cell TJ proteins.
Collapse
Affiliation(s)
- Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tae Kyung Ha
- Department of Surgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Duk-Hee Kang
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
The oxidative phosphorylation inhibitor IM156 suppresses B-cell activation by regulating mitochondrial membrane potential and contributes to the mitigation of systemic lupus erythematosus. Kidney Int 2023; 103:343-356. [PMID: 36332729 DOI: 10.1016/j.kint.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022]
Abstract
Current treatment strategies for autoimmune diseases may not sufficiently control aberrant metabolism in B-cells. To address this concern, we investigated a biguanide derivative, IM156, as a potential regulator for B-cell metabolism in vitro and in vivo on overactive B-cells stimulated by the pro-inflammatory receptor TLR-9 agonist CpG oligodeoxynucleotide, a mimic of viral/bacterial DNA. Using RNA sequencing, we analyzed the B-cell transcriptome expression, identifying the major molecular pathways affected by IM156 in vivo. We also evaluated the anti-inflammatory effects of IM156 in lupus-prone NZB/W F1 mice. CD19+B-cells exhibited higher mitochondrial mass and mitochondrial membrane potential compared to T-cells and were more susceptible to IM156-mediated oxidative phosphorylation inhibition. In vivo, IM156 inhibited mitochondrial oxidative phosphorylation, cell cycle progression, plasmablast differentiation, and activation marker levels in CpG oligodeoxynucleotide-stimulated mouse spleen B-cells. Interestingly, IM156 treatment significantly increased overall survival, reduced glomerulonephritis and inhibited B-cell activation in the NZB/W F1 mice. Thus, our data indicated that IM156 suppressed the mitochondrial membrane potentials of activated B-cells in mice, contributing to the mitigation of lupus activity. Hence, IM156 may represent a therapeutic alternative for autoimmune disease mediated by B-cell hyperactivity.
Collapse
|
5
|
Ren G, Xu G, Li R, Xie H, Cui Z, Wang L, Zhang C. Modulation of Bleomycin-induced Oxidative Stress and Pulmonary Fibrosis by Ginkgetin in Mice via AMPK. Curr Mol Pharmacol 2023; 16:217-227. [PMID: 35249515 DOI: 10.2174/1874467215666220304094058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ginkgetin, a flavonoid extracted from Ginkgo biloba, has been shown to exhibit broad anti-inflammatory, anticancer, and antioxidative bioactivity. Moreover, the extract of Ginkgo folium has been reported on attenuating bleomycin-induced pulmonary fibrosis, but the anti-fibrotic effects of ginkgetin are still unclear. This study was intended to investigate the protective effects of ginkgetin against experimental pulmonary fibrosis and its underlying mechanism. METHODS In vivo, bleomycin (5 mg/kg) in 50 μL saline was administrated intratracheally in mice. One week after bleomycin administration, ginkgetin (25 or 50 mg/kg) or nintedanib (40 mg/kg) was administrated intragastrically daily for 14 consecutive days. In vitro, the AMPK-siRNA transfection in primary lung fibroblasts further verified the regulatory effect of ginkgetin on AMPK. RESULTS Administration of bleomycin caused characteristic histopathology structural changes with elevated lipid peroxidation, pulmonary fibrosis indexes, and inflammatory mediators. The bleomycin- induced alteration was normalized by ginkgetin intervention. Moreover, this protective effect of ginkgetin (20 mg/kg) was equivalent to that of nintedanib (40 mg/kg). AMPK-siRNA transfection in primary lung fibroblasts markedly blocked TGF-β1-induced myofibroblasts transdifferentiation and abolished oxidative stress. CONCLUSION All these results suggested that ginkgetin exerted ameliorative effects on bleomycininduced oxidative stress and lung fibrosis mainly through an AMPK-dependent manner.
Collapse
Affiliation(s)
- Guoqing Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Gonghao Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Haifeng Xie
- Chengdu Biopurify Phytochemicals Ltd., Chengdu, P.R. China
| | - Zhengguo Cui
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Department of Environmental Health, 23-3 Matsuoka Shimoaizuki, Eiheiji,Fukui 910-1193, Japan
| | - Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
6
|
Kang JH, Lee SK, Yun NJ, Kim YS, Song JJ, Bae Y. IM156, a new AMPK activator, protects against polymicrobial sepsis. J Cell Mol Med 2022; 26:3378-3386. [PMID: 35502484 PMCID: PMC9189331 DOI: 10.1111/jcmm.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/05/2022] Open
Abstract
IM156, a novel biguanide with higher potency of AMP-activated protein kinase activation than metformin, has inhibitory activity against angiogenesis and cancer. In this study, we investigated effects of IM156 against polymicrobial sepsis. Administration of IM156 significantly increased survival rate against caecal ligation and puncture (CLP)-induced sepsis. Mechanistically, IM156 markedly reduced viable bacterial burden in the peritoneal fluid and peripheral blood and attenuated organ damage in a CLP-induced sepsis model. IM156 also inhibited the apoptosis of splenocytes and the production of inflammatory cytokines including IL-1β, IL-6 and IL-10 in CLP mice. Moreover, IM156 strongly inhibited the generation of reactive oxygen species and subsequent formation of neutrophil extracellular traps in response to lipopolysaccharide in neutrophils. Taken together, these results show that IM156 can inhibit inflammatory response and protect against polymicrobial sepsis, suggesting that IM156 might be a new treatment for sepsis.
