1
|
Hou J, Lu M, Guo J, Wu J, Wang C, Zhou PK, Ma T. DNA-PKcs, a player winding and dancing with RNA metabolism and diseases. Cell Mol Biol Lett 2025; 30:25. [PMID: 40038612 DOI: 10.1186/s11658-025-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key kinase in the DNA repair process that responds to DNA damage caused by various factors and maintains genomic stability. However, DNA-PKcs is overexpressed in some solid tumors and is frequently associated with poor prognosis. DNA-PKcs was initially identified as a part of the transcription complex. In recent years, many studies have focused on its nonclassical functions, including transcriptional regulation, metabolism, innate immunity, and inflammatory response. Given the pleiotropic roles of DNA-PKcs in tumors, pharmacological inhibition of DNA-PK can exert antitumor effects and may serve as a potential target for tumor therapy in the future. This review summarizes several aspects of DNA-PKcs regulation of RNA metabolism, including its impact on transcriptional machinery, alternative splicing, and interaction with noncoding RNAs, and provides insights into DNA-PKcs beyond its DNA damage repair function.
Collapse
Affiliation(s)
- Jiabao Hou
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jingwei Guo
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Chenyang Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
2
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
3
|
Hiramatsu A, Izumi Y, Eguchi K, Matsuo N, Deng Q, Inoue H, Nakayama Y, Nonoguchi H, Aramburu J, López-Rodríguez C, Kakizoe Y, Adachi M, Kuwabara T, Kim-Mitsuyama S, Mukoyama M. Salt-Sensitive Hypertension of the Renal Tubular Cell-Specific NFAT5 (Nuclear Factor of Activated T-Cells 5) Knockout Mice. Hypertension 2021; 78:1335-1346. [PMID: 34601973 DOI: 10.1161/hypertensionaha.121.17435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Akiko Hiramatsu
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Yuichiro Izumi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Koji Eguchi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Naomi Matsuo
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Qinyuan Deng
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Hideki Inoue
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Yushi Nakayama
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, Kitamoto, Saitama, Japan (H.N.)
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Spain (J.A., C.L.-R.)
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Spain (J.A., C.L.-R.)
| | - Yutaka Kakizoe
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Masataka Adachi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Takashige Kuwabara
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Shokei Kim-Mitsuyama
- Department of Pharmacology and Molecular Therapeutics (S.K.-M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Masashi Mukoyama
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| |
Collapse
|
4
|
PARP1-mediated PARylation of TonEBP prevents R-loop-associated DNA damage. DNA Repair (Amst) 2021; 104:103132. [PMID: 34049076 DOI: 10.1016/j.dnarep.2021.103132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Lack of coordination between the DNA replication and transcription machineries can increase the frequency of transcription-replication conflicts, leading ultimately to DNA damage and genomic instability. A major source of these conflicts is the formation of R-loops, which consist of a transcriptionally generated RNA-DNA hybrid and the displaced single-stranded DNA. R-loops play important physiological roles and have been implicated in human diseases. Although these structures have been extensively studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. We found that in cancer cells, tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) interacted with PARP1 and localized to R-loops in response to DNA-damaging agent camptothecin (CPT), which is associated with R-loop formation. PARP1-mediated PARylation was required for recruitment of TonEBP to the sites of R-loop-associated DNA damage. Loss of TonEBP increased levels of R-loop accumulation and DNA damage, and promoted cell death in response to CPT. These findings suggest that TonEBP mediates resistance to CPT-induced cell death by preventing R-loop accumulation in cancer cells.
