1
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Tan RZ, Jia J, Li T, Wang L, Kantawong F. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother 2024; 176:116922. [PMID: 38870627 DOI: 10.1016/j.biopha.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Tous C, Muñoz-Redondo C, Gavilán A, Bravo-Gil N, Baco-Antón F, Navarro-González E, Antiñolo G, Borrego S. Delving into the Role of lncRNAs in Papillary Thyroid Cancer: Upregulation of LINC00887 Promotes Cell Proliferation, Growth and Invasion. Int J Mol Sci 2024; 25:1587. [PMID: 38338866 PMCID: PMC10855357 DOI: 10.3390/ijms25031587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common histological category of thyroid cancer. In recent years, there has been an increasing number of studies on lncRNAs in PTC. Long intergenic non-protein coding RNA 887 (LINC00887) is a critical oncogene in developing other cancers. LINC00887 is upregulated in PTC samples but its role in PTC is currently unclear. This study aimed to investigate the impact the disruption of LINC00887 expression has on PTC progression. We performed a CRISPR/Cas9 strategy for the truncation of LINC00887 in BCPAP and TPC1 cell lines. Functional assays showed that LINC00887 knockdown in both TPC1 and BCPAP cells reduced cell proliferation, colony formation and migration, delayed the cell cycle, and increased apoptosis. These results strengthened the role of LINC00887 in cancer and showed for the first time that this lncRNA could be a potential oncogene in PTC, acting as a tumor promoter. Modulation of the immune system may be one of the etiopathogenic mechanisms of LINC00887 in PTC, as shown by the observed influence of this lncRNA on PD-L1 expression. In addition, the biological pathways of LINC00887 identified to date, such as EMT, the Wnt/β-catenin signaling pathway or the FRMD6-Hippo signaling pathway may also be relevant regulatory mechanisms operating in PTC.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Carmen Muñoz-Redondo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Angela Gavilán
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Fátima Baco-Antón
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Elena Navarro-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Department of Endocrinology and Nutrition, University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
4
|
Barth J, Loeffler I, Bondeva T, Liebisch M, Wolf G. The Role of Hypoxia on the Trimethylation of H3K27 in Podocytes. Biomedicines 2023; 11:2475. [PMID: 37760919 PMCID: PMC10525388 DOI: 10.3390/biomedicines11092475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic alterations contribute to the pathogenesis of chronic diseases such as diabetes mellitus. Previous studies of our group showed that diabetic conditions reduce the trimethylation of H3K27 in podocytes in a NIPP1- (nuclear inhibitor of protein phosphatase 1) and EZH2- (enhancer of zeste homolog 2) dependent manner. It has been previously reported that in differentiated podocytes, hypoxia decreases the expression of slit diaphragm proteins and promotes foot process effacement, thereby contributing to the progression of renal disease. The exact mechanisms are, however, not completely understood. The aim of this study was to analyze the role of hypoxia and HIFs (hypoxia-inducible factor) on epigenetic changes in podocytes affecting NIPP1, EZH2 and H3K27me3, in vitro and in vivo. In vivo studies were performed with mice exposed to 10% systemic hypoxia for 3 days or injected with 3,4-DHB (dihydroxybenzoate), a PHD (prolyl hydroxylase) inhibitor, 24 h prior analyses. Immunodetection of H3K27me3, NIPP1 and EZH2 in glomerular podocytes revealed, to the best of our knowledge for the first time, that hypoxic conditions and pharmacological HIFs activation significantly reduce the expression of NIPP1 and EZH2 and diminish H3K27 trimethylation. These findings are also supported by in vitro studies using murine-differentiated podocytes.
Collapse
|
5
|
Saigusa H, Mimura I, Kurata Y, Tanaka T, Nangaku M. Hypoxia-inducible lncRNA MIR210HG promotes HIF1α expression by inhibiting miR-93-5p in renal tubular cells. FEBS J 2023; 290:4040-4056. [PMID: 37029581 DOI: 10.1111/febs.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 04/09/2023]
Abstract
Chronic hypoxia in the renal tubular interstitium has been reported to contribute to the progression of chronic kidney disease. Recently, long-noncoding RNAs have been shown to be involved in various pathological conditions, including hypoxia, one of which is the MIR210 host gene (MIR210HG). To elucidate the function of MIR210HG in renal hypoxia, we exposed primary cultured renal proximal tubular epithelial cells to hypoxia and examined the temporal profile of MIR210HG expression and the role of MIR210HG interaction with hypoxia-inducible factor1α (HIF1α, encoded by HIF1A). MIR210HG expression was induced by hypoxia. HIF1A silencing and cobalt chloride exposure showed that MIR210HG expression in hypoxia is HIF1α-dependent. MIR210HG silencing significantly reduced both the mRNA and protein levels of HIF1α, pointing to positive feedback regulation. To further investigate the details of this regulation, we turned to the in-silico miRNA targets of MIR210HG. We found that miR-93-5p levels increased when MIR210HG was knocked down. We then showed that miR-93-5p reduced the expression of HIF1A mRNA and MIR210HG. Furthermore, a dual luciferase assay confirmed that miR-93-5p binds to MIR210HG and HIF1A 3' UTR, inhibiting their expression. In conclusion, the long-noncoding RNA MIR210HG is induced shortly after hypoxia, and it promotes HIF1α expression by competing for miR-93-5p and inhibiting it. MIR210HG plays a crucial role in the biological response to hypoxia in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Hanako Saigusa
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Bunkyo-ku, Japan
| | - Imari Mimura
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Bunkyo-ku, Japan
| | - Yu Kurata
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Bunkyo-ku, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Bunkyo-ku, Japan
| |
Collapse
|
6
|
Kang C, Bertolla R, Pagani R. The '-ics' of male reproduction: genomics, epigenetics, proteomics, metabolomics, and microbiomics. Curr Opin Urol 2023; 33:31-38. [PMID: 36210759 DOI: 10.1097/mou.0000000000001052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the most current findings, from the past 2 years, in various '-ics' fields in male infertility, with a specific focus on nonobstructive azoospermia, the most severe form, and varicocele, the most common correctable cause of male infertility. RECENT FINDINGS Recent studies confirm previously identified causes and identify previously unknown genetic mutations as causes for nonobstructive azoospermia and varicocele. SUMMARY Infertility is a common problem for couples with approximately half of cases attributable to male factor infertility. Although advances in assisted reproductive technology have permitted many more men with infertility to father biological children, the majority of infertile men continue to have unknown causes. The recent explosion of the '-ics' fields, including genomics, epigenetics, proteomics, metabolomics, and microbiomics, has shed light on previously unknown causes for various diseases. New information in these fields will not only shed light on the pathogenesis of these conditions but also may shift the paradigm in clinical testing that may allow clinicians to provide more precise counseling and prognostic information for men with infertility.
Collapse
Affiliation(s)
- Caroline Kang
- Department of Urology, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Ricardo Bertolla
- Division of Urology, Department of Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Lu J, Zhu D, Zhang X, Wang J, Cao H, Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. Clin Transl Oncol 2023; 25:137-150. [PMID: 36088513 DOI: 10.1007/s12094-022-02943-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
8
|
Lepoittevin M, Giraud S, Kerforne T, Allain G, Thuillier R, Hauet T. How to improve results after DCD (donation after circulation death). Presse Med 2022; 51:104143. [PMID: 36216034 DOI: 10.1016/j.lpm.2022.104143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
The shortage of organs for transplantation has led health professionals to look for alternative sources of donors. One of the avenues concerns donors who have died after circulatory arrest. This is a special situation because the organs from these donors are exposed to warm ischaemia-reperfusion lesions that are unavoidable during the journey of the organs from the donor to the moment of transplantation in the recipient. We will address and discuss the key issues from the perspective of team organization, legislation and its evolution, and the ethical framework. In a second part, the avenues to improve the quality of organs will be presented following the itinerary of the organs between the donor and the recipient. The important moments from the point of view of therapeutic strategy will be put into perspective. New connections between key players involved in pathophysiological mechanisms and implications for innate immunity and injury processes are among the avenues to explore. Technological developments to improve the quality of organs from these recipients will be analyzed, such as perfusion techniques with new modalities of temperatures and oxygenation. New molecules are being investigated for their potential role in protecting these organs and an analysis of potential prospects will be proposed. Finally, the important perspectives that seem to be favored will be discussed in order to reposition the use of deceased donors after circulatory arrest. The use of these organs has become a routine procedure and improving their quality and providing the means for their evaluation is absolutely inevitable.
Collapse
Affiliation(s)
- Maryne Lepoittevin
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
| | - Sébastien Giraud
- Unité UMR U1082, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thomas Kerforne
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France
| | - Géraldine Allain
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France
| | - Raphaël Thuillier
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thierry Hauet
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire « Survival Optimization in Organ Transplantation », CHU de Poitiers, 2 rue de la Milétrie - CS 90577, 86021 Poitiers Cedex, France.
| |
Collapse
|
9
|
Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct 2022; 17:26. [PMID: 36182907 PMCID: PMC9526990 DOI: 10.1186/s13062-022-00341-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/10/2022] Open
Abstract
Metabolic reprogramming is commonly recognized as one important hallmark of cancers. Cancer cells present significant alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Recent findings demonstrated that long non-coding RNAs control cancer development and progression by modulating cell metabolism. Here, we give an overview of breast cancer metabolic reprogramming and the role of long non-coding RNAs in driving cancer-specific metabolic alteration.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy
| | - Mara Mancini
- IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy
| | - Eleonora Candi
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy. .,IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy.
| |
Collapse
|
10
|
Jia P, Xu S, Ren T, Pan T, Wang X, Zhang Y, Zou Z, Guo M, Zeng Q, Shen B, Ding X. LncRNA IRAR regulates chemokines production in tubular epithelial cells thus promoting kidney ischemia-reperfusion injury. Cell Death Dis 2022; 13:562. [PMID: 35732633 PMCID: PMC9217935 DOI: 10.1038/s41419-022-05018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) play an important role in several pathogenic processes of the kidney. However, functions of lncRNAs in ischemic acute kidney injury (AKI) remain undefined. In this study, global lncRNA profiling indicated that many lncRNA transcripts were deregulated in kidney after ischemia reperfusion (IR). Among them, we identified IRAR (ischemia-reperfusion injury associated RNA) as a potential lncRNA candidate, which was mostly expressed by the tubular epithelial cells (TECs) after IR, involved in the development of AKI. GapmeR-mediated silencing and viral-based overexpression of IRAR were carried out to assess its function and contribution to IR-induced AKI. The results revealed that in vivo silencing of IRAR significantly reduced IR-induced proinflammatory cells infiltration and AKI. IRAR overexpression induced chemokine CCL2, CXCL1 and CXCL2 expression both in mRNA and protein levels in TECs, while, silencing of IRAR resulted in downregulation of these chemokines. RNA immunoprecipitation and RNA pulldown assay validated the association between IRAR and CCL2, CXCL1/2. Further examination revealed that specific ablation of CCL2 in TECs reduced macrophages infiltration and proinflammatory cytokine production, attenuated renal dysfunction in IR mice. Inhibition of CXC chemokine receptor 2 (receptor of CXCL1/2) reduced neutrofils infiltration, but had no overt effect on kidney function. To explore the mechanism of IRAR upregulation in kidney during IR, we analyzed promoter region of IRAR and predicted a potential binding site for transcription factor C/EBP β on IRAR promoter. Silencing of C/EBP β reduced IRAR expression in TECs. A dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) confirmed that IRAR was a transcriptional target of the C/EBP β. Altogether, our findings identify IRAR as a new player in the development of ischemic AKI through regulating chemokine production and immune cells infiltration, suggesting that IRAR is a potential target for prevention and/or attenuation of AKI.