Collapse
Affiliation(s)
- Ji Hyeon Kang
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung Kyun Lee
- Center for Convergent Research of Emerging Virus InfectionKorea Research Institute of Chemical TechnologyDaejeonRepublic of Korea
| | - Nam Joo Yun
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Ye Seon Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Jason Jungsik Song
- Division of RheumatologyDepartment of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Institute for Immunology and Immunological DiseasesYonsei University College of MedicineSeoulRepublic of Korea
| | - Yoe‐Sik Bae
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
7
|
Willette RN, Mangrolia P, Pondell SM, Lee CYW, Yoo S, Rudoltz MS, Cowen BR, Welsch DJ. Modulation of Oxidative Phosphorylation with IM156 Attenuates Mitochondrial Metabolic Reprogramming and Inhibits Pulmonary Fibrosis. J Pharmacol Exp Ther 2021; 379:290-300. [PMID: 34593558 DOI: 10.1124/jpet.121.000811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Metabolic reprogramming of the myofibroblast plays a fundamental role in the pathogenesis of fibrosing interstitial lung diseases. Here, we characterized the in vitro and in vivo metabolic and antifibrotic effects of IM156, an oxidative phosphorylation (OXPHOS) modulator that acts by inhibiting protein complex 1. In vitro, IM156 inhibited transforming growth factor β (TGFβ)-dependent increases in mitochondrial oxygen consumption rate and expression of myofibroblast markers in human pulmonary fibroblasts without altering cell viability or adding to TGFβ-induced increases in the extracellular acidification rate. IM156 significantly increased cellular AMP-activated protein kinase (AMPK) phosphorylation and was 60-fold more potent than metformin. In vivo, chronic oral administration of IM156 was highly distributed to major peripheral organs (i.e., lung, liver, kidney, heart) and had significant dose-related effects on the plasma metabolome consistent with OXPHOS modulation and AMPK activation. IM156 increased glycolysis, lipolysis, β-oxidation, and amino acids and decreased free fatty acids, tricarboxylic acid cycle activity, and protein synthesis. In the murine bleomycin model of pulmonary fibrosis, daily oral administration of IM156, administered 7 days after lung injury, attenuated body/lung weight changes and reduced lung fibrosis and inflammatory cell infiltration. The plasma exposures of IM156 were comparable to well tolerated doses in human studies. In conclusion, the metabolic and antifibrotic effects of IM156 suggest that OXPHOS modulation can attenuate myofibroblast metabolic reprogramming and support testing IM156 as a therapy for idiopathic pulmonary fibrosis and other fibrotic diseases. SIGNIFICANCE STATEMENT: Fibrosing interstitial lung diseases have a poor prognosis, and current antifibrotic treatments have significant limitations. This study demonstrates that attenuation of fibrogenic metabolic remodeling, by modulation of oxidative phosphorylation with IM156, prevents myofibroblast phenotype/collagen deposition and is a potentially effective and translational antifibrotic strategy.
Collapse
|
8
|
Tang H, Xia R, Xu S, Tao C, Wang C. Sclerosing encapsulating peritonitis presenting with paroxysmal abdominal pain and strangulated mechanical bowel obstruction: A case report. Medicine (Baltimore) 2021; 100:e24794. [PMID: 33663096 PMCID: PMC7909216 DOI: 10.1097/md.0000000000024794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/29/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Sclerosing encapsulated peritonitis (SEP) is a rare chronic peritoneal inflammation with unknown etiology, and is also known as abdominal cocoon. This occurs when the intestinal annulus is enveloped in the peritoneal cavity, resulting in intestinal obstruction. Its preoperative diagnosis and treatment strategy remains a challenge. PATIENT CONCERNS The study reports a 53-year-old male, who presented with a 4-day history of paroxysmal abdominal pain, without the adverse reaction of nausea, vomiting, or diarrhea. DIAGNOSIS The accurate diagnosis of SEP was made after the emergency diagnostic laparoscopy. INTERVENTIONS The laparoscopic exploration revealed that the small intestine was wrapped by a layer of peritoneum. Then, the abdominal fibrous membrane was removed surgically, and adhesiolysis were performed. The patient recovered well, and gradually recovered by the 10th post-operative day. OUTCOMES The patient was discharged uneventfully after 10 days, and the patient recovered well. After the 12-month follow-up, no symptoms of recurrence or complications were observed. LESSONS The preoperative diagnosis of SEP remains difficult, and the onset of SEP has exhibited a younger trend. The diagnosis of SEP should remain on the list of differential diagnosis for paroxysmal abdominal pain. single-photon emission computed tomography/computed tomography and laparoscopic exploration have been proven to be helpful for establishing the diagnosis. In the early stage of intestinal obstruction caused by SEP, surgical intervention was immediately carried out in emergency department, and the patient recovered well after the operation. The present study also presents a review of the literature for other cases of SEP. The external evidence was helpful in making clinical decisions for patient care.