Collapse
|
5
|
Ugarte F, Santapau D, Gallardo V, Garfias C, Yizmeyián A, Villanueva S, Sepúlveda C, Rocco J, Pasten C, Urquidi C, Cavada G, San Martin P, Cano F, Irarrázabal CE. Urinary Extracellular Vesicles as a Source of NGAL for Diabetic Kidney Disease Evaluation in Children and Adolescents With Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:654269. [PMID: 35046888 PMCID: PMC8762324 DOI: 10.3389/fendo.2021.654269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Tubular damage has a role in Diabetic Kidney Disease (DKD). We evaluated the early tubulointerstitial damage biomarkers in type-1 Diabetes Mellitus (T1DM) pediatric participants and studied the correlation with classical DKD parameters. METHODS Thirty-four T1DM and fifteen healthy participants were enrolled. Clinical and biochemical parameters [Glomerular filtration Rate (GFR), microalbuminuria (MAU), albumin/creatinine ratio (ACR), and glycated hemoglobin A1c (HbA1c)] were evaluated. Neutrophil gelatinase-associated lipocalin (NGAL), Hypoxia-inducible Factor-1α (HIF-1α), and Nuclear Factor of Activated T-cells-5 (NFAT5) levels were studied in the supernatant (S) and the exosome-like extracellular vesicles (E) fraction from urine samples. RESULTS In the T1DM, 12% had MAU >20 mg/L, 6% ACR >30 mg/g, and 88% had eGFR >140 ml/min/1.72 m2. NGAL in the S (NGAL-S) or E (NGAL-E) fraction was not detectable in the control. The NGAL-E was more frequent (p = 0.040) and higher (p = 0.002) than NGAL-S in T1DM. The T1DM participants with positive NGAL had higher age (p = 0.03), T1DM evolution (p = 0.03), and serum creatinine (p = 0.003) than negative NGAL. The NGAL-E correlated positively with tanner stage (p = 0.0036), the median levels of HbA1c before enrollment (p = 0.045) and was independent of ACR, MAU, and HbA1c at the enrollment. NFAT5 and HIF-1α levels were not detectable in T1DM or control. CONCLUSION Urinary exosome-like extracellular vesicles could be a new source of early detection of tubular injury biomarkers of DKD in T1DM patients.
Collapse
Affiliation(s)
- Francisca Ugarte
- Pediatric Endocrinology Unit, Pediatric Service, Clinica Universidad de los Andes, Santiago, Chile
- Departament of Pediatrics, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa, Facultad de Medicina, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Vivian Gallardo
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Carolina Garfias
- Pediatric Endocrinology Unit, Pediatric Service, Clinica Universidad de los Andes, Santiago, Chile
| | - Anahí Yizmeyián
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Soledad Villanueva
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Carolina Sepúlveda
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Jocelyn Rocco
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
| | - Consuelo Pasten
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Cinthya Urquidi
- Department of Epidemiology and Health Studies, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Gabriel Cavada
- Department of Public Health, School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pamela San Martin
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Francisco Cano
- Pediatric Nephrology Unit, Pediatric Service, Hospital Luis Calvo Mackennna, Santiago, Chile
| | - Carlos E. Irarrázabal
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- *Correspondence: Carlos E. Irarrázabal,
| |
Collapse
|
6
|
Tessier S, Tran VA, Ottone OK, Novais EJ, Doolittle A, DiMuzio MJ, Shapiro IM, Risbud MV. TonEBP-deficiency accelerates intervertebral disc degeneration underscored by matrix remodeling, cytoskeletal rearrangements, and changes in proinflammatory gene expression. Matrix Biol 2019; 87:94-111. [PMID: 31707045 DOI: 10.1016/j.matbio.2019.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023]
Abstract
The tonicity-responsive enhancer binding protein (TonEBP) plays an important role in intervertebral disc and axial skeleton embryogenesis. However, the contribution of this osmoregulatory transcription factor in postnatal intervertebral disc homeostasis is not known in vivo. Here, we show for the first time that TonEBP-deficient mice have pronounced age-related degeneration of the intervertebral disc with annular and endplate herniations. Using FTIR-imaging spectroscopy, quantitative immunohistochemistry, and tissue-specific transcriptomic analysis, we provide morphological and molecular evidence that the overall phenotype is driven by a replacement of water-binding proteoglycans with fibrocartilaginous matrix. Whereas TonEBP deficiency in the AF compartment caused tissue fibrosis associated with alterations in actin cytoskeleton and adhesion molecules, predominant changes in pro-inflammatory pathways were seen in the NP compartment of mutants, underscoring disc compartment-specific effects. Additionally, TonEBP-deficient mice presented with compromised trabecular bone properties of vertebrae. These results provide the first in vivo support to the long-held hypothesis that TonEBP is crucial for postnatal homeostasis of the spine and controls a multitude of functions in addition to cellular osmoadaptation.