Collapse
Affiliation(s)
- Ping Jia
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Shanghai Medical Center of Kidney, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China ,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Sujuan Xu
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting Ren
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianyi Pan
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunlu Zhang
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouping Zou
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Man Guo
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zeng
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Shanghai Medical Center of Kidney, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China ,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China ,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
11
|
Ren YM, Duan YH, Sun YB, Yang T, Hou WY, Liu C, Tian MQ. mRNA and long non-coding RNA expression profiles of rotator cuff tear patients reveal inflammatory features in long head of biceps tendon. BMC Med Genomics 2022; 15:140. [PMID: 35725478 PMCID: PMC9210618 DOI: 10.1186/s12920-022-01292-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/15/2022] [Indexed: 02/06/2024] Open
Abstract
Background This study aimed to identify the differentially expressed mRNAs and lncRNAs in inflammatory long head of biceps tendon (LHBT) of rotator cuff tear (RCT) patients and further explore the function and potential targets of differentially expressed lncRNAs in biceps tendon pathology. Methods Human gene expression microarray was made between 3 inflammatory LHBT samples and 3 normal LHBT samples from RCT patients. GO analysis and KEGG pathway analysis were performed to annotate the function of differentially expressed mRNAs. The real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was admitted to verify their expression. LncRNA-mRNA co-expression network, cis-acting element, trans-acting element and transcription factor (TF) regulation analysis were constructed to predict the potential molecular regulatory mechanisms and targets for LHB tendinitis. Results 103 differentially expressed lncRNAs and mRNAs, of which 75 were up-regulated and 28 were down-regulated, were detected to be differentially expressed in LHBT. The expressions of 4 most differentially expressed lncRNAs (A2MP1, LOC100996671, COL6A4P, lnc-LRCH1-5) were confirmed by qRT-PCR. GO functional analysis indicated that related lncRNAs and mRNAs were involved in the biological processes of regulation of innate immune response, neutrophil chemotaxis, interleukin-1 cell response and others. KEGG pathway analysis indicated that related lncRNAs and mRNAs were involved in MAPK signaling pathway, NF-kappa B signaling pathway, cAMP signaling pathway and others. TF regulation analysis revealed that COL6A4P2, A2MP1 and LOC100996671 target NFKB2. Conclusions LlncRNA-COL6A4P2, A2MP1 and LOC100996671 may regulate the inflammation of LHBT in RCT patients through NFKB2/NF-kappa B signaling pathway, and preliminarily revealed the pathological molecular mechanism of tendinitis of LHBT. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01292-y.
Collapse
Affiliation(s)
- Yi-Ming Ren
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People's Hospital, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Yuan-Hui Duan
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People's Hospital, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Yun-Bo Sun
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People's Hospital, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Tao Yang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People's Hospital, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Wei-Yu Hou
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People's Hospital, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Chang Liu
- Schoole of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Meng-Qiang Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People's Hospital, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
12
|
Haan JC, Bhaskaran R, Ellappalayam A, Bijl Y, Griffioen CJ, Lujinovic E, Audeh WM, Penault-Llorca F, Mittempergher L, Glas AM. MammaPrint and BluePrint comprehensively capture the cancer hallmarks in early-stage breast cancer patients. Genes Chromosomes Cancer 2021; 61:148-160. [PMID: 34841595 PMCID: PMC9299843 DOI: 10.1002/gcc.23014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
MammaPrint® (MP) is a 70‐gene signature that stratifies early‐stage breast cancer patients into low‐ and high risk of distant relapse. Further stratification of MP risk results identifies four risk subgroups, ultra‐low (UL), low, high 1, and high 2, with specific prognostic and predictive outcomes. BluePrint® (BP) is an 80‐gene signature that classifies breast tumors as basal, luminal, or HER2 molecular subtype. To gain insight into their biological significance, we annotated the MP 70‐ and BP 80‐genes with respect to the 10 hallmarks of cancer (HoC). Furthermore, we related gene expression profiles of the extreme ends of the MP low‐ and high‐risk patients (here called, ultra‐low (UL) and ultra‐high (UH) or High2, respectively), to the 10 HoC per BP subtype by differential gene expression and pathway analysis. MP and BP gene functions reflected all 10 HoCs. Most MP and BP genes were associated with sustaining proliferative signaling, followed by genome instability and mutation categories. Based on the gene expression profiles, UL and UH subgroup pathways were down ‐or upregulated, respectively, reflecting proliferative and metastatic features, such as G2M checkpoint, DNA repair, oxidative phosphorylation, immune invasion, PI3K/AKT/mTOR signaling, and hypoxia pathways. Notably, the UH HER2‐type was enriched in several immune signaling pathways, such as IL2/STAT5 signaling and TNFα signaling via NFκB. Our results show that MP and BP gene signatures represent and capture all 10 HoCs and highlight underlying biological processes of MP extreme samples, which might guide treatment decisions as the signature captures the full spectrum of early breast cancers.
Collapse
Affiliation(s)
- Josien C Haan
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | - Rajith Bhaskaran
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | | | - Yannick Bijl
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | | | | | | | - Frédérique Penault-Llorca
- Department of Pathology and Molecular Pathology, Centre Jean Perrin, Clermont-Ferrand, France.,UMR INSERM 1240, Universite Clermont Auvergne, Clermont-Ferrand, France
| | | | - Annuska M Glas
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| |
Collapse
|
13
|
c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett 2021; 526:322-334. [PMID: 34767926 DOI: 10.1016/j.canlet.2021.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022]
Abstract
The relationship between microRNA (miRNA) and hosting long non-coding RNA (lncRNA) remains unclear. Here, the expression levels of microRNA-210 (miR-210) and hosting lncRNA MIR210HG are significantly increased and positively correlated in gastric cancer (GC). Gain- and loss-of-function studies demonstrate that miR-210 and MIR210HG synergistically promote the migration and invasion of GC cells in vitro. Furthermore, GC sublines simultaneously expressing miR-210 and MIR210HG display synergistic promotion of lung metastasis in vivo. Mechanistically, MIR210HG interacts with DExH-box helicase 9 (DHX9) to increase DHX9/c-Jun complex's occupancy on the promoter of matrix metallopeptidases (MMPs), and thus promotes migration and invasion of GC cells. Additionally, miR-210 directly suppresses the expression of dopamine receptor D5 (DRD5), serine/threonine kinase 24 (STK24) and MAX network transcriptional repressor (MNT), resulting in enhanced migration and invasion. Finally, MYC proto-oncogene (c-Myc) transactivates miR-210 and MIR210HG. Overexpression of miR-210 or/and MIR210HG can rescue the inhibitory effect on the migration and invasion by silencing c-Myc. Moreover, c-Myc inhibitor significantly decreases lung metastasis of GC in vivo. Collectively, our findings identify a novel mechanism, by which c-Myc-activated miR-210 and MIR210HG synergistically promote the metastasis of GC.
Collapse
|
14
|
Kaucsár T, Róka B, Tod P, Do PT, Hegedűs Z, Szénási G, Hamar P. Divergent regulation of lncRNA expression by ischemia in adult and aging mice. GeroScience 2021; 44:429-445. [PMID: 34697716 PMCID: PMC8811094 DOI: 10.1007/s11357-021-00460-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Elderly patients have increased susceptibility to acute kidney injury (AKI). Long noncoding RNAs (lncRNA) are key regulators of cellular processes, and have been implicated in both aging and AKI. Our aim was to study the effects of aging and ischemia-reperfusion injury (IRI) on the renal expression of lncRNAs. Adult and old (10- and 26-30-month-old) C57BL/6 N mice were subjected to unilateral IRI followed by 7 days of reperfusion. Renal expression of 90 lncRNAs and mRNA expression of injury, regeneration, and fibrosis markers was measured by qPCR in the injured and contralateral control kidneys. Tubular injury, regeneration, and fibrosis were assessed by histology. Urinary lipocalin-2 excretion was increased in old mice prior to IRI, but plasma urea was similar. In the control kidneys of old mice tubular cell necrosis and apoptosis, mRNA expression of kidney injury molecule-1, fibronectin-1, p16, and p21 was elevated. IRI increased plasma urea concentration only in old mice, but injury, regeneration, and fibrosis scores and their mRNA markers were similar in both age groups. AK082072 and Y lncRNAs were upregulated, while H19 and RepA transcript were downregulated in the control kidneys of old mice. IRI upregulated Miat, Igf2as, SNHG5, SNHG6, RNCR3, Malat1, Air, Linc1633, and Neat1 v1, while downregulated Linc1242. LncRNAs H19, AK082072, RepA transcript, and Six3os were influenced by both aging and IRI. Our results indicate that both aging and IRI alter renal lncRNA expression suggesting that lncRNAs have a versatile and complex role in aging and kidney injury. An Ingenuity Pathway Analysis highlighted that the most downregulated H19 may be linked to aging/senescence through p53.