Collapse
Affiliation(s)
- Hua Tang
- Department of General Surgery, Tongling People's Hospital, 468 Bijiashan Road, Tongling, Anhui Province 244000
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, P. R. China
| | - Shuyu Xu
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, P. R. China
| | - Chenzhe Tao
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, P. R. China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, P. R. China
| |
Collapse
|
9
|
Jeong YS, Lam TG, Jeong S, Ahn SG. Metformin Derivative HL156A Reverses Multidrug Resistance by Inhibiting HOXC6/ERK1/2 Signaling in Multidrug-Resistant Human Cancer Cells. Pharmaceuticals (Basel) 2020; 13:E218. [PMID: 32872293 PMCID: PMC7560051 DOI: 10.3390/ph13090218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance is a significant clinical crisis in cancer treatment and has been linked to the cellular expression of multidrug efflux transporters. The aim of this study was to examine the effects and mechanisms of the metformin derivative HL156A on human multidrug resistance (MDR) cancer cells. Here, HL156A significantly suppressed cell growth and colony formation through G2/M phase cell cycle arrest in MDR cancer cells. HL156A also reduced the wound closure rate and cell migration and induced caspase-3-dependent apoptosis. We found that HL156A inhibited the expression of MDR1 by inhibiting the HOXC6-mediated ERK1/2 signaling pathway and increased the sensitivity to paclitaxel or doxorubicin in MDR cells. Furthermore, HL156A significantly inhibited angiogenesis in a chicken chorioallantoic membrane (CAM) assay. These results suggest the potential of the metformin derivative HL156A as a candidate therapeutic modality for the treatment of human multidrug-resistant cancers.
Collapse
Affiliation(s)
| | | | - Seho Jeong
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.S.J.); (T.G.L.); (S.J.)
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.S.J.); (T.G.L.); (S.J.)
| |
Collapse
|
10
|
Chen DQ, Wang YN, Vaziri ND, Chen L, Hu HH, Zhao YY. Poricoic acid A activates AMPK to attenuate fibroblast activation and abnormal extracellular matrix remodelling in renal fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 72:153232. [PMID: 32460034 DOI: 10.1016/j.phymed.2020.153232] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/06/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In chronic kidney disease, although fibrosis prevention is beneficial, few interventions are available that specifically target fibrogenesis. Poricoic acid A (PAA) isolated from Poria cocos exhibits anti-fibrotic effects in the kidney, however the underlying mechanisms remain obscure. PURPOSE We isolated PAA and investigated its effects and the underlying mechanisms in renal fibrosis. STUDY DESIGN Unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (Nx) animal models and TGF-β1-induced renal fibroblasts (NRK-49F) were used to investigate the anti-fibrotic activity of PAA and its underlying mechanisms. METHODS Western blots, qRT-PCR, immunofluorescence staining, co-immunoprecipitation and molecular docking methods were used. Knock-down and knock-in of adenosine monophosphate-activated protein kinase (AMPK) in the UUO model and cultured NRK-49F cells were employed to verify the mechanisms of action of PAA. RESULTS PAA improved renal function and alleviated fibrosis by stimulating AMPK and inhibiting Smad3 specifically in Nx and UUO models. Reduced AMPK activity was associated with Smad3 induction, fibroblast activation, and the accumulation and aberrant remodelling of extracellular matrix (ECM) in human renal puncture samples and cultured NRK-49F cells. PAA stimulated AMPK activity and decreased fibrosis in a dose-dependent manner, thus showing that AMPK was essential for PAA to exert its anti-fibrotic effects. AMPK deficiency reduced the anti-fibrotic effects of PAA, while AMPK overexpression enhanced its effect. CONCLUSION PAA activated AMPK and further inhibited Smad3 specifically to suppress fibrosis by preventing aberrant ECM accumulation and remodelling and facilitating the deactivation of fibroblasts.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, California 92897, USA
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
11
|
Izreig S, Gariepy A, Kaymak I, Bridges HR, Donayo AO, Bridon G, DeCamp LM, Kitchen-Goosen SM, Avizonis D, Sheldon RD, Laister RC, Minden MD, Johnson NA, Duchaine TF, Rudoltz MS, Yoo S, Pollak MN, Williams KS, Jones RG. Repression of LKB1 by miR-17∼92 Sensitizes MYC-Dependent Lymphoma to Biguanide Treatment. Cell Rep Med 2020; 1:100014. [PMID: 32478334 PMCID: PMC7249503 DOI: 10.1016/j.xcrm.2020.100014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
Cancer cells display metabolic plasticity to survive stresses in the tumor microenvironment. Cellular adaptation to energetic stress is coordinated in part by signaling through the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Here, we demonstrate that miRNA-mediated silencing of LKB1 confers sensitivity of lymphoma cells to mitochondrial inhibition by biguanides. Using both classic (phenformin) and newly developed (IM156) biguanides, we demonstrate that elevated miR-17∼92 expression in Myc+ lymphoma cells promotes increased apoptosis to biguanide treatment in vitro and in vivo. This effect is driven by the miR-17-dependent silencing of LKB1, which reduces AMPK activation in response to complex I inhibition. Mechanistically, biguanide treatment induces metabolic stress in Myc+ lymphoma cells by inhibiting TCA cycle metabolism and mitochondrial respiration, exposing metabolic vulnerability. Finally, we demonstrate a direct correlation between miR-17∼92 expression and biguanide sensitivity in human cancer cells. Our results identify miR-17∼92 expression as a potential biomarker for biguanide sensitivity in malignancies.
