1
|
Zhang Y, Ren H, Lu X, He D, Han Y, Wang H, Zeng C, Shi W. Inhibition of D4 Dopamine Receptors on Insulin Receptor Expression and Effect in Renal Proximal Tubule Cells. J Am Heart Assoc 2016; 5:e002448. [PMID: 27107134 PMCID: PMC4843542 DOI: 10.1161/jaha.115.002448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/14/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ion transport in the renal proximal tubule (RPT), which is increased in essential hypertension, is regulated by numerous hormones and humoral factors, including insulin and dopamine. Activation of dopamine receptor inhibits sodium reabsorption, whereas activation of insulin receptor increases sodium reabsorption in RPTs, and hyperinsulinemic animals and patients have defective renal dopaminergic system. We presume that there is an inhibition of D4 receptor on insulin receptor expression and effect, and the regulation is lost in spontaneously hypertensive rats (SHRs). METHODS AND RESULTS Insulin receptor expression was determined by immunoblotting, and Na(+)-K(+)-ATPase activity was detected in both Wistar-Kyoto (WKY) and SHR RPT cells. Stimulation of D4 receptor with PD168077 decreased expression of insulin receptors, which was blocked in the presence of the calcium-channel blocker, nicardipine (10(-6) mol/L per 24 hours), in cell culture medium without calcium or in the presence of inositol 1,4,5-trisphosphate (IP3) receptor blocker (2-aminoethyl diphenylborinate [2-ADB]; 10(-6) mol/L per 24 hours), indicating that extracellular calcium entry and calcium release from the endoplasmic reticulum were involved in the signal pathway. Stimulation of the insulin receptor stimulated Na(+)-K(+)-ATPase activity, whereas pretreatment with PD168077 for 24 hours decreased the inhibitory effects of insulin receptor on Na(+)-K(+)-ATPase activity in WKY cells. However, in SHR cells, inhibition of D4 receptor on insulin receptor expression and effect were lost. CONCLUSIONS Activation of D4 receptor inhibits insulin receptor expression in RPT cells from WKY rats. The aberrant inhibition of D4 receptor on insulin receptor expression and effect might be involved in the pathogenesis of essential hypertension.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Essential Hypertension
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Immunoblotting
- Intracellular Fluid/metabolism
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Piperazines/pharmacology
- RNA/genetics
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Real-Time Polymerase Chain Reaction
- Receptor, Insulin/biosynthesis
- Receptor, Insulin/genetics
- Receptors, Dopamine D4/drug effects
- Receptors, Dopamine D4/metabolism
Collapse
Affiliation(s)
- Ye Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Xi Lu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Weibin Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| |
Collapse
|
2
|
Fu J, Han Y, Wang H, Wang Z, Liu Y, Chen X, Cai Y, Guan W, Yang D, Asico LD, Zhou L, Jose PA, Zeng C. Impaired dopamine D1 receptor-mediated vasorelaxation of mesenteric arteries in obese Zucker rats. Cardiovasc Diabetol 2014; 13:50. [PMID: 24559270 PMCID: PMC3938077 DOI: 10.1186/1475-2840-13-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Background Obesity plays an important role in the pathogenesis of hypertension. Renal dopamine D1-like receptor-mediated diuresis and natriuresis are impaired in the obese Zucker rat, an obesity-related hypertensive rat model. The role of arterial D1 receptors in the hypertension of obese Zucker rats is not clear. Methods Plasma glucose and insulin concentrations and blood pressure were measured. The vasodilatory response of isolated mesenteric arteries was evaluated using a small vessel myograph. The expression and phosphorylation of D1 receptors were quantified by co-immunoprecipitation and immunoblotting To determine the effect of hyperinsulinemia and hyperglycemia on the function of the arterial D1 receptor, we studied obese Zucker rats (six to eight-weeks old) fed (6 weeks) vehicle or rosiglitazone, an insulin sensitizer (10 mg/kg per day) and lean Zucker rats (eight to ten-weeks old), fed high-fat diet to induce hyperinsulinemia or injected intraperitoneally with streptomycin (STZ) to induce hyperglycemia. Results In obese Zucker rats, the vasorelaxant effect of D1-like receptors was impaired that could be ascribed to decreased arterial D1 receptor expression and increased D1 receptor phosphorylation. In these obese rats, rosiglitazone normalized the arterial D1 receptor expression and phosphorylation and improved the D1-like receptor-mediated vasorelaxation. We also found that D1 receptor-dependent vasorelaxation was decreased in lean Zucker rats with hyperinsulinemia or hyperglycemia but the D1 receptor dysfunction was greater in the former than in the latter group. The ability of insulin and glucose to decrease D1 receptor expression and increase its phosphorylation were confirmed in studies of rat aortic smooth muscle cells. Conclusions Both hyperinsulinemia and hyperglycemia caused D1 receptor dysfunction by decreasing arterial D1 receptor expression and increasing D1 receptor phosphorylation. Impaired D1 receptor-mediated vasorelaxation is involved in the pathogenesis of obesity-related hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P,R, China.
| | | | | |
Collapse
|
3
|
Kuzhikandathil EV, Clark L, Li Y. The extracellular cAMP-adenosine pathway regulates expression of renal D1 dopamine receptors in diabetic rats. J Biol Chem 2011; 286:32454-63. [PMID: 21803776 DOI: 10.1074/jbc.m111.268136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of D1 dopamine receptors expressed in the kidneys promotes the excretion of sodium and regulates sodium levels during increases in dietary sodium intake. A decrease in the expression or function of D1 receptors results in increased sodium retention which can potentially lead to the development of hypertension. Studies have shown that in the absence of functional D1 receptors, in null mice, the systolic, diastolic, and mean arterial pressures are higher. Previous studies have shown that the expression and function of D1 receptors in the kidneys are decreased in animal models of diabetes. The mechanisms that down-regulate the expression of renal D1 receptor gene in diabetes are not well understood. Using primary renal cells and acutely isolated kidneys from the streptozotocin-induced rat diabetic model, we demonstrate that the renal D1 receptor expression is down-regulated by the extracellular cAMP-adenosine pathway in vitro and in vivo. In cultures of primary renal cells, a 3 mm, 60-h cAMP treatment down-regulated the expression of D1 receptors. In vivo, we determined that the plasma and urine cAMP levels as well as the expression of 5'-ectonucleotidase, tissue-nonspecific alkaline phosphatase, and adenosine A2a receptors are significantly increased in diabetic rats. Inhibitors of 5'-ectonucleotidase and tissue-nonspecific alkaline phosphatase, α,β-methyleneadenosine 5'-diphosphate, and levamisole, respectively, blocked the down-regulation of D1 receptors in the primary renal cells and in the kidney of diabetic animals. The results suggest that inhibitors of the extracellular cAMP-adenosine pathway reverse the down-regulation of renal D1 receptor in diabetes.
Collapse
Affiliation(s)
- Eldo V Kuzhikandathil
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | | | |
Collapse
|
4
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|
5
|
Wang X, Li F, Jose PA, Ecelbarger CM. Reduction of renal dopamine receptor expression in obese Zucker rats: role of sex and angiotensin II. Am J Physiol Renal Physiol 2010; 299:F1164-70. [PMID: 20810614 DOI: 10.1152/ajprenal.00604.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine produced by renal proximal tubules increases sodium excretion via a decrease in renal sodium reabsorption. Dopamine natriuresis is impaired in obese Zucker rats; however, the mechanism is not fully understood. To test the hypothesis that renal expression of one or more of the subtypes are altered in these rats, we measured whole kidney protein levels by immunoblotting of D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) dopamine receptors in both male and female obese and lean Zucker rats. In obese males on 1% NaCl diet, D1R, D2R, D4R, and D5R were decreased, while D3R was increased, relative to lean rats. Under a 4% NaCl diet, D2R and D3R levels in obese rats were restored to lean levels. 4% NaCl diet reduced D5R in both body types, relative to 1% NaCl diet. Female rats had higher expression of D1R and D3R than did male; however, the sex difference for D1R was markedly blunted in obese rats. In obese rats, dietary candesartan (angiotensin II type 1 receptor blocker) normalized downregulated D1R and D2R, but either decreased (D3R), did not affect (D4R), or further downregulated (D5R) the other subtypes. Candesartan also decreased D4R in lean rats. In summary, reduced renal protein levels of D1R, D2R, D4R, and D5R in obese Zucker rats could induce salt sensitivity and elevate blood pressure. Increased angiotensin II type 1 receptor activity may be mechanistically involved in the decreased expression of D1R and D2R in obese rats. Finally, reduced D1R and D3R in male rats may contribute to sex differences in blood pressure.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Bldg D, Rm 392, Georgetown Univ., 4000 Reservoir Rd NW, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
6
|
George L, Lokhandwala MF, Asghar M. Exercise activates redox-sensitive transcription factors and restores renal D1 receptor function in old rats. Am J Physiol Renal Physiol 2009; 297:F1174-80. [PMID: 19759268 PMCID: PMC2781333 DOI: 10.1152/ajprenal.00397.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/15/2009] [Indexed: 02/06/2023] Open
Abstract
We have previously reported that age-associated oxidative stress via protein kinase C (PKC) increases D1 receptor (D1R) phosphorylation and causes D1R-G protein uncoupling in renal proximal tubules (RPTs) of old Fischer 344 rats. This results in reduced ability of D1R agonist SKF-38393 to inhibit Na+-K+-ATPase in RPTs of old rats. Here, we studied the effect of treadmill exercise on markers of oxidative stress, PKC, D1R phosphorylation, D1R-G protein coupling, and Na+-K+-ATPase activity in RPTs of adult and old rats. We found increased levels of malondialdehyde, a marker of oxidative stress, in RPTs of old rats, which decreased during exercise. Nuclear levels of nuclear erythroid-related factor (Nrf)-2 and nuclear factor (NF)-kappaB in RPTs, transcription factors involved in antioxidant enzyme gene transcription, increased in exercised old rats. This was accompanied by an increase in the activity and expression of antioxidant enzymes, superoxide dismutase and heme oxygenase-1. Age-related decrease in the levels of D1R mRNAs and proteins was attenuated during exercise. Furthermore, exercise in old rats decreased PKC activity and D1R phosphorylation and increased SKF-38393-mediated [35S]guanosine 5'-O-(3-thiotriphosphate) binding (an index of D1R-G protein coupling). SKF-38393 also caused inhibition of Na+-K+-ATPase in these animals. Also, exercise caused a decrease in proteinuria and increase in phosphaturia in old rats. These results suggest beneficial effects of exercise in terms of increasing antioxidant defenses, decreasing oxidative stress, and improving kidney function in general and D1R function in particular in aging. Both Nrf-2 and NF-kappaB seem to play key role in this phenomenon.
Collapse
MESH Headings
- Animals
- Male
- Rats
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Aging/physiology
- Dopamine Agonists/pharmacology
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Heme Oxygenase-1/metabolism
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/metabolism
- Malondialdehyde/metabolism
- NF-kappa B/metabolism
- Oxidation-Reduction
- Phosphates/urine
- Physical Conditioning, Animal/physiology
- Protein Kinase C/metabolism
- Proteinuria/metabolism
- Rats, Inbred F344
- Receptors, Dopamine D1/physiology
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Superoxide Dismutase/metabolism
- Transcription Factors/metabolism
- NF-E2-Related Factor 2/metabolism
Collapse
Affiliation(s)
- Liza George
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
7
|
Banday AA, Lokhandwala MF. Inhibition of natriuretic factors increases blood pressure in rats. Am J Physiol Renal Physiol 2009; 297:F397-402. [PMID: 19474184 DOI: 10.1152/ajprenal.90729.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal dopamine and nitric oxide contribute to natriuresis during high-salt intake which maintains sodium and blood pressure homeostasis. We wanted to determine whether concurrent inhibition of these natriuretic factors increases blood pressure during high-sodium intake. Male Sprague-Dawley rats were divided into the following groups: 1) vehicle (V)-tap water, 2) NaCl-1% NaCl drinking water, 3) 30 mM l-buthionine sulfoximine (BSO), an oxidant, 4) BSO plus NaCl, and 5) BSO plus NaCl with 1 mM tempol (antioxidant). Compared with V, NaCl intake for 10 days doubled sodium intake and increased urinary dopamine level but reduced urinary nitric oxide content. NaCl intake also reduced basal renal proximal tubular Na-K-ATPase activity with no effect on blood pressure. However, NaCl intake in BSO-treated rats failed to reduce basal Na-K-ATPase activity despite higher urinary dopamine levels. Also, dopamine failed to inhibit proximal tubular Na-K-ATPase activity and these rats exhibited reduced urinary nitric oxide levels and high blood pressure. Tempol supplementation in NaCl plus BSO-treated rats reduced blood pressure. BSO treatment alone did not affect the urinary nitric oxide and dopamine levels or blood pressure. However, dopamine failed to inhibit proximal tubular Na-K-ATPase activity in BSO-treated rats. BSO treatment also increased basal protein kinase C activity, D1 receptor serine phosphorylation, and oxidative markers like malondialdehyde and 8-isoprostane. We suggest that NaCl-mediated reduction in nitric oxide does not increase blood pressure due to activation of D1 receptor signaling. Conversely, oxidative stress-provoked inhibition of D1 receptor signaling fails to elevate blood pressure due to presence of normal nitric oxide. However, simultaneously decreasing nitric oxide levels with NaCl and inhibiting D1 receptor signaling with BSO elevated blood pressure.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, Univ. of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | |
Collapse
|
8
|
Wang X, Villar VAM, Armando I, Eisner GM, Felder RA, Jose PA. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatr Nephrol 2008; 23:2131-46. [PMID: 18615257 PMCID: PMC3724362 DOI: 10.1007/s00467-008-0901-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 02/06/2023]
Abstract
Dopamine is important in the pathogenesis of hypertension because of abnormalities in receptor-mediated regulation of renal sodium transport. Dopamine receptors are classified into D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) subtypes, all of which are expressed in the kidney. Mice deficient in specific dopamine receptors have been generated to provide holistic assessment on the varying physiological roles of each receptor subtype. This review examines recent studies on these mutant mouse models and evaluates the impact of individual dopamine receptor subtypes on blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Ines Armando
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Gilbert M. Eisner
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Pedro A. Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
9
|
Asghar M, Chillar A, Lokhandwala MF. Renal proximal tubules from old Fischer 344 rats grow into epithelial cells in cultures and exhibit increased oxidative stress and reduced D1 receptor function. Am J Physiol Cell Physiol 2008; 295:C1326-31. [PMID: 18799649 DOI: 10.1152/ajpcell.00367.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Earlier we reported defects in D1 receptor function in renal proximal tubules (RPTs) of aged Fischer 344 (F344) and obese Zucker rats. However, the defects in the receptor function in RPTs of obese Zucker rats do not pass onto primary cultures of RPTs from these animals. Here, we determined whether the defects in D1 receptor function in RPTs of aged F344 rats pass onto the primary cultures. RPTs from aged (24-mo) and adult (6-mo) F344 rats were grown into primary cultures. The microscopic studies showed that cells in cultures from adult and old rats were healthy as determined by the shape and size of the cells and nuclei. D1 receptor agonist SKF-38393 produced inhibition of (86)Rb (rubidium) uptake, index of Na-K-ATPase activity, in cells from adult rats, but this was reduced in old rats. Also, SKF-38393 increased the [(35)S]GTPgammaS binding, index of receptor activation, in the membranes of cells from adult rats but to a lesser extent from old rats. Furthermore, there was a downward trend in the levels of D1 receptor numbers and in the receptor proteins in old rats. Interestingly, gp(91phox) subunit of NADPH oxidase and cellular protein carbonyl levels (oxidative stress marker) were higher in cultures from old rats. These results show that RPTs from adult and old F344 rats grow into epithelial cells in cultures. Furthermore, cells in cultures from old rats are at a higher level of oxidative stress, which may be contributing to the reduced D1 receptor function in the cells from old compared with adult rats.
Collapse
Affiliation(s)
- Mohammad Asghar
- Heart and Kidney Institute, College of Pharmacy, Univ. of Houston, Houston, TX 77204, USA.
| | | | | |
Collapse
|
10
|
Zeng C, Armando I, Luo Y, Eisner GM, Felder RA, Jose PA. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. Am J Physiol Heart Circ Physiol 2008; 294:H551-69. [PMID: 18083900 PMCID: PMC4029502 DOI: 10.1152/ajpheart.01036.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.
Collapse
MESH Headings
- Animals
- Blood Pressure/genetics
- Blood Pressure/physiology
- Dopamine/physiology
- Hypertension/genetics
- Hypertension/physiopathology
- Mice
- Mice, Knockout
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
11
|
Iannello S, Milazzo P, Belfiore F. Animal and human tissue Na,K-ATPase in normal and insulin-resistant states: regulation, behaviour and interpretative hypothesis on NEFA effects. Obes Rev 2007; 8:231-51. [PMID: 17444965 DOI: 10.1111/j.1467-789x.2006.00276.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The sodium(Na)- and potassium(K)-activated adenosine-triphosphatase (Na,K-ATPase) is a membrane enzyme that energizes the Na-pump by hydrolysing adenosine triphosphate and wasting energy as heat, so playing a role in thermogenesis and energy balance. Na,K-ATPase regulation by insulin is controversial; in tissue of hyperglycemic-hyperinsulinemic ob/ob mice, we reported a reduction, whereas in streptozotocin-treated hypoinsulinemic-diabetic Swiss and ob/ob mice we found an increased activity, which is against a genetic defect and suggests a regulation by hyperinsulinemia. In human adipose tissue from obese patients, Na,K-ATPase activity was reduced and negatively correlated with body mass index, oral glucose tolerance test-insulinemic area and blood pressure. We hypothesized that obesity is associated with tissue Na,K-ATPase reduction, apparently linked to hyperinsulinemia, which may repress or inactivate the enzyme, thus opposing thyroid hormones and influencing thermogenesis and obesity development. Insulin action on Na,K-ATPase, in vivo, might be mediated by the high level of non-esterified fatty acids, which are circulating enzyme inhibitors and increase in obesity, diabetes and hypertension. In this paper, we analyse animal and human tissue Na,K-ATPase, its level, and its regulation and behaviour in some hyperinsulinemic and insulin-resistant states; moreover, we discuss the link of the enzyme with non-esterified fatty acids and attempt to interpret and organize in a coherent view the whole body of the exhaustive literature on this complicated topic.
Collapse
Affiliation(s)
- S Iannello
- Department of Medicina Interna e Patologie Sistemiche, University of Catania, Ospedale Garibaldi, Catania, Italy
| | | | | |
Collapse
|
12
|
Marciniak A, Borkowska E, Kedra A, Rychlik M, Beltowski J. Time-dependent transition from H(2)O(2)-extracellular signal-regulated kinase- to O(2)-nitric oxide-dependent mechanisms in the stimulatory effect of leptin on renal Na+/K+/-ATPase in the rat. Clin Exp Pharmacol Physiol 2007; 33:1216-24. [PMID: 17184504 DOI: 10.1111/j.1440-1681.2006.04513.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Recent studies suggest that leptin, a peptide hormone secreted by white adipose tissue, is involved in the pathogenesis of arterial hypertension, in part by regulating renal sodium handling. Previously, we have demonstrated that in normal rats leptin has a time-dependent effect on renal Na(+)/K(+)-ATPase that drives tubular sodium reabsorption. Short-term leptin infusion results in a transient decrease in Na(+)/K(+)-ATPase activity, whereas prolonged administration stimulates the enzyme. 2. In the present study, we investigated whether these acute effects of leptin are preserved in rats with experimentally induced chronic hyperleptinaemia. 3. Hyperleptinaemia was induced by administration of exogenous leptin (0.25 mg/kg twice daily, s.c., for 7 days). Acute effects of leptin in anaesthetized control (normoleptinaemic) and hyperleptinaemic animals was investigated. Leptin was infused into the abdominal aorta proximally to the renal arteries for 0.5, 1, 2 or 3 h. 4. Leptin (1 microg/min per kg) had a time-dependent effect on renal Na(+)/K(+)-ATPase in both the control and hyperleptinaemic groups. The inhibitory effect observed after 0.5 h infusion was impaired in the hyperleptinaemic group. However, in both groups this effect was abolished by the Janus kinase inhibitor tyrphostin AG490 (100 nmol/min per kg), as well as by the phosphatidylinositol 3-kinase inhibitors wortmannin (10 nmol/min per kg) and LY294002 (1 micromol/min per kg). 5. The stimulatory effect of leptin on Na(+)/K(+)-ATPase activity was observed after 3 h of infusion and was of similar magnitude in control and hyperleptinaemic groups. In the control group, the stimulatory effect of leptin was abolished by the NADPH oxidase inhibitor apocynin (1 micromol/min per kg), the H(2)O(2) scavenger catalase (1 mg/min per kg) and the extracellular signal-regulated kinase (ERK) inhibitor PD98059 (100 nmol/min per kg). In contrast, in the hyperleptinaemic group, the stimulatory effect of leptin was abolished by the cGMP analogue 8-bromo-cGMP (100 nmol/min per kg) and by the superoxide dismutase mimetic tempol (100 micromol/min per kg) but was not affected by catalase or PD98059. 6. Leptin increased urinary H(2)O(2) excretion and ERK phosphorylation in the renal tissue only in the control group. 7. The results suggest that the acute stimulatory effect of leptin on renal Na(+)/K(+)-ATPase is mediated by divergent mechanisms depending on the chronic leptin level (i.e. by H(2)O(2)-dependent stimulation of ERK in normoleptinaemic animals and by superoxide-dependent impairment of the nitric oxide-cGMP pathway in hyperleptinaemic rats).
Collapse
|
13
|
Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 2006; 29:99-108. [PMID: 17190852 DOI: 10.1152/physiolgenomics.00194.2006] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes mellitus is the result of a combination of impaired insulin secretion with reduced insulin sensitivity of target tissues. There are an estimated 150 million affected individuals worldwide, of whom a large proportion remains undiagnosed because of a lack of specific symptoms early in this disorder and inadequate diagnostics. In this study, NMR-based metabolomic analysis in conjunction with multivariate statistics was applied to examine the urinary metabolic changes in two rodent models of type 2 diabetes mellitus as well as unmedicated human sufferers. The db/db mouse and obese Zucker (fa/fa) rat have autosomal recessive defects in the leptin receptor gene, causing type 2 diabetes. 1H-NMR spectra of urine were used in conjunction with uni- and multivariate statistics to identify disease-related metabolic changes in these two animal models and human sufferers. This study demonstrates metabolic similarities between the three species examined, including metabolic responses associated with general systemic stress, changes in the TCA cycle, and perturbations in nucleotide metabolism and in methylamine metabolism. All three species demonstrated profound changes in nucleotide metabolism, including that of N-methylnicotinamide and N-methyl-2-pyridone-5-carboxamide, which may provide unique biomarkers for following type 2 diabetes mellitus progression.
Collapse
Affiliation(s)
- R M Salek
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Asghar M, Banday AA, Fardoun RZ, Lokhandwala MF. Hydrogen peroxide causes uncoupling of dopamine D1-like receptors from G proteins via a mechanism involving protein kinase C and G-protein-coupled receptor kinase 2. Free Radic Biol Med 2006; 40:13-20. [PMID: 16337875 DOI: 10.1016/j.freeradbiomed.2005.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 08/08/2005] [Accepted: 08/08/2005] [Indexed: 02/07/2023]
Abstract
Dopamine, via activation of D1-like receptors, inhibits Na,K-ATPase and Na,H-exchanger in renal proximal tubules and promotes sodium excretion. This effect of dopamine is not seen in conditions associated with oxidative stress such as hypertension, diabetes, and aging due to uncoupling of D1-like receptors from G proteins. To identify the role of oxidative stress in uncoupling of the D1-like receptors, we utilized primary cultures from rat renal proximal tubules. Hydrogen peroxide (H2O2), an oxidant, treatment to the cell cultures increased the level of malondialdehyde, a marker of oxidative damage. Further, H2O2 decreased membranous D1-like receptor numbers and proteins, D1-like agonist (SKF 38393)-mediated [35S]GTPgammaS binding and SKF 38393-mediated inhibition of Na,K-ATPase. Moreover, H2O2 treatment to the cultures caused membranous translocation of G-protein-coupled receptor kinase 2 (GRK 2) and increased serine phosphorylation of D1A receptors accompanied by an increase in protein kinase C (PKC) activity. Interestingly, PKC inhibitors blocked the H2O2-mediated stimulation of GRK 2 and serine phosphorylation of D1A receptors. Further, GRK 2 antisense but not scrambled oligonucleotides attenuated the effect of H2O2 on membranous expression of GRK 2. Moreover, direct activation of PKC with phorbol ester (PMA) resulted in reduction of SKF 38393-mediated [35S]GTPgammaS binding. We conclude that H2O2 stimulates PKC leading to the activation of GRK 2, which causes serine phopshorylation of D1A receptors and receptor G-protein uncoupling in these cells, resulting in impairment in D1-like receptor function.
Collapse
Affiliation(s)
- Mohammad Asghar
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | | | | | | |
Collapse
|
15
|
Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA. Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 2005; 19:233-46. [PMID: 15548830 DOI: 10.1152/physiolgenomics.00127.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. Under normal conditions, D(1)-like receptors (D(1) and D(5)) inhibit sodium transport in the kidney and intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats (SHRs) and in humans with essential hypertension, the D(1)-like receptor-mediated inhibition of epithelial sodium transport is impaired because of an uncoupling of the D(1)-like receptor from its G protein/effector complex. The uncoupling is receptor specific, organ selective, nephron-segment specific, precedes the onset of hypertension, and cosegregates with the hypertensive phenotype. The defective transduction of the renal dopaminergic signal is caused by activating variants of G protein-coupled receptor kinase type 4 (GRK4: R65L, A142V, A486V). The GRK4 locus is linked to and GRK4 gene variants are associated with human essential hypertension, especially in salt-sensitive hypertensive subjects. Indeed, the presence of three or more GRK4 variants impairs the natriuretic response to dopaminergic stimulation in humans. In genetically hypertensive rats, renal inhibition of GRK4 expression ameliorates the hypertension. In mice, overexpression of GRK4 variants causes hypertension either with or without salt sensitivity according to the variant. GRK4 gene variants, by preventing the natriuretic function of the dopaminergic system and by allowing the antinatriuretic factors (e.g., angiotensin II type 1 receptor) to predominate, may be responsible for salt sensitivity. Subclasses of hypertension may occur because of additional perturbations caused by variants of other genes, the quantitative interaction of which may vary depending upon the genetic background.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Banday AA, Marwaha A, Tallam LS, Lokhandwala MF. Tempol reduces oxidative stress, improves insulin sensitivity, decreases renal dopamine D1 receptor hyperphosphorylation, and restores D1 receptor-G-protein coupling and function in obese Zucker rats. Diabetes 2005; 54:2219-26. [PMID: 15983225 DOI: 10.2337/diabetes.54.7.2219] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress plays a pathogenic role in hypertension, particularly the one associated with diabetes and obesity. Here, we test the hypothesis that renal dopamine D1 receptor dysfunction in obese Zucker rats is caused by oxidative stress. One group each from lean and obese Zucker rats received tempol, a superoxide dismutase mimetic in drinking water for 2 weeks. Obese animals were hypertensive, hyperglycemic, and hyperinsulinemic, exhibited renal oxidative stress, and increased protein kinase C activity. Also, there was hyperphosphorylation of D1 receptor, defective receptor-G-protein coupling, blunted dopamine-induced Na+-K+-ATPase inhibition, and diminished natriuretic response to D1 receptor agonist, SKF-38393. However, obese animals had elevated levels of plasma nitric oxide and urinary cGMP. In addition, L-N-nitroarginine and sodium nitroprusside showed similar effect on blood pressure in lean and obese rats. In obese animals, tempol reduced blood pressure, blood glucose, insulin, renal oxidative stress, and protein kinase C activity. Tempol also decreased D1 receptor phosphorylation and restored receptor G-protein coupling. Dopamine inhibited Na+-K+-ATPase activity, and SKF-38393 elicited a natriuretic response in tempol-treated obese rats. Thus in obese Zucker rats, tempol ameliorates oxidative stress and improves insulin sensitivity. Consequently, hyperphosphorylation of D1 receptor is reduced, leading to restoration of receptor-G-protein coupling and the natriuretic response to SKF-38393.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, University of Houston, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|