Collapse
Affiliation(s)
- Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Beáta Róka
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Tod
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Phuong Thanh Do
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
15
|
Wang C, Liang G, Shen J, Kong H, Wu D, Huang J, Li X. Long Non-Coding RNAs as Biomarkers and Therapeutic Targets in Sepsis. Front Immunol 2021; 12:722004. [PMID: 34630395 PMCID: PMC8492911 DOI: 10.3389/fimmu.2021.722004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Sepsis, an infection-induced systemic inflammatory disorder, is often accompanied by multiple organ dysfunction syndromes with high incidence and mortality rates, and those who survive are often left with long-term sequelae, bringing great burden to social economy. Therefore, novel approaches to solve this puzzle are urgently needed. Previous studies revealed that long non-coding RNAs (lncRNAs) have exerted significant influences on the process of sepsis. The aim of this review is to summarize our understanding of lncRNAs as potential sepsis-related diagnostic markers and therapeutic targets, and provide new insights into the diagnosis and treatment for sepsis. In this study, we also introduced the current diagnostic markers of sepsis and discussed their limitations, while review the research advances in lncRNAs as promising biomarkers for diagnosis and prognosis of sepsis. Furthermore, the roles of lncRNAs in sepsis-induced organ dysfunction were illustrated in terms of different organ systems. Nevertheless, further studies should be carried out to elucidate underlying molecular mechanisms and pathological process of sepsis.
Collapse
Affiliation(s)
- Chuqiao Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Guorui Liang
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jieni Shen
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Haifan Kong
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Donghong Wu
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jinxiang Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Shen T, Xia W, Min S, Yang Z, Cheng L, Wang W, Zhan Q, Shao F, Zhang X, Wang Z, Zhang Y, Shen G, Zhang H, Wu LL, Yu GY, Kong QP, Wang X. A pair of long intergenic non-coding RNA LINC00887 variants act antagonistically to control Carbonic Anhydrase IX transcription upon hypoxia in tongue squamous carcinoma progression. BMC Biol 2021; 19:192. [PMID: 34493285 PMCID: PMC8422755 DOI: 10.1186/s12915-021-01112-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are important regulators in tumor progression. However, their biological functions and underlying mechanisms in hypoxia adaptation remain largely unclear. Results Here, we established a correlation between a Chr3q29-derived lncRNA gene and tongue squamous carcinoma (TSCC) by genome-wide analyses. Using RACE, we determined that two novel variants of this lncRNA gene are generated in TSCC, namely LINC00887_TSCC_short (887S) and LINC00887_TSCC_long (887L). RNA-sequencing in 887S or 887L loss-of-function cells identified their common downstream target as Carbonic Anhydrase IX (CA9), a gene known to be upregulated by hypoxia during tumor progression. Mechanistically, our results showed that the hypoxia-augmented 887S and constitutively expressed 887L functioned in opposite directions on tumor progression through the common target CA9. Upon normoxia, 887S and 887L interacted. Upon hypoxia, the two variants were separated. Each RNA recognized and bound to their responsive DNA cis-acting elements on CA9 promoter: 887L activated CA9’s transcription through recruiting HIF1α, while 887S suppressed CA9 through DNMT1-mediated DNA methylation. Conclusions We provided hypoxia-permitted functions of two antagonistic lncRNA variants to fine control the hypoxia adaptation through CA9. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01112-2.
Collapse
Affiliation(s)
- Tao Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wangxiao Xia
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
| | - Sainan Min
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Zixuan Yang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Lehua Cheng
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
| | - Wei Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Qianxi Zhan
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Fanghong Shao
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Xuehan Zhang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhiyu Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Yan Zhang
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guodong Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, 650223, China.
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China. .,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
17
|
Abstract
Epigenetics examines heritable changes in DNA and its associated proteins except mutations in gene sequence. Epigenetic regulation plays fundamental roles in kidney cell biology through the action of DNA methylation, chromatin modification via epigenetic regulators and non-coding RNA species. Kidney diseases, including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis are multistep processes associated with numerous molecular alterations even in individual kidney cells. Epigenetic alterations, including anomalous DNA methylation, aberrant histone alterations and changes of microRNA expression all contribute to kidney pathogenesis. These changes alter the genome-wide epigenetic signatures and disrupt essential pathways that protect renal cells from uncontrolled growth, apoptosis and development of other renal associated syndromes. Molecular changes impact cellular function within kidney cells and its microenvironment to drive and maintain disease phenotype. In this chapter, we briefly summarize epigenetic mechanisms in four kidney diseases including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis. We primarily focus on current knowledge about the genome-wide profiling of DNA methylation and histone modification, and epigenetic regulation on specific gene(s) in the pathophysiology of these diseases and the translational potential of identifying new biomarkers and treatment for prevention and therapy. Incorporating epigenomic testing into clinical research is essential to elucidate novel epigenetic biomarkers and develop precision medicine using emerging therapies.
Collapse
|
18
|
Zhou X, Li Y, Wu C, Yu W, Cheng F. Novel lncRNA XLOC_032768 protects against renal tubular epithelial cells apoptosis in renal ischemia-reperfusion injury by regulating FNDC3B/TGF-β1. Ren Fail 2021; 42:994-1003. [PMID: 32972270 PMCID: PMC7534267 DOI: 10.1080/0886022x.2020.1818579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Renal ischemia–reperfusion injury is a leading cause of acute kidney injury, but its underlying mechanism remains poorly understood and effective therapies are still lacking. Here, we identified lncRNA XLOC_032768 as a novel target in renal ischemia–reperfusion injury by analyzing differentially expressed genes of the transcriptome data. PCR results show that XLOC_032768 was markedly downregulated in the kidney during renal ischemia–reperfusion in mice and in cultured kidney cells during hypoxia. Upon induction in vitro, XLOC_032768 overexpression repressed the expression of fibronectin type III domain containing 3B (FNDC3B) and tubular epithelial cells apoptosis. Administration of XLOC_032768 preserved FNDC3B expression and attenuated renal tubular epithelial cells apoptosis, resulting in protection against kidney injury in mice. Knockdown of FNDC3B markedly reduced the expression of TGF-β1 and apoptosis of renal tubular cells. Thus, XLOC_032768/FNDC3B/TGF-β1signaling pathway in ischemia–reperfusion injury may be targeted for therapy.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongwei Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Cheng Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Bao W, Xiao Z, Wang Z, Liu D, Tan P, Huang M. Comprehensive analysis of the long non-coding RNA expression profile and functional roles in a contrast-induced acute kidney injury rat model. Exp Ther Med 2021; 22:739. [PMID: 34055056 PMCID: PMC8138274 DOI: 10.3892/etm.2021.10171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been identified as a class of regulatory RNAs that participate in both physiological and pathological conditions, including acute kidney injury. However, the roles of lncRNA dysregulation in the pathogenesis of contrast-induced acute kidney injury (CI-AKI) are largely unknown. In the present study, the expression profiles of lncRNAs in kidney tissue were compared between rats with CI-AKI and controls using high-throughput RNA sequencing. In total, 910 differentially expressed (DE) lncRNAs (DElncRNAs), including 415 downregulated and 495 upregulated lncRNAs, were identified at 12 h after intra-arterial iodinated contrast medium injection (fold change ≥2; P<0.05). Eight DElncRNAs were further selected and validated using reverse transcription-quantitative polymerase chain reaction. A previous study defined microRNA (miRNA) and mRNA expression changes in the same CI-AKI model. In the present study, a lncRNA-mRNA co-expression network comprising 349 DElncRNAs and 202 DEmRNAs was constructed. The function of these DElncRNAs was mainly associated with oxidative stress and inflammation. Additionally, lncRNA-associated competing endogenous RNA (ceRNA) analysis revealed a network comprising 40 DElncRNA nodes, 5 DEmiRNA nodes and 59 DEmRNA nodes. Among which, the carnosine dipeptidase 1-specific and the transmembrane protein 184B-specific networks were likely to be associated with CI-AKI. The results of the present study revealed the expression profile and potential roles of lncRNAs in CI-AKI, and provide a framework for further mechanistic studies.
Collapse
Affiliation(s)
- Weiwei Bao
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhigang Xiao
- Department of Cadre Health Care, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhiqing Wang
- Graduate College of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Donglin Liu
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Ping Tan
- Department of Cadre Health Care, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Mingfang Huang
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
20
|
Zhang B, Xu S, Liu J, Xie Y, Xiaobo S. Long Noncoding RNAs: Novel Important Players in Adipocyte Lipid Metabolism and Derivative Diseases. Front Physiol 2021; 12:691824. [PMID: 34168572 PMCID: PMC8217837 DOI: 10.3389/fphys.2021.691824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023] Open
Abstract
Obesity, a global public health issue, is characterized by excessive adiposity and is strongly related to some chronic diseases including cardiovascular diseases and diabetes. Extra energy intake-induced adipogenesis involves various transcription factors and long noncoding RNAs (lncRNAs) that control lipogenic mRNA expression. Currently, lncRNAs draw much attention for their contribution to adipogenesis and adipose tissue function. Increasing evidence also manifests the pivotal role of lncRNAs in modulating white, brown, and beige adipose tissue development and affecting the progression of the diseases induced by adipose dysfunction. The aim of this review is to summarize the roles of lncRNAs in adipose tissue development and obesity-caused diseases to provide novel drug targets for the treatment of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Saijun Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinyan Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Xie
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sun Xiaobo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Hu M, Wei J, Yang L, Xu J, He Z, Li H, Ning C, Lu S. Linc-KIAA1737-2 promoted LPS-induced HK-2 cell apoptosis by regulating miR-27a-3p/TLR4/NF-κB axis. J Bioenerg Biomembr 2021; 53:393-403. [PMID: 34076840 PMCID: PMC8360891 DOI: 10.1007/s10863-021-09897-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/29/2021] [Indexed: 11/26/2022]
Abstract
Inflammation and renal cell apoptosis participate in sepsis-induced acute kidney injury. Previous research found the upregulation of long non-coding RNA Linc-KIAA1737–2 in hypoxia- or inflammation-challenged human proximal tubular epithelial cells, but its role in sepsis-induced acute kidney injury is underexplored. In this research, we found that Linc-KIAA1737–2 could be upregulated in HK-2 human proximal tubular epithelial cells by LPS treatment, and knock-down of this lncRNA significantly attenuated LPS-induced apoptosis in HK-2 cells, while its overexpression showed opposite effect. MiR-27a-3p was confirmed to interact with Linc-KIAA1737–2 in HK-2 cells by RNA pull-down and dual-luciferase assay. MiR-27a-3p mimic transfection significantly attenuated LPS-induced HK-2 cell apoptosis by downregulating the protein levels of TLR4 and NF-κB, which was overturned by overexpression of Linc-KIAA1737–2. Our results suggested that Linc-KIAA1737–2 could promote LPS-induced apoptosis in HK-2 cells, and presumably sepsis-induced acute kidney injury, by regulating the miR-27a-3p/TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Ming Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Jing Wei
- Department of General practice, Qingdao Ninth People's Hospital, 2th Chaocheng Road, Qingdao, Shandong, People's Republic of China
| | - Liu Yang
- Department of Neurology, Chongqing Emergency Medical Center, The Affiliated Central Hospital to Chongqing University, Chongqing, China
| | - Jianhua Xu
- Department of Critical Care Medicine, Shandong Province Linyi Central Hospital, Linyi, Shandong, China
| | - Zhaofeng He
- Department of Critical Care Medicine, Shandong Province Juxian People's Hospital, Juxian, Shandong, China
| | - Haiyuan Li
- Department of Critical Care Medicine, Shandong Province Linyi Central Hospital, Linyi, Shandong, China
| | - Chao Ning
- Department of Critical Care Medicine, Shandong Province Linyi Central Hospital, Linyi, Shandong, China
| | - Shijun Lu
- Department of Critical Care Medicine, Shandong Province Linyi Central Hospital, Linyi, Shandong, China.
| |
Collapse
|
22
|
Wang W, Yang N, Wen R, Liu CF, Zhang TN. Long Noncoding RNA: Regulatory Mechanisms and Therapeutic Potential in Sepsis. Front Cell Infect Microbiol 2021; 11:563126. [PMID: 34055659 PMCID: PMC8149942 DOI: 10.3389/fcimb.2021.563126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is characterized by a hyperinflammatory state accompanied by immunosuppression. Long noncoding RNAs (lncRNAs) are noncoding RNAs longer than 200 nucleotides and have important roles in mediating various biological processes. Recently, lncRNAs were found to exert both promotive and inhibitory immune functions in sepsis, thus participating in sepsis regulation. Additionally, several studies have revealed that lncRNAs are involved in sepsis-induced organ dysfunctions, including cardiovascular dysfunction, acute lung injury, and acute kidney injury. Considering the lack of effective biomarkers for early identification and specific treatment for sepsis, lncRNAs may be promising biomarkers and even targets for sepsis therapies. This review systematically highlights the recent advances regarding the roles of lncRNAs in sepsis and sheds light on their use as potential biomarkers and treatment targets for sepsis.
Collapse
Affiliation(s)
| | | | | | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Li J, Zhang Y, Zhang D, Li Y. The Role of Long Non-coding RNAs in Sepsis-Induced Cardiac Dysfunction. Front Cardiovasc Med 2021; 8:684348. [PMID: 34041287 PMCID: PMC8141560 DOI: 10.3389/fcvm.2021.684348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. The heart is one of the most commonly involved organs during sepsis, and cardiac dysfunction, which is usually indicative of an extremely poor clinical outcome, is a leading cause of death in septic cases. Despite substantial improvements in the understanding of the mechanisms that contribute to the origin and responses to sepsis, the prognosis of sepsis-induced cardiac dysfunction (SICD) remains poor and its molecular pathophysiological changes are not well-characterized. The recently discovered group of mediators known as long non-coding RNAs (lncRNAs) have presented novel insights and opportunities to explore the mechanisms and development of SICD and may provide new targets for diagnosis and therapeutic strategies. LncRNAs are RNA transcripts of more than 200 nucleotides with limited or no protein-coding potential. Evidence has rapidly accumulated from numerous studies on how lncRNAs function in associated regulatory circuits during SICD. This review outlines the direct evidence of the effect of lncRNAs on SICD based on clinical trials and animal studies. Furthermore, potential functional lncRNAs in SICD that have been identified in sepsis studies are summarized with a proven biological function in research on other cardiovascular diseases.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Deng S, Gu B, Yu Z, Shen Z, Ren H. MIR210HG Aggravates Sepsis-Induced Inflammatory Response of Proximal Tubular Epithelial Cell via the NF-κB Signaling Pathway. Yonsei Med J 2021; 62:461-469. [PMID: 33908218 PMCID: PMC8084703 DOI: 10.3349/ymj.2021.62.5.461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Acute kidney injury (AKI) is a serious complication of sepsis and is characterized by inflammatory response. MicroRNA-210 host gene (MIR210HG) is upregulated in human proximal tubular epithelial cells under treatment of inflammatory cytokines. This study aimed to explore the role of MIR210HG in sepsis-induced AKI. MATERIALS AND METHODS Cell viability was detected by a cell counting kit 8 assay. The levels of proinflammatory cytokines were detected by enzyme-linked immunosorbent assay kits. The protein levels of p65, IκBα, and p-IκBα were examined by western blot analysis. The nuclear translocation of nuclear factor kappa B (NF-κB) was detected by immunofluorescence assay. The histological changes of kidneys were analyzed by hematoxylin and eosin staining assay. RESULTS Lipopolysaccharide (LPS) treatment significantly inhibited cell viability and increased productions of proinflammatory cytokines in proximal tubular epithelial cells (HKC-8). Additionally, MIR210HG levels in HKC-8 cells were increased by LPS treatment. MIR210HG silencing inhibited the LPS-induced cell inflammatory response. MIR210HG activated the NF-κB signaling pathway by promoting the phosphorylation of IκBα and nuclear translocation of p65. Rescue assays revealed that the MIR210HG-induced increase of cytokines levels and decline of cell viability were rescued by QNZ treatment. Knockdown of MIR210HG decreased blood urea nitrogen, serum creatinine, and proinflammatory cytokine levels in AKI rats. Moreover, the knockdown of MIR210HG protected against AKI-induced histological changes of kidneys in rats. CONCLUSION MIR210HG promotes sepsis-induced inflammatory response of HKC-8 cells by activating the NF-κB signaling pathway. This novel discovery may be helpful for the improvement of sepsis-induced AKI.
Collapse
Affiliation(s)
- Shuai Deng
- Department of Emergency, Jiangsu Taizhou People's Hospital, Taizhou, China.
| | - Bin Gu
- Department of Emergency, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Zheng Yu
- Department of Emergency, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Zhen Shen
- Department of Emergency, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Houwei Ren
- Department of Emergency, Jiangsu Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
25
|
Wang YN, Yang CE, Zhang DD, Chen YY, Yu XY, Zhao YY, Miao H. Long non-coding RNAs: A double-edged sword in aging kidney and renal disease. Chem Biol Interact 2021; 337:109396. [PMID: 33508306 DOI: 10.1016/j.cbi.2021.109396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Aging as one of intrinsic biological processes is a risk factor for many chronic diseases. Kidney disease is a global problem and health care burden worldwide. The diagnosis of kidney disease is currently based on serum creatinine and urea levels. Novel biomarkers may improve diagnostic accuracy, thereby allowing early prevention and treatment. Over the past few years, advances in genome analyses have identified an emerging class of noncoding RNAs that play critical roles in the regulation of gene expression and epigenetic reprogramming. Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome and could bind DNA, RNA and protein. Emerging evidence has demonstrated that lncRNAs played an important role in all stages of kidney disease. To date, only some lncRNAs were well identified and characterized, but the complexity of multilevel regulation of transcriptional programs involved in these processes remains undefined. In this review, we summarized the lncRNA expression profiling of large-scale identified lncRNAs on kidney diseases including acute kidney injury, chronic kidney disease, diabetic nephropathy and kidney transplantation. We further discussed a number of annotated lncRNAs linking with complex etiology of kidney diseases. Finally, several lncRNAs were highlighted as diagnostic biomarkers and therapeutic targets. Targeting lncRNAs may represent a precise therapeutic strategy for progressive renal fibrosis.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Chang-E Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
26
|
Guo X, Qin Y, Wang L, Dong S, Yan Y, Bian X, Zhao C. A competing endogenous RNA network reveals key lncRNAs associated with sepsis. Mol Genet Genomic Med 2021; 9:e1557. [PMID: 33237630 PMCID: PMC7963432 DOI: 10.1002/mgg3.1557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/17/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study set out to determine key lncRNAs correlated with sepsis via constructing competing endogenous RNA (ceRNA) network. METHODS Three septic patients and three healthy controls were recruited to obtain lncRNA profiles in this current study. Combined with the mRNA profiles by RNA-sequencing, an integrated analysis of mRNA expression profiles downloaded from GEO was performed to obtain the differentially expressed mRNAs (DEmRNAs). Based on differentially expressed lncRNAs (DElncRNAs) and DEmRNAs acquired in this present study and differentially expressed miRNAs (DEmiRNAs) acquired in previous study, a ceRNA network was constructed. Furthermore, LINC00963 was validated in THP-1 cells by performing loss of function assays. RESULTS In this analysis, a total of 290 DEmRNAs and 46 DElncRNAs were detected in sepsis. Parkinson's disease, Oxidative phosphorylation and Cardiac muscle contraction were significantly enriched KEGG pathways in sepsis. XPO1, CUL4A, and NEDD8 were three hub proteins of sepsis-specific PPI network. A ceRNA network, which contained 16 DElncRNA-DEmiRNA pairs and 82 DEmiRNA-DEmRNA pairs, involving 5 lncRNAs, 10 miRNAs, and 60 mRNAs, was obtained. The function experiments indicated that knockdown of LINC00963 could promote cell proliferation, reduce cytokine expression, and suppress inflammasome activation and phagocytosis in LPS-induced THP-1 cells. CONCLUSION This study determined key lncRNAs involved in sepsis, which may contribute to the development for novel treatment strategy of sepsis.
Collapse
Affiliation(s)
- Xuan Guo
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yanjun Qin
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lili Wang
- Department of CardiologyHebei General HospitalShijiazhuangChina
| | - Shimin Dong
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan Yan
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiaohua Bian
- Department of EmergencyThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Caiyan Zhao
- Department of Infectious DiseaseThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
27
|
Wang YJ, Yang B, Lai Q, Shi JF, Peng JY, Zhang Y, Hu KS, Li YQ, Peng JW, Yang ZZ, Li YT, Pan Y, Koeffler HP, Liao JY, Yin D. Reprogramming of m 6A epitranscriptome is crucial for shaping of transcriptome and proteome in response to hypoxia. RNA Biol 2021; 18:131-143. [PMID: 32746693 PMCID: PMC7834094 DOI: 10.1080/15476286.2020.1804697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 01/05/2023] Open
Abstract
Hypoxia causes a series of responses supporting cells to survive in harsh environments. Substantial post-transcriptional and translational regulation during hypoxia has been observed. However, detailed regulatory mechanism in response to hypoxia is still far from complete. RNA m6A modification has been proven to govern the life cycle of RNAs. Here, we reported that total m6A level of mRNAs was decreased during hypoxia, which might be mediated by the induction of m6A eraser, ALKBH5. Meanwhile, expression levels of most YTH family members of m6A readers were systematically down-regulated. Transcriptome-wide analysis of m6A revealed a drastic reprogramming of m6A epitranscriptome during cellular hypoxia. Integration of m6A epitranscriptome with either RNA-seq based transcriptome analysis or mass spectrometry (LC-MS/MS) based proteome analysis of cells upon hypoxic stress revealed that reprogramming of m6A epitranscriptome reshaped the transcriptome and proteome, thereby supporting efficient generation of energy for adaption to hypoxia. Moreover, ATP production was blocked when silencing an m6A eraser, ALKBH5, under hypoxic condition, demonstrating that m6A pathway is an important regulator during hypoxic response. Collectively, our studies indicate that crosstalk between m6A and HIF1 pathway is essential for cellular response to hypoxia, providing insights into the underlying molecular mechanisms during hypoxia.
Collapse
Affiliation(s)
- Yan-Jie Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qiao Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Department of Science and Teaching, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun-Fang Shi
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiang-Yun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Kai-Shun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ya-Qing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, GuangzhouP.R. China
| | - Jing-Wen Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zhi-Zhi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yao-Ting Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - H. Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, Los Angeles, CA, USA
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
28
|
Byun Y, Choi YC, Jeong Y, Yoon J, Baek K. Long Noncoding RNA Expression Profiling Reveals Upregulation of Uroplakin 1A and Uroplakin 1A Antisense RNA 1 under Hypoxic Conditions in Lung Cancer Cells. Mol Cells 2020; 43:975-988. [PMID: 33273139 PMCID: PMC7772508 DOI: 10.14348/molcells.2020.0126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1AAS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxiainducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxiainduced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.
Collapse
MESH Headings
- Cell Hypoxia/genetics
- Cell Line, Tumor
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung Neoplasms/genetics
- Methylation
- RNA Stability/genetics
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reproducibility of Results
- Ribonucleases/metabolism
- Up-Regulation/genetics
- Uroplakin Ia/genetics
Collapse
Affiliation(s)
- Yuree Byun
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Young-Chul Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
29
|
Du Y, Wei N, Ma R, Jiang SH, Song D. Long Noncoding RNA MIR210HG Promotes the Warburg Effect and Tumor Growth by Enhancing HIF-1α Translation in Triple-Negative Breast Cancer. Front Oncol 2020; 10:580176. [PMID: 33392077 PMCID: PMC7774020 DOI: 10.3389/fonc.2020.580176] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxia is an important environmental factor and has been correlated with tumor progression, treatment resistance and poor prognosis in many solid tumors, including triple-negative breast cancer (TNBC). Emerging evidence suggests that long noncoding RNA (lncRNA) functions as a critical regulator in tumor biology. However, little is known about the link between hypoxia and lncRNAs in TNBC. Methods TNBC molecular profiles from The Cancer Genome Atlas (TCGA) were leveraged to identify hypoxia-related molecular alterations. Loss-of-function studies were performed to determine the regulatory role of MIR210HG in tumor glycolysis. The potential functions and mechanisms of hypoxia-MIR210HG axis were explored using qPCR, Western blotting, luciferase reporter assay, and polysome profiling. Results We found that MIR210HG is a hypoxia-induced lncRNA in TNBC. Loss-of-function studies revealed that MIR210HG promoted the Warburg effect as demonstrated by glucose uptake, lactate production and expression of glycolytic components. Mechanistically, MIR210HG potentiated the metabolic transcription factor hypoxia-inducible factor 1α (HIF-1α) translation via directly binding to the 5'-UTR of HIF-1α mRNA, leading to increased HIF-1a protein level, thereby upregulating expression of glycolytic enzymes. MIR210HG knockdown in TNBC cells reduced their glycolytic metabolism and abolished their tumorigenic potential, indicating the glycolysis-dependent oncogenic activity of MIR210HG in TNBC. Moreover, MIR210HG was highly expressed in breast cancer and predicted poor clinical outcome. Conclusion Our results decipher a positive feedback loop between hypoxia and MIR210HG that drive the Warburg effect and suggest that MIR210HG may be a good prognostic marker and therapeutic target for TNBC patients.
Collapse
Affiliation(s)
- Ye Du
- Departments of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Na Wei
- Departments of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruolin Ma
- Departments of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Song
- Departments of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Ghafouri-Fard S, Dashti S, Farsi M, Taheri M. HOX transcript antisense RNA: An oncogenic lncRNA in diverse malignancies. Exp Mol Pathol 2020; 118:104578. [PMID: 33238156 DOI: 10.1016/j.yexmp.2020.104578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/11/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
HOX transcript antisense RNA (HOTAIR) is a transcript produced from the antisense strand of the HOXC gene cluster and influencing expression of genes from the HOXD locus. HOTAIR has prominent roles in different aspects of carcinogenic process from cancer initiation to metastasis. A number of in vitro, in vivo and human investigations have confirmed the oncogenic impacts of HOTAIR. The diagnostic power of HOTAIR in distinguishing cancer status from healthy status has been optimal in gastric cancer, pancreatic adenocarcinoma and colorectal cancer. The most important achievement in this regard has been provided by studies that verified diagnostic value of this lncRNA in the serum samples, potentiating its application in non-invasive diagnosis of cancer. Moreover, HOTAIR has a crucial role in determination of response of cancer cells to therapeutic modalities. The current review aims to explain the outlines of these studies to emphasize its potential as a biomarker and therapeutic target for these conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Molood Farsi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR. Non-coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:51-74. [PMID: 32506014 PMCID: PMC7272511 DOI: 10.1016/j.omtn.2020.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is characterized as an uncontrolled host response to infection, and it represents a serious health challenge, causing excess mortality and morbidity worldwide. The discovery of sepsis-related epigenetic and molecular mechanisms could result in improved diagnostic and therapeutic approaches, leading to a reduced overall risk for affected patients. Accumulating data show that microRNAs, non-coding RNAs, and exosomes could all be considered as novel diagnostic markers for sepsis patients. These biomarkers have been demonstrated to be involved in regulation of sepsis pathophysiology. However, epigenetic modifications have not yet been widely reported in actual clinical settings, and further investigation is required to determine their importance in intensive care patients. Further studies should be carried out to explore tissue-specific or organ-specific epigenetic RNA-based biomarkers and their therapeutic potential in sepsis patients.
Collapse
Affiliation(s)
- Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Fadaei
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
32
|
Liu F, Yang Y, Liu T, Deng J, Zhang H, Luo D, Lou YL. Analysis of Differentially Expressed Long Noncoding RNA in Renal Ischemia-Reperfusion Injury. Kidney Blood Press Res 2020; 45:686-701. [PMID: 32799207 DOI: 10.1159/000508217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/27/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal ischemia-reperfusion (IR) injury is one of the major causes of acute renal failure which seriously endangers the health and life of patients. Currently, there is still lack of comprehensive knowledge of the molecular mechanism of renal IR injury, and the regulatory role of long noncoding RNA (lncRNA) in renal IR damage remains poorly understood. AIM The aim of this study was to analyze the expression spectrum of lncRNA in renal IR damage in mice and to explore specific lncRNA that may be involved in regulating the development of human renal IR injury. METHODS RNA-Seq was used to investigate the lncRNA profile of renal IR injury in a mouse model, and conservation analysis was performed on mouse lncRNAs with differential expression (fragments per kilobase of transcript per million mapped reads ≥2) by BLASTN. The potential functions and associated pathways of the differentially expressed lncRNA were explored by bioinformatics analysis. The cell hypoxia model was used to detect the expression of the candidate lncRNA. RESULTS Of the 45,923 lncRNA transcripts detected in the samples, and 5,868 lncRNAs were found to be significantly differentially expressed (p < 0.05 and fold change ≥ 2) in 24-h IR kidney tissue compared to the expression in the control group. It was found that 56 differently expressed mouse lncRNA transcripts have human homology by analyzing the conserved sequences. We also found that lncRNA-NONHSAT183385.1 expression significantly increased in HK2 cells after 24 h of hypoxia and increased further 6 h after reoxygenation, and after 24 h of reoxygenation it was dramatically downregulated, indicating that NONHSAT183385.1 may be involved in the pathophysiological process of renal tubular epithelial cells in response to ischemia in human renal IR. CONCLUSION Our study revealed differentially expressed lncRNAs in renal IR damage in mice and identified a set of conserved lncRNAs, which would help to explore lncRNAs that may play important regulatory roles in human renal IR injury.
Collapse
Affiliation(s)
- Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Yang
- Department of Clinical Laboratory, Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Tong Liu
- Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Deng
- Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Heng Zhang
- Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Luo
- Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan-Lei Lou
- Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| |
Collapse
|
33
|
Chen H, Fan Y, Jing H, Tang S, Zhou J. Emerging role of lncRNAs in renal fibrosis. Arch Biochem Biophys 2020; 692:108530. [PMID: 32768395 DOI: 10.1016/j.abb.2020.108530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final common pathological feature of a wide variety of chronic kidney disease (CKD). However, an understanding of the mechanisms underlying the development of renal fibrosis remains challenging and controversial. As the current focus of molecular research, noncoding RNAs (ncRNAs), mainly microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular noncoding RNAs (circRNAs), have powerful and abundant biological functions, which essentially makes them mediators of the physiological and pathological processes of various system diseases. The role of ncRNAs in renal fibrosis has also received great attention in recent years, but most research has mainly focused on miRNAs. In fact, although a large number of studies of lncRNAs have emerged recently, the role these molecules play in renal fibrosis haven't been fully understood till now. Thus, this review discusses the discovery of lncRNAs and their biological functions in different types of renal fibrosis, as well as the imminent applications of these findings in clinical use. Undoubtedly, in the future, further understanding of the function of all types of lncRNAs will reveal large breakthroughs in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, 511400, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
34
|
Ata-abadi NS, Mowla SJ, Aboutalebi F, Dormiani K, Kiani-Esfahani A, Tavalaee M, Nasr-Esfahani MH. Hypoxia-related long noncoding RNAs are associated with varicocele-related male infertility. PLoS One 2020; 15:e0232357. [PMID: 32353040 PMCID: PMC7192471 DOI: 10.1371/journal.pone.0232357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
One of the main molecular causes that contributes to varicocele-related male infertility is excess production of reactive oxygen species (ROS). It is believed that hypoxia is an important stimulator of ROS in this condition. Recently, the significant roles of long non-coding RNAs (lncRNAs) in hypoxia response have emerged. Despite the investigation of hypoxia, there is scant information about the role of hypoxia-responding lncRNAs in varicocele-related male infertility. In the present study, we deduced eight hypoxia-responding lncRNAs based on high-throughput RNA sequencing data from two Gene Expression Omnibus (GEO) datasets. We used qRT-PCR to assess the expression levels of some of these lncRNAs in 42 ejaculated spermatozoa samples from 25 infertile men with varicocele and 17 fertile men as controls. We identified significant increases in expression levels of hypoxia-related lncRNAs, MIR210HG and MLLT4-AS1 in ejaculated spermatozoa of infertile men with varicocele. These lncRNAs also showed significant positive correlations with ROS levels and meaningful negative correlations with sperm parameters (count and motility). Besides, in silico studies identified several hypoxia response elements (HREs) within selected lncRNAs promoters. Delineation of hypoxia-related lncRNAs in varicocele-related infertility provides a valuable insight into male infertility.
Collapse
Affiliation(s)
- Nafiseh Sanei Ata-abadi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: (SJM); (MHN-E)
| | - Fatemeh Aboutalebi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Isfahan Fertility and Infertility Center, Isfahan, Iran
- * E-mail: (SJM); (MHN-E)
| |
Collapse
|
35
|
Geng X, Song N, Zhao S, Xu J, Liu Y, Fang Y, Liang M, Xu X, Ding X. LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI. Cell Death Discov 2020; 6:19. [PMID: 32257391 PMCID: PMC7118150 DOI: 10.1038/s41420-020-0253-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Mounting evidence has indicated that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) played important roles in renal ischemia/reperfusion (I/R) injury. However, the involvement of lncRNA growth arrest specific 5 (GAS5) in acute kidney injury (AKI) remained largely unexplored. This study aimed to determine possible mechanisms of GAS5 in the renal I/R process. We found that GAS5, noticeably upregulated by renal I/R injury, was further suppressed by delayed IPC while knockdown of miR-21 in vivo before IPC could significantly increased the GAS5 levels. Concurrently, TSP-1 was negatively regulated by miR-21 in vivo and vitro. Additionally, Reciprocal repression of GAS5 and miR-21 was identified. Knockdown of miR-21 in H6R0.5 treated HK-2 cells promoted apoptosis. Co-transfection of miR-21 mimic and pcDNA-GAS5 or pcDNA-Vector were performed, results of which showed that inhibition of miR-21 on TSP-1 could be rescued by overexpression of GAS5. This study suggested that GAS5 facilitated apoptosis by competitively sponging miR-21, which negatively regulated TSP-1 in renal I/R injury. This novel regulatory axis could act as a therapeutic target for AKI in the future.
Collapse
Affiliation(s)
- Xuemei Geng
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Yong Liu
- Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Mingyu Liang
- Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| |
Collapse
|
36
|
Ma L, Shi W, Ma X, Zou M, Chen W, Li W, Zou R, Chen X. Comprehensive analysis of differential immunocyte infiltration and the potential ceRNA networks during epicardial adipose tissue development in congenital heart disease. J Transl Med 2020; 18:111. [PMID: 32122382 PMCID: PMC7053131 DOI: 10.1186/s12967-020-02279-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background To detect the development, function and therapeutic potential of epicardial adipose tissue (EAT); analyze a related gene expression dataset, including data from neonates, infants, and children with congenital heart disease (CHD); compare the data to identify the codifferentially expressed (DE) mRNAs and lncRNAs and the corresponding miRNAs; generate a potential competitive endogenous RNA (ceRNA) network; and assess the involvement of immunocyte infiltration in the development of the EAT. Methods Multiple algorithms for linear models for microarray data algorithms (LIMMA), CIBERSORT, gene-set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were used. The miRcode, miRDB, miRTarBase, and TargetScan database were used to construct the ceRNA network. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DE mRNAs were performed. Results Thirteen co-DE mRNAs and 47 co-DE lncRNAs were subsequently identified. The related categories included negative regulation of myoblast differentiation, regulation of ion transmembrane transport, and heart development, which were primarily identified for further pathway enrichment analysis. Additionally, the hub ceRNA network in EAT development involving MIR210HG, hsa-miR-449c-5p, and CACNA2D4 was generated and shown to target monocyte infiltration. Conclusion These findings suggest that the pathways of myoblast differentiation and ion transmembrane transport may be potential hub pathways involved in EAT development in CHD patients. In addition, the network includes monocytes, MIR210HG, and CACNA2D4, which were shown to target the RIG-I-like receptor signaling pathway and PPAR signaling pathway, indicating that these factors may be novel regulators and therapeutic targets in EAT development.
Collapse
Affiliation(s)
- Li Ma
- Department of Cardiac Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wanting Shi
- Department of Paediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xun Ma
- Department of Cardiac Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Minghui Zou
- Department of Cardiac Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Weidan Chen
- Department of Cardiac Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wenlei Li
- Department of Cardiac Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Rongjun Zou
- Department of Cardiac Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Xinxin Chen
- Department of Cardiac Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
37
|
Chen H, Chen L. An integrated analysis of the competing endogenous RNA network and co-expression network revealed seven hub long non-coding RNAs in osteoarthritis. Bone Joint Res 2020; 9:90-98. [PMID: 32435461 PMCID: PMC7229307 DOI: 10.1302/2046-3758.93.bjr-2019-0140.r2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS This study aimed to uncover the hub long non-coding RNAs (lncRNAs) differentially expressed in osteoarthritis (OA) cartilage using an integrated analysis of the competing endogenous RNA (ceRNA) network and co-expression network. METHODS Expression profiles data of ten OA and ten normal tissues of human knee cartilage were obtained from the Gene Expression Omnibus (GEO) database (GSE114007). The differentially expressed messenger RNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the edgeR package. We integrated human microRNA (miRNA)-lncRNA/mRNA interactions with DElncRNA/DEmRNA expression profiles to construct a ceRNA network. Likewise, lncRNA and mRNA expression profiles were used to build a co-expression network with the WGCNA package. Potential hub lncRNAs were identified based on an integrated analysis of the ceRNA network and co-expression network. StarBase and Multi Experiment Matrix databases were used to verify the lncRNAs. RESULTS We detected 1,212 DEmRNAs and 49 DElncRNAs in OA and normal knee cartilage. A total of 75 dysregulated lncRNA-miRNA interactions and 711 dysregulated miRNA-mRNA interactions were obtained in the ceRNA network, including ten DElncRNAs, 69 miRNAs, and 72 DEmRNAs. Similarly, 1,330 dysregulated lncRNA-mRNA interactions were used to construct the co-expression network, which included ten lncRNAs and 407 mRNAs. We finally identified seven hub lncRNAs, named MIR210HG, HCP5, LINC00313, LINC00654, LINC00839, TBC1D3P1-DHX40P1, and ISM1-AS1. Subsequent enrichment analysis elucidated that these lncRNAs regulated extracellular matrix organization and enriched in osteoclast differentiation, the FoxO signalling pathway, and the tumour necrosis factor (TNF) signalling pathway in the development of OA. CONCLUSION The integrated analysis of the ceRNA network and co-expression network identified seven hub lncRNAs associated with OA. These lncRNAs may regulate extracellular matrix changes and chondrocyte homeostasis in OA progress.Cite this article: Bone Joint Res. 2020;9(3):90-98.
Collapse
Affiliation(s)
- Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Zhou Q, Chen W, Yu XQ. Long non-coding RNAs as novel diagnostic and therapeutic targets in kidney disease. Chronic Dis Transl Med 2020; 5:252-257. [PMID: 32055784 PMCID: PMC7005109 DOI: 10.1016/j.cdtm.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have critical roles in the development of many diseases including kidney disease. An increasing number of studies have shown that lncRNAs are involved in kidney development and that their dysregulation can result in distinct disease processes, including acute kidney injury (AKI), chronic kidney disease (CKD), and renal cell carcinoma (RCC). Understanding the roles of lncRNAs in kidney disease may provide new diagnostic and therapeutic opportunities in the clinic. This review provides an overview of lncRNA characteristics, biological function and discusses specific studies that provide insight into the function and potential application of lncRNAs in kidney disease treatment.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xue-Qing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Guangdong General Hospital, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
39
|
Brandenburger T, Salgado Somoza A, Devaux Y, Lorenzen JM. Noncoding RNAs in acute kidney injury. Kidney Int 2019; 94:870-881. [PMID: 30348304 DOI: 10.1016/j.kint.2018.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 02/09/2023]
Abstract
Acute kidney injury (AKI) is an important health issue concerning ∼50% of patients treated in intensive care units. AKI mainly occurs after sepsis, acute ischemia, nephrotoxicity, or hypoxia and leads to severe damage of the kidney and to an increased risk of mortality. The diagnosis of AKI is currently based on creatinine urea levels and diuresis. Yet, novel markers may improve the accuracy of this diagnosis at an early stage of the disease, thereby allowing early prevention and therapy, ultimately leading to a reduction in the need for renal replacement therapy and decreased mortality. Non-protein-coding RNAs or noncoding RNAs are central players in development and disease. They are important regulatory molecules that allow a fine-tuning of gene expression and protein synthesis. This regulation is necessary to maintain homeostasis, and its dysregulation is often associated with disease development. Noncoding RNAs are present in the kidney and in body fluids and their expression is modulated during AKI. This review article assembles the current knowledge of the role of noncoding RNAs, including microRNAs, long noncoding RNAs and circular RNAs, in the pathogenesis of AKI. Their potential as biomarkers and therapeutic targets as well as the challenges to translate research findings to clinical application are discussed. Although microRNAs have entered clinical testing, preclinical and clinical trials are needed before long noncoding RNAs and circular RNAs may be considered as useful biomarkers or therapeutic targets of AKI.
Collapse
Affiliation(s)
- Timo Brandenburger
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.
| | - Antonio Salgado Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Johan M Lorenzen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Zhang Y, Zhang L, Wang Y, Ding H, Xue S, Yu H, Hu L, Qi H, Wang Y, Zhu W, Liu D, Li P. KCNQ1OT1, HIF1A-AS2 and APOA1-AS are promising novel biomarkers for diagnosis of coronary artery disease. Clin Exp Pharmacol Physiol 2019; 46:635-642. [PMID: 30941792 DOI: 10.1111/1440-1681.13094] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
This study aimed to evaluate the potential of long noncoding RNAs (lncRNAs) as biomarkers for coronary artery disease (CAD). We measured the levels of three atherosclerosis- or cardiac-related lncRNAs in peripheral blood monocyte cells (PBMCs) from 20 CAD patients and 20 non-CAD control participants using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) methods. We found that the levels of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) and apolipoprotein A-1 antisense RNA (APOA1-AS) were significantly increased in CAD patients (KCNQ1OT1 increased by 2.38-fold, P = 0.00042; HIF1A-AS2 increased by 2.00-fold, P = 0.0001; APOA1-AS increased by 4.52-fold, P = 0.000048). The area under the ROC curve was 0.865 for KCNQ1OT1, 0.852 for HIF1A-AS2, and 0.967 for APOA1-AS. Furthermore, the combination of lncRNAs resulted in a much higher AUC value of 0.990 for the prediction of CAD. Spearman's correlation analysis showed that APOA1-AS was positively correlated with NT-proBNP, CKMB, MYO and HsTnT, whereas HIF1A-AS2 was correlated with NT-proBNP and HsTnT. Hence, the elevation of KCNQ1OT1, HIF1A-AS2 and APOA1-AS predicts CAD and these molecules may be considered as novel biomarkers of CAD.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yu Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Han Ding
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Sheng Xue
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Longgang Hu
- Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongzhao Qi
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dacheng Liu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Tao Q, Tianyu W, Jiangqiao Z, Zhongbao C, Xiaoxiong M, Long Z, Jilin Z. Expression analysis of long non-coding RNAs in a renal ischemia-reperfusion injury model. Acta Cir Bras 2019; 34:e201900403. [PMID: 31038583 PMCID: PMC6583919 DOI: 10.1590/s0102-865020190040000003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To investigate the long non-coding RNAs (lncRNAs) profile on renal ischemia reperfusion in a mouse model. METHODS Microarray analysis was used to study the expression of misregulated lncRNA in a mouse model of renal ischemia reperfusion(I/R) with long ischemia time. Quantitative real-time PCR (qPCR) was used to verify the expression of selected lncRNAs and mRNAs.The potential functions of the lncRNA was analyzed by bioinformatics tools and databases. RESULTS Kidney function was impaired in I/R group compared to the normal group. Analysis showed that a total of 2267 lncRNAs and 2341 messenger RNAs (mRNAs) were significantly expressed in I/R group (≥2.0-fold, p < 0.05).The qPCR result showed that lncRNAs and mRNAs expression were consistent with the microarray analysis. The co-expression network profile analysis based on five validated lncRNAs and 203 interacted mRNAs showed it existed a total of 208 nodes and 333 connections. The GO and KEEG pathway analysis results showed that multiple lncRNAs are involved the mechanism of I/R. CONCLUSION Multiple lncRNAs are involved in the mechanism of I/R.These analysis results will help us to further understand the mechanism of I/R and promote the new methods targeted at lncRNA to improve I/R injury.
Collapse
Affiliation(s)
- Qiu Tao
- PhD, Department of Organ Transplantation, Renmin Hospital, Wuhan University, Hubei, China. Conception and design of the study, acquisition and analysis of data, manuscript writing
| | - Wang Tianyu
- PhD, Department of Organ Transplantation, Renmin Hospital, Wuhan University, Hubei, China. Conception and design of the study, acquisition and analysis of data, manuscript writing
| | - Zhou Jiangqiao
- PhD, Department of Organ Transplantation, Renmin Hospital, Wuhan University, Hubei, China. Design and supervised all phases of the study
| | - Chen Zhongbao
- Physician, Department of Organ Transplantation, Renmin Hospital, Wuhan University, Hubei, China. Technical procedures, acquisition of data
| | - Ma Xiaoxiong
- Physician, Department of Organ Transplantation, Renmin Hospital, Wuhan University, Hubei, China. Technical procedures, acquisition of data
| | - Zhang Long
- Physician, Department of Organ Transplantation, Renmin Hospital, Wuhan University, Hubei, China. Manuscript preparation
| | - Zou Jilin
- Physician, Department of Organ Transplantation, Renmin Hospital, Wuhan University, Hubei, China. Manuscript preparation
| |
Collapse
|
42
|
Liu Z, Wang Y, Shu S, Cai J, Tang C, Dong Z. Non-coding RNAs in kidney injury and repair. Am J Physiol Cell Physiol 2019; 317:C177-C188. [PMID: 30969781 DOI: 10.1152/ajpcell.00048.2019] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is a major kidney disease featured by a rapid decline of renal function. Pathologically, AKI is characterized by tubular epithelial cell injury and death. Besides its acute consequence, AKI contributes critically to the development and progression of chronic kidney disease (CKD). After AKI, surviving tubular cells regenerate to repair. Normal repair restores tubular integrity, while maladaptive or incomplete repair results in renal fibrosis and eventually CKD. Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), and tRNAs. Accumulating evidence suggests that ncRNAs play important roles in kidney injury and repair. In this review, we summarize the recent advances in the understanding of the roles of ncRNAs, especially miRNAs and lncRNAs in kidney injury and repair, discuss the potential application of ncRNAs as biomarkers of AKI as well as therapeutic targets for treating AKI and impeding AKI-CKD transition, and highlight the future research directions of ncRNAs in kidney injury and repair.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Ying Wang
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Shaoqun Shu
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Juan Cai
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Chengyuan Tang
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Zheng Dong
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| |
Collapse
|
43
|
Guo C, Dong G, Liang X, Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 2019; 15:220-239. [PMID: 30651611 PMCID: PMC7866490 DOI: 10.1038/s41581-018-0103-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a major public health concern associated with high morbidity and mortality. Despite decades of research, the pathogenesis of AKI remains incompletely understood and effective therapies are lacking. An increasing body of evidence suggests a role for epigenetic regulation in the process of AKI and kidney repair, involving remarkable changes in histone modifications, DNA methylation and the expression of various non-coding RNAs. For instance, increases in levels of histone acetylation seem to protect kidneys from AKI and promote kidney repair. AKI is also associated with changes in genome-wide and gene-specific DNA methylation; however, the role and regulation of DNA methylation in kidney injury and repair remains largely elusive. MicroRNAs have been studied quite extensively in AKI, and a plethora of specific microRNAs have been implicated in the pathogenesis of AKI. Emerging research suggests potential for microRNAs as novel diagnostic biomarkers of AKI. Further investigation into these epigenetic mechanisms will not only generate novel insights into the mechanisms of AKI and kidney repair but also might lead to new strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Chunyuan Guo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Xinling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
44
|
Geng X, Xu X, Fang Y, Zhao S, Hu J, Xu J, Jia P, Ding X, Teng J. Effect of long non-coding RNA growth arrest-specific 5 on apoptosis in renal ischaemia/reperfusion injury. Nephrology (Carlton) 2019; 24:405-413. [PMID: 30129267 DOI: 10.1111/nep.13476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
AIM Long non-coding RNA (lncRNAs) have been shown to play a critical role in a variety of pathophysiological processes, such as cell proliferation, apoptosis and migration. However, there were few studies addressing the function of lncRNAs in renal ischaemia/reperfusion (I/R) injury. Apoptosis is an important pathogenesis during I/R injury. Here, we identified the effect of hypoxia-responsive lncRNA growth arrest-specific 5 (GAS5) on apoptosis in renal I/R injury. METHODS Ischaemia/reperfusion injury in mice or hypoxia/re-oxygenation (H/R) in human proximal renal tubular epithelial cells (HK-2) was practiced to induce apoptosis. The kidneys and blood were collected at 24 h after reperfusion. The GAS5 messenger RNA (mRNA) expression and apoptosis-related gene mRNA and protein levels, including p53, cellular inhibitor of apoptosis protein 2 (cIAP2) and thrombospondin-1 (TSP-1), were analysed. GAS5 small-interfering RNA was transfected with H/R induced cells. Over-expression of GAS5 was performed by plasmid transfection. RESULTS Apoptotic cells significantly increased in I/R-injured kidneys. GAS5 could be up-regulated in kidneys at 24 h after reperfusion and 3 h after re-oxygenation, combined with increased expression of its downstream apoptosis-related proteins p53 and cIAP2. GAS5 small-interfering RNA treatment down-regulated the mRNA and protein levels of p53 and TSP-1, and attenuated apoptosis induced by H/R in HK-2 cells. Conversely, over-expression of GAS5 up-regulated the mRNA and protein levels of p53 and TSP-1, and promoted apoptosis in HK-2 cells. CONCLUSION Long non-coding RNA GAS5 induced by I/R injury could promote apoptosis in kidney. TSP-1 might be one of the downstream effectors of GAS5, which will be explored in the future.
Collapse
Affiliation(s)
- Xuemei Geng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jiachang Hu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| |
Collapse
|
45
|
Zhang Y, Zhang L, Wang Y, Ding H, Xue S, Qi H, Li P. MicroRNAs or Long Noncoding RNAs in Diagnosis and Prognosis of Coronary Artery Disease. Aging Dis 2019; 10:353-366. [PMID: 31011482 PMCID: PMC6457061 DOI: 10.14336/ad.2018.0617] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/17/2018] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the result of atherosclerotic plaque development in the wall of the coronary arteries. The underlying mechanism involves atherosclerosis of the arteries of the heart which is a relatively complex process comprising several steps. In CAD, atherosclerosis induces functional and structural changes. The pathogenesis of CAD results from various changes in and interactions between multiple cell types in the artery walls; these changes mainly include endothelial cell (EC) dysfunction, vascular smooth muscle cell (SMC) alteration, lipid deposition and macrophage activation. Various blood markers associated with an increased risk for cardiovascular endpoints have been identified; however, few have yet been shown to have a diagnostic impact or important clinical implications that would affect patient management. Noncoding RNAs, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), can be stable in plasma and other body fluids and could therefore serve as biomarkers for some diseases. Many studies have shown that some miRNAs and lncRNAs play key roles in heart and vascular development and in cardiac pathophysiology. Thus, we summarize here the latest research progress, focusing on the molecular mechanism of miRNAs and lncRNAs in CAD, with the intent of seeking new targets for the treatment of heart disease.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Lei Zhang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yu Wang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Sheng Xue
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hongzhao Qi
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
46
|
Saad MH, Rumschlag M, Guerra MH, Savonen CL, Jaster AM, Olson PD, Alazizi A, Luca F, Pique-Regi R, Schmidt CJ, Bannon MJ. Differentially expressed gene networks, biomarkers, long noncoding RNAs, and shared responses with cocaine identified in the midbrains of human opioid abusers. Sci Rep 2019; 9:1534. [PMID: 30733491 PMCID: PMC6367337 DOI: 10.1038/s41598-018-38209-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Opioid abuse is now the most common cause of accidental death in the US. Although opioids and most other drugs of abuse acutely increase signaling mediated by midbrain dopamine (DA)-synthesizing neurons, little is known about long-lasting changes in DA cells that may contribute to continued opioid abuse, craving, and relapse. A better understanding of the molecular and cellular bases of opioid abuse could lead to advancements in therapeutics. This study comprises, to our knowledge, the first unbiased examination of genome-wide changes in midbrain gene expression associated with human opioid abuse. Our analyses identified differentially expressed genes and distinct gene networks associated with opioid abuse, specific genes with predictive capability for subject assignment to the opioid abuse cohort, and genes most similarly affected in chronic opioid and cocaine abusers. We also identified differentially expressed long noncoding RNAs capable of regulating known drug-responsive protein-coding genes. Opioid-regulated genes identified in this study warrant further investigation as potential biomarkers and/or therapeutic targets for human substance abuse.
Collapse
Affiliation(s)
- Manal H Saad
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Matthew Rumschlag
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Michael H Guerra
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Candace L Savonen
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Alaina M Jaster
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Philip D Olson
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Adnan Alazizi
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Francesca Luca
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Roger Pique-Regi
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Carl J Schmidt
- University of Michigan School of Medicine, Department of Pathology, Detroit, MI, 48109, USA
| | - Michael J Bannon
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA.
| |
Collapse
|
47
|
Tian X, Ji Y, Liang Y, Zhang J, Guan L, Wang C. LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J Cell Physiol 2019; 234:14221-14233. [PMID: 30684280 DOI: 10.1002/jcp.28118] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) shows several kinds of disorders, which acutely harm the kidney. However, the current medical methods have limited therapeutic effects. The present study aimed to find out the molecular mechanism of AKI pathogenesis, which may provide new insights for future therapy. METHODS Bioinformatic analysis was conducted using the R language (AT&T BellLaboratories, University of Auckland, New Zealand) to acquire the differentially expressed long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in AKI. The expression levels of RNAs and related proteins in tissues and cells were detected by quantitative real-time PCR (qRT-PCR) and western blot. Dual-luciferase reporter gene assays were performed to verify the target relationship between microRNA (miRNA) and lncRNA as well as miRNA and mRNA. Flow cytometry and tunnel assay were used to detect the cell apoptotic rate in AKI. RESULTS LINC00520, miR-27b-3p, and OSMR form an axis to regulate AKI. Knockdown of LINC00520 reduced acute renal injury both in vitro and in vivo. LINC00520 activated the PI3K/AKT pathway to aggravate renal ischemia/reperfusion injury, while upregulation of miR-27b-3p or downregulation of OSMR could accelerate the recovery of AKI. CONCLUSION Overexpression of LINC00520 contributes to the aggravation of AKI by targeting miR-27b-3p/ OSMR.
Collapse
Affiliation(s)
- Xinghan Tian
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yafeng Liang
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jing Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lina Guan
- Department of Neurology Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
48
|
MIR210HG predicts poor prognosis and functions as an oncogenic lncRNA in hepatocellular carcinoma. Biomed Pharmacother 2019; 111:1297-1301. [PMID: 30841443 DOI: 10.1016/j.biopha.2018.12.134] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Accepted: 12/30/2018] [Indexed: 01/01/2023] Open
Abstract
MIR210HG is a novel long noncoding RNA (lncRNA) and has been found to be overexpresed in osteosarcoma and glioma. However, the level of MIR210HG and its clinical significance in hepatocellular carcinoma (HCC) are not well known. In results of our research, MIR210HG expression was increased in HCC tissue samples and cells compared with paired adjacent normal liver tissue samples and normal liver cell line respectively, and a good marker to discriminate HCC tissues from non-tumorous tissues. MIR210HG high-expression was correlated advanced clinical stage, big tumor size, present vascular invasion and unfavorable histological differentiation. The survival analysis from our cohort and TCGA cohort consistently suggested that HCC patients with MIR210HG high-expression had poorer prognosis than HCC patients with MIR210HG low-expression. Furthermore, univariate and multivariate Cox regression analyses showed that MIR210HG high-expression was an independent unfavorable prognostic factor for overall survival in HCC patients. The in vitro study showed that silencing of MIR210HG depressed HCC cell proliferation, migration and invasion. In conclusion, MIR210HG functions as an oncogenic lncRNA in HCC, and may be a potential biomarker for predicting clinical progression and prognosis.
Collapse
|
49
|
Pang S, Lv J, Wang S, Yang G, Ding X, Zhang J. Differential expression of long non-coding RNA and mRNA in children with Henoch-Schönlein purpura nephritis. Exp Ther Med 2018; 17:621-632. [PMID: 30651843 PMCID: PMC6307475 DOI: 10.3892/etm.2018.7038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/01/2018] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve an essential role in regulating immunological functions. However, their impact on Henoch-Schönlein purpura nephritis (HSPN), has remained elusive. The present study determined the expression of lncRNAs and mRNAs in the peripheral blood of 6 children with HSPN and recruited 4 healthy children for comparative study. High-throughput sequencing revealed outstanding differences in lncRNA and mRNA expression, which were verified through reverse transcription-quantitative polymerase chain reaction. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to investigate the associated biological functions and possible mechanisms of lncRNAs and mRNAs in HSPN. A total of 820 differentially expressed lncRNAs between the two groups were identified, of which 34 were upregulated and 786 were downregulated. Simultaneously, a total of 3,557 mRNAs were also identified to be differentially expressed, of which 1,232 were upregulated and 2,325 were downregulated. The results revealed that the expression of lncRNAs including ENST00000378432, ENST00000571370, uc001kfc.1 and uc010qna.2 was decreased in HSPN patients compared with that in healthy controls. These lncRNAs were associated with the p53 signaling pathway and apoptosis-associated genes (AKT2, tumor protein 53, phosphatase and tensin homolog and FAS). Further studies of those lncRNAs will be performed to elucidate their functions in apoptosis. Complete raw data files were deposited in the Gene Expression Omnibus (GEO) at National Center for Biotechnology information under the GEO accession no. GSE102114 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102114).
Collapse
Affiliation(s)
- Shuang Pang
- Department of Pediatrics, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Jing Lv
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Shengzhi Wang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Guanqi Yang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Xiaohuan Ding
- Department of Pediatrics, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Jun Zhang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
50
|
Paving the way for precision medicine v2.0 in intensive care by profiling necroinflammation in biofluids. Cell Death Differ 2018; 26:83-98. [PMID: 30201975 PMCID: PMC6294775 DOI: 10.1038/s41418-018-0196-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/16/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Current clinical diagnosis is typically based on a combination of approaches including clinical examination of the patient, clinical experience, physiologic and/or genetic parameters, high-tech diagnostic medical imaging, and an extended list of laboratory values mostly determined in biofluids such as blood and urine. One could consider this as precision medicine v1.0. However, recent advances in technology and better understanding of molecular mechanisms underlying disease will allow us to better characterize patients in the future. These improvements will enable us to distinguish patients who have similar clinical presentations but different cellular and molecular responses. Treatments will be able to be chosen more “precisely”, resulting in more appropriate therapy, precision medicine v2.0. In this review, we will reflect on the potential added value of recent advances in technology and a better molecular understanding of necrosis and inflammation for improving diagnosis and treatment of critically ill patients. We give a brief overview on the mutual interplay between necrosis and inflammation, which are two crucial detrimental factors in organ and/or systemic dysfunction. One of the challenges for the future will thus be the cellular and molecular profiling of necroinflammation in biofluids. The huge amount of data generated by profiling biomolecules and single cells through, for example, different omic-approaches is needed for data mining methods to allow patient-clustering and identify novel biomarkers. The real-time monitoring of biomarkers will allow continuous (re)evaluation of treatment strategies using machine learning models. Ultimately, we may be able to offer precision therapies specifically designed to target the molecular set-up of an individual patient, as has begun to be done in cancer therapeutics. Critical care mostly implies life-threatening situations involving systemic infection, inflammation and necrosis. Biofluids are an easily accessible source of liquid biopsies that can be used to monitor the evolution of the patient’s critical illness. The cellular and molecular profiling of necrosis and inflammation in biofluids using cutting-edge technologies such as realtime immunodiagnostics, next-generation sequencing and mass spectrometry will pave the way for precision medicine v2.0 in critical care. This is needed for data mining approaches to allow patientclustering, identify novel biomarkers and develop novel intervention strategies controlling necrosis and inflammation. The real-time monitoring of biomarkers will allow continued (re)evaluation of treatment strategies using machine learning models. ![]()
Collapse
|