Collapse
Affiliation(s)
- Said Izreig
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alexandra Gariepy
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Irem Kaymak
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hannah R. Bridges
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ariel O. Donayo
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Gaëlle Bridon
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Metabolomics Core Facility, McGill University, Montreal, QC H3A 1A3, Canada
| | - Lisa M. DeCamp
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Susan M. Kitchen-Goosen
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Daina Avizonis
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Metabolomics Core Facility, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ryan D. Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rob C. Laister
- Princess Margaret Cancer Centre, Department of Medical Oncology and Hematology, Toronto, ON M5G 2M9, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Nathalie A. Johnson
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Sanghee Yoo
- ImmunoMet Therapeutics, Houston, TX 77021, USA
| | - Michael N. Pollak
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Kelsey S. Williams
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Russell G. Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
12
|
Kim SA, Lam TG, Yook JI, Ahn SG. Antioxidant modifications induced by the new metformin derivative HL156A regulate metabolic reprogramming in SAMP1/kl (-/-) mice. Aging (Albany NY) 2019; 10:2338-2355. [PMID: 30222592 PMCID: PMC6188477 DOI: 10.18632/aging.101549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Aging is characterized by a reduced ability to defend against stress, an inability to maintain homeostasis, and an increased risk of disease. In this study, a metabolomics approach was used to identify novel metabolic pathways that are perturbed in a mouse model of accelerated aging (SAMP1/kl-/-) and to gain new insights into the metabolic associations of the metformin derivative HL156A. Extensive inflammation and calcification were observed in the tissues of the SAMP1/kl-/- mice with premature aging. In mouse embryonic fibroblasts (MEFs) obtained from SAMP1/kl-/- mice, we observed that HL156A induced FOXO1 expression through inhibition of the IGF-1/AKT/mTOR signaling pathways. Treatment of HL156A decreased reactive oxygen species production and enhanced mitochondrial transmembrane potential in SAMP1/kl-/- MEFs. A metabolomic profile analysis showed that HL156A increased the GSH/GSSG ratio in the kidneys of SAMP1/kl-/- mice (8-12 weeks old). In addition, treating SAMP1/kl-/- mice with HL156A (30 mg/kg) for 4 weeks improved survival and decreased the significant elevation of oxidized GSH (GSSG) that was observed in SAMP1/kl-/- mice. In histological sections, HL156A administered SAMP1/kl-/- mice exhibited a decrease in excessive calcification. Based on these findings, we conclude that the new metformin derivative HL156A may inhibit oxidative damage by inducing glutathione metabolism and antioxidant pathways.
Collapse
Affiliation(s)
- Soo-A Kim
- Department of Biochemistry, School of Oriental Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Thuy Giang Lam
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jong-In Yook
- Department of Oral Pathology, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
13
|
Jin G, Su Y, Dong Q, Zhao X, Zhang L, Yan X. Arctigenin alleviates TGF-β1-induced epithelial-mesenchymal transition and PAI-1 expression via AMPK/NF-κB pathway in peritoneal mesothelial cells. Biochem Biophys Res Commun 2019; 520:413-419. [PMID: 31607474 DOI: 10.1016/j.bbrc.2019.09.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Abstract
Peritoneal fibrosis (PF) caused by long-term peritoneal dialysis is closely associated with the epithelial-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMCs). Moreover, the anti-fibrotic role of Arctigenin (Arc) has been reported in several fibrosis disorders. Therefore, the preventive effect of Arc on transforming growth factor-β1 (TGF-β1)-induced EMT and the underlying mechanisms in HPMCs was investigated in this study. Firstly, the PD model was established by TGF-β1 stimulation in cultured HPMCs in vitro, we found that TGF-β1 significantly increased the EMT markers (α-SMA, vimentin, and fibronectin) and plasminogen activator inhibitor type 1 (PAI-1) expressions, but decreased epithelial marker (E-cadherin). Co-treatment with Arc (10, 20, 40 μM) ameliorated TGF-β1-induced EMT in a dose-dependent manner, and the expression of PAI-1 was also inhibited by Arc, which was abrogated by restoration of PAI-1. Moreover, Arc enhanced the phosphorylated AMP-activated protein kinase (AMPK), but inhibited the phosphorylated IκBα level and nuclear translocation of nuclear factor κB (NF-κB) p65 in TGF-β1-induced HPMCs. ChIP and Luciferase reporter assays verified that the increased binding capacity of NF-κB to the promoter of PAI-1 induced by TGF-β1 was reversely attenuated by Arc in HPMCs. However, the effect of Arc on TGF-β1-induced NF-κB activation, PAI-1 expression and EMT in HPMCs was attenuated by AMPK agonist Compound C. In conclusion, these data demonstrated that Arc suppressed TGF-β1-induced EMT by activating the AMPK/NF-κB pathway to inhibit PAI-1 expression in HPMCs. Therefore, Arc might act as a potential therapeutic agent for PD treatment.