Collapse
Affiliation(s)
- Steven Tessier
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Victoria A Tran
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olivia K Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Alexandra Doolittle
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael J DiMuzio
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Over-expression of Hsp83 in grossly depleted hsrω lncRNA background causes synthetic lethality and l(2)gl phenocopy in Drosophila. J Biosci 2019. [DOI: 10.1007/s12038-019-9852-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Kuo IY, Huang YL, Lin CY, Lin CH, Chang WL, Lai WW, Wang YC. SOX17 overexpression sensitizes chemoradiation response in esophageal cancer by transcriptional down-regulation of DNA repair and damage response genes. J Biomed Sci 2019; 26:20. [PMID: 30777052 PMCID: PMC6378712 DOI: 10.1186/s12929-019-0510-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Prognosis of esophageal squamous cell carcinoma (ESCC) patients is poor and the concurrent chemoradiation therapy (CCRT) provided to ESCC patients often failed due to resistance. Therefore, development of biomarkers for predicting CCRT response is immensely important. In this study, we evaluated the predicting value of SRY (sex determining region Y)-box 17 (SOX17) protein during CCRT and its dysregulation of transcriptional targets in CCRT resistance in ESCC. Methods Pyrosequencing methylation, RT-qPCR and immunohistochemistry assays were performed to examine the DNA methylation, mRNA expression and protein expression levels of SOX17 in endoscopic biopsy from a total of 70 ESCC patients received CCRT. Cell proliferation, clonogenic survival and xenograft growth were used to confirm the sensitization of ESCC cell line KYSE510 in response to cisplatin, radiation or CCRT treatment by SOX17 overexpression in vitro and in vivo. Luciferase activity, RT-qPCR and ChIP-qPCR assays were conducted to examine transcription regulation of SOX17 in KYSE510 parental, KYSE510 radio-resistant cells and their derived xenografts. Results High DNA methylation coincided with low mRNA and protein expression levels of SOX17 in pre-treatment endoscopic biopsy from ESCC patients with poor CCRT response. SOX17 protein expression exhibited a good prediction performance in discriminating poor CCRT responders from good responder. Overexpression of SOX17 sensitized KYSE510 radio-resistant cells to cisplatin, radiation or CCRT treatment in cell and xenograft models. Importantly, SOX17 transcriptionally down-regulated DNA repair and damage response-related genes including BRCA1, BRCA2, RAD51, KU80 DNAPK, p21, SIRT1, NFAT5 and REV3L in KYSE510 radio-resistant cells to achieve the sensitization effect to anti-cancer treatment. Low expression of BRCA1, DNAPK, p21, RAD51 and SIRT1 was confirmed in SOX17 sensitized xenograft tissues derived from radio-resistant ESCC cells. Conclusions Our study reveals a novel mechanism by which SOX17 transcriptionally inactivates DNA repair and damage response-related genes to sensitize ESCC cell or xenograft to CCRT treatment. In addition, we establish a proof-of-concept CCRT prediction biomarker using SOX17 immunohistochemical staining in pre-treatment endoscopic biopsies to identify ESCC patients who are at high risk of CCRT failure and need intensive care. Electronic supplementary material The online version of this article (10.1186/s12929-019-0510-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Yu-Lin Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Chien-Yu Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Chien-Hsun Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Wei-Lun Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan.
