1
|
Henderson IM, Benevidez AD, Mowry CD, Watt J, Bachand GD, Kirk ML, Dokładny K, DeAguero J, Escobar GP, Wagner B. Precipitation of gadolinium from magnetic resonance imaging contrast agents may be the Brass tacks of toxicity. Magn Reson Imaging 2025; 119:110383. [PMID: 40064247 DOI: 10.1016/j.mri.2025.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
The formation of gadolinium-rich nanoparticles in multiple tissues from intravenous magnetic resonance imaging contrast agents may be the initial step in rare earth metallosis. The mechanism of gadolinium-induced diseases is poorly understood, as is how these characteristic nanoparticles are formed. Gadolinium deposition has been observed with all magnetic resonance imaging contrast agent brands. Aside from endogenous metals and acidic conditions, little attention has been paid to the role of the biological milieu in the degradation of magnetic resonance imaging contrast agents into nanoparticles. Herein, we describe the decomposition of the commercial magnetic resonance imaging contrast agents Omniscan and Dotarem in the presence of oxalic acid, a well-known endogenous compound. Omniscan dechelated rapidly and preluded measurement by the means available, while Dotarem underwent a two-step decomposition process. The decomposition of both magnetic resonance imaging contrast agents by oxalic acid formed gadolinium oxalate (Gd2[C2O4]3, Gd2Ox3). Furthermore, both observed steps of the Dotarem reaction involved the associative addition of oxalic acid. Adding protein (bovine serum albumin) increased the rate of dechelation. Displacement reactions could occur at lysosomal pH. Through these studies, we have demonstrated that magnetic resonance imaging contrast agents can be dissociated by endogenous molecules, thus illustrating a metric by which gadolinium-based contrast agents (GBCAs) might be destabilized in vivo.
Collapse
Affiliation(s)
- Ian M Henderson
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Angelica D Benevidez
- Department of Chemical & Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Curtis D Mowry
- University of New Mexico, Department of Chemistry and Chemical Biology, Albuquerque, NM, USA
| | - John Watt
- Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Albuquerque, NM, USA
| | - George D Bachand
- Sandia National Laboratories, Center for Integrated Nanotechnologies, Albuquerque, NM, USA
| | - Martin L Kirk
- University of New Mexico, Department of Chemistry and Chemical Biology, Albuquerque, NM, USA
| | - Karol Dokładny
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; New Mexico VA Health Care System, Albuquerque, NM, USA.
| |
Collapse
|
2
|
DeAguero J, Howard T, Escobar GP, Dokladny K, Wagner B. Early endolysosomal dysfunction is a contributing factor to gadolinium-based contrast agent mouse renal proximal tubule epithelial cell injury. Cell Biol Toxicol 2025; 41:65. [PMID: 40175829 PMCID: PMC11965215 DOI: 10.1007/s10565-025-10014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The prevalence of contrast-enhanced magnetic resonance imaging (MRI) examinations and the absence of safer alternatives to gadolinium-based contrast agents (GBCAs) make the associated adverse effects of GBCAs much more concerning. Safety concerns arise from the toxic behavior of heavy metal gadolinium (Gd3+) and the potential release of the metal from the chelating ligand. Renal insufficiency and other patient factors increase the susceptibility to the toxic effects of GBCAs. It is, therefore, imperative that the molecular and cellular mechanisms underlying GBCA toxicity be defined. This study aims to determine GBCA-induced endolysosomal dysfunction in mouse renal proximal tubule epithelial cells. Loss of cell viability was agent- and time-dependent, and proximal tubule injury was detectable following 24 h linear GBCA exposure. Both classes of GBCAs displayed lysosomotropic behaviors, characterized by early lysosomal enlargement and lysosomal injury. Hijacking of the endolysosomal system by these agents inhibited cathepsin processing by blocking the transport and maturation of cathepsin B (CTSB) and cathepsin D (CTSD). Lysosomal enlargement coincided with the translocation of CTSB and CTSD from the lysosomal lumen to the cytosol, suggesting lysosomal membrane destabilization. Even though both agents displayed a similar response, linear exposures appeared to exhibit a greater effect. Disturbance of mitochondrial activity and loss of cell viability occurs downstream of early lysosome damage. This effect was partially restored by lysosomal protease inhibitor co-treatment. This data suggests that GBCA exposures induce a lysosomal stress response, and partial LMP occurs upstream of mitochondrial dysfunction and resultant cellular injury.
Collapse
Affiliation(s)
- Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Tamara Howard
- Department of Cell Biology & Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Research Service, Albuquerque, NM, USA.
| |
Collapse
|
3
|
Coimbra S, Rocha S, Viana SD, Rebelo R, Rocha-Pereira P, Lousa I, Valente MJ, Catarino C, Belo L, Bronze-da-Rocha E, Reis F, Santos-Silva A. Gadoteric Acid and Gadolinium: Exploring Short- and Long-Term Effects on Healthy Animals. J Xenobiot 2025; 15:34. [PMID: 40126252 PMCID: PMC11932278 DOI: 10.3390/jox15020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Regarding the safety of gadolinium (Gd (III))-based contrast agents, we aimed to evaluate the short- and long-term effects following a single exposure to gadoteric acid (DOTA) or to free Gd (III) using animal models. Biomarkers of kidney injury, inflammation, iron metabolism, dyslipidemia, hepatic and hematologic disturbances and kidney histopathological and differential gene expression (DGE) analyses were evaluated. In the short-term study, compared to the controls, exposure to Gd (III) was associated with higher inflammation; changes in lipid, iron and hepatic metabolisms; hematological alterations; and kidney damage. Exposure to DOTA revealed changes in hematological, lipid and hepatic biomarkers. In the long-term study, compared to the controls, exposure to Gd (III) or to DOTA showed much fewer changes than the short-term exposure. Comparing the kidney gene expression of Gd (III) or DOTA exposure versus the control, we found clearly different DGE patterns and a lower number of differently expressed genes in the long-term study, for both compounds. Our data show that a single-dose exposure to these compounds induces several short-term changes which over time return to normal or are sustained, although with less severity, especially in the case of DOTA.
Collapse
Affiliation(s)
- Susana Coimbra
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO i4HB, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Susana Rocha
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- ESTESC-Coimbra Health School, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- H&TRC-Health and Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
| | - Rute Rebelo
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Petronila Rocha-Pereira
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Health Science Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Irina Lousa
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Cristina Catarino
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Belo
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Alice Santos-Silva
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Cunningham A, Kirk M, Hong E, Yang J, Howard T, Brearley A, Sáenz-Trevizo A, Krawchuck J, Watt J, Henderson I, Dokladny K, DeAguero J, Escobar GP, Wagner B. The safety of magnetic resonance imaging contrast agents. FRONTIERS IN TOXICOLOGY 2024; 6:1376587. [PMID: 39188505 PMCID: PMC11345262 DOI: 10.3389/ftox.2024.1376587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 08/28/2024] Open
Abstract
Gadolinium-based contrast agents are increasingly used in clinical practice. While these pharmaceuticals are verified causal agents in nephrogenic systemic fibrosis, there is a growing body of literature supporting their role as causal agents in symptoms associated with gadolinium exposure after intravenous use and encephalopathy following intrathecal administration. Gadolinium-based contrast agents are multidentate organic ligands that strongly bind the metal ion to reduce the toxicity of the metal. The notion that cationic gadolinium dissociates from these chelates and causes the disease is prevalent among patients and providers. We hypothesize that non-ligand-bound (soluble) gadolinium will be exceedingly low in patients. Soluble, ionic gadolinium is not likely to be the initial step in mediating any disease. The Kidney Institute of New Mexico was the first to identify gadolinium-rich nanoparticles in skin and kidney tissues from magnetic resonance imaging contrast agents in rodents. In 2023, they found similar nanoparticles in the kidney cells of humans with normal renal function, likely from contrast agents. We suspect these nanoparticles are the mediators of chronic toxicity from magnetic resonance imaging contrast agents. This article explores associations between gadolinium contrast and adverse health outcomes supported by clinical reports and rodent models.
Collapse
Affiliation(s)
- Amy Cunningham
- School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Martin Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, United States
| | - Emily Hong
- School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, United States
| | - Tamara Howard
- Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Angelica Sáenz-Trevizo
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Jacob Krawchuck
- Sandia National Laboratory, Center for Integrated Nanotechnologies, Albuquerque, NM, United States
| | - John Watt
- Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Albuquerque, NM, United States
| | | | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - G. Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
- New Mexico VA Healthcare System, Research Service, Albuquerque, NM, United States
| |
Collapse
|
5
|
Wang W, Huang XX, Jiang RH, Zhou J, Shi HB, Xu XQ, Wu FY. Gadolinium Retention and Nephrotoxicity in a Mouse Model of Acute Ischemic Stroke: Linear Versus Macrocyclic Agents. J Magn Reson Imaging 2024; 59:1852-1861. [PMID: 37548106 DOI: 10.1002/jmri.28931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Gadolinium (Gd)-based contrast agents (GBCAs) have been widely used for acute ischemic stroke (AIS) patients. GBCAs or AIS alone may cause the adverse effects on kidney tissue, respectively. However, whether GBCAs and AIS would generate a synergistic negative effect remains undefined. PURPOSE To evaluate synergistic negative effects of AIS and GBCAs on renal tissues in a mouse model of AIS, and to compare the differences of these negative effects between linear and macrocyclic GBCAs. STUDY TYPE Animal study. ANIMAL MODEL Seventy-two healthy mice underwent transient middle cerebral artery occlusion (tMCAO) and sham operation to establish AIS and sham model (N = 36/model). 5.0 mmol/kg GBCAs (gadopentetate or gadobutrol) or 250 μL saline were performed at 4.5 hours and 1 day after model establishing (N = 12/group). ASSESSMENT Inductively coupled plasma mass spectrometry (ICP-MS) was performed to detect Gd concentrations. Serum biochemical analyzer was performed to measure the serum creatinine (Scr), uric acid (UA), and blood urea nitrogen (BUN). Pathological staining was performed to observe tubular injury, cell apoptosis, mesangial hyperplasia, and interstitial fibrosis. STATISTICAL TESTS Two-way analysis of variances with post hoc Sidak's tests and independent-samples t-tests were performed. A P-value <0.05 was considered statistically significant. RESULTS AIS groups showed higher Gd concentration than sham group on day 1 p.i. regardless of gadopentetate or gadobutrol used. Increased total Gd concentration was also found in AIS + gadopentetate group compared with the sham group on day 28 p.i. Significantly higher rates for renal dysfunction, higher tubular injury scores, and higher numbers of apoptotic cells on days 1 or 28 p.i. were found for AIS mice injected with GBCA. AIS + gadopentetate group displayed more severe renal damage than the AIS + gadobutrol group. DATA CONCLUSION AIS and GBCAs may cause increased total Gd accumulation and nephrotoxicity in a mouse, especially linear GBCAs were used. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Xin Huang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Run-Hao Jiang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Coimbra S, Rocha S, Sousa NR, Catarino C, Belo L, Bronze-da-Rocha E, Valente MJ, Santos-Silva A. Toxicity Mechanisms of Gadolinium and Gadolinium-Based Contrast Agents-A Review. Int J Mol Sci 2024; 25:4071. [PMID: 38612881 PMCID: PMC11012457 DOI: 10.3390/ijms25074071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with gadolinium release and tissue deposition that may cause short- and long-term toxicity in several organs, including the kidney, the main excretion organ of most GBCAs. Considering the increasing prevalence of chronic kidney disease worldwide and that most of the complications following GBCA exposure are associated with renal dysfunction, the mechanisms underlying GBCA toxicity, especially renal toxicity, are particularly important. A better understanding of the gadolinium mechanisms of toxicity may contribute to clarify the safety and/or potential risks associated with the use of GBCAs. In this work, a review of the recent literature concerning gadolinium and GBCA mechanisms of toxicity was performed.
Collapse
Affiliation(s)
- Susana Coimbra
- 1H-TOXRUN—1H-Toxicology Research Unit, University Institute of Health Sciences, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Advanced Polytechnic and University Cooperative, CRL, 4585-116 Gandra, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Susana Rocha
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Nícia Reis Sousa
- Departamento de Ciências e Tecnologia da Saúde, Instituto Superior Politécnico de Benguela, Benguela, Angola
| | - Cristina Catarino
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Belo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Elsa Bronze-da-Rocha
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Alice Santos-Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Parillo M, Mallio CA, Van der Molen AJ, Rovira À, Ramalho J, Ramalho M, Gianolio E, Karst U, Radbruch A, Stroomberg G, Clement O, Dekkers IA, Nederveen AJ, Quattrocchi CC. Skin Toxicity After Exposure to Gadolinium-Based Contrast Agents in Normal Renal Function, Using Clinical Approved Doses: Current Status of Preclinical and Clinical Studies. Invest Radiol 2023; 58:530-538. [PMID: 37185158 DOI: 10.1097/rli.0000000000000973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVES The aim of this study was to summarize the current preclinical and clinical evidence on the association between exposure to gadolinium (Gd) compounds and skin toxicity in a setting similar to clinical practice. MATERIALS AND METHODS A search of MEDLINE and PubMed references from January 2000 to December 2022 was performed using keywords related to gadolinium deposition and its effects on the skin, such as "gadolinium," "gadolinium-based contrast agents," "skin," "deposition," and "toxicity." In addition, cross-referencing was added when appropriate. For preclinical in vitro studies, we included all the studies that analyzed the response of human dermal fibroblasts to exposure to various gadolinium compounds. For preclinical animal studies and clinical studies, we included only those that analyzed animals or patients with preserved renal function (estimated glomerular filtration rate >30 mL/min/1.73 m 2 ), using a dosage of gadolinium-based contrast agents (GBCAs) similar to that commonly applied (0.1 mmol/kg). RESULTS Forty studies were selected. Preclinical findings suggest that Gd compounds can produce profibrotic responses in the skin in vitro, through the activation and proliferation of dermal fibroblasts and promoting their myofibroblast differentiation. Gadolinium influences the process of collagen production and the collagen content of skin, by increasing the levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1. Preclinical animal studies show that Gd can deposit in the skin with higher concentrations when linear GBCAs are applied. However, these deposits decrease over time and are not associated with obvious macroscopic or histological modifications. The clinical relevance of GBCAs in inducing small fiber neuropathy remains to be determined. Clinical studies show that Gd is detectable in the skin and hair of subjects with normal renal function in higher concentrations after intravenous administration of linear compared with macrocyclic GBCA. However, these deposits decrease over time and are not associated with cutaneous or histological modifications. Also, subclinical dermal involvement related to linear GBCA exposure may be detectable on brain MRI. There is no conclusive evidence to support a causal relationship between GBCA administration at the clinical dose and cutaneous manifestations in patients with normal renal function. CONCLUSIONS Gadolinium can produce profibrotic responses in the skin, especially acting on fibroblasts, as shown by preclinical in vitro studies. Gadolinium deposits are detectable in the skin even in subjects with normal renal function with higher concentrations when linear GBCAs are used, as confirmed by both preclinical animal and human studies. There is no proof to date of a cause-effect relationship between GBCA administration at clinical doses and cutaneous consequences in patients with normal renal function. Multiple factors, yet to be determined, should be considered for sporadic patients with normal renal function who develop clinical skin manifestations temporally related to GBCA administration.
Collapse
Affiliation(s)
- Marco Parillo
- From the Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carlo A Mallio
- From the Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Aart J Van der Molen
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joana Ramalho
- Department of Neuroradiology, Centro Hospitalar Universitário de Lisboa Central, Lisbon
| | - Miguel Ramalho
- Department of Radiology, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Turin, Italy
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gerard Stroomberg
- RIWA-Rijn-Association of River Water Works, Nieuwegein, the Netherlands
| | - Olivier Clement
- Université de Paris, AP-HP, Hôpital Européen Georges Pompidou, DMU Imagina, Service de Radiologie, Paris, France
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
8
|
Quattrocchi CC, Parillo M, Spani F, Landi D, Cola G, Dianzani C, Perrella E, Marfia GA, Mallio CA. Skin Thickening of the Scalp and High Signal Intensity of Dentate Nucleus in Multiple Sclerosis: Association With Linear Versus Macrocyclic Gadolinium-Based Contrast Agents Administration. Invest Radiol 2023; 58:223-230. [PMID: 36729383 DOI: 10.1097/rli.0000000000000929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to assess the presence of detectable changes of skin thickness on clinical brain magnetic resonance imaging (MRI) scans in patients with MS, history of multiple gadolinium-based contrast agents (GBCAs) administrations, and evidence of gadolinium deposition in the brain. MATERIALS AND METHODS In this observational cross-sectional study, 71 patients with MS who underwent conventional brain MRI with an imaging protocol including enhanced 3D volumetric interpolated breath-hold examination (VIBE) T1-weighted with fat saturation were assessed. Patients with bilateral isointense dentate nucleus on unenhanced T1-weighted images were assigned to group A (controls without MRI evidence of gadolinium deposition), and patients with visually hyperintense dentate nuclei were assigned to group B. Qualitative and quantitative assessment of the skin thickness were performed. RESULTS Group A included 27 patients (median age, 33 years [IQR, 27-46]; 20 women), and group B included 44 patients (median age, 42 years [IQR, 35-53]; 29 women). Qualitative and quantitative assessment of the skin revealed significant differences between group A and group B. The average skin-to-scalp thickness ratios was significantly higher in group B than in group A (mean ± standard deviation = 0.52 ± 0.02 in group B vs 0.41 ± 0.02 in group A, P < 0.0001) and showed a positive correlation with the total number of enhanced MRI scans ( r = 0.39; 95% confidence interval, 0.17-0.57, P < 0.01). CONCLUSIONS Brain MRI detects increased skin thickness of the scalp in patients with MS and dentate nucleus high signal intensity on unenhanced T1-weighted images and shows positive association with previous exposures to linear GBCAs rather than macrocyclic GBCAs.
Collapse
Affiliation(s)
- Carlo C Quattrocchi
- From the Unit of Diagnostic Imaging and Interventional Radiology, Fondazione Policlinico Campus Bio-Medico di Roma
| | - Marco Parillo
- From the Unit of Diagnostic Imaging and Interventional Radiology, Fondazione Policlinico Campus Bio-Medico di Roma
| | - Federica Spani
- From the Unit of Diagnostic Imaging and Interventional Radiology, Fondazione Policlinico Campus Bio-Medico di Roma
| | | | - Gaia Cola
- Unit of Neurology, Policlinico Tor Vergata
| | | | - Eleonora Perrella
- Pathology, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
| | | | - Carlo A Mallio
- From the Unit of Diagnostic Imaging and Interventional Radiology, Fondazione Policlinico Campus Bio-Medico di Roma
| |
Collapse
|
9
|
DeAguero J, Howard T, Kusewitt D, Brearley A, Ali AM, Degnan JH, Jett S, Watt J, Escobar GP, Dokladny K, Wagner B. The onset of rare earth metallosis begins with renal gadolinium-rich nanoparticles from magnetic resonance imaging contrast agent exposure. Sci Rep 2023; 13:2025. [PMID: 36739294 PMCID: PMC9899216 DOI: 10.1038/s41598-023-28666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
The leitmotifs of magnetic resonance imaging (MRI) contrast agent-induced complications range from acute kidney injury, symptoms associated with gadolinium exposure (SAGE)/gadolinium deposition disease, potentially fatal gadolinium encephalopathy, and irreversible systemic fibrosis. Gadolinium is the active ingredient of these contrast agents, a non-physiologic lanthanide metal. The mechanisms of MRI contrast agent-induced diseases are unknown. Mice were treated with a MRI contrast agent. Human kidney tissues from contrast-naïve and MRI contrast agent-treated patients were obtained and analyzed. Kidneys (human and mouse) were assessed with transmission electron microscopy and scanning transmission electron microscopy with X-ray energy-dispersive spectroscopy. MRI contrast agent treatment resulted in unilamellar vesicles and mitochondriopathy in renal epithelium. Electron-dense intracellular precipitates and the outer rim of lipid droplets were rich in gadolinium and phosphorus. We conclude that MRI contrast agents are not physiologically inert. The long-term safety of these synthetic metal-ligand complexes, especially with repeated use, should be studied further.
Collapse
Affiliation(s)
- Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA.
- University of New Mexico Health Science Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA.
| | - Tamara Howard
- University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Donna Kusewitt
- University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Abdul-Mehdi Ali
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA
| | - James H Degnan
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Stephen Jett
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA
- University of New Mexico Health Science Center, Albuquerque, NM, USA
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA
| | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA
- University of New Mexico Health Science Center, Albuquerque, NM, USA
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA.
- University of New Mexico Health Science Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA.
| |
Collapse
|
10
|
Jackson DB, MacIntyre T, Duarte-Miramontes V, DeAguero J, Escobar GP, Wagner B. Gadolinium Deposition Disease: A Case Report and the Prevalence of Enhanced MRI Procedures Within the Veterans Health Administration. Fed Pract 2022; 39:218-225. [PMID: 35935925 PMCID: PMC9351733 DOI: 10.12788/fp.0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Gadolinium (Gd) usage in the Veterans Health Administration is increasing and patients with renal disease are frequently exposed. Gd is not entirely eliminated within 24 hours after administration, which may pose long-term adverse effects. Case Presentation A Vietnam-era veteran aged > 70 years presented for evaluation of Gd-based contrast agent-induced chronic multisymptom illness. In the course of his routine clinical care, he was exposed to repeated Gd-enhanced magnetic resonance imaging studies. After his second Gd-based contrast agent exposure, he noted rash, pain, headaches, and hoarseness. Years after the exposure to the contrast agents, he continued to have detectable Gd in urine and serum. Conclusions Practitioners should be aware of long-term intracellular Gd retention (including the brain) as patients increasingly turn to consultants with concerns about Gd deposition disease. Data from patient advocates demonstrate that Gd is eliminated in intermediate and long phases, which may represent a multicompartment model. The commercialization of Gd use in imaging studies is outpacing the science addressing the long-term consequences of harboring this alien, toxic, nonphysiologic rare earth metal.
Collapse
Affiliation(s)
- D. Bradley Jackson
- New Mexico Veterans Administration Health Care System, Albuquerque,University of New Mexico Health Sciences Center, Albuquerque
| | | | | | - Joshua DeAguero
- New Mexico Veterans Administration Health Care System, Albuquerque,University of New Mexico Health Sciences Center, Albuquerque,Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque
| | - G. Patricia Escobar
- New Mexico Veterans Administration Health Care System, Albuquerque,University of New Mexico Health Sciences Center, Albuquerque,Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque
| | - Brent Wagner
- New Mexico Veterans Administration Health Care System, Albuquerque,University of New Mexico Health Sciences Center, Albuquerque,Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque
| |
Collapse
|
11
|
Davies J, Siebenhandl-Wolff P, Tranquart F, Jones P, Evans P. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch Toxicol 2022; 96:403-429. [PMID: 34997254 PMCID: PMC8837552 DOI: 10.1007/s00204-021-03189-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Gadolinium-based contrast agents (GBCAs) have transformed magnetic resonance imaging (MRI) by facilitating the use of contrast-enhanced MRI to allow vital clinical diagnosis in a plethora of disease that would otherwise remain undetected. Although over 500 million doses have been administered worldwide, scientific research has documented the retention of gadolinium in tissues, long after exposure, and the discovery of a GBCA-associated disease termed nephrogenic systemic fibrosis, found in patients with impaired renal function. An understanding of the pharmacokinetics in humans and animals alike are pivotal to the understanding of the distribution and excretion of gadolinium and GBCAs, and ultimately their potential retention. This has been well studied in humans and more so in animals, and recently there has been a particular focus on potential toxicities associated with multiple GBCA administration. The purpose of this review is to highlight what is currently known in the literature regarding the pharmacokinetics of gadolinium in humans and animals, and any toxicity associated with GBCA use.
Collapse
Affiliation(s)
- Julie Davies
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK.
| | | | | | - Paul Jones
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK
| | - Paul Evans
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK
| |
Collapse
|
12
|
Sandougah K, AlJohar R, Aladhadhi D, AlHazmi YT, Kariri MN, Bin Abdulrahman KA. Awareness of Gadolinium Toxicity Among Non-radiologists in Saudi Arabia. Cureus 2022; 14:e21104. [PMID: 35165563 PMCID: PMC8829821 DOI: 10.7759/cureus.21104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
|
13
|
Sousa NR, Rocha S, Santos-Silva A, Coimbra S, Valente MJ. Cellular and molecular pathways underlying the nephrotoxicity of gadolinium. Toxicol Sci 2021; 186:134-148. [PMID: 34878122 DOI: 10.1093/toxsci/kfab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mounting evidence on the short- and long-term adverse effects associated with gadolinium [Gd (III)]-based contrast agents used in magnetic resonance imaging have emerged in the past three decades. Safety issues arise from the release of Gd (III) from chelates and its deposition in tissues, which is exacerbated in patients with renal disease, since the kidney is the major excretion organ of most of these agents. This study aimed at unveiling the cellular and molecular mechanisms of nephrotoxicity of Gd (III), using an in vitro model of human proximal tubular cells (HK-2 cell line). Cell viability declined in a concentration- and time-dependent manner after exposure to GdCl3·6H2O. The estimated inhibitory concentrations (ICs) eliciting 1 to 50% of cell death, after 24 h of exposure, ranged from 3.4 to 340.5 µM. At toxic concentrations, exposure to Gd (III) led to disruption of the oxidative status, mitochondrial dysfunction, cell death by apoptosis, switching to necrosis at higher levels, and autophagic activation. Disturbance of the lipid metabolism was already observed at low-toxicity ICs, with accumulation of lipid droplets, and upregulation of genes related to both lipogenesis and lipolysis. Gd (III)-exposure, even at the subtoxic IC01, increased the expression of modulators of various signaling pathways involved in the development and progression of renal disease, including inflammation, hypoxia and fibrosis. Our results give new insights into the mechanisms underlying the nephrotoxic potential of Gd (III) and highlight the need to further clarify the risks versus benefits of the Gd (III)-based contrast agents currently in use.
Collapse
Affiliation(s)
- Nícia Reis Sousa
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.,Departamento de Ciências e Tecnologia da Saúde, Instituto Superior Politécnico de Benguela, Benguela, Angola
| | - Susana Rocha
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Alice Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Farmácia da, Universidade do Porto, Porto, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Susana Coimbra
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Farmácia da, Universidade do Porto, Porto, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Maria João Valente
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Farmácia da, Universidade do Porto, Porto, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Bruno F, DeAguero J, Do C, Lee DY, Tan C, Escobar GP, Wagner B. Overlapping roles of NADPH oxidase 4 for diabetic and gadolinium-based contrast agent-induced systemic fibrosis. Am J Physiol Renal Physiol 2021; 320:F617-F627. [PMID: 33615889 DOI: 10.1152/ajprenal.00456.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dozens of millions of people are exposed to gadolinium-based contrast agents annually for enhanced magnetic resonance imaging. Gadolinium-based contrast agents are known nephrotoxins and can trigger the potentially fatal condition of systemic fibrosis. Risk factors are practically entirely undefined. We examined the role of NADPH oxidase 4 (Nox4) in gadolinium-induced systemic disease. Age- and weight-matched mice were randomized to experimental diabetes (streptozotocin) and control groups followed by systemic gadolinium-based contrast agent treatment. Nox4-deficient mice were randomized to experimental diabetes and gadolinium-based contrast agent treatment. Skin fibrosis and cellular infiltration were apparent in both gadolinium-based contrast agent-treated and experimental diabetes groups. Similarly, both groups demonstrated renal pathologies with evidence of reactive oxygen species generation. Deletion of Nox4 abrogated both skin and renal pathology, whether from diabetes or gadolinium-based contrast agent treatment. These discoveries demonstrate the importance of Nox4 in gadolinium-based contrast agent- and diabetes-induced fibrosis.NEW & NOTEWORTHY A mouse model of gadolinium-based contrast agent- and diabetes-induced fibrosis was used to demonstrate the role of NADPH oxidase 4 (Nox4) in gadolinium-induced systemic disease. Using these models, we established the role of Nox4 as a mediator of reactive oxygen species generation and subsequent skin and kidney fibrosis. These novel findings have defined Nox-4-mediated mechanisms by which gadolinium-based contrast agents induce systemic diseases.
Collapse
Affiliation(s)
- Francesca Bruno
- Eboli Hospital "Maria SS Addolorata," UOC of Nephrology and Dialysis, Eboli, Italy
| | - Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, New Mexico
| | - Catherine Do
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, New Mexico.,New Mexico Veterans Administration Health Care System, Albuquerque, New Mexico
| | - Doug Yoon Lee
- University of Texas Health System, San Antonio, Texas
| | - Chunyan Tan
- University of Texas Health System, San Antonio, Texas
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, New Mexico.,New Mexico Veterans Administration Health Care System, Albuquerque, New Mexico
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, New Mexico.,New Mexico Veterans Administration Health Care System, Albuquerque, New Mexico
| |
Collapse
|
16
|
Pun PH, Crowley ST. Group II GBCM Can Be Used Safely for Imaging in Stage 4/5 CKD Patients: CON. KIDNEY360 2020; 2:13-15. [PMID: 35368809 PMCID: PMC8785745 DOI: 10.34067/kid.0005572020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Patrick H. Pun
- Department of Medicine, Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina,Division of Nephrology, Duke University Medical Center, Durham, North Carolina,Department of Medicine, Durham Veterans Administration Healthcare System, Durham, North Carolina
| | - Susan T. Crowley
- Division of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut,Medical Services, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
17
|
Wallnöfer EA, Thurner GC, Kremser C, Talasz H, Stollenwerk MM, Helbok A, Klammsteiner N, Albrecht-Schgoer K, Dietrich H, Jaschke W, Debbage P. Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochem Cell Biol 2020; 155:19-73. [PMID: 33040183 DOI: 10.1007/s00418-020-01919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
This multidisciplinary study examined the pharmacokinetics of nanoparticles based on albumin-DTPA-gadolinium chelates, testing the hypothesis that these nanoparticles create a stronger vessel signal than conventional gadolinium-based contrast agents and exploring if they are safe for clinical use. Nanoparticles based on human serum albumin, bearing gadolinium and designed for use in magnetic resonance imaging, were used to generate magnet resonance images (MRI) of the vascular system in rats ("blood pool imaging"). At the low nanoparticle doses used for radionuclide imaging, nanoparticle-associated metals were cleared from the blood into the liver during the first 4 h after nanoparticle application. At the higher doses required for MRI, the liver became saturated and kidney and spleen acted as additional sinks for the metals, and accounted for most processing of the nanoparticles. The multiple components of the nanoparticles were cleared independently of one another. Albumin was detected in liver, spleen, and kidneys for up to 2 days after intravenous injection. Gadolinium was retained in the liver, kidneys, and spleen in significant concentrations for much longer. Gadolinium was present as significant fractions of initial dose for longer than 2 weeks after application, and gadolinium clearance was only complete after 6 weeks. Our analysis could not account quantitatively for the full dose of gadolinium that was applied, but numerous organs were found to contain gadolinium in the collagen of their connective tissues. Multiple lines of evidence indicated intracellular processing opening the DTPA chelates and leading to gadolinium long-term storage, in particular inside lysosomes. Turnover of the stored gadolinium was found to occur in soluble form in the kidneys, the liver, and the colon for up to 3 weeks after application. Gadolinium overload poses a significant hazard due to the high toxicity of free gadolinium ions. We discuss the relevance of our findings to gadolinium-deposition diseases.
Collapse
Affiliation(s)
- E A Wallnöfer
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - G C Thurner
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - C Kremser
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - H Talasz
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - M M Stollenwerk
- Faculty of Health and Society, Biomedical Laboratory Science, University Hospital MAS, Malmö University, 205 06, Malmö, Sweden
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - A Helbok
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - N Klammsteiner
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - K Albrecht-Schgoer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80-82/IV, 6020, Innsbruck, Austria
- Institute of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - H Dietrich
- Central Laboratory Animal Facilities, Innsbruck Medical University, Peter-Mayr-Strasse 4a, 6020, Innsbruck, Austria
| | - W Jaschke
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - P Debbage
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
18
|
Rudnick MR, Wahba IM, Leonberg-Yoo AK, Miskulin D, Litt HI. Risks and Options With Gadolinium-Based Contrast Agents in Patients With CKD: A Review. Am J Kidney Dis 2020; 77:517-528. [PMID: 32861792 DOI: 10.1053/j.ajkd.2020.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/01/2020] [Indexed: 01/19/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) improve the diagnostic capabilities of magnetic resonance imaging. Although initially believed to be without major adverse effects, GBCA use in patients with severe chronic kidney disease (CKD) was demonstrated to cause nephrogenic systemic fibrosis (NSF). Restrictive policies of GBCA use in CKD and selective use of GBCAs that bind free gadolinium more strongly have resulted in the virtual elimination of NSF cases. Contemporary studies of the use of GBCAs with high binding affinity for free gadolinium in severe CKD demonstrate an absence of NSF. Despite these observations and the limitations of contemporary studies, physicians remain concerned about GBCA use in severe CKD. Concerns of GBCA use in severe CKD are magnified by recent observations demonstrating gadolinium deposition in brain and a possible systemic syndrome attributed to GBCAs. Radiologic advances have resulted in several new imaging modalities that can be used in the severe CKD population and that do not require GBCA administration. In this article, we critically review GBCA use in patients with severe CKD and provide recommendations regarding GBCA use in this population.
Collapse
Affiliation(s)
- Michael R Rudnick
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA.
| | - Ihab M Wahba
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA; Corporal Michael J Crescenz Philadelphia Veterans Affairs Hospital Philadelphia, PA
| | - Amanda K Leonberg-Yoo
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA
| | - Dana Miskulin
- Division of Nephrology, Tufts University School of Medicine, Boston, MA
| | - Harold I Litt
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Luiza da Silva Queiroz M, Bezerra Diniz PR, Nepomuceno Montenegro EJ, de Souza Costa Neto JJ, Santana de Albuquerque Filho E, Valença MM, Sobral de Oliveira Souza AI, da Silva Tenório A, Wanderley D, de Oliveira DA. MRI in migraineurs: are there abnormalities in the area where the myofascial trigger points are palpable and in volume measurements? J Bodyw Mov Ther 2020; 24:260-266. [PMID: 32825998 DOI: 10.1016/j.jbmt.2020.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Patients with migraine may present a higher quantity of myofascial trigger points (MTrP) and alterations in the cervical muscles when compared to non-migraineurs. The magnetic resonance imaging (MRI) is a robust method for the study of human soft tissues and could be useful to investigate these points. OBJECTIVES To identify the presence of MTrP in the descending fibers of the trapezius muscle in women with migraine and to quantify the muscle volume by MRI, correlating it with the headache characteristics. METHODS A cross-sectional analytic study was conducted among 14 women, eight in migraine group, and six in without migraine group. The presence of MTrP was evaluated using Simons' criteria, and linolenic acid capsules subsequently marked the areas. MRI was performed with 1.5T, T1-weighted sequence, and T2 in the axial, sagittal, and coronal planes. The T1-weighted sequences were performed with and without gadolinium contrast. RESULTS The T1-weighted image analysis with and without gadolinium did not show any signal alteration in the MTrP areas in both groups. The migraine group presented more MTrP in the trapezius muscle (MD [95%CI] = 1[1; 3]; MD [95%CI] = 1[0; 2] right and left side, respectively), and a smaller muscle volume (MD [95%CI] = -198.1[-338.7;-25.6], MD [95%CI] = -149.9[-325.05;-0.13] right and left side, respectively) than non-migraineurs. The migraine frequency presented a negative strong correlation with the trapezius volumes (r = -0.812; p = 0.014). CONCLUSION Migraineurs present more MTrP and a smaller muscle volume than non-migraineurs. The trapezius volume is negatively correlated with migraine frequency. MRI is not a suitable outcome measure for assessing MTrP.
Collapse
Affiliation(s)
| | - Paula Rejane Bezerra Diniz
- Post-graduation Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | - Débora Wanderley
- Physical Therapy Departament, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | |
Collapse
|
20
|
Do C, DeAguero J, Brearley A, Trejo X, Howard T, Escobar GP, Wagner B. Gadolinium-Based Contrast Agent Use, Their Safety, and Practice Evolution. ACTA ACUST UNITED AC 2020; 1:561-568. [PMID: 34423308 DOI: 10.34067/kid.0000272019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gadolinium-based contrast agents (GBCAs) have provided much needed image enhancement in magnetic resonance imaging (MRI) important in the advancement of disease diagnosis and treatment. The paramagnetic properties of ionized gadolinium have facilitated these advancements, but ionized gadolinium carries toxicity risk. GBCAs were formulated with organic chelates designed to reduce these toxicity risks from unbound gadolinium ions. They were preferred over iodinated contrast used in computed tomography and considered safe for use. As their use expanded, the development of new diseases associated with their use (including nephrogenic systemic fibrosis) has drawn more attention and ultimately caution with their clinical administration in those with impaired renal function. Use of GBCAs in those with preserved renal function was considered to be safe. However, in this new era with emerging clinical and experimental evidence of brain gadolinium deposition in those with repeated exposure, these safety assumptions are once again brought into question. This review article aims to add new perspectives in thinking about the role of GBCA in current clinical use. The new information begs for further discussion and consideration of the risk-benefit ratio of use of GBCAs.
Collapse
Affiliation(s)
- Catherine Do
- Kidney Institute of New Mexico, Albuquerque, New Mexico.,Renal Section, Medicine Service, New Mexico Veterans Administration Health Care System, Albuquerque, New Mexico.,Department of Medicine, University of New Mexico Health Care System, Albuquerque, New Mexico
| | - Joshua DeAguero
- Kidney Institute of New Mexico, Albuquerque, New Mexico.,University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Adrian Brearley
- Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico
| | | | - Tamara Howard
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - G Patricia Escobar
- Kidney Institute of New Mexico, Albuquerque, New Mexico.,Renal Section, Medicine Service, New Mexico Veterans Administration Health Care System, Albuquerque, New Mexico.,University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Brent Wagner
- Kidney Institute of New Mexico, Albuquerque, New Mexico.,Renal Section, Medicine Service, New Mexico Veterans Administration Health Care System, Albuquerque, New Mexico.,Department of Medicine, University of New Mexico Health Care System, Albuquerque, New Mexico.,University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The hegemony of gadolinium-based contrast agent-induced adverse events stretches beyond those who have renal impairment. 'Nephrogenic' systemic fibrosis is a misnomer: gadolinium-based contrast agents are the known trigger for the disease; kidney impairment is a risk factor. Impaired (true) glomerular filtration may be one catalyst for gadolinium-based contrast agent-induced adverse events, but it is increasingly evident that the same cluster of symptoms occurs in patients with normal renal function. RECENT FINDINGS It has been known for nearly 30 years that gadolinium-based contrast agents distribute and are cleared according to a three compartment model. Single doses of gadolinium-based contrast agents can trigger 'nephrogenic' systemic fibrosis in nondialysis dependent patients. Manifestations have occurred years after exposure. Renal insufficiency alone is not an adequate explanation for 'nephrogenic' systemic fibrosis, and the continuum of its symptoms with the adverse events reported by patients with normal renal function clearly indicate that the physiologic reactions are largely undefined. SUMMARY Gadolinium-based contrast agents should be used with extreme caution.
Collapse
|
22
|
Stability evaluation of Gd chelates for macromolecular MRI contrast agents. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:527-536. [PMID: 31823277 DOI: 10.1007/s10334-019-00805-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE We try to establish designs for the macromolecular agents possessing high Gd3+-chelating stability, because free Gd3+ ion released from Gd chelates is known as a risk factor to cause toxic side effects and a safety concern. MATERIALS AND METHODS We prepared three types of Gd-based macromolecular MRI contrast agents from a synthetic polymer (poly(glutamic acid) homopolymer or poly(ethylene glycol)-b-poly(lysine) block copolymer) and a chelating moiety (DO3A or DOTA) having two strategic designs for high chelate stability. Then, we examine the in vitro Gd3+-chelate stability of these macromolecular MRI contrast agents. RESULTS The prepared macromolecular agents exhibited the same or higher Gd3+-chelate stability as/than did Gd-DOTA that possesses the highest Gd3+-chelate stability among the approved small-MW Gd-chelate MRI contrast agent. DISCUSSION Our macromolecular design was considered to work well for high Gd3+-chelate stability.
Collapse
|
23
|
Marasini R, Thanh Nguyen TD, Aryal S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1580. [PMID: 31486295 DOI: 10.1002/wnan.1580] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 01/10/2023]
Abstract
Magnetic resonance imaging (MRI) is a routinely used imaging technique in medical diagnostics, which is further enhanced with the use of contrast agents (CAs). The most commonly used CAs are gadolinium-based contrast agents (GBCAs), in which gadolinium (Gd) is chelated with organic chelating agents (linear or cyclic). However, the use of GBCA is related to toxic side effect due to the release of free Gd3+ ions from the chelating agents. The repeated use of GBCAs has led to Gd deposition in various major organs including bone, brain, and kidneys. As a result, the use of GBCA has been linked to the development of nephrogenic systemic fibrosis (NSF). Due to the GBCA associated toxicities, some clinically approved GBCAs have been limited or revoked recently. Therefore, there is an urgent need for the development of new strategies to chelate and stabilize Gd3+ ions for contrast enhancement, safety profile, and selective imaging of a pathological site. Toward this endeavor, GBCAs have been engineered using different nanoparticulate systems to improve their stability, biocompatibility, and pharmacokinetics. Throughout this review, some of the important strategies for engineering small molecular Gd3+ chelates into a nanoconstruct is discussed. We focus on the development of GBCAs as liposomes, mesoporous silica nanoparticles (MSNs), polymeric nanocarriers, and plasmonic nanoparticles-based design strategies to improve safety and contrast enhancement for contrast enhanced-magnetic resonance imaging (Ce-MRI). We also discuss the in-vitro/in-vivo properties of strategically designed nanoscale MRI CAs, its potentials, and limitations. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > Diagnostic Nanodevices Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Ramesh Marasini
- Department of Chemistry, Kansas State University, Manhattan, Kansas.,Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Tuyen Duong Thanh Nguyen
- Department of Chemistry, Kansas State University, Manhattan, Kansas.,Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Santosh Aryal
- Department of Chemistry, Kansas State University, Manhattan, Kansas.,Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
24
|
Gadolinium-based contrast agents: Stimulators of myeloid-induced renal fibrosis and major metabolic disruptors. Toxicol Appl Pharmacol 2019; 375:32-45. [PMID: 31082427 DOI: 10.1016/j.taap.2019.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022]
Abstract
Evidence for gadolinium-based contrast agent- (GBCA-) induced disease continues to mount. Risk factors for gadolinium-induced systemic fibrosis are entirely unexplored. Obesity-related renal injury is characterized by activation of glomerular mesangial cells and podocyte damage with alteration of lipid metabolism/lipid accumulation in both cell types resulting in matrix accumulation and eventual progression to glomerulosclerosis. We examined the consequences of GBCA treatment in the kidneys from mice with normal kidney function and the potential interplay between obesity and gadolinium exposure. We found that administration of GBCA (4 weeks) causes significant renal fibrosis and podocyte injury that are associated with metabolic disorders as evidenced by dyslipidemia. Metabolomic analysis demonstrated that renal lipid metabolism and metabolic markers of collagen turnover are significantly altered by gadolinium. GBCA stimulates myeloid-derived fibrocytes to the kidney. Obesity was induced by feeding a group of mice a high fat diet (HFD) for 22 weeks. Groups were sub-randomized to GBCA treatment versus none for 4 weeks before sacrifice. HFD-induced fibrosis and podocyte injury were worsened by GBCA. Similarly, HFD-mediated hyperlipidemia and lipid metabolites were exacerbated by gadolinium. This is the first evidence that GBCA causes significant metabolic disorders and kidney injury in mice without renal insufficiency and that the injurious actions of GBCA are amplified by obesity. The understanding of the functional interplay between gadolinium and obesity will allow the development of therapeutic interventions or the establishment of effective preventive measures to reduce gadolinium- and obesity-mediated renal pathologies.
Collapse
|
25
|
Do C, Drel V, Tan C, Lee D, Wagner B. Nephrogenic Systemic Fibrosis Is Mediated by Myeloid C-C Chemokine Receptor 2. J Invest Dermatol 2019; 139:2134-2143.e2. [PMID: 30978353 DOI: 10.1016/j.jid.2019.03.1145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Gadolinium-based contrast agents are implicated in several pathologic abnormalities (long-term retention in vital organs such as the skin and the brain) and are the cause of a sometimes fatal condition in patients, nephrogenic systemic fibrosis. Bone marrow-derived fibrocytes and the monocyte chemoattractant protein-1 inflammatory pathway have been implicated as mediators of the adverse effects induced by gadolinium-based contrast agents. Mechanistic studies are scant; therefore, a mouse model of nephrogenic systemic fibrosis was established. Dermal cellularity was increased in contrast-treated green fluorescent protein (GFP) chimeric mice. GFP in the skin and fibrosis were increased in the contrast-treated chimeric animals. Monocyte chemoattractant protein-1 and C-C chemokine receptor 2 were increased in the tissues from contrast-treated mice. C-C chemokine receptor 2-deficient recipients of GFP-expressing marrow had an abrogation of gadolinium-induced pathology and displayed less GFP-positive cells in the skin. Wild-type animals that received C-C chemokine receptor 2-deficient bone marrow had a complete abrogation of dermal pathology. That GFP levels and expression increase in the skin, in tandem with a fibrocyte marker, supports the blood-borne circulating fibrocyte hypothesis of the disease. As of now, fibrocyte trafficking has yet to be demonstrated. Importantly, our data demonstrate that the monocyte chemoattractant protein-1/C-C chemokine receptor 2 axis plays a critical role in the pathogenesis of nephrogenic systemic fibrosis.
Collapse
Affiliation(s)
- Catherine Do
- South Texas Veterans Health Care System, San Antonio, Texas, USA; University of Texas Health Science Center, San Antonio, Texas, USA
| | - Viktor Drel
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - Chunyan Tan
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - Doug Lee
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, Albuquerque, New Mexico, USA; University of New Mexico Health Science Center, Albuquerque, New Mexico, USA; New Mexico Veterans Administration Health Care System, Albuquerque, New Mexico, USA.
| |
Collapse
|
26
|
Arda K, Akay S, Erisken C. Effect of gadolinium concentration on temperature change under magnetic field. PLoS One 2019; 14:e0214910. [PMID: 30947239 PMCID: PMC6449068 DOI: 10.1371/journal.pone.0214910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/24/2019] [Indexed: 12/31/2022] Open
Abstract
Gadolinium based contrast agents (GBCAs) were found to play a role in nephrogenic systemic fibrosis in patients with and without renal impairment. Therefore, preserving the structural stability of GBCAs to reduce their propensity to liberate Gd3+ is of utmost importance. This study evaluates the effect of gadolinium concentration of GBCAs on solution temperature under magnetic fields. It is hypothesized that presence of gadolinium will lead to temperature changes of its solutions under magnetic field, and this change will depend on concentration. In this study, GBCAs were diluted to concentrations of 0.6, 1.2, 1.8, 2.4 mMol/L. A 10mL preparation in pure water, simulated body fluid (SBF), and plasma was scanned at 3T following a soft tissue neck protocol, and their temperatures were measured. Findings revealed that concentration of GBCA had significant effect on temperature change in all dilution media. Type of commercially available GBCA had an effect only in SFB and plasma. Evaluation of correlation between conditional stability constant (Kcond) and temperature difference (ΔT) revealed that in water and SBF there exists a positive correlation between Kcond and temperature variation. Collectively, GBCAs can cause local temperature variations when administered into patients, and can affect dissociation of gadolinium from its chelates, which should be investigated in a further study.
Collapse
Affiliation(s)
- Kemal Arda
- Health Sciences University, Gulhane Medicine Faculty, Research and Education Hospital, Department of Radiology, Ankara, Turkey
| | - Sinan Akay
- Health Sciences University, Gulhane Medicine Faculty, Research and Education Hospital, Department of Radiology, Ankara, Turkey
| | - Cevat Erisken
- Nazarbayev University, Chemical and Materials Engineering, Astana, Kazakhstan
- * E-mail:
| |
Collapse
|
27
|
Prybylski JP, Coste Sanchez C, Jay M. Impact of chelation timing on gadolinium deposition in rats after contrast administration. Magn Reson Imaging 2019; 55:140-144. [PMID: 30321663 PMCID: PMC6263939 DOI: 10.1016/j.mri.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To determine if gadolinium (Gd) can be rechelated once released from Gd-based contrast agents (GBCAs) and deposited in vivo. Despite extensive research comparing GBCAs and GBCA formulations as well as the ongoing debate about their risks of deposition and the role of Gd release, it remains unknown if retained Gd can be eliminated by administering chelating agents. MATERIALS AND METHODS Rats were injected intravenously with 10 doses of 1 mmol/kg gadodiamide and treated with intravenous Zn-DTPA (30 μmol/kg) concomitantly or 1, 4 or 8 h after GBCA administration (N = 3 rats per group). After euthanization, tissues were harvested three days after the last dose of gadodiamide and tissue Gd concentrations were assessed by ICP-MS. Additionally, a simulation of a single 0.1 mmol/kg gadopentetate dose with 30 μmol/kg DTPA given either concomitantly or within the first 24 h after GBCA was run; simulated tissue Gd concentrations were compared with those observed in rats to determine if simulated trends were accurate. RESULTS Concomitant DTPA did not produce a significant reduction in Gd concentration in any organ for rats. There was a time-dependent trend in liver Gd reduction. The 1 h timepoint was associated with a non-significant increase in kidney, brain and femur Gd relative to untreated controls. There were no significant deviations from the model-predicted Gd changes. DISCUSSION Both the simulation and rat study did not identify major benefits for chelation at the doses given, despite the simulation assuming all Gd deposited in tissues is unchelated. The potential redistribution in the rat study provide a compelling result that may impact the clinical relevance of further work investigating rechelation of Gd. Future work should further describe the three-dimensional dose-time-response relationship for preventing Gd deposition, and how that relates to long-term Gd toxicities.
Collapse
Affiliation(s)
- John P Prybylski
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States of America
| | - Carla Coste Sanchez
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States of America
| | - Michael Jay
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
28
|
McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA, Tweedle MF, Kressel HY. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 2018; 289:517-534. [PMID: 30204075 DOI: 10.1148/radiol.2018181151] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) have revolutionized MRI, enabling physicians to obtain crucial life-saving medical information that often cannot be obtained with other imaging modalities. Since initial approval in 1988, over 450 million intravenous GBCA doses have been administered worldwide, with an extremely favorable pharmacologic safety profile; however, recent information has raised new concerns over the safety of GBCAs. Mounting evidence has shown there is long-term retention of gadolinium in human tissues. Further, a small subset of patients have attributed a constellation of symptoms to GBCA exposure, although the association of these symptoms with GBCA administration or gadolinium retention has not been proven by scientific investigation. Despite evidence that macrocyclic GBCAs show less gadolinium retention than linear GBCAs, the safety implications of gadolinium retention are unknown. The mechanism and chemical forms of gadolinium retention, as well as the biologic activity and clinical importance of these retained gadolinium species, remain poorly understood and underscore the need for additional research. In February 2018, an international meeting was held in Bethesda, Md, at the National Institutes of Health to discuss the current literature and knowledge gaps about gadolinium retention, to prioritize future research initiatives to better understand this phenomenon, and to foster collaborative standardized studies. The greatest priorities are to determine (a) if gadolinium retention adversely affects the function of human tissues, (b) if retention is causally associated with short- or long-term clinical manifestations of disease, and (c) if vulnerable populations, such as children, are at greater risk for experiencing clinical disease. The purpose of the research roadmap is to highlight important information that is not known and to identify and prioritize needed research. ©RSNA, 2018 Online supplemental material is available for this article .
Collapse
Affiliation(s)
- Robert J McDonald
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Deborah Levine
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Jeffrey Weinreb
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Emanuel Kanal
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Matthew S Davenport
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - James H Ellis
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Paula M Jacobs
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Robert E Lenkinski
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Kenneth R Maravilla
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Martin R Prince
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Howard A Rowley
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Michael F Tweedle
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Herbert Y Kressel
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| |
Collapse
|
29
|
Rah YC, Han EJ, Park S, Rhee J, Koun S, Park HC, Choi J. In vivo assay of the potential gadolinium-induced toxicity for sensory hair cells using a zebrafish animal model. J Appl Toxicol 2018; 38:1398-1404. [DOI: 10.1002/jat.3656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Eun Jung Han
- Korea University Graduate School of Medicine; Laboratory of Neurodevelopmental Genetics; Seoul Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Jihye Rhee
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Soonil Koun
- Biomedical Research Center Korea University Ansan Hospital; Seoul Republic of Korea
| | - Hae-Chul Park
- Korea University Graduate School of Medicine; Laboratory of Neurodevelopmental Genetics; Seoul Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| |
Collapse
|
30
|
Russo M, Ponsiglione AM, Forte E, Netti PA, Torino E. Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked hyaluronic acid nanoparticles. Nanomedicine (Lond) 2017; 12:2199-2210. [PMID: 28816102 DOI: 10.2217/nnm-2017-0098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM The efficacy of gadolinium (Gd) chelates as contrast agents for magnetic resonance imaging remains limited owing to poor relaxivity and toxic effects. Here, the effect of the hydration of the hydrogel structure on the relaxometric properties of Gd-DTPA is explained for the first time and called Hydrodenticity. RESULTS The ability to tune the hydrogel structure is proved through a microfluidic flow-focusing approach able to produce crosslinked hyaluronic acid nanoparticles, analyzed regarding the crosslink density and mesh size, and connected to the characteristic correlation times of the Gd-DTPA. CONCLUSION Hydrodenticity explains the boosting (12-times) of the Gd-DTPA relaxivity by tuning hydrogel structural parameters, potentially enabling the reduction of the administration dosage as approved for clinical use. [Formula: see text].
Collapse
Affiliation(s)
- Maria Russo
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Ernesto Forte
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
31
|
Yee J. Prophylactic Hemodialysis for Protection Against Gadolinium-Induced Nephrogenic Systemic Fibrosis: A Doll's House. Adv Chronic Kidney Dis 2017; 24:133-135. [PMID: 28501073 DOI: 10.1053/j.ackd.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Knoepp F, Bettmer J, Fronius M. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na + channels (ENaCs). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1040-1048. [PMID: 28257815 DOI: 10.1016/j.bbamem.2017.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd3+ ions. Gd3+ is also a modulator of mechano-gated ion channels, including the epithelial Na+ channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd3+ and GBCAs on ENaC's activity. METHODS Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd3+, linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (IM) were recorded by the two-electrode-voltage-clamp technique and Gd3+-release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. RESULTS Gd3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased IM which was preventable by DEPC (modifies histidines). Strikingly Gd3+≥0.4mmol/l increased IM and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd3+, whereas the chelator DTPA showed no effect. Gd3+ and Gd-DTPA increased the IC50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased IM to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd3+ is responsible for this effect. CONCLUSION These results confirm Gd3+-release from linear Gd-DTPA and indicate that the released Gd3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects.
Collapse
Affiliation(s)
- Fenja Knoepp
- Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University Giessen, Aulweg 130, 35392 Giessen, Germany
| | - Joerg Bettmer
- Department of Physical and Analytical Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Martin Fronius
- Department of Physiology, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| |
Collapse
|
33
|
Gheran CV, Voicu SN, Rigaux G, Callewaert M, Chuburu F, Dinischiotu A. Biological effects induced by Gadolinium nanoparticles on Lymphocyte A20 cell line. THE EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/01.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Gadolinium nanoparticles (GdNPs) are potential agents for MRI of lymph nodes. The aim of this study was to evaluate the in vitro effects of 1 μM, 2.5 μM and 5 μM of GdDOTA⊂CS-TPP/HA and GdDOTP⊂CS-TPP/HA NPs on A20 lymphocyte cells exposed for 6 and 24 hours. The total cellular biomass (SRB), lactate dehydrogenase activity (LDH) and oxidative stress parameters, such as reactive oxygen species generation (ROS), reduced glutathione (GSH), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) were analyzed by spectrophotometric and fluorimetric methods. After cells exposure to 1 μM, 2.5 μM and 5 μM of GdDOTP⊂CS-TPP/HA NPs their viability decreased in a time- and dose-dependent manner, whereas for GdDOTA⊂CS-TPP/HA no significant changes were noticed. Both NPs formulations in doses of 1 μM, 2.5 μM, 5 μM did not affect the plasma membrane at each time point tested. The levels of ROS, MDA and AOPP increased proportionally with the concentration and exposure time. GSH concentration decreased significantly for all doses of both NPs tested. Taken together our data suggest that, GdDOTP⊂CS-TPP/HA and GdDOTA⊂CS-TPP/HA NPs induced oxidative stress in A20 lymphocyte cells which was counteracted by the cells antioxidant defense system to a certain extend.
Collapse
Affiliation(s)
- Cecilia Virginia Gheran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest , Romania
| | - Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest , Romania
- Department of Pharmacy, Faculty of Pharmacy, Titu Maiorescu University, Bucharest , Romania
| | - Guillaume Rigaux
- Institut de Chimie Moleculaire de Reims, CNRS UMR 7312, Universite de Reims Champagne-Ardenne URCA, 51685 Reims Cedex 2, France
| | - Maite Callewaert
- Institut de Chimie Moleculaire de Reims, CNRS UMR 7312, Universite de Reims Champagne-Ardenne URCA, 51685 Reims Cedex 2, France
| | - Francoise Chuburu
- Institut de Chimie Moleculaire de Reims, CNRS UMR 7312, Universite de Reims Champagne-Ardenne URCA, 51685 Reims Cedex 2, France
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest , Romania
| |
Collapse
|
34
|
Li X, Sun L, Wei X, Luo Q, Cai H, Xiao X, Zhu H, Luo K. Stimuli-responsive biodegradable and gadolinium-based poly[N-(2-hydroxypropyl) methacrylamide] copolymers: their potential as targeting and safe magnetic resonance imaging probes. J Mater Chem B 2017; 5:2763-2774. [PMID: 32264163 DOI: 10.1039/c6tb03253b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Functionalized and biodegradable block pHPMA copolymer–gadolinium conjugates demonstrated good biocompatibility, high T1 relaxivity, and enhanced tumor signal intensity for MRI.
Collapse
Affiliation(s)
- Xue Li
- Laboratory of Stem Cell Biology
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu
| | - Ling Sun
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Xiaoli Wei
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Hao Cai
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Xueyang Xiao
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu
| |
Collapse
|
35
|
Kasper JY, Hermanns MI, Cavelius C, Kraegeloh A, Jung T, Danzebrink R, Unger RE, Kirkpatrick CJ. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro. Int J Nanomedicine 2016; 11:6353-6364. [PMID: 27994454 PMCID: PMC5153260 DOI: 10.2147/ijn.s92608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The microvascular endothelium of the gut barrier plays a crucial role during inflammation in inflammatory bowel disease. We have modified a commonly used intestinal cell model based on the Caco-2 cells by adding microvascular endothelial cells (ISO-HAS-1). Transwell filters were used with intestinal barrier-forming Caco-2 cells on top and the ISO-HAS-1 on the bottom of the filter. The goal was to determine whether this coculture mimics the in vivo situation more closely, and whether the model is suitable to evaluate interactions of, for example, prospective nanosized drug vehicles or contrast agents with this coculture in a physiological and inflamed state as it would occur in inflammatory bowel disease. We monitored the inflammatory responsiveness of the cells (release of IL-8, soluble intercellular adhesion molecule 1, and soluble E-selectin) after exposure to inflammatory stimuli (lipopolysaccharide, TNF-α, INF-γ, IL1-β) and a nanoparticle (Ba/Gd: coprecipitated BaSO4 and Gd(OH)3), generally used as contrast agents. The barrier integrity of the coculture was evaluated via the determination of transepithelial electrical resistance and the apparent permeability coefficient (Papp) of NaFITC. The behavior of the coculture Caco-1/ISO-HAS-1 was compared to the respective monocultures Caco-2 and ISO-HAS-1. Based on transepithelial electrical resistance, the epithelial barrier integrity of the coculture remained stable during incubation with all stimuli, whereas the Papp decreased after exposure to the cytokine mixture (TNF-α, INF-γ, IL1-β, and Ba/Gd). Both the endothelial and epithelial monocultures showed a high inflammatory response in both the upper and lower transwell-compartments. However, in the coculture, inflammatory mediators were only detected on the epithelial side and not on the endothelial side. Thus in the coculture, based on the Papp, the epithelial barrier appears to prevent a potential inflammatory overreaction in the underlying endothelial cells. In summary, this coculture model exhibits in vivo-like features, which cannot be observed in conventional monocultures, making the former more suitable to study interactions with external stimuli.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Jung
- NanoGate AG, Goettelborn, Saarbrücken, Germany
| | | | - Ronald E Unger
- Institute of Pathology, University Medical Center, Mainz
| | | |
Collapse
|
36
|
Abstract
Gadolinium-based contrast agents (GBCAs), once believed to be safe for patients with renal disease, have been strongly associated with nephrogenic systemic fibrosis (NSF), a severe systemic fibrosing disorder that predominantly afflicts individuals with advanced renal dysfunction. We provide a historical perspective on the appearance and disappearance of NSF, including its initial recognition as a discrete clinical entity, its association with GBCA exposure, and the data supporting a causative relationship between GBCA exposure and NSF. On the basis of this body of evidence, we propose that the name gadolinium-induced fibrosis (GIF) more accurately reflects the totality of knowledge regarding this disease. Use of high-risk GBCAs, such as formulated gadodiamide, should be avoided in patients with renal disease. Restriction of GBCA use in this population has almost completely eradicated new cases of this debilitating condition. Emerging antifibrotic therapies may be useful for patients who suffer from GIF.
Collapse
Affiliation(s)
- Derrick J Todd
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.,Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Jonathan Kay
- Division of Rheumatology, Department of Medicine, UMass Memorial Medical Center and University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| |
Collapse
|
37
|
Effects of Gadodiamide on cell proliferation and collagen production in cultured human dermal fibroblasts. Arch Dermatol Res 2016; 308:695-701. [DOI: 10.1007/s00403-016-1689-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
|
38
|
Drel VR, Tan C, Barnes JL, Gorin Y, Lee DY, Wagner B. Centrality of bone marrow in the severity of gadolinium-based contrast-induced systemic fibrosis. FASEB J 2016; 30:3026-38. [PMID: 27221979 DOI: 10.1096/fj.201500188r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/12/2016] [Indexed: 12/30/2022]
Abstract
Systemic fibrosis can be induced in humans with gadolinium-based contrast, and cumulative doses correlate with severity. Bone marrow-derived fibrocytes accumulate in the dermis. Whether target organs liberate chemokines to recruit these fibrocytes or whether fibrocytes are stimulated to home to the affected tissue is unknown. Transgenic (tagged) donor rats were treated with gadolinium-based contrast. Bone marrow was obtained from diseased animals and age-matched controls. Rats with subtotal nephrectomies were lethally irradiated and underwent salvage transplantation with either the contrast-naïve or contrast-exposed bone marrow. Groups were randomly assigned to control or contrast treatment. Contrast treatment led to dermal fibrosis, and this was exacerbated in recipients of contrast-exposed marrow. Fibronectin, C-C chemokine receptors (CCRs)2 and 7, and oxidative stress were all increased in skin from contrast-treated animals-all parameters more severe in recipients of contrast-treated animals. The respective ligands, monocyte chemoattractant protein and C-C motif ligand 19, were both elevated in skin from contrast-treated animals. Coadministration of gadolinium-based contrast and a CCR2 inhibitor reduced the severity of skin disease as well as dermal cellularity. The functional role of chemokines in the effects of gadolinium-based contrast was further confirmed in in situ coculture studies using neutralizing CCR2 antibodies. These data implicate dermal liberation of specific chemokines in the recruitment of circulating bone marrow-derived cells. The disease is augmented by bone marrow exposure to contrast, which explains why multiple exposures correlate with severity.-Drel, V. R., Tan, C., Barnes, J. L., Gorin, Y., Lee, D.-Y., Wagner, B. Centrality of bone marrow in the severity of gadolinium-based contrast-induced systemic fibrosis.
Collapse
Affiliation(s)
- Viktor R Drel
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Chunyan Tan
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jeffrey L Barnes
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA; South Texas Veterans Health Care System, San Antonio,Texas, USA
| | - Yves Gorin
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Doug-Yoon Lee
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Brent Wagner
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA; South Texas Veterans Health Care System, San Antonio,Texas, USA
| |
Collapse
|
39
|
Wagner B, Drel V, Gorin Y. Pathophysiology of gadolinium-associated systemic fibrosis. Am J Physiol Renal Physiol 2016; 311:F1-F11. [PMID: 27147669 DOI: 10.1152/ajprenal.00166.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic fibrosis from gadolinium-based magnetic resonance imaging contrast is a scourge for the afflicted. Although gadolinium-associated systemic fibrosis is a rare condition, the threat of litigation has vastly altered clinical practice. Most theories concerning the etiology of the fibrosis are grounded in case reports rather than experiment. This has led to the widely accepted conjecture that the relative affinity of certain contrast agents for the gadolinium ion inversely correlates with the risk of succumbing to the disease. How gadolinium-containing contrast agents trigger widespread and site-specific systemic fibrosis and how chronicity is maintained are largely unknown. This review highlights experimentally-derived information from our laboratory and others that pertain to our understanding of the pathophysiology of gadolinium-associated systemic fibrosis.
Collapse
Affiliation(s)
- Brent Wagner
- South Texas Veterans Health Care System, San Antonio, Texas; and University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Viktor Drel
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yves Gorin
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
40
|
Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 2016; 29:365-76. [PMID: 27053146 PMCID: PMC4879157 DOI: 10.1007/s10534-016-9931-7] [Citation(s) in RCA: 483] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/01/2022]
Abstract
Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd(3+)) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.
Collapse
Affiliation(s)
- Moshe Rogosnitzky
- MedInsight Research Institute, Baltimore, MD, 21202, USA. .,Center for Drug Repurposing, Ariel University, 40700, Ariel, Israel.
| | - Stacy Branch
- MedInsight Research Institute, Baltimore, MD, 21202, USA
| |
Collapse
|
41
|
Balanced regulation of the CCN family of matricellular proteins: a novel approach to the prevention and treatment of fibrosis and cancer. J Cell Commun Signal 2015; 9:327-39. [PMID: 26698861 DOI: 10.1007/s12079-015-0309-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
The CCN family of matricellular signaling proteins is emerging as a unique common link across multiple diseases and organs related to injury and repair. They are now being shown to play a central role in regulating the pathways to the initiation and resolution of normal wound healing and fibrosis in response to multiple forms of injury. Similarly, it is also emerging that they play a key role in regulating the establishment, growth, metastases and tissue regeneration in many forms of cancer via the interaction of cancer cells with the tumor stroma. Evidence has been recently provided that these proteins do not act independently but are co-regulated working in a yin/yang manner to alter the outcome of both normal physiological processes as well as pathology. The purpose of this review is to twofold. First, it will summarize work to date supporting CCN2 as a therapeutic target in the formation and progression of renal, skin, and other organ fibrosis, as well as cancer stroma formation. Second, it will highlight recent evidence for CCN3 as a counter-regulator and a potential therapeutic agent in these diseases with an exciting, novel potential to both treat and then restore tissue homeostasis in those afflicted by these devastating disorders.
Collapse
|
42
|
Wu Y, Briley K, Tao X. Nanoparticle-based imaging of inflammatory bowel disease. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:300-15. [PMID: 26371464 DOI: 10.1002/wnan.1357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/11/2015] [Accepted: 05/23/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Yingwei Wu
- Department of Radiology; Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine; Shanghai China
- Department of Radiology; Shanghai East Hospital, Tongji University, School of Medicine; Shanghai China
| | - Karen Briley
- Department of Radiology, Wright Center of Innovation and Biomedical Imaging; The Ohio State University; Columbus OH USA
| | - Xiaofeng Tao
- Department of Radiology; Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine; Shanghai China
| |
Collapse
|
43
|
Sherrah AG, Grieve SM, Jeremy RW, Bannon PG, Vallely MP, Puranik R. MRI in Chronic Aortic Dissection: A Systematic Review and Future Directions. Front Cardiovasc Med 2015; 2:5. [PMID: 26664877 PMCID: PMC4671340 DOI: 10.3389/fcvm.2015.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/05/2015] [Indexed: 01/16/2023] Open
Abstract
The acute event of thoracic aortic dissection carries with it high mortality and morbidity. Despite optimal initial surgical or medical management strategies, the risk of further complications in the long-term, including aneurysmal dilatation and false lumen (FL) expansion, are not insignificant. Adequate follow-up of such conditions requires dedicated imaging where relevant prognostic indicators are accurately assessed. We perform a systematic review of the literature and report the current evidence for the use of magnetic resonance imaging (MRI) in assessment of chronic aortic dissection. We then make a comparison with traditional imaging modalities including computed tomography and echocardiography. We discuss new ways in which MRI may extend existing aortic assessment, including identification of blood-flow dynamics within the TL and FL using phase-contrast imaging.
Collapse
Affiliation(s)
- Andrew G. Sherrah
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- The Baird Institute, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stuart M. Grieve
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Richmond W. Jeremy
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- The Baird Institute, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Paul G. Bannon
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- The Baird Institute, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Michael P. Vallely
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- The Baird Institute, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Rajesh Puranik
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Cardiovascular Magnetic Resonance Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Idée JM, Fretellier N, Robic C, Corot C. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update. Crit Rev Toxicol 2014; 44:895-913. [PMID: 25257840 DOI: 10.3109/10408444.2014.955568] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jean-Marc Idée
- Guerbet, Research & Innovation Division , Aulnay-sous-Bois , France
| | | | | | | |
Collapse
|