Collapse
Affiliation(s)
- Gang Jin
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yanjin Su
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qianlan Dong
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiaohong Zhao
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Linping Zhang
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| | - Xiaohui Yan
- Center of Kidney Dialysis, The Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
14
|
Zhu W, Zhang X, Gao K, Wang X. Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids. Mol Med Rep 2019; 20:3829-3839. [PMID: 31485615 PMCID: PMC6755149 DOI: 10.3892/mmr.2019.10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/25/2019] [Indexed: 12/03/2022] Open
Abstract
Peritoneal fibrosis is a serious complication that can occur during peritoneal dialysis (PD), which is primarily caused by damage to peritoneal mesothelial cells (PMCs). The onset of peritoneal fibrosis is delayed or inhibited by promoting PMC survival and inhibiting PMC epithelial-to-mesenchymal transition (EMT). In the present study, the effect of astragaloside IV and the role of the nuclear receptor retinoid X receptor-α (RXRα) in PMCs in high glucose-based PD fluids was investigated. Human PMC HMrSV5 cells were transfected with RXRα short hairpin RNA (shRNA), or an empty vector, and then treated with PD fluids and astragaloside IV. Cell viability, apoptosis and EMT were examined using the Cell Counting Kit-8 assay and flow cytometry, and by determining the levels of caspase-3, E-cadherin and α-smooth muscle actin (α-SMA) via western blot analysis. Cell viability and apoptosis were increased, as were the levels of E-cadherin in HMrSV5 cells following treatment with PD fluid. The protein levels of α-SMA and caspase-3 were increased by treatment with PD fluid. Exposure to astragaloside IV inhibited these changes; however, astragaloside IV did not change cell viability, apoptosis, E-cadherin or α-SMA levels in HMrSV5 cells under normal conditions. Transfection of HMrSV5 cells with RXRα shRNA resulted in decreased viability and E-cadherin expression, and increased apoptosis and α-SMA levels, in HMrSV5 cells treated with PD fluids and co-treated with astragaloside IV or vehicle. These results suggested that astragaloside IV increased cell viability, and inhibited apoptosis and EMT in PMCs in PD fluids, but did not affect these properties of PMCs under normal condition. Thus, the present study suggested that RXRα is involved in maintaining viability, inhibiting apoptosis and reducing EMT of PMCs in PD fluid.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xin Zhang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Kun Gao
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xufang Wang
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
15
|
Son J, Cho YW, Woo YJ, Baek YA, Kim EJ, Cho Y, Kim JY, Kim BS, Song JJ, Ha SJ. Metabolic Reprogramming by the Excessive AMPK Activation Exacerbates Antigen-Specific Memory CD8 + T Cell Differentiation after Acute Lymphocytic Choriomeningitis Virus Infection. Immune Netw 2019; 19:e11. [PMID: 31089438 PMCID: PMC6494768 DOI: 10.4110/in.2019.19.e11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
During virus infection, T cells must be adapted to activation and lineage differentiation states via metabolic reprogramming. Whereas effector CD8+ T cells preferentially use glycolysis for their rapid proliferation, memory CD8+ T cells utilize oxidative phosphorylation for their homeostatic maintenance. Particularly, enhanced AMP-activated protein kinase (AMPK) activity promotes the memory T cell response through different pathways. However, the level of AMPK activation required for optimal memory T cell differentiation remains unclear. A new metformin derivative, IM156, formerly known as HL156A, has been reported to ameliorate various types of fibrosis and inhibit in vitro and in vivo tumors by inducing AMPK activation more potently than metformin. Here, we evaluated the in vivo effects of IM156 on antigen-specific CD8+ T cells during their effector and memory differentiation after acute lymphocytic choriomeningitis virus infection. Unexpectedly, our results showed that in vivo treatment of IM156 exacerbated the memory differentiation of virus-specific CD8+ T cells, resulting in an increase in short-lived effector cells but decrease in memory precursor effector cells. Thus, IM156 treatment impaired the function of virus-specific memory CD8+ T cells, indicating that excessive AMPK activation weakens memory T cell differentiation, thereby suppressing recall immune responses. This study suggests that metabolic reprogramming of antigen-specific CD8+ T cells by regulating the AMPK pathway should be carefully performed and managed to improve the efficacy of T cell vaccine.