| |
Collapse
|
9
|
Lo CS, Shi Y, Chenier I, Ghosh A, Wu CH, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Heterogeneous Nuclear Ribonucleoprotein F Stimulates Sirtuin-1 Gene Expression and Attenuates Nephropathy Progression in Diabetic Mice. Diabetes 2017; 66:1964-1978. [PMID: 28424160 PMCID: PMC5482081 DOI: 10.2337/db16-1588] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
We investigated the mechanism of heterogeneous nuclear ribonucleoprotein F (hnRNP F) renoprotective action in a type 2 diabetes (T2D) mouse model (db/db). Immortalized rat renal proximal tubular cells (IRPTCs) and kidneys from humans with T2D were also studied. The db/db mice developed hyperglycemia, oxidative stress, and nephropathy at age 20 weeks compared with their db/m littermates. These abnormalities, with the exception of hyperglycemia, were attenuated in db/dbhnRNP F-transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs. Sirtuin-1, Foxo3α, and catalase expression were significantly decreased in RPTCs from db/db mice and normalized in db/dbhnRNP F-Tg mice. In vitro, hnRNP F overexpression stimulated Sirtuin-1 and Foxo3α with downregulation of acetylated p53 expression and prevented downregulation of Sirtuin-1 and Foxo3α expression in IRPTCs by high glucose plus palmitate. Transfection of Sirtuin-1 small interfering RNA prevented hnRNP F stimulation of Foxo3α and downregulation of acetylated p53 expression. hnRNP F stimulated Sirtuin-1 transcription via hnRNP F-responsive element in the Sirtuin-1 promoter. Human T2D kidneys exhibited more RPTC apoptosis and lower expression of hnRNP F, SIRTUIN-1, and FOXO3α than nondiabetic kidneys. Our results demonstrate that hnRNP F protects kidneys against oxidative stress and nephropathy via stimulation of Sirtuin-1 expression and signaling in diabetes.
Collapse
MESH Headings
- Acetylation
- Aged
- Animals
- Apoptosis
- Blotting, Western
- Case-Control Studies
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Disease Models, Animal
- Disease Progression
- Female
- Fibrosis
- Forkhead Box Protein O3
- Gene Expression Regulation/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- In Vitro Techniques
- Kidney/metabolism
- Kidney/pathology
- Kidney Tubules, Proximal/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Middle Aged
- Oxidative Stress
- Rats
- Real-Time Polymerase Chain Reaction
- Receptors, Leptin/genetics
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Yixuan Shi
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Chenier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Anindya Ghosh
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Chin-Han Wu
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Francois Cailhier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean Ethier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Baptiste Lattouf
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Janos G Filep
- Centre de recherche, Hôpital Maisonneuve-Rosemont and Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - John S D Chan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Ghosh A, Abdo S, Zhao S, Wu CH, Shi Y, Lo CS, Chenier I, Alquier T, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Insulin Inhibits Nrf2 Gene Expression via Heterogeneous Nuclear Ribonucleoprotein F/K in Diabetic Mice. Endocrinology 2017; 158:903-919. [PMID: 28324005 PMCID: PMC5460794 DOI: 10.1210/en.2016-1576] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022]
Abstract
Oxidative stress induces endogenous antioxidants via nuclear factor erythroid 2-related factor 2 (Nrf2), potentially preventing tissue injury. We investigated whether insulin affects renal Nrf2 expression in type 1 diabetes (T1D) and studied its underlying mechanism. Insulin normalized hyperglycemia, hypertension, oxidative stress, and renal injury; inhibited renal Nrf2 and angiotensinogen (Agt) gene expression; and upregulated heterogeneous nuclear ribonucleoprotein F and K (hnRNP F and hnRNP K) expression in Akita mice with T1D. In immortalized rat renal proximal tubular cells, insulin suppressed Nrf2 and Agt but stimulated hnRNP F and hnRNP K gene transcription in high glucose via p44/42 mitogen-activated protein kinase signaling. Transfection with small interfering RNAs of p44/42 MAPK, hnRNP F, or hnRNP K blocked insulin inhibition of Nrf2 gene transcription. Insulin curbed Nrf2 promoter activity via a specific DNA-responsive element that binds hnRNP F/K, and hnRNP F/K overexpression curtailed Nrf2 promoter activity. In hyperinsulinemic-euglycemic mice, renal Nrf2 and Agt expression was downregulated, whereas hnRNP F/K expression was upregulated. Thus, the beneficial actions of insulin in diabetic nephropathy appear to be mediated, in part, by suppressing renal Nrf2 and Agt gene transcription and preventing Nrf2 stimulation of Agt expression via hnRNP F/K. These findings identify hnRNP F/K and Nrf2 as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Anindya Ghosh
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shaaban Abdo
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shuiling Zhao
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Chin-Han Wu
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Yixuan Shi
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Chao-Sheng Lo
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Isabelle Chenier
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Thierry Alquier
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Janos G Filep
- Department of Pathology and Cell Biology, Université de Montréal and Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - John S D Chan
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
11
|
Dumond JF, Zhang X, Izumi Y, Ramkissoon K, Wang G, Gucek M, Wang X, Burg MB, Ferraris JD. Peptide affinity analysis of proteins that bind to an unstructured region containing the transactivating domain of the osmoprotective transcription factor NFAT5. Physiol Genomics 2016; 48:835-849. [PMID: 27764768 DOI: 10.1152/physiolgenomics.00100.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 11/22/2022] Open
Abstract
NFAT5 is a transcription factor originally identified because it is activated by hypertonicity and that activation increases expression of genes that protect against the adverse effects of the hypertonicity. However, its targets also include genes not obviously related to tonicity. The transactivating domain of NFAT5 is contained in its COOH-terminal region, which is predicted to be unstructured. Unstructured regions are common in transcription factors particularly in transactivating domains where they can bind co-regulatory proteins essential to their function. To identify potential binding partners of NFAT5 from either cytoplasmic or nuclear HEK293 cell extracts, we used peptide affinity chromatography followed by mass spectrometry. Peptide aptamer-baits consisted of overlapping 20 amino acid peptides within the predicted COOH-terminal unstructured region of NFAT5. We identify a total of 351 unique protein preys that associate with at least one COOH-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from cells incubated at various tonicities (NaCl varied). In addition to finding many proteins already known to associate with NFAT5, we found many new ones whose function suggest novel aspects of NFAT5 regulation, interaction, and function. Relatively few of the proteins pulled down by peptide baits from NFAT5 are generally involved in transcription, and most, therefore, are likely to be specifically related to the regulation of NFAT5 or its function. The novel associated proteins are involved with cancer, effects of hypertonicity on chromatin, development, splicing of mRNA, transcription, and vesicle trafficking.
Collapse
Affiliation(s)
- Jenna F Dumond
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Xue Zhang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Yuichiro Izumi
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kevin Ramkissoon
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Guanghui Wang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Marjan Gucek
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Xujing Wang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Maurice B Burg
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Joan D Ferraris
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| |
Collapse
|
12
|
Timucin AC, Basaga H. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights. PLoS One 2016; 11:e0161494. [PMID: 27536992 PMCID: PMC4990240 DOI: 10.1371/journal.pone.0161494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/05/2016] [Indexed: 01/26/2023] Open
Abstract
SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
13
|
DuMond JF, Ramkissoon K, Zhang X, Izumi Y, Wang X, Eguchi K, Gao S, Mukoyama M, Burg MB, Ferraris JD. Peptide affinity analysis of proteins that bind to an unstructured NH2-terminal region of the osmoprotective transcription factor NFAT5. Physiol Genomics 2016; 48:290-305. [PMID: 26757802 DOI: 10.1152/physiolgenomics.00110.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/09/2016] [Indexed: 11/22/2022] Open
Abstract
NFAT5 is an osmoregulated transcription factor that particularly increases expression of genes involved in protection against hypertonicity. Transcription factors often contain unstructured regions that bind co-regulatory proteins that are crucial for their function. The NH2-terminal region of NFAT5 contains regions predicted to be intrinsically disordered. We used peptide aptamer-based affinity chromatography coupled with mass spectrometry to identify protein preys pulled down by one or more overlapping 20 amino acid peptide baits within a predicted NH2-terminal unstructured region of NFAT5. We identify a total of 467 unique protein preys that associate with at least one NH2-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from HEK293 cells treated with elevated, normal, or reduced NaCl concentrations. Different sets of proteins are pulled down from nuclear vs. cytoplasmic extracts. We used GeneCards to ascