1
|
Gonzalez AA, Visniauskas B, Reverte V, Sure VN, Vallotton Z, Torres BS, Acosta MA, Zemedkun M, Katakam PV, Prieto MC. Urinary Angiotensinogen Displays Sexual Dimorphism in Non-Diabetic Humans and Mice with Overweight. Int J Mol Sci 2024; 25:635. [PMID: 38203807 PMCID: PMC10779427 DOI: 10.3390/ijms25010635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Increased body weight (BW) induces inappropriate renin-angiotensin system (RAS) activation. The activation of the intrarenal RAS is associated with increased urinary angiotensinogen (uAGT), blood pressure (BP), and kidney damage. Here, we examined uAGT excretion levels in young non-diabetic human subjects with overweight (OW) and non-diabetic mice with high-fat diet (HFD)-induced OW. Human subjects (women and men; 20-28 years old) included two groups: (a) overweight (OW, n = 17, BMI ≥ 25); and (b) controls (normal weight (NW; n = 26, BMI ≤ 25). In these subjects, we measured BP, albuminuria, and protein levels of uAGT by ELISA adjusted by urinary creatinine (expressed by uAGT/uCrea). Mice (female and male C57BL/6J mice, 8 ± 2 weeks of age) also included two groups: HFD or normal fat diet (NFD) fed for 8 weeks. We measured BW, fasting blood glucose (FBG), BP by telemetry, albuminuria, and uAGT by ELISA. In humans: (i) no significant changes were observed in BP, albuminuria, and FBG when comparing NW and OW subjects; (ii) multivariate logistic regression analysis of independent predictors related to uAGT/uCrea levels demonstrated a strong association between uAGT and overweight; (iii) urinary reactive oxygen species (ROS) were augmented in men and women with OW; (iv) the uAGT/uCrea ratio was higher in men with OW. However, the uAGT/uCrea values were lower in women even with OW. In mice: (i) males fed an HFD for 8 weeks became OW while females did not; (ii) no changes were observed either in FBG, BP, or albuminuria; (iii) kidney ROS were augmented in OW male mice after 28 weeks but not in females; (iv) OW male mice showed augmented excretion of uAGT but this was undetectable in females fed either NFD or HFD. In humans and mice who are OW, the urinary excretion of AGT differs between males and females and overcomes overt albuminuria.
Collapse
Affiliation(s)
- Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Bruna Visniauskas
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Virginia Reverte
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ventaka N. Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zoe Vallotton
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Bryan S. Torres
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Marco A. Acosta
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mahlet Zemedkun
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Minolfa C. Prieto
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Lara LS, Gonzalez AA, Hennrikus MT, Prieto MC. Hormone-Dependent Regulation of Renin and Effects on Prorenin Receptor Signaling in the Collecting Duct. Curr Hypertens Rev 2022; 18:91-100. [PMID: 35170417 PMCID: PMC10132771 DOI: 10.2174/1573402118666220216105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 01/27/2023]
Abstract
The production of renin by the principal cells of the collecting duct has widened our understanding of the regulation of intrarenal angiotensin II (Ang II) generation and blood pressure. In the collecting duct, Ang II increases the synthesis and secretion of renin by mechanisms involving the activation of Ang II type 1 receptor (AT1R) via stimulation of the PKCα, Ca2+, and cAMP/PKA/CREB pathways. Additionally, paracrine mediators, including vasopressin (AVP), prostaglandins, bradykinin (BK), and atrial natriuretic peptide (ANP), regulate renin in principal cells. During Ang II-dependent hypertension, despite plasma renin activity suppression, renin and prorenin receptor (RPR) are upregulated in the collecting duct and promote de novo formation of intratubular Ang II. Furthermore, activation of PRR by its natural agonists, prorenin and renin, may contribute to the stimulation of profibrotic factors independent of Ang II. Thus, the interactions of RAS components with paracrine hormones within the collecting duct enable tubular compartmentalization of the RAS to orchestrate complex mechanisms that increase intrarenal Ang II, Na+ reabsorption, and blood pressure.
Collapse
Affiliation(s)
- Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matthew T Hennrikus
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
4
|
Prieto MC, Gonzalez AA, Visniauskas B, Navar LG. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 2021; 17:481-492. [PMID: 33824491 PMCID: PMC8443079 DOI: 10.1038/s41581-021-00414-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The intrarenal renin-angiotensin system is critical for the regulation of tubule sodium reabsorption, renal haemodynamics and blood pressure. The excretion of renin in urine can result from its increased filtration, the inhibition of renin reabsorption by megalin in the proximal tubule, or its secretion by the principal cells of the collecting duct. Modest increases in circulating or intrarenal angiotensin II (ANGII) stimulate the synthesis and secretion of angiotensinogen in the proximal tubule, which provides sufficient substrate for collecting duct-derived renin to form angiotensin I (ANGI). In models of ANGII-dependent hypertension, ANGII suppresses plasma renin, suggesting that urinary renin is not likely to be the result of increased filtered load. In the collecting duct, ANGII stimulates the synthesis and secretion of prorenin and renin through the activation of ANGII type 1 receptor (AT1R) expressed primarily by principal cells. The stimulation of collecting duct-derived renin is enhanced by paracrine factors including vasopressin, prostaglandin E2 and bradykinin. Furthermore, binding of prorenin and renin to the prorenin receptor in the collecting duct evokes a number of responses, including the non-proteolytic enzymatic activation of prorenin to produce ANGI from proximal tubule-derived angiotensinogen, which is then converted into ANGII by luminal angiotensin-converting enzyme; stimulation of the epithelial sodium channel (ENaC) in principal cells; and activation of intracellular pathways linked to the upregulation of cyclooxygenase 2 and profibrotic genes. These findings suggest that dysregulation of the renin-angiotensin system in the collecting duct contributes to the development of hypertension by enhancing sodium reabsorption and the progression of kidney injury.
Collapse
Affiliation(s)
- Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA.,
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - L. Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
5
|
Zając M, Rybi-Szumińska A, Storonowicz J, Protas P, Wasilewska A. Urinary excretion of renin and angiotensinogen in hypertensive children and adolescents. Arch Med Sci 2021; 17:1325-1331. [PMID: 34522262 PMCID: PMC8425233 DOI: 10.5114/aoms.2019.88482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION In recent years hypertension has become an emerging condition in the young population. It has been proposed that the renin-angiotensin system plays an important role in regulation of blood pressure. We assessed whether activation of the intrarenal renin-angiotensin system occurs in hypertensive children and adolescents and what better reflects its activity: urine angiotensinogen (AGT) or urine renin (REN). MATERIAL AND METHODS The study was conducted on a sample of 58 subjects with primary hypertension (HT) and 29 normotensive children and adolescents. We measured urine REN and AGT excretion and assessed the values in relation to blood pressure (BP) and other clinical parameters. Both REN and AGT values were calculated by urine creatinine: REN/cr. and AGT/cr., respectively. RESULTS We observed higher urine REN/cr. values in hypertensive subjects in comparison to the reference group (6.99 vs. 2.93, p = 0.003). Hypertensive participants showed positive correlations between urine REN/cr. and diastolic 24-hour BP (r = 0.42, p = 0.002) as well as between urine REN/cr. and urine AGT/cr. (r = 0.266, p = 0.044, respectively). CONCLUSIONS Increased urine REN/cr. in hypertensive children and adolescents and its positive correlation with BP may indicate its important role in the pathogenesis of HT. Perhaps urine REN/cr. could be a marker of intrarenal renin-angiotensin system activity. Nevertheless, further research should be undertaken to confirm this observation.
Collapse
Affiliation(s)
- Magdalena Zając
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | | | - Justyna Storonowicz
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Protas
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Wasilewska
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Sodium butyrate ameliorates deoxycorticosterone acetate/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway. Hypertens Res 2020; 44:168-178. [PMID: 32908237 DOI: 10.1038/s41440-020-00548-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023]
Abstract
Our recent work demonstrates that infusion of sodium butyrate (NaBu) into the renal medulla blunts angiotensin II-induced hypertension and improves renal injury. The present study aimed to test whether oral administration of NaBu attenuates salt-sensitive hypertension in deoxycorticosterone acetate (DOCA)/salt-treated rats. Uninephrectomized male Sprague-Dawley (SD) rats were treated with DOCA pellets (150 mg/rat) plus 1% NaCl drinking water for 2 weeks. Animals received oral administration of NaBu (1 g/kg) or vehicle once per day. Our results showed that NaBu administration significantly attenuated DOCA/salt-increased mean arterial pressure from 156 ± 4 mmHg to 136 ± 1 mmHg. DOCA/salt treatment markedly enhanced renal damage as indicated by an increased ratio of kidney weight/body weight, elevated urinary albumin, extensive fibrosis, and inflammation, whereas kidneys from NaBu-treated rats exhibited a significant reduction in these renal damage responses. Compared to the DOCA/salt group, the DOCA/salt-NaBu group had ~30% less salt water intake and decreased Na+ and Cl- excretion in urine but no alteration in 24-h urine excretion. Mechanistically, NaBu inhibited the protein levels of several sodium transporters stimulated by DOCA/salt in vivo, such as βENaC, γENaC, NCC, and NKCC-2. Further examination showed that NaBu downregulated the expression of mineralocorticoid receptor (MR) and serum and glucocorticoid-dependent protein kinase 1 (SGK1) in DOCA/salt-treated rats or aldosterone-treated human renal tubular duct epithelial cells. These results provide evidence that NaBu may attenuate DOCA/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway.