Collapse
Affiliation(s)
- Jimin Son
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Yong Woo Cho
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Youn Jung Woo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young Ae Baek
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun Jee Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea
| | - Yuri Cho
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joon Ye Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Beom Seok Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea.,Division of Nephrology, Department of Internal Medicine, Severance Hospital, Yonsei University Health System, Seoul 03722, Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Apoptosis repressor with caspase recruitment domain deficiency accelerates ischemia/reperfusion (I/R)-induced acute kidney injury by suppressing inflammation and apoptosis: The role of AKT/mTOR signaling. Biomed Pharmacother 2019; 112:108681. [PMID: 30970510 DOI: 10.1016/j.biopha.2019.108681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a significant medical problem worldwide. Ischemia-reperfusion (I/R) injury of the kidney is a major cause of AKI. However, the pathogenesis that contributes to renal I/R injury is still unclear. Apoptosis repressor with caspase recruitment domain (ARC) is abundantly expressed in various tissues, and has been reported to play a strong protective role during pathological processes. Our results indicated that ARC expression was decreased in the reperfused kidneys. ARC deficiency markedly accelerated renal dysfunction, promoted reperfusion-regulated tubular epithelial cell apoptosis, and enhanced the vulnerability of kidney to I/R damage. Furthermore, in the kidney samples of mice underwent renal I/R injury, ARC knockout significantly accelerated the expression levels of inflammatory factors, including interleukin (IL)-1β, IL-6, tumor necrosis factor a (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IL-2. In addition, renal I/R injury-induced apoptosis was further exacerbated in ARC-deficient mice through promoting the expression of cleaved Caspase-3 and poly (ADP-ribose) polymerase (PARP). From the molecular level, ARC deletion obviously accelerated mitochondrial injury, as evidenced by the further decreased adenosine triphosphate (ATP) levels and mitochondrial potential in hypoxia-reoxygenation (H/R)-treated cells. Moreover, ARC knockout exacerbated AKI through activating phosphorylated protein kinase B (AKT), mammalian target of Rapamycin (mTOR) and p53, whereas reducing phosphorylated glycogen synthase kinase 3β (GSK3β). Of note, blocking AKT/mTOR signaling markedly attenuated inflammation, mitochondrial damage and apoptosis stimulated by H/R in ARC knockdown cells. In summary, our results suggested that ARC played a pivotal role in the pathogenesis of AKI induced by renal I/R operation through regulating AKT/mTOR signaling.
Collapse
|
17
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
18
|
Tsogbadrakh B, Ju KD, Lee J, Han M, Koh J, Yu Y, Lee H, Yu KS, Oh YK, Kim HJ, Ahn C, Oh KH. HL156A, a novel pharmacological agent with potent adenosine-monophosphate-activated protein kinase (AMPK) activator activity ameliorates renal fibrosis in a rat unilateral ureteral obstruction model. PLoS One 2018; 13:e0201692. [PMID: 30161162 PMCID: PMC6116936 DOI: 10.1371/journal.pone.0201692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Renal fibrosis is characterized by excessive production and deposition of extracellular matrix (ECM), which leads to progressive renal failure. Adenosine-monophosphate-activated protein kinase (AMPK) is a highly conserved kinase that plays a key role in Smad-3 signaling. Here, we examined the effect of a novel AMPK activator, HL156A, on the inhibition of renal fibrosis in in vivo and in vitro models. Methods Unilateral ureteral obstruction (UUO) was induced in male Wistar rats. Rats with UUO were administered HL156A (20mg/kg/day), and then the kidneys were harvested 10 days after ligation for further analysis. Results In the rat UUO model, HL156A attenuated ECM protein deposition. After HL156A treatment, expressions of TGF-β1, p-Smad3, α-SMA, fibronectin, and type IV collagen were suppressed, and E-cadherin expression was up-regulated. In the in vitro experiment, NRK52E cells were treated with HL156A before TGF-β1 stimulation. The inhibitory effects of HL156A upon the signaling pathways and markers of the epithelial-to-mesenchymal transition (EMT) were analyzed. In TGF-β1-treated NRK-52E cells, HL156A co-treatment inhibited the TGF-β1-induced Smad3 signaling pathway and EMT markers. Conclusion Taken together, the above findings suggest that HL156A, a novel AMPK activator, ameliorates renal fibrosis in vivo and in vitro.
Collapse
Affiliation(s)
| | - Kyung Don Ju
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jinho Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Miyeun Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Junga Koh
- Renal Division, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yeonsil Yu
- Renal Division, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hyo Jin Kim
- Department of Internal Medicine, Dongkuk University, Kyungju, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
19
|
Lam TG, Jeong YS, Kim SA, Ahn SG. New metformin derivative HL156A prevents oral cancer progression by inhibiting the insulin-like growth factor/AKT/mammalian target of rapamycin pathways. Cancer Sci 2018; 109:699-709. [PMID: 29285837 PMCID: PMC5834796 DOI: 10.1111/cas.13482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Accepted: 12/24/2017] [Indexed: 12/14/2022] Open
Abstract
Metformin is a biguanide widely prescribed as an antidiabetic drug for type 2 diabetes mellitus patients. The purpose of the present study was to observe the effects of the new metformin derivative, HL156A, on human oral cancer cell and to investigate its possible mechanisms. It was observed that HL156A significantly decreased FaDu and YD‐10B cell viability and colony formation in a dose‐dependent way. HL156A also markedly reduced wound closure and migration of FaDu and YD‐10B cells. We observed that HL156A decreased mitochondrial membrane potential and induced reactive oxygen species (ROS) levels and apoptotic cells with caspase‐3 and ‐9 activation. HL156A inhibited the expression and activation of insulin‐like growth factor (IGF)‐1 and its downstream proteins, AKT, mammalian target of rapamycin (mTOR), and ERK1/2. In addition, HL156A activated AMP‐activated protein kinase/nuclear factor kappa B (AMPK‐NF‐κB) signaling of FaDu and YD‐10B cells. A xenograft mouse model further showed that HL156A suppressed AT84 mouse oral tumor growth, accompanied by down‐regulated p‐IGF‐1, p‐mTOR, proliferating cell nuclear antigen (PCNA) and promoted p‐AMPK and TUNEL expression. These results suggest the potential value of the new metformin derivative HL156A as a candidate for a therapeutic modality for the treatment of oral cancer.
Collapse
Affiliation(s)
- Thuy Giang Lam
- Department of Pathology, College of Dentistry, Chosun University, Gwangju, South Korea
| | - Yun Soo Jeong
- Department of Pathology, College of Dentistry, Chosun University, Gwangju, South Korea
| | - Soo-A Kim
- Department of Biochemistry, College of Oriental Medicine, Dongguk University, Gyeongju, South Korea
| | - Sang-Gun Ahn
- Department of Pathology, College of Dentistry, Chosun University, Gwangju, South Korea
| |
Collapse
|
20
|
Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, Wang D, Yang Y. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev 2017; 38:18-27. [PMID: 28709692 DOI: 10.1016/j.arr.2017.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023]
Abstract
Fibrosis is a common process characterized by excessive extracellular matrix (ECM) accumulation after inflammatory injury, which is also a crucial cause of aging. The process of fibrosis is involved in the pathogenesis of most diseases of the heart, liver, kidney, lung, and other organs/tissues. However, there are no effective therapies for this pathological alteration. Annually, fibrosis represents a huge financial burden for the USA and the world. 5'-AMP-activated protein kinase (AMPK) is a pivotal energy sensor that alleviates or delays the process of fibrogenesis. In this review, we first present basic background information on AMPK and fibrogenesis and describe the protective roles of AMPK in three fibrogenic phases. Second, we analyze the protective action of AMPK during fibrosis in myocardial, hepatic, renal, pulmonary, and other organs/tissues. Third, we present a comprehensive discussion of AMPK during fibrosis and draw a conclusion. This review highlights recent advances, vital for basic research and clinical drug design, in the regulation of AMPK during fibrosis.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
21
|
Guigas B, Viollet B. Targeting AMPK: From Ancient Drugs to New Small-Molecule Activators. ACTA ACUST UNITED AC 2017; 107:327-350. [PMID: 27812986 DOI: 10.1007/978-3-319-43589-3_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The AMP-activated protein kinase (AMPK) is an evolutionary conserved and ubiquitously expressed serine/threonine kinase mainly acting as a key regulator of cellular energy homeostasis. AMPK is a heterotrimeric protein complex, consisting of a catalytic α subunit and two regulatory β and γ subunits, whose activity is tightly regulated by changes in adenine nucleotides and several posttranslational modifications. Once activated in response to energy deficit, AMPK concomitantly inhibits ATP-consuming anabolic processes and promotes ATP-generating catabolic pathways via direct phosphorylation of multiple downstream effectors, leading to restoration of cellular energy balance. A growing number of energy/nutrient-independent functions of AMPK are also regularly reported, progressively expanding its role to regulation of non-metabolic cellular processes. Historically, AMPK as a therapeutic target has attracted much of interest due to its potential impact on metabolic disorders, such as obesity and type 2 diabetes, but has also recently received considerable renewed attention in the framework of cancer studies, highlighting the persistent need for selective, reversible, potent, and tissue-specific activators. In this chapter, we review the most recent advances in the understanding of the mechanism(s) of action of the current portfolio of AMPK activators, including plant-derived natural compounds and newly discovered small-molecule agonists directly targeting various AMPK subunits.
Collapse
Affiliation(s)
- Bruno Guigas
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Parasitology, Leiden University Medical Center, 9600, Postzone L40-Q, 2300 RC, Leiden, The Netherlands.
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
22
|
Skubitz KM. Biology and Treatment of Aggressive Fibromatosis or Desmoid Tumor. Mayo Clin Proc 2017; 92:947-964. [PMID: 28578783 DOI: 10.1016/j.mayocp.2017.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
Aggressive fibromatosis, also known as desmoid-type fibromatosis (DTF) or desmoid tumor, is an uncommon locally invasive tumor. Because of its low incidence and variable behavior, DTF is often first seen by physicians who are not familiar with it, and recent advances in understanding this disease have led to changes in treatment approaches. The Wnt (β-catenin) pathway appears to play a key role in DTF pathogenesis, and recent studies of DTF biology suggest a possible model of DTF pathogenesis. Histologically, DTF shows a poorly circumscribed proliferation of myofibroblast-like cells with variable collagen deposition, similar to the proliferative phase of wound healing, and DTF has been associated with trauma and pregnancy. Desmoid-type fibromatosis may be a useful model of the tumor stroma in carcinomas as well as other fibrosing diseases such as progressive pulmonary fibrosis. The clinical course of DTF can vary greatly among patients, complicating the determination of the optimal treatment approach. Treatment options include surgery, nonsteroidal anti-inflammatory drugs with or without hormonal manipulation, chemotherapy, radiation therapy, and other forms of local therapy. Many treatments have been used, but these are not without toxicities. Because of the variable nature of the disease and the potential morbidity of treatment, some cases of DTF may do better without treatment; simple observation is often the best initial treatment. This review used a PubMed search from January 1, 1980, through October 31, 2016, using the terms fibromatosis and desmoid and discusses DTF disease characteristics, pathophysiology, and treatment options as well as examines several cases illustrating key points in the biology and treatment of this heterogeneous disease.
Collapse
Affiliation(s)
- Keith M Skubitz
- Department of Medicine, University of Minnesota Medical School, Minneapolis.
| |
Collapse
|
23
|
Choi J, Lee JH, Koh I, Shim JK, Park J, Jeon JY, Yun M, Kim SH, Yook JI, Kim EH, Chang JH, Kim SH, Huh YM, Lee SJ, Pollak M, Kim P, Kang SG, Cheong JH. Inhibiting stemness and invasive properties of glioblastoma tumorsphere by combined treatment with temozolomide and a newly designed biguanide (HL156A). Oncotarget 2016; 7:65643-65659. [PMID: 27582539 PMCID: PMC5323181 DOI: 10.18632/oncotarget.11595] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Studies have investigated biguanide-derived agents for the treatment of cancers and have reported their effects against tumorspheres (TSs). The purpose of this study was determining the effects of HL156A, a newly designed biguanide with improved pharmacokinetics, on glioblastoma TSs (GMB TSs) and assess the feasibility of this drug as a new line of therapy against glioblastoma, alone or combined with a conventional therapeutic agent, temozolomide(TMZ). The effects of HL156A, alone and combined with TMZ, on the stemness and invasive properties of GBM TSs and survival of orthotopic xenograft animals were assessed. HL156A, combined with TMZ, inhibited the stemness of GBM TSs, proven by neurosphere formation assay and marker expression. Three-dimensional collagen matrix invasion assays provided evidence that combined treatment inhibited invasive properties, compared with control and TMZ-alone treatment groups. TMZ alone and combined treatment repressed the expression of epithelial-mesenchymal transition-related genes. A gene ontology comparison of TMZ and combination-treatment groups revealed altered expression of genes encoding proteins involved in cellular adhesion and migration. Combined treatment with HL156A and TMZ showed survival benefits in an orthotopic xenograft mouse model. The inhibitory effect of combination treatment on the stemness and invasive properties of GBM TSs suggest the potential usage of this regimen as a novel strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Junjeong Choi
- Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ilkyoo Koh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin-Kyoung Shim
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junseong Park
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Yong Jeon
- Departments of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mijin Yun
- Departments of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Departments of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Ho Kim
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Huh
- Departments of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Michael Pollak
- Department of Oncology and Medicine, McGill University, Gerald Bronfman Centre, Montreal, Quebec, Canada
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seok-Gu Kang
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Lee HS, Shin HS, Choi J, Bae SJ, Wee HJ, Son T, Seo JH, Park JH, Kim SW, Kim KW. AMP-activated protein kinase activator, HL156A reduces thioacetamide-induced liver fibrosis in mice and inhibits the activation of cultured hepatic stellate cells and macrophages. Int J Oncol 2016; 49:1407-14. [DOI: 10.3892/ijo.2016.3627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/04/2016] [Indexed: 11/05/2022] Open
|