Collapse
|
7
|
Sun Y, Goes Martini A, Janssen MJ, Garrelds IM, Masereeuw R, Lu X, Danser AHJ. Megalin: A Novel Endocytic Receptor for Prorenin and Renin. Hypertension 2020; 75:1242-1250. [PMID: 32200675 DOI: 10.1161/hypertensionaha.120.14845] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Megalin is an endocytic receptor contributing to protein reabsorption. Impaired expression or trafficking of megalin increases urinary renin and allowed the detection of prorenin, which normally is absent in urine. Here, we investigated (pro)renin uptake by megalin, using both conditionally immortalized proximal tubule epithelial cells and Brown Norway Rat yolk sac cells (BN16). To distinguish binding and internalization, cells were incubated with recombinant human (pro)renin at 4°C and 37°C, respectively. (Pro)renin levels were assessed by immunoradiometric assay. At 4°C, BN16 cells bound 3× more prorenin than renin, suggestive for a higher affinity of prorenin. Similarly, at 37°C, prorenin accumulated at 3- to 4-fold higher levels than renin in BN16 cells. Consequently, depletion of medium prorenin (but not renin) content occurred after 24 hours. No such differences were observed in conditionally immortalized proximal tubule epithelial cells, and M6P (mannose-6-phosphate) greatly reduced conditionally immortalized proximal tubule epithelial cells (pro)renin uptake, suggesting that these cells accumulate (pro)renin largely via M6P receptors. M6P did not affect (pro)renin uptake in BN16 cells. Yet, inhibiting megalin expression with siRNA greatly reduced (pro)renin binding and internalization by BN16 cells. Furthermore, treating BN16 cells with albumin, an endogenous ligand of megalin, also decreased binding and internalization of (pro)renin, while deleting the (pro)renin receptor affected the latter only. Exposing prorenin's prosegment with the renin inhibitor aliskiren dramatically increased prorenin binding, while after prosegment cleavage with trypsin prorenin binding was identical to that of renin. In conclusion, megalin might function as an endocytic receptor for (pro)renin and displays a preference for prorenin. Megalin-mediated endocytosis requires the (pro)renin receptor.
Collapse
Affiliation(s)
- Yuan Sun
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (Y.S., A.G.M., I.M.G., A.H.J.D.).,Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (Y.S., X.L.).,Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (Y.S.)
| | - Alexandre Goes Martini
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (Y.S., A.G.M., I.M.G., A.H.J.D.)
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands (M.J.J., R.M.)
| | - Ingrid M Garrelds
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (Y.S., A.G.M., I.M.G., A.H.J.D.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands (M.J.J., R.M.)
| | - Xifeng Lu
- Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (Y.S., X.L.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (Y.S., A.G.M., I.M.G., A.H.J.D.)
| |
Collapse
|
8
|
Steglich A, Hickmann L, Linkermann A, Bornstein S, Hugo C, Todorov VT. Beyond the Paradigm: Novel Functions of Renin-Producing Cells. Rev Physiol Biochem Pharmacol 2020; 177:53-81. [PMID: 32691160 DOI: 10.1007/112_2020_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The juxtaglomerular renin-producing cells (RPC) of the kidney are referred to as the major source of circulating renin. Renin is the limiting factor in renin-angiotensin system (RAS), which represents a proteolytic cascade in blood plasma that plays a central role in the regulation of blood pressure. Further cells disseminated in the entire organism express renin at a low level as part of tissue RASs, which are thought to locally modulate the effects of systemic RAS. In recent years, it became increasingly clear that the renal RPC are involved in developmental, physiological, and pathophysiological processes outside RAS. Based on recent experimental evidence, a novel concept emerges postulating that next to their traditional role, the RPC have non-canonical RAS-independent progenitor and renoprotective functions. Moreover, the RPC are part of a widespread renin lineage population, which may act as a global stem cell pool coordinating homeostatic, stress, and regenerative responses throughout the organism. This review focuses on the RAS-unrelated functions of RPC - a dynamic research area that increasingly attracts attention.
Collapse
Affiliation(s)
- Anne Steglich
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Andreas Linkermann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bornstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Gonzalez AA, Gallardo M, Cespedes C, Vio CP. Potassium Intake Prevents the Induction of the Renin-Angiotensin System and Increases Medullary ACE2 and COX-2 in the Kidneys of Angiotensin II-Dependent Hypertensive Rats. Front Pharmacol 2019; 10:1212. [PMID: 31680980 PMCID: PMC6804396 DOI: 10.3389/fphar.2019.01212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Abstract
In angiotensin II (Ang II)-dependent hypertensive rats there is an increased expression of proximal tubule angiotensinogen (AGT), collecting duct renin and angiotensin converting enzyme (ACE), which contributes to intratubular Ang II formation. Ang II acts on Ang II type 1 receptors promoting sodium retention and vasoconstriction. However concurrently, the ACE2-Ang-(1–7) axis and the expression of kallikrein and medullary prostaglandins counteract the effects of Ang II, promoting natriuresis and vasodilation. Human studies demonstrate that dietary potassium (K+) intake lowers blood pressure. In this report we evaluate the expression of AGT, ACE, medullary prorenin/renin, ACE2, kallikrein and cyclooxygenase-2 (COX-2) in Ang II-infused rats fed with high K+ diet (2%) for 14 days. Dietary K+ enhances diuresis in non-infused and in Ang II-infused rats. The rise in systolic blood pressure in Ang II-infused rats was attenuated by dietary K+. Ang II-infused rats showed increased renal protein levels of AGT, ACE and medullary prorenin and renin. This effect was attenuated in the Ang II + K+ group. Ang II infusion decreased ACE2 compared to the control group; however, K+ diet prevented this effect in the renal medulla. Furthermore, medullary COX-2 was dramatically induced by K+ diet in non-infused and in Ang II infused rats. Dietary K+ greatly increased kallikrein immunostaining in normotensive rats and in Ang II-hypertensive rats. These results indicate that a high K+ diet attenuates Ang II-dependent hypertension by preventing the induction of ACE, AGT and collecting duct renin and by enhancing medullary COX-2 and ACE2 protein expression in the kidney.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matias Gallardo
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carlos Cespedes
- Department of Physiology, Center for Aging and Regeneration CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Carlos P Vio
- Department of Physiology, Center for Aging and Regeneration CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
10
|
Tang J, Wysocki J, Ye M, Vallés PG, Rein J, Shirazi M, Bader M, Gomez RA, Sequeira-Lopez MLS, Afkarian M, Batlle D. Urinary Renin in Patients and Mice With Diabetic Kidney Disease. Hypertension 2019; 74:83-94. [PMID: 31079532 DOI: 10.1161/hypertensionaha.119.12873] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In patients with diabetic kidney disease (DKD), plasma renin activity is usually decreased, but there is limited information on urinary renin and its origin. Urinary renin was evaluated in samples from patients with longstanding type I diabetes mellitus and mice with streptozotocin-induced diabetes mellitus. Renin-reporter mouse model (Ren1d-Cre;mT/mG) was made diabetic with streptozotocin to examine whether the distribution of cells of the renin lineage was altered in a chronic diabetic environment. Active renin was increased in urine samples from patients with DKD (n=36), compared with those without DKD (n=38; 3.2 versus 1.3 pg/mg creatinine; P<0.001). In mice with streptozotocin-induced diabetes mellitus, urine renin was also increased compared with nondiabetic controls. By immunohistochemistry, in mice with streptozotocin-induced diabetes mellitus, juxtaglomerular apparatus and proximal tubular renin staining were reduced, whereas collecting tubule staining, by contrast, was increased. To examine the role of filtration and tubular reabsorption on urinary renin, mice were either infused with either mouse or human recombinant renin and lysine (a blocker of proximal tubular protein reabsorption). Infusion of either form of renin together with lysine markedly increased urinary renin such that it was no longer different between nondiabetic and diabetic mice. Megalin mRNA was reduced in the kidney cortex of streptozotocin-treated mice (0.70±0.09 versus 1.01±0.04 in controls, P=0.01) consistent with impaired tubular reabsorption. In Ren1d-Cre;mT/mG with streptozotocin-induced diabetes mellitus, the distribution of renin lineage cells within the kidney was similar to nondiabetic renin-reporter mice. No evidence for migration of cells of renin linage to the collecting duct in diabetic mice could be found. Renin mRNA in microdissected collecting ducts from streptozotocin-treated mice, moreover, was not significantly different than in controls, whereas in kidney cortex, largely reflecting juxtaglomerular apparatus renin, it was significantly reduced. In conclusion, in urine from patients with type 1 diabetes mellitus and DKD and from mice with streptozotocin-induced diabetes mellitus, renin is elevated. This cannot be attributed to production from cells of the renin lineage migrating to the collecting duct in a chronic hyperglycemic environment. Rather, the elevated levels of urinary renin found in DKD are best attributed to altered glomerular filteration and impaired proximal tubular reabsorption.
Collapse
Affiliation(s)
- Jeannette Tang
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Jan Wysocki
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| | - Minghao Ye
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| | - Patricia G Vallés
- Notti Pediatric Hospital School of Medicine, Mendoza, Argentina (P.G.V.)
| | - Johannes Rein
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Mina Shirazi
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Michael Bader
- Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.).,Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.B.)
| | | | | | | | - Daniel Batlle
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| |
Collapse
|
11
|
Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond) 2018; 132:1383-1401. [PMID: 29986878 DOI: 10.1042/cs20180121] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin system (RAS) is widely recognized as one of the most important vasoactive hormonal systems in the physiological regulation of blood pressure and the development of hypertension. This recognition is derived from, and supported by, extensive molecular, cellular, genetic, and pharmacological studies on the circulating (tissue-to-tissue), paracrine (cell-to-cell), and intracrine (intracellular, mitochondrial, nuclear) RAS during last several decades. Now, it is widely accepted that circulating and local RAS may act independently or interactively, to regulate sympathetic activity, systemic and renal hemodynamics, body salt and fluid balance, and blood pressure homeostasis. However, there remains continuous debate with respect to the specific sources of intratubular and intracellular RAS in the kidney and other tissues, the relative contributions of the circulating RAS to intratubular and intracellular RAS, and the roles of intratubular compared with intracellular RAS to the normal control of blood pressure or the development of angiotensin II (ANG II)-dependent hypertension. Based on a lecture given at the recent XI International Symposium on Vasoactive Peptides held in Horizonte, Brazil, this article reviews recent studies using mouse models with global, kidney- or proximal tubule-specific overexpression (knockin) or deletion (knockout) of components of the RAS or its receptors. Although much knowledge has been gained from cell- and tissue-specific transgenic or knockout models, a unifying and integrative approach is now required to better understand how the circulating and local intratubular/intracellular RAS act independently, or with other vasoactive systems, to regulate blood pressure, cardiovascular and kidney function.
Collapse
|
12
|
Pringle KG, de Meaultsart CC, Sykes SD, Weatherall LJ, Keogh L, Clausen DC, Dekker GA, Smith R, Roberts CT, Rae KM, Lumbers ER. Urinary angiotensinogen excretion in Australian Indigenous and non-Indigenous pregnant women. Pregnancy Hypertens 2018; 12:110-117. [PMID: 29674190 DOI: 10.1016/j.preghy.2018.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/12/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
The intrarenal renin-angiotensin system (iRAS) is implicated in the pathogenesis of hypertension, chronic kidney disease and diabetic nephropathy. Urinary angiotensinogen (uAGT) levels reflect the activity of the iRAS and are altered in women with preeclampsia. Since Indigenous Australians suffer high rates and early onset of renal disease, we hypothesised that Indigenous Australian pregnant women, like non-Indigenous women with pregnancy complications, would have altered uAGT levels. The excretion of RAS proteins was measured in non-Indigenous and Indigenous Australian women with uncomplicated or complicated pregnancies (preeclampsia, diabetes/gestational diabetes, proteinuria/albuminuria, hypertension, small/large for gestational age, preterm birth), and in non-pregnant non-Indigenous women. Non-Indigenous pregnant women with uncomplicated pregnancies, had higher uAGT/creatinine levels than non-Indigenous non-pregnant women (P < 0.01), and levels increased as pregnancy progressed (P < 0.001). In non-Indigenous pregnant women with pregnancy complications, uAGT/creatinine was suppressed in the third trimester (P < 0.01). In Indigenous pregnant women with uncomplicated pregnancies, there was no change in uAGT/creatinine with gestational age and uAGT/creatinine was lower in the 2nd and 3rd trimesters than in non-Indigenous pregnant women with uncomplicated pregnancies (P < 0.03, P < 0.007, respectively). The uAGT/creatinine ratios of Indigenous women with uncomplicated or complicated pregnancies were the same. A decrease in uAGT/creatinine with advancing gestational age was associated with increased urinary albumin/creatinine, as is seen in preeclampsia, but it was not specific for this disorder. The reduced uAGT/creatinine in Indigenous pregnant women may reflect subclinical renal dysfunction which limits the ability of the kidney to maintain sodium balance and could indicate an increased risk of pregnancy complications and/or future renal disease.
Collapse
Affiliation(s)
- Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia.
| | - Celine Corbisier de Meaultsart
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Shane D Sykes
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Loretta J Weatherall
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Gomeroi Gaaynggal Centre, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia; University of Newcastle Department of Rural Health, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia
| | - Lyniece Keogh
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Gomeroi Gaaynggal Centre, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia; University of Newcastle Department of Rural Health, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia
| | - Don C Clausen
- Pathology North, New South Wales Health, Tamworth, New South Wales, Australia
| | - Gus A Dekker
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Roger Smith
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Claire T Roberts
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Kym M Rae
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Gomeroi Gaaynggal Centre, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia; University of Newcastle Department of Rural Health, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia; Priority Research Centre for Generational Health and Aging, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| |
Collapse
|
13
|
Abstract
Hypertension is a multifaceted disease that is involved in ∼40% of cardiovascular mortalities and is the result of both genetic and environmental factors. Because of its complexity, hypertension has been studied by using various models and approaches, each of which tends to focus on individual organs or tissues to isolate the most critical and treatable causes of hypertension and the related damage to end-organs. Animal models of hypertension have ranged from Goldblatt's kidney clip models in which the origin of the disease is clearly renal to animals that spontaneously develop hypertension either through targeted genetic manipulations, such as the TGR(mRen2)27, or selective breeding resulting in more enigmatic origins, as exemplified by the spontaneously hypertensive rat (SHR). These two genetically derived models simulate the less-common human primary hypertension in which research has been able to define a Mendelian linkage. Several models are more neurogenic or endocrine in nature and illustrate that crosstalk between the nervous system and hormones can cause a significant rise in blood pressure (BP). This review will examine one of these neurogenic models of hypertension, i.e., the deoxycorticosterone acetate (DOCA), reduced renal mass, and high-salt diet (DOCA-salt) rodent model, one of the most common experimental models used today. Although the DOCA-salt model is mainly believed to be neurogenic and has been shown to impact the central and peripheral nervous systems, it also significantly involves many other body organs.
Collapse
Affiliation(s)
- Tyler Basting
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, 1901 Perdido Street, Room 5218, New Orleans, LA, 70112, USA.,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, 1901 Perdido Street, Room 5218, New Orleans, LA, 70112, USA. .,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA. .,Neurosciences Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
14
|
Gonzalez AA, Lara LS, Prieto MC. Role of Collecting Duct Renin in the Pathogenesis of Hypertension. Curr Hypertens Rep 2018; 19:62. [PMID: 28695400 PMCID: PMC10114930 DOI: 10.1007/s11906-017-0763-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence of renin production by the principal cells of the collecting duct has opened new perspectives for the regulation of intrarenal angiotensin II (Ang II). Angiotensinogen (AGT) and angiotensin-converting enzyme (ACE) are present in the tubular fluid coming from the proximal tubule and collecting duct. All the components needed for Ang II formation are present along the nephron, and much is known about the mechanisms regulating renin in juxtaglomerular cells (JG); however, those in the collecting duct remain unclear. Ang II suppresses renin via protein kinase C (PKC) and calcium (Ca2+) in JG cells, but in the principal cells, Ang II increases renin synthesis and release through a pathophysiological mechanism that increases further intratubular Ang II de novo formation to enhance distal Na + reabsorption. Transgenic mice overexpressing renin in the collecting duct demonstrate the role of collecting duct renin in the development of hypertension. The story became even more interesting after the discovery of a specific receptor for renin and prorenin: the prorenin receptor ((P)RR), which enhances renin activity and fully activates prorenin. The interactions between (P)RR and prorenin/renin may further increase intratubular Ang II levels. In addition to Ang II, other mechanisms have been described in the regulation of renin in the collecting duct, including vasopressin (AVP), bradykinin (BK), and prostaglandins. Current active investigations are aimed at elucidating the mechanisms regulating renin in the distal nephron segments and understand its role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Minolfa C Prieto
- Department of Physiology, Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
15
|
Lara LS, Bourgeois CRT, El-Dahr SS, Prieto MC. Bradykinin/B 2 receptor activation regulates renin in M-1 cells via protein kinase C and nitric oxide. Physiol Rep 2017; 5:5/7/e13211. [PMID: 28373410 PMCID: PMC5392507 DOI: 10.14814/phy2.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
In the collecting duct (CD), the interactions of renin angiotensin system (RAS) and kallikrein-kinin system (KKS) modulate Na+ reabsorption, volume homeostasis, and blood pressure. In this study, we used a mouse kidney cortical CD cell line (M-1 cells) to test the hypothesis that in the CD, the activation of bradykinin B2 receptor (B2R) increases renin synthesis and release. Physiological concentrations of bradykinin (BK) treatment of M-1 cells increased renin mRNA and prorenin and renin protein contents in a dose-dependent manner and increased threefold renin content in the cell culture media. These effects were mediated by protein kinase C (PKC) independently of protein kinase A (PKA) because B2R antagonism with Icatibant and PKC inhibition with calphostin C, prevented these responses, but PKA inhibition with H89 did not modify the effects elicited by the B2R activation. BK-dependent stimulation of renin gene expression in CD cells also involved nitric oxide (NO) pathway because increased cGMP levels and inhibition of NO synthase with L-NAME prevented it. Complementary renin immunohistochemical studies performed in kidneys from mice with conventional B2R knockout and conditional B2R knockout in the CD, showed marked decreased renin immunoreactivity in CD, regardless of the renin presence in juxtaglomerular cells in the knockout mice. These results indicate that the activation of B2R increases renin synthesis and release by the CD cells through PKC stimulation and NO release, which support further the interactions between the RAS and KKS.
Collapse
Affiliation(s)
- Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| | - Camille R T Bourgeois
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Samir S El-Dahr
- Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana.,Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana .,Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| |
Collapse
|
16
|
Gonzalez AA, Zamora L, Reyes-Martinez C, Salinas-Parra N, Roldan N, Cuevas CA, Figueroa S, Gonzalez-Vergara A, Prieto MC. (Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells. Clin Exp Pharmacol Physiol 2017; 44:1134-1144. [PMID: 28696542 DOI: 10.1111/1440-1681.12813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/23/2017] [Accepted: 07/02/2017] [Indexed: 01/06/2023]
Abstract
Recent studies suggested that activation of the PRR upregulates profibrotic markers through reactive oxygen species (ROS) formation; however, the exact mechanisms have not been investigated in CD cells. We hypothesized that activation of the PRR increases the expression of profibrotic markers through MAPK-dependent ROS formation in CD cells. Mouse renal CD cell line (M-1) was treated with recombinant prorenin plus ROS or MAPK inhibitors and PRR-shRNA to evaluate their effect on the expression of profibrotic markers. PRR immunostaining revealed plasma membrane and intracellular localization. Recombinant prorenin increases ROS formation (6.0 ± 0.5 vs 3.9 ± 0.1 nmol/L DCF/μg total protein, P < .05) and expression of profibrotic markers CTGF (149 ± 12%, P < .05), α-SMA (160 ± 20%, P < .05), and PAI-I (153 ± 13%, P < .05) at 10-8 mol/L. Recombinant prorenin-induced phospho ERK 1/2 (p44 and p42) at 10-8 and 10-6 mol/L after 20 minutes. Prorenin-dependent ROS formation and augmentation of profibrotic factors were blunted by ROS scavengers (trolox, p-coumaric acid, ascorbic acid), the MEK inhibitor PD98059 and PRR transfections with PRR-shRNA. No effects were observed in the presence of antioxidants alone. Prorenin-induced upregulation of collagen I and fibronectin was blunted by ROS scavenging or MEK inhibition independently. PRR-shRNA partially prevented this induction. After 24 hours prorenin treatment M-1 cells undergo to epithelial-mesenchymal transition phenotype, however MEK inhibitor PD98059 and PRR knockdown prevented this effect. These results suggest that PRR might have a significant role in tubular damage during conditions of high prorenin-renin secretion in the CD.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Leonardo Zamora
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | | | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Nicole Roldan
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Catherina A Cuevas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Stefanny Figueroa
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Alex Gonzalez-Vergara
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
17
|
Li XC, Zhuo JL. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension. Curr Hypertens Rep 2017; 18:63. [PMID: 27372447 DOI: 10.1007/s11906-016-0668-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na(+) reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na(+)/H(+) exchanger 3, may provide a powerful feedforward mechanism for promoting Na(+) retention and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
18
|
Prieto MC, Reverte V, Mamenko M, Kuczeriszka M, Veiras LC, Rosales CB, McLellan M, Gentile O, Jensen VB, Ichihara A, McDonough AA, Pochynyuk OM, Gonzalez AA. Collecting duct prorenin receptor knockout reduces renal function, increases sodium excretion, and mitigates renal responses in ANG II-induced hypertensive mice. Am J Physiol Renal Physiol 2017; 313:F1243-F1253. [PMID: 28814438 DOI: 10.1152/ajprenal.00152.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022] Open
Abstract
Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na+ reabsorption via activation of epithelial Na+ channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na+ handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD (CDPRR-KO). At basal conditions, CDPRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na+ excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg-1·min-1), the increases in systolic BP and diastolic BP were mitigated in CDPRR-KO mice. CDPRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CDPRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments.
Collapse
Affiliation(s)
- Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana;
| | - Virginia Reverte
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Mykola Mamenko
- University of Texas Health Science Center at Houston, Houston Texas
| | - Marta Kuczeriszka
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Carla B Rosales
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Matthew McLellan
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Oliver Gentile
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - V Behrana Jensen
- Veterinary Medicine and Surgery, UT MD Anderson Cancer Center, Houston, Texas
| | - Atsuhiro Ichihara
- Tokyo Women's Medical University, Department of Medicine II, Tokyo, Japan; and
| | | | - Oleh M Pochynyuk
- University of Texas Health Science Center at Houston, Houston Texas
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
19
|
Gonzalez AA, Salinas-Parra N, Leach D, Navar LG, Prieto MC. PGE 2 upregulates renin through E-prostanoid receptor 1 via PKC/cAMP/CREB pathway in M-1 cells. Am J Physiol Renal Physiol 2017; 313:F1038-F1049. [PMID: 28701311 DOI: 10.1152/ajprenal.00194.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
During the early phase of ANG II-dependent hypertension, tubular PGE2 is increased. Renin synthesis and secretion in the collecting duct (CD) are upregulated by ANG II, contributing to further intratubular ANG II formation. However, what happens first and whether the triggering mechanism is independent of tubular ANG II remain unknown. PGE2 stimulates renin synthesis in juxtaglomerular cells via E-prostanoid (EP) receptors through the cAMP/cAMP-responsive element-binding (CREB) pathway. EP receptors are also expressed in the CD. Here, we tested the hypothesis that renin is upregulated by PGE2 in CD cells. The M-1 CD cell line expressed EP1, EP3, and EP4 but not EP2. Dose-response experiments, in the presence of ANG II type 1 receptor blockade with candesartan, demonstrated that 10-6 M PGE2 maximally increases renin mRNA (approximately 4-fold) and prorenin/renin protein levels (approximately 2-fold). This response was prevented by micromolar doses of SC-19220 (EP1 antagonist), attenuated by the EP4 antagonist, L-161982, and exacerbated by the highly selective EP3 antagonist, L-798106 (~10-fold increase). To evaluate further the signaling pathway involved, we used the PKC inhibitor calphostin C and transfections with PKCα dominant negative. Both strategies blunted the PGE2-induced increases in cAMP levels, CREB phosphorylation, and augmentation of renin. Knockdown of the EP1 receptor and CREB also prevented renin upregulation. These results indicate that PGE2 increases CD renin expression through the EP1 receptor via the PKC/cAMP/CREB pathway. Therefore, we conclude that during the early stages of ANG II-dependent hypertension, there is augmentation of PGE2 that stimulates renin in the CD, resulting in increased tubular ANG II formation and further stimulation of renin.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile;
| | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Dan Leach
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
20
|
Prostaglandin E 2 Induces Prorenin-Dependent Activation of (Pro)renin Receptor and Upregulation of Cyclooxygenase-2 in Collecting Duct Cells. Am J Med Sci 2017; 354:310-318. [PMID: 28918839 DOI: 10.1016/j.amjms.2017.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) regulates renin expression in renal juxtaglomerular cells. PGE2 acts through E-prostanoid (EP) receptors in the renal collecting duct (CD) to regulate sodium and water balance. CD cells express EP1 and EP4, which are linked to protein kinase C (PKC) and PKA downstream pathways, respectively. Previous studies showed that the presence of renin in the CD, and that of PKC and PKA pathways, activate its expression. The (pro)renin receptor (PRR) is also expressed in CD cells, and its activation enhances cyclooxygenase-2 (COX-2) through extracellular signal-regulated kinase (ERK). We hypothesized that PGE2 stimulates prorenin and renin synthesis leading to subsequent activation of PRR and upregulation of COX-2. METHODS We used a mouse M-1 CD cell line that expresses EP1, EP3 and EP4 but not EP2. RESULTS PGE2 (10-6M) treatment increased prorenin and renin protein levels at 4 and 8 hours. No differences were found at 12-hour after PGE2 treatment. Phospho-ERK was significantly augmented after 12 hours. COX-2 expression was decreased after 4 hours of PGE2 treatment, but increased after 12 hours. Interestingly, the full-length form of the PRR was upregulated only at 12 hours. PGE2-mediated phospho-ERK and COX-2 upregulation was suppressed by PRR silencing. CONCLUSIONS Our results suggest that PGE2 induces biphasic regulation of COX-2 through renin-dependent PRR activation via EP1 and EP4 receptors. PRR-mediated increases in COX-2 expression may enhance PGE2 synthesis in CD cells serving as a buffer mechanism in conditions of activated renin-angiotensin system.
Collapse
|
21
|
Ramkumar N, Stuart D, Calquin M, Wang S, Niimura F, Matsusaka T, Kohan DE. Possible role for nephron-derived angiotensinogen in angiotensin-II dependent hypertension. Physiol Rep 2016; 4:4/1/e12675. [PMID: 26755736 PMCID: PMC4760401 DOI: 10.14814/phy2.12675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of intranephron angiotensinogen (AGT) in blood pressure (BP) regulation is not fully understood. Previous studies showed that proximal tubule‐specific overexpression of AGT increases BP, whereas proximal tubule‐specific deletion of AGT did not alter BP. The latter study may not have completely eliminated nephron AGT production; in addition, BP was only assessed on a normal salt diet. To evaluate this issue in greater detail, we developed mice with inducible nephron‐wide AGT deletion. Mice were generated which were hemizygous for the Pax8‐rtTA and LC‐1 transgenes and homozygous for loxP‐flanked AGT alleles to achieve nephron‐wide AGT disruption after doxycycline induction. Compared to controls, AGT knockout (KO) mice demonstrated markedly reduced renal AGT immunostaining, mRNA, and protein levels; unexpectedly AGT KO mice had reduced AGT mRNA levels in the liver along with 50% reduction in plasma AGT levels. BP was significantly lower in the AGT KO mice compared to controls fed a normal, low, or high Na+ intake, with the highest BP reduction on a low Na+ diet. Regardless of Na+ intake, AGT KO mice had higher plasma renin concentration (PRC) and markedly reduced urinary AGT levels compared to controls. Following angiotensin‐II (Ang‐II) infusion, AGT KO mice demonstrated an attenuated hypertensive response despite similar suppression of PRC in the two groups. Taken together, these data suggest that nephron‐derived AGT may be involved in Ang‐II‐dependent hypertension, however, a clear role for nephron‐derived AGT in physiological BP regulation remains to be determined.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matias Calquin
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Fumio Niimura
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Taiji Matsusaka
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
22
|
Ramkumar N, Kohan DE. Role of the Collecting Duct Renin Angiotensin System in Regulation of Blood Pressure and Renal Function. Curr Hypertens Rep 2016; 18:29. [PMID: 26951246 DOI: 10.1007/s11906-016-0638-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent evidence suggests that the renal tubular renin angiotensin system regulates urinary Na(+) and water excretion and blood pressure. Three key components of the tubular renin angiotensin system, namely renin, prorenin receptor, and angiotensin-II type 1 receptor, are localized to the collecting duct. This system may modulate collecting duct Na(+) and water reabsorption via angiotensin-II-dependent and angiotensin-II-independent pathways. Further, the system may be of greatest relevance in hypertensive states and particularly those characterized by high circulating angiotensin-II. In this review, we summarize the current knowledge on the synthesis, regulation, and function of collecting duct-derived renin angiotensin system components and examine recent developments with regard to regulation of blood pressure and renal fluid and Na(+) excretion.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology, University of Utah Health Sciences Center, 30 N 1900 E SOM 4R312, Salt Lake City, UT, 84132, USA
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, 30 N 1900 E SOM 4R312, Salt Lake City, UT, 84132, USA. .,Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| |
Collapse
|
23
|
Song K, Stuart D, Abraham N, Wang F, Wang S, Yang T, Sigmund CD, Kohan DE, Ramkumar N. Collecting Duct Renin Does Not Mediate DOCA-Salt Hypertension or Renal Injury. PLoS One 2016; 11:e0159872. [PMID: 27467376 PMCID: PMC4965005 DOI: 10.1371/journal.pone.0159872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
Collecting duct (CD)-derived renin is involved in the hypertensive response to chronic angiotensin-II (Ang-II) administration. However, whether CD renin is involved in Ang-II independent hypertension is currently unknown. To begin to examine this, 12 week old male and female CD-specific renin knock out (KO) mice and their littermate controls were subjected to uni-nephrectomy followed by 2 weeks of deoxycorticosterone acetate (DOCA) infusion combined with a high salt diet. Radiotelemetric blood pressure (BP) was similar between KO and control mice at baseline; BP increased in both groups to a similar degree throughout the 2 weeks of DOCA-salt treatment. Urinary albumin excretion and plasma blood urea nitrogen were comparable between the two groups after DOCA-salt treatment. Fibrosis as assessed by Masson’s Trichrome stain/Sirius Red stain and collagen-1 mRNA expression was similar between control and KO mice. Compared to baseline, DOCA-salt treatment decreased plasma renin concentration (PRC), urinary renin excretion and medullary renin mRNA expression in both floxed and CD renin KO mice with no detectable differences between the two groups. Further, in primary culture of rat inner medullary CD, aldosterone treatment did not change renin activity or total renin content. Taken together, these data suggest that CD derived renin does not play a role in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Kai Song
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Department of Nephrology, Second Affiliated Hospital of Soochow University, Soochow City, China
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Nikita Abraham
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Fei Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Tianxin Yang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Curt D. Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Donald E. Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ramkumar N, Stuart D, Mironova E, Bugay V, Wang S, Abraham N, Ichihara A, Stockand JD, Kohan DE. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport. Am J Physiol Renal Physiol 2016; 311:F186-94. [PMID: 27053687 DOI: 10.1152/ajprenal.00088.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological significance of the renal tubular prorenin receptor (PRR) has been difficult to elucidate due to developmental abnormalities associated with global or renal-specific PRR knockout (KO). We recently developed an inducible renal tubule-wide PRR KO using the Pax8/LC1 transgenes and demonstrated that disruption of renal tubular PRR at 1 mo of age caused no renal histological abnormalities. Here, we examined the role of renal tubular PRR in blood pressure (BP) regulation and Na(+) excretion and investigated the signaling mechanisms by which PRR regulates Na(+) balance. No detectable differences in BP were observed between control and PRR KO mice fed normal- or low-Na(+) diets. However, compared with controls, PRR KO mice had elevated plasma renin concentration and lower cumulative Na(+) balance with normal- and low-Na(+) intake. PRR KO mice had an attenuated hypertensive response and reduced Na(+) retention following angiotensin II (ANG II) infusion. Furthermore, PRR KO mice had significantly lower epithelial Na(+) channel (ENaC-α) expression. Treatment with mouse prorenin increased, while PRR antagonism decreased, ENaC activity in isolated split-open collecting ducts (CD). The prorenin effect was prevented by protein kinase A and Akt inhibition, but unaffected by blockade of AT1, ERK1/2, or p38 MAPK pathways. Taken together, these data indicate that renal tubular PRR, likely via direct prorenin/renin stimulation of PKA/Akt-dependent pathways, stimulates CD ENaC activity. Absence of renal tubular PRR promotes Na(+) wasting and reduces the hypertensive response to ANG II.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah;
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Elena Mironova
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Vladislav Bugay
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Nikita Abraham
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Atsuhiro Ichihara
- Department of Medicine II, Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - James D Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
25
|
Roman RJ, Fan F, Zhuo JL. Intrarenal Renin-Angiotensin System: Locally Synthesized or Taken up Via Endocytosis? Hypertension 2016; 67:831-3. [PMID: 26928807 DOI: 10.1161/hypertensionaha.116.07103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Richard J Roman
- From the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson.
| | - Fan Fan
- From the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson
| | - Jia L Zhuo
- From the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson
| |
Collapse
|
26
|
Saigusa T. Reciprocal effect of angiotensin II in collecting duct renin synthesis. Am J Physiol Renal Physiol 2015; 309:F914-5. [PMID: 26377797 DOI: 10.1152/ajprenal.00404.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
27
|
Gonzalez AA, Cifuentes-Araneda F, Ibaceta-Gonzalez C, Gonzalez-Vergara A, Zamora L, Henriquez R, Rosales CB, Navar LG, Prieto MC. Vasopressin/V2 receptor stimulates renin synthesis in the collecting duct. Am J Physiol Renal Physiol 2015; 310:F284-93. [PMID: 26608789 DOI: 10.1152/ajprenal.00360.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT1) receptor activation in CD cells. Desmopressin (DDAVP; 10(-6) M), a selective V2R agonist, increased renin mRNA (∼3-fold), prorenin (∼1.5-fold), and renin (∼2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (∼1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile;
| | | | | | - Alex Gonzalez-Vergara
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leonardo Zamora
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ricardo Henriquez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carla B Rosales
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and Hypertension and Renal Center of Excellence, Tulane University, School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and Hypertension and Renal Center of Excellence, Tulane University, School of Medicine, New Orleans, Louisiana
| |
Collapse
|
28
|
Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 2015; 310:H137-52. [PMID: 26475588 DOI: 10.1152/ajpheart.00618.2015] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) constitutes a key hormonal system in the physiological regulation of blood pressure through peripheral and central mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, and pharmacological blockade of this system by the inhibition of angiotensin-converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) offers an effective therapeutic regimen. The RAS is now defined as a system composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS comprises the ACE-ANG II-AT1R axis that promotes vasoconstriction; water intake; sodium retention; and increased oxidative stress, fibrosis, cellular growth, and inflammation. In contrast, the nonclassical RAS composed primarily of the ANG II/ANG III-AT2R and the ACE2-ANG-(1-7)-AT7R pathways generally opposes the actions of a stimulated ANG II-AT1R axis. In lieu of the complex and multifunctional aspects of this system, as well as increased concerns on the reproducibility among laboratories, a critical assessment is provided on the current biochemical approaches to characterize and define the various components that ultimately reflect the status of the RAS.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
29
|
Gonzalez AA, Prieto MC. Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension. Clin Exp Pharmacol Physiol 2015; 42:14-21. [PMID: 25371190 DOI: 10.1111/1440-1681.12319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/14/2022]
Abstract
The intrarenal renin-angiotensin system (RAS) plays a critical role in the pathogenesis and progression of hypertension and kidney disease. In angiotensin (Ang) II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by the AngII type I receptor (AT1 R), independent of blood pressure. Although the regulation of JG renin has been extensively studied, the mechanisms by which renin is regulated in the collecting duct remain unclear. The augmentation of renin synthesis and activity in the collecting duct may provide a pathway for additional generation of intrarenal and intratubular AngII formation due to the presence of angiotensinogen substrate and angiotensin-converting enzyme in the nephron. The recently described (pro)renin receptor ((P)RR) binds renin or prorenin, enhancing renin activity and fully activating the biologically inactive prorenin peptide. Stimulation of (P)RR also activates intracellular pathways related to fibrosis. Renin and the (P)RR are augmented in renal tissues of AngII-dependent hypertensive rats. However, the functional contribution of the (P)RR to enhanced renin activity in the collecting duct and its contribution to the development of hypertension and kidney disease have not been well elucidated. This review focuses on recent evidence demonstrating the mechanism of renin regulation in the collecting ducts and its interaction with the (P)RR. The data suggest that renin-(P)RR interactions may induce stimulation of intracellular pathways associated with the development of hypertension and kidney disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
30
|
Gonzalez AA, Liu L, Lara LS, Bourgeois CRT, Ibaceta-Gonzalez C, Salinas-Parra N, Gogulamudi VR, Seth DM, Prieto MC. PKC-α-dependent augmentation of cAMP and CREB phosphorylation mediates the angiotensin II stimulation of renin in the collecting duct. Am J Physiol Renal Physiol 2015; 309:F880-8. [PMID: 26268270 DOI: 10.1152/ajprenal.00155.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022] Open
Abstract
In contrast to the negative feedback of angiotensin II (ANG II) on juxtaglomerular renin, ANG II stimulates renin in the principal cells of the collecting duct (CD) in rats and mice via ANG II type 1 (AT1R) receptor, independently of blood pressure. In vitro data indicate that CD renin is augmented by AT1R activation through protein kinase C (PKC), but the exact mechanisms are unknown. We hypothesize that ANG II stimulates CD renin synthesis through AT1R via PKC and the subsequent activation of cAMP/PKA/CREB pathway. In M-1 cells, ANG II increased cAMP, renin mRNA (3.5-fold), prorenin, and renin proteins, as well as renin activity in culture media (2-fold). These effects were prevented by PKC inhibition with calphostin C, PKC-α dominant negative, and by PKA inhibition. Forskolin-induced increases in cAMP and renin expression were prevented by calphostin C. PKC inhibition and Ca2+ depletion impaired ANG II-mediated CREB phosphorylation and upregulation of renin. Adenylate cyclase 6 (AC) siRNA remarkably attenuated the ANG II-dependent upregulation of renin mRNA. Physiological activation of AC with vasopressin increased renin expression in M-1 cells. The results suggest that the ANG II-dependent upregulation of renin in the CD depends on PKC-α, which allows the augmentation of cAMP production and activation of PKA/CREB pathway via AC6. This study defines the intracellular signaling pathway involved in the ANG II-mediated stimulation of renin in the CD. This is a novel mechanism responsible for the regulation of local renin-angiotensin system in the distal nephron.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Liu Liu
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Camille R T Bourgeois
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | | | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Dale M Seth
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| |
Collapse
|
31
|
Saigusa T, Dang Y, Bunni MA, Amria MY, Steele SL, Fitzgibbon WR, Bell PD. Activation of the intrarenal renin-angiotensin-system in murine polycystic kidney disease. Physiol Rep 2015; 3:3/5/e12405. [PMID: 25999403 PMCID: PMC4463833 DOI: 10.14814/phy2.12405] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanism for early hypertension in polycystic kidney disease (PKD) has not been elucidated. One potential pathway that may contribute to the elevation in blood pressure in PKD is the activation of the intrarenal renin-angiotensin-system (RAS). For example, it has been shown that kidney cyst and cystic fluid contains renin, angiotensin II (AngII), and angiotensinogen (Agt). Numerous studies suggest that ciliary dysfunction plays an important role in PKD pathogenesis. However, it is unknown whether the primary cilium affects the intrarenal RAS in PKD. The purpose of this study was to determine whether loss of cilia or polycystin 1 (PC1) increases intrarenal RAS in mouse model of PKD. Adult Ift88 and Pkd1 conditional floxed allele mice with or without cre were administered tamoxifen to induce global knockout of the gene. Three months after tamoxifen injection, kidney tissues were examined by histology, immunofluorescence, western blot, and mRNA to assess intrarenal RAS components. SV40 immortalized collecting duct cell lines from hypomorphic Ift88 mouse were used to assess intrarenal RAS components in collecting duct cells. Mice without cilia and PC1 demonstrated increased kidney cyst formation, systolic blood pressure, prorenin, and kidney and urinary angiotensinogen levels. Interestingly immunofluorescence study of the kidney revealed that the prorenin receptor was localized to the basolateral membrane of principal cells in cilia (−) but not in cilia (+) kidneys. Collecting duct cAMP responses to AngII administration was greater in cilia (−) vs. cilia (+) cells indicating enhanced intrarenal RAS activity in the absence of cilia. These data suggest that in the absence of cilia or PC1, there is an upregulation of intrarenal RAS components and activity, which may contribute to elevated blood pressure in PKD.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Yujing Dang
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Marlene A Bunni
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - May Y Amria
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Stacy L Steele
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
32
|
Ramkumar N, Stuart D, Calquin M, Quadri S, Wang S, Van Hoek AN, Siragy HM, Ichihara A, Kohan DE. Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am J Physiol Renal Physiol 2015; 309:F48-56. [PMID: 25995108 DOI: 10.1152/ajprenal.00126.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/11/2015] [Indexed: 01/27/2023] Open
Abstract
The prorenin receptor (PRR), a recently discovered component of the renin-angiotensin system, is expressed in the nephron in general and the collecting duct in particular. However, the physiological significance of nephron PRR remains unclear, partly due to developmental abnormalities associated with global or renal-specific PRR gene knockout (KO). Therefore, we developed mice with inducible nephron-wide PRR deletion using Pax8-reverse tetracycline transactivator and LC-1 transgenes and loxP flanked PRR alleles such that ablation of PRR occurs in adulthood, after induction with doxycycline. Nephron-specific PRR KO mice have normal survival to ∼1 yr of age and no renal histological defects. Compared with control mice, PRR KO mice had 65% lower medullary PRR mRNA and protein levels and markedly diminished renal PRR immunofluorescence. During both normal water intake and mild water restriction, PRR KO mice had significantly lower urine osmolality, higher water intake, and higher urine volume compared with control mice. No differences were seen in urine vasopressin excretion, urine Na(+) and K(+) excretion, plasma Na(+), or plasma osmolality between the two groups. However, PRR KO mice had reduced medullary aquaporin-2 levels and arginine vasopressin-stimulated cAMP accumulation in the isolated renal medulla compared with control mice. Taken together, these results suggest nephron PRR can potentially modulate renal water excretion.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah;
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matias Calquin
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Syed Quadri
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; and
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Alfred N Van Hoek
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Helmy M Siragy
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; and
| | - Atsuhiro Ichihara
- Department of Medicine II, Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
33
|
Klimas J, Olvedy M, Ochodnicka-Mackovicova K, Kruzliak P, Cacanyiova S, Kristek F, Krenek P, Ochodnicky P. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats. J Cell Mol Med 2015; 19:1965-74. [PMID: 25766467 PMCID: PMC4549047 DOI: 10.1111/jcmm.12573] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs.
Collapse
Affiliation(s)
- Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Michael Olvedy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Peter Kruzliak
- Department of Cardiovascular Diseases, International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Frantisek Kristek
- Institute of Normal and Pathological Physiology, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Peter Ochodnicky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
34
|
Dai SY, Peng W, Zhang YP, Li JD, Shen Y, Sun XF. Brain endogenous angiotensin II receptor type 2 (AT2-R) protects against DOCA/salt-induced hypertension in female rats. J Neuroinflammation 2015; 12:47. [PMID: 25885968 PMCID: PMC4355980 DOI: 10.1186/s12974-015-0261-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/03/2015] [Indexed: 01/21/2023] Open
Abstract
Background Recent studies demonstrate that there are sex differences in the expression of angiotensin receptor type 2 (AT2-R) in the kidney and that AT2-R plays an enhanced role in regulating blood pressure (BP) in females. Also, brain AT2-R activation has been reported to negatively modulate BP and sympathetic outflow. The present study investigated whether the central blockade of endogenous AT2-R augments deoxycorticosterone acetate (DOCA)/salt-induced hypertension in both male and female rats. Methods All rats were subcutaneously infused with DOCA combined with 1% NaCl solution as the sole drinking fluid. BP and heart rate (HR) were recorded by telemetric transmitters. To determine the effect of central AT2-R on DOCA/salt-induced hypertension, male and female rats were intracerebroventricularly (icv) infused with AT2-R antagonist, PD123,319, during DOCA/salt treatment. Subsequently, the paraventricular nucleus (PVN) of the hypothalamus, a key cardiovascular regulatory region of the brain, was analyzed by quantitative real-time PCR and Western blot. Results DOCA/salt treatment elicited a greater increase in BP in male rats than that in females. Icv infusions of the AT2-R antagonist significantly augmented DOCA/salt pressor effects in females. However, this same treatment had no enhanced effect on DOCA/salt-induced increase in the BP in males. Real-time PCR and Western blot analysis of the female brain revealed that DOCA/salt treatment enhanced the mRNA and protein expression for both antihypertensive components including AT2-R, angiotensin-converting enzyme (ACE)-2, and interleukin (IL)-10 and hypertensive components including angiotensin receptor type 1 (AT1-R), ACE-1, tumor necrosis factor (TNF)-α, and IL-1β, but decreased mRNA expression of renin in the PVN. The central blockade of AT2-R reversed the changes in mRNA and protein expressions of ACE-2, IL-10, and renin, further increased the expressions of TNF-α and IL-1β, and kept higher the expressions of AT1-R, ACE-1, and AT2-R. Conclusions These results indicate that endogenous AT2-R activation in the brain plays an important protective role in the development of DOCA/salt-induced hypertension in females, but not in males. The protective effect of AT2-R in females involves regulating the expression of brain renin-angiotensin system components and proinflammatory cytokines.
Collapse
Affiliation(s)
- Shu-Yan Dai
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36, Sanhao Street, Shenyang, 110004, China.
| | - Wei Peng
- Department of Physiology and Pathophysiology, Life Science Research Center, Hebei North University, Zhangjiakou City, Hebei, China.
| | - Yu-Ping Zhang
- Department of Physiology and Pathophysiology, Life Science Research Center, Hebei North University, Zhangjiakou City, Hebei, China.
| | - Jian-Dong Li
- Department of Physiology and Pathophysiology, Life Science Research Center, Hebei North University, Zhangjiakou City, Hebei, China.
| | - Ying Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36, Sanhao Street, Shenyang, 110004, China.
| | - Xiao-Fei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36, Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
35
|
Giani JF, Shah KH, Khan Z, Bernstein EA, Shen XZ, McDonough AA, Gonzalez-Villalobos RA, Bernstein KE. The intrarenal generation of angiotensin II is required for experimental hypertension. Curr Opin Pharmacol 2015; 21:73-81. [PMID: 25616034 DOI: 10.1016/j.coph.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
Hypertension is a major risk factor for cardiovascular disease. While the cause of hypertension is multifactorial, renal dysregulation of salt and water excretion is a major factor. All components of the renin-angiotensin system are produced locally in the kidney, suggesting that intrarenal generation of angiotensin II plays a key role in blood pressure regulation. Here, we show that two mouse models lacking renal angiotensin converting enzyme (ACE) are protected against angiotensin II and l-NAME induced hypertension. In response to hypertensive stimuli, mice lacking renal ACE do not produce renal angiotensin II. These studies indicate that the intrarenal renin-angiotensin system works as an entity separate from systemic angiotensin II generation. Renal ACE appears necessary for experimental hypertension.
Collapse
Affiliation(s)
- Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kandarp H Shah
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiao Z Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Angiotensin II increases the expression of (pro)renin receptor during low-salt conditions. Am J Med Sci 2015; 348:416-22. [PMID: 25250989 DOI: 10.1097/maj.0000000000000335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence indicates that chronic angiotensin II (AngII) infusion increases (pro)renin receptor ((P)RR) expression in renal inner medullary collecting duct (IMCD) cells. Recently, it has been shown that renal (P)RR expression is augmented during a low-salt (LS) diet. However, the role of AngII in mediating the stimulation of (P)RR during LS conditions is unknown. We hypothesized that AngII mediates the increased expression of (P)RR during low-salt conditions in IMCDs. METHODS (P)RR expression and AngII levels were evaluated in Sprague-Dawley rats fed a LS diet (0.03% NaCl) and normal salt (NS; 0.4% NaCl) for 7 days. We examined the effects of sodium reduction (130 mM NaCl) and AngII on (P)RR expression in IMCDs isolated in hypertonic conditions (640 mOsmol/L with 280 mM NaCl). RESULTS Plasma renin activity in LS rats was significantly higher than rats fed with NS (28.1 ± 2.2 versus 6.7 ± 1.1 ng AngI·mL⁻¹·hr⁻¹; P < 0.05), as well as renin content in renal cortex and medulla. The (P)RR mRNA and protein levels were higher in medullary tissues from LS rats but did not change in the cortex. Intrarenal AngII was augmented in LS compared with NS rats (cortex: 710 ± 113 versus 277 ± 86 fmol/g, P < 0.05; medulla: 2093 ± 125 versus 1426 ± 126 fmol/g, P < 0.05). In cultured IMCDs, (P)RR expression was increased in response to LS or AngII treatment and potentiated by both treatments (both at 640 mOsmol/L). CONCLUSIONS These data indicate that (P)RR is augmented in medullary collecting ducts in response to LS and that this effect is further enhanced by the increased intrarenal AngII content.
Collapse
|
37
|
Jang HR, Jeon J, Park JH, Lee JE, Huh W, Oh HY, Kim YG. Clinical relevance of urinary angiotensinogen and renin as potential biomarkers in patients with overt proteinuria. Transl Res 2014; 164:400-10. [PMID: 24929205 DOI: 10.1016/j.trsl.2014.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 01/13/2023]
Abstract
Urinary angiotensinogen (AGT) and renin have been reported to reflect the intrarenal renin-angiotensin system (RAS) activity. However, the adequacy and clinical significance of these markers have not been evaluated in overtly proteinuric patients. In patients with biopsy-proven glomerulonephritis, plasma and urinary AGT and renin were analyzed. A cohort of 75 patients treated with RAS inhibitors was followed for 1 year. Among the 207 patients, 105 had subnephrotic and 102 had nephrotic-range proteinuria. Mean age, estimated glomerular filtration rate (eGFR), and urinary protein-to-creatinine ratio (P/Cr) of all patients were 48 years, 79.7 mL/min/1.73 m(2), and 5.66 mg/mg, respectively. Both natural logarithm of urinary AGT/creatinine (ln [urinary AGT/Cr]) and ln (urinary renin/Cr) showed positive correlations with urinary P/Cr. There was a positive correlation between ln (urinary AGT/Cr) and ln (urinary renin/Cr). Ln (urinary renin/Cr) was not affected by ln (plasma renin) regardless of the degree of proteinuria. The treatment response to RAS inhibitors was greatest in patients with high urinary AGT and renin. However, the predictive value of those parameters was no longer present when the values were adjusted by the degree of proteinuria. Ln (urinary renin/Cr) and initial eGFR were independently associated with the changes in renal function for 1 year. Ln (urinary AGT/Cr) was associated with persistent overt proteinuria after 1 year. Our study suggests that urinary renin may be a better marker in heavy proteinuria, and the treatment response to RAS inhibitors may be enhanced in patients with high urinary renin and AGT. Further studies will be necessary to explore the value of urinary AGT and renin.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Nephrology Division, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Junseok Jeon
- Nephrology Division, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Hyeon Park
- Nephrology Division, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Eun Lee
- Nephrology Division, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Wooseong Huh
- Nephrology Division, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ha Young Oh
- Nephrology Division, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon-Goo Kim
- Nephrology Division, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Ramkumar N, Stuart D, Rees S, Hoek AV, Sigmund CD, Kohan DE. Collecting duct-specific knockout of renin attenuates angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2014; 307:F931-8. [PMID: 25122048 DOI: 10.1152/ajprenal.00367.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological and pathophysiological significance of collecting duct (CD)-derived renin, particularly as it relates to blood pressure (BP) regulation, is unknown. To address this question, we generated CD-specific renin knockout (KO) mice and examined BP and renal salt and water excretion. Mice containing loxP-flanked exon 1 of the renin gene were crossed with mice transgenic for aquaporin-2-Cre recombinase to achieve CD-specific renin KO. Compared with controls, CD renin KO mice had 70% lower medullary renin mRNA and 90% lower renin mRNA in microdissected cortical CD. Urinary renin levels were significantly lower in KO mice (45% of control levels) while plasma renin concentration was significantly higher in KO mice (63% higher than controls) during normal-Na intake. While no observable differences were noted in BP between the two groups with varying Na intake, infusion of angiotensin II at 400 ng·kg(-1)·min(-1) resulted in an attenuated hypertensive response in the KO mice (mean arterial pressure 111 ± 4 mmHg in KO vs. 128 ± 3 mmHg in controls). Urinary renin excretion and epithelial Na(+) channel (ENaC) remained significantly lower in the KO mice following ANG II infusion compared with controls. Furthermore, membrane-associated ENaC protein levels were significantly lower in KO mice following ANG II infusion. These findings suggest that CD renin modulates BP in ANG II-infused hypertension and these effects are associated with changes in ENaC expression.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Sara Rees
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Alfred Van Hoek
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| |
Collapse
|
39
|
Ferrão FM, Lara LS, Lowe J. Renin-angiotensin system in the kidney: What is new? World J Nephrol 2014; 3:64-76. [PMID: 25332897 PMCID: PMC4202493 DOI: 10.5527/wjn.v3.i3.64] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) has been known for more than a century as a cascade that regulates body fluid balance and blood pressure. Angiotensin II(Ang II) has many functions in different tissues; however it is on the kidney that this peptide exerts its main functions. New enzymes, alternative routes for Ang IIformation or even active Ang II-derived peptides have now been described acting on Ang II AT1 or AT2 receptors, or in receptors which have recently been cloned, such as Mas and AT4. Another interesting observation was that old members of the RAS, such as angiotensin converting enzyme (ACE), renin and prorenin, well known by its enzymatic activity, can also activate intracellular signaling pathways, acting as an outside-in signal transduction molecule or on the renin/(Pro)renin receptor. Moreover, the endocrine RAS, now is also known to have paracrine, autocrine and intracrine action on different tissues, expressing necessary components for local Ang II formation. This in situ formation, especially in the kidney, increases Ang II levels to regulate blood pressure and renal functions. These discoveries, such as the ACE2/Ang-(1-7)/Mas axis and its antangonistic effect rather than classical deleterious Ang II effects, improves the development of new drugs for treating hypertension and cardiovascular diseases.
Collapse
|
40
|
Silva PA, Monnerat-Cahli G, Pereira-Acácio A, Luzardo R, Sampaio LS, Luna-Leite MA, Lara LS, Einicker-Lamas M, Panizzutti R, Madeira C, Vieira-Filho LD, Castro-Chaves C, Ribeiro VS, Paixão ADO, Medei E, Vieyra A. Mechanisms involving Ang II and MAPK/ERK1/2 signaling pathways underlie cardiac and renal alterations during chronic undernutrition. PLoS One 2014; 9:e100410. [PMID: 24983243 PMCID: PMC4077653 DOI: 10.1371/journal.pone.0100410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023] Open
Abstract
Background Several studies have correlated protein restriction associated with other nutritional deficiencies with the development of cardiovascular and renal diseases. The driving hypothesis for this study was that Ang II signaling pathways in the heart and kidney are affected by chronic protein, mineral and vitamin restriction. Methodology/Principal Findings Wistar rats aged 90 days were fed from weaning with either a control or a deficient diet that mimics those used in impoverished regions worldwide. Such restriction simultaneously increased ouabain-insensitive Na+-ATPase and decreased (Na++K+)ATPase activity in the same proportion in cardiomyocytes and proximal tubule cells. Type 1 angiotensin II receptor (AT1R) was downregulated by that restriction in both organs, whereas AT2R decreased only in the kidney. The PKC/PKA ratio increased in both tissues and returned to normal values in rats receiving Losartan daily from weaning. Inhibition of the MAPK pathway restored Na+-ATPase activity in both organs. The undernourished rats presented expanded plasma volume, increased heart rate, cardiac hypertrophy, and elevated systolic pressure, which also returned to control levels with Losartan. Such restriction led to electrical cardiac remodeling represented by prolonged ventricular repolarization parameters, induced triggered activity, early after-depolarization and delayed after-depolarization, which were also prevented by Losartan. Conclusion/Significance The mechanisms responsible for these alterations are underpinned by an imbalance in the PKC- and PKA-mediated pathways, with participation of angiotensin receptors and by activation of the MAPK/ERK1/2 pathway. These cellular and molecular alterations culminate in cardiac electric remodeling and in the onset of hypertension in adulthood.
Collapse
Affiliation(s)
- Paulo A. Silva
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Gustavo Monnerat-Cahli
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acácio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Ricardo Luzardo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Marcia A. Luna-Leite
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S. Lara
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Rogério Panizzutti
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Madeira
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D. Vieira-Filho
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Carmen Castro-Chaves
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Valdilene S. Ribeiro
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ana D. O. Paixão
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Emiliano Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
41
|
Ali Q, Wu Y, Nag S, Hussain T. Estimation of angiotensin peptides in biological samples by LC/MS method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:215-222. [PMID: 24489613 PMCID: PMC3904384 DOI: 10.1039/c3ay41305e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The low abundance of angiotensin peptides in biological tissues such as the kidney cortex, adipose tissue, urine and plasma makes their detection and quantification a challenge. A few available methods used to quantify these peptides involve lengthy processes of sample preparation and are hardly quantitative. Here, we report a mass spectrometry approach for quantifying angiotensin peptides [Ang II, Ang-(1-7)] in the kidney cortex, epididymal white adipose tissue (eWAT), urine and plasma of male mice. Tissue homogenates, urine and plasma samples were solid-phase extracted with C18 Sep-Pak cartridges and eluted off proteinaceous compounds. These extracted peptide samples were separated on C18 column with a linear acetonitrile gradient and detected by Q-ToF mass analyzer in ESI+-MS ion mode based on their retention time, accurate mass measurement of peptides, the isotope pattern of doubly charged molecular ion, and quantitation of peak area (or ion count) when referencing to the angiotensin peptide standards. The lower limit of quantitation for each angiotensin peptide was 10 pgmg-1 with the percent recovery at 100.6%. The intra-batch precision for Ang-(1-7) and Ang II were 24.0 and 12.7%, accuracy 84.0-123.0% and 100.2-116.0% respectively. Using this method, we determined the levels of Ang II and Ang-(1-7) in the kidney cortex, eWAT, urine and plasma. Quantification of angiotensin peptides could help target subtle therapeutics changes against pathophysiological conditions such as obesity, kidney disease and hypertension.
Collapse
Affiliation(s)
- Quaisar Ali
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204
| | - Yonnie Wu
- Mass Spec Center, Department of Chemistry and Biochemistry, Auburn University, Auburn. AL 36849
| | - Sourashish Nag
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204
| | - Tahir Hussain
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204
| |
Collapse
|
42
|
Miyata K, Satou R, Shao W, Prieto MC, Urushihara M, Kobori H, Navar LG. ROCK/NF-κB axis-dependent augmentation of angiotensinogen by angiotensin II in primary-cultured preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 2014; 306:F608-18. [PMID: 24431199 DOI: 10.1152/ajprenal.00464.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In angiotensin II (ANG II)-dependent hypertension, the augmented intrarenal ANG II constricts the renal microvasculature and stimulates Rho kinase (ROCK), which modulates vascular contractile responses. Rho may also stimulate angiotensinogen (AGT) expression in preglomerular vascular smooth muscle cells (VSMCs), but this has not been established. Therefore, the aims of this study were to determine the direct interactions between Rho and ANG II in regulating AGT and other renin-angiotensin system (RAS) components and to elucidate the roles of the ROCK/NF-κB axis in the ANG II-induced AGT augmentation in primary cultures of preglomerular VSMCs. We first demonstrated that these preglomerular VSMCs express renin, AGT, angiotensin-converting enzyme, and ANG II type 1 (AT1) receptors. Furthermore, incubation with ANG II (100 pmol/l for 24 h) increased AGT mRNA (1.42 ± 0.03, ratio to control) and protein (1.68 ± 0.05, ratio to control) expression levels, intracellular ANG II levels, and NF-κB activity. In contrast, the ANG II treatment did not alter AT1a and AT1b mRNA levels in the cells. Treatment with H-1152 (ROCK inhibitor, 10 nmol/l) and ROCK1 small interfering (si) RNA suppressed the ANG II-induced AGT augmentation and the upregulation and translocalization of p65 into nuclei. Functional studies showed that ROCK exerted a greater influence on afferent arteriole responses to ANG II in rats subjected to chronic ANG II infusions. These results indicate that ROCK is involved in NF-κB activation and the ROCK/NF-κB axis contributes to ANG II-induced AGT upregulation, leading to intracellular ANG II augmentation.
Collapse
Affiliation(s)
- Kayoko Miyata
- Dept. of Physiology and Hypertension and Renal Center of Excellence, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., SL39, New Orleans, LA 70112-2699.
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhuo JL, Ferrao FM, Zheng Y, Li XC. New frontiers in the intrarenal Renin-Angiotensin system: a critical review of classical and new paradigms. Front Endocrinol (Lausanne) 2013; 4:166. [PMID: 24273531 PMCID: PMC3822323 DOI: 10.3389/fendo.2013.00166] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022] Open
Abstract
The renin-angiotensin system (RAS) is well-recognized as one of the oldest and most important regulators of arterial blood pressure, cardiovascular, and renal function. New frontiers have recently emerged in the RAS research well beyond its classic paradigm as a potent vasoconstrictor, an aldosterone release stimulator, or a sodium-retaining hormone. First, two new members of the RAS have been uncovered, which include the renin/(Pro)renin receptor (PRR) and angiotensin-converting enzyme 2 (ACE2). Recent studies suggest that prorenin may act on the PRR independent of the classical ACE/ANG II/AT1 receptor axis, whereas ACE2 may degrade ANG II to generate ANG (1-7), which activates the Mas receptor. Second, there is increasing evidence that ANG II may function as an intracellular peptide to activate intracellular and/or nuclear receptors. Third, currently there is a debate on the relative contribution of systemic versus intrarenal RAS to the physiological regulation of blood pressure and the development of hypertension. The objectives of this article are to review and discuss the new insights and perspectives derived from recent studies using novel transgenic mice that either overexpress or are deficient of one key enzyme, ANG peptide, or receptor of the RAS. This information may help us better understand how ANG II acts, both independently or through interactions with other members of the system, to regulate the kidney function and blood pressure in health and disease.
Collapse
Affiliation(s)
- Jia L. Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fernanda M. Ferrao
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yun Zheng
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao C. Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
44
|
Csohány R, Prókai A, Kosik A, Szabó JA. [The cortical collecting duct plays a pivotal role in the kidney's local renin-angiotensin system]. Orv Hetil 2013; 154:643-9. [PMID: 23608311 DOI: 10.1556/oh.2013.29597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The renin-angiotensin system is one of the most important hormone systems in the body, and the regulations as well as the role in the juxtaglomerular apparatus are well known. The present review focuses on renin secretion in a recently described localization, the cortical collecting duct. The authors display it in parallel of the copying strategy of an adult and a developing kidney. Furthermore, based on different animal studies it highlights the local role of renin released from the collecting duct. In chronic angiotensin II-infused, 2-kidney, 1-clip hypertensive model as well as in diabetic rats the major source of (pro)renin is indeed the collecting duct. In this localization this hormone can reach both the systemic circulation and the interstitial renin-angiotensin system components including the newly described (pro)renin receptor, by which (pro)renin is able to locally activate pro-fibrotic intracellular signal pathways. Consequently, one can postulate that in the future renin may serve either as a new therapeutic target in nephropathy associated with both hypertension and diabetes or as an early diagnostic marker in chronic diseases leading to nephropathy.
Collapse
Affiliation(s)
- Rózsa Csohány
- Semmelweis Egyetem, Általános Orvostudományi Kar, I. Gyermekgyógyászati Klinika és MTA Nefrológiai Kutatólaboratórium, Budapest, Bókay J. u. 53. 1083
| | | | | | | |
Collapse
|
45
|
Ramkumar N, Kohan DE. Role of collecting duct renin in blood pressure regulation. Am J Physiol Regul Integr Comp Physiol 2013; 305:R92-4. [PMID: 23637136 DOI: 10.1152/ajpregu.00191.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous studies indicate that renin is synthesized and secreted by the collecting duct (CD). CD-derived renin may act directly on intercalated and/or principal cells through direct interaction with prorenin receptors and/or through cleavage of proximal tubule-derived angiotensinogen to ultimately produce angiotensin II and activate AT1 receptors. Preliminary studies suggest that the net effect of CD renin would be to increase distal nephron salt reabsorption and increase blood pressure. CD renin production is markedly increased in diabetes and angiotensin II-induced hypertension, suggesting that this system may exert pathophysiological effects. In this brief review, we summarize the current literature on synthesis and regulation of CD renin and consider potential mechanisms by which it regulates blood pressure.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
46
|
Gonzalez AA, Luffman C, Bourgeois CRT, Vio CP, Prieto MC. Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (Pro)renin receptor in rat renal inner medullary cells. Hypertension 2012. [PMID: 23184385 DOI: 10.1161/hypertensionaha.112.196303] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During renin-angiotensin system activation, cyclooxygenase-2 (COX-2)-derived prostaglandins attenuate the pressor and antinatriuretic effects of angiotensin II (AngII) in the renal medulla. The (pro)renin receptor (PRR) is abundantly expressed in the collecting ducts (CD) and its expression is augmented by AngII. PRR overexpression upregulates COX-2 via mitogen-activated kinases/extracellular regulated kinases 1/2 in renal tissues; however, it is not clear whether this effect occurs independently or in concert with AngII type 1 receptor (AT1R) activation. We hypothesized that PRR activation stimulates COX-2 expression independently of AT(1)R in primary cultures of rat renal inner medullary cells. The use of different cell-specific immunomarkers (aquaporin-2 for principal cells, anion exchanger type 1 for intercalated type-A cells, and tenascin C for interstitial cells) and costaining for AT(1)R, COX-2, and PRR revealed that PRR and COX-2 were colocalized in intercalated and interstitial cells whereas principal cells did not express PRR or COX-2. In normal rat kidney sections, PRR and COX-2 were colocalized in intercalated and interstitial cells. In rat renal inner medullary cultured cells, treatment with AngII (100 nmol/L) increased COX-2 expression via AT(1)R. In addition, AngII and rat recombinant prorenin (100 nmol/L) treatments increased extracellular regulated kinases 1/2 phosphorylation, independently. Importantly, rat recombinant prorenin upregulated COX-2 expression in the presence of AT(1)R blockade. Inhibition of mitogen-activated kinases/extracellular regulated kinases 1/2 suppressed COX-2 upregulation mediated by either AngII or rat recombinant prorenin. Furthermore, PRR knockdown using PRR-short hairpin RNA blunted the rat recombinant prorenin-mediated upregulation of COX-2. These results indicate that COX-2 expression is upregulated by activation of either PRR or AT(1)R via mitogen-activated kinases/extracellular regulated kinases 1/2 in rat renal inner medullary cells.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Chile
| | | | | | | | | |
Collapse
|
47
|
Prieto MC, Gonzalez AA, Navar LG. Evolving concepts on regulation and function of renin in distal nephron. Pflugers Arch 2012; 465:121-32. [PMID: 22990760 DOI: 10.1007/s00424-012-1151-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 01/13/2023]
Abstract
Sustained stimulation of the intrarenal/intratubular renin-angiotensin system in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis, and eventual renal injury. Activation of luminal AT(1) receptors in proximal and distal nephron segments by local Ang II formation stimulates various transport systems. Augmented angiotensinogen (AGT) production by proximal tubule cells increases AGT secretion contributing to increased proximal Ang II levels and leading to spillover of AGT into the distal nephron segments, as reflected by increased urinary AGT excretion. The increased distal delivery of AGT provides substrate for renin, which is expressed in principal cells of the collecting tubule and collecting ducts, and is also stimulated by AT(1) receptor activation. Renin and prorenin are secreted into the tubular lumen and act on the AGT delivered from the proximal tubule to form more Ang I. The catalytic actions of renin and or prorenin may be enhanced by binding to prorenin receptors on the intercalated cells or soluble prorenin receptor secreted into the tubular fluid. There is also increased luminal angiotensin converting enzyme in collecting ducts facilitating Ang II formation leading to stimulation of sodium reabsorption via sodium channel and sodium/chloride co-transporter. Thus, increased collecting duct renin contributes to Ang II-dependent hypertension by augmenting distal nephron intratubular Ang II formation leading to sustained stimulation of sodium reabsorption and progression of hypertension.
Collapse
Affiliation(s)
- Minolfa C Prieto
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
48
|
Rands VF, Seth DM, Kobori H, Prieto MC. Sexual dimorphism in urinary angiotensinogen excretion during chronic angiotensin II-salt hypertension. ACTA ACUST UNITED AC 2012; 9:207-18. [PMID: 22795463 DOI: 10.1016/j.genm.2012.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/11/2012] [Accepted: 06/14/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND The intrarenal renin-angiotensin system contributes to hypertension by regulating sodium and water reabsorption throughout the nephron. Sex differences in the intrarenal components of the renin-angiotensin system have been involved in the greater incidence of high blood pressure and progression to kidney damage in males than females. OBJECTIVE This study investigated whether there is a sex difference in the intrarenal gene expression and urinary excretion of angiotensinogen (AGT) during angiotensin II (Ang II)-dependent hypertension and high-salt (HS) diet. METHODS Male and female Sprague-Dawley rats were divided into 5 groups for each sex: Normal-salt control, HS diet (8% NaCl), Ang II-infused (80 ng/min), Ang II-infused plus HS diet, and Ang II-infused plus HS diet and treatment with the Ang II receptor blocker, candesartan (25 mg/L in the drinking water). Rats were evaluated for systolic blood pressure (SBP), kidney AGT mRNA expression, urinary AGT excretion, and proteinuria at different time points during a 14-day protocol. RESULTS Both male and female rats exhibited similar increases in urinary AGT, with increases in SBP during chronic Ang II infusion. HS diet greatly exacerbated the urinary AGT excretion in Ang II-infused rats; males had a 9-fold increase over Ang II alone and females had a 2.5-fold increase. Male rats displayed salt-sensitive SBP increases during Ang II infusion and HS diet, and female rats did not. In the kidney cortex, males displayed greater AGT gene expression than females during all treatments. During Ang II infusion, both sexes exhibited increases in AGT gene message compared with same-sex controls. In addition, HS diet combined with Ang II infusion exacerbated the proteinuria in both sexes. Concomitant Ang II receptor blocker treatment during Ang II infusion and HS diet decreased SBP and urinary AGT similarly in both sexes; however, the decrease in proteinuria was greater in the females. CONCLUSION During Ang II-dependent hypertension and HS diet, higher intrarenal renin-angiotensin system activation in males, as reflected by higher AGT gene expression and urinary excretion, indicates a mechanism for greater progression of high blood pressure and might explain the sex disparity in development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Vicky F Rands
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
49
|
Zhuo JL. Augmented intratubular renin and prorenin expression in the medullary collecting ducts of the kidney as a novel mechanism of angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2011; 301:F1193-4. [PMID: 21993882 PMCID: PMC3233873 DOI: 10.1152/ajprenal.00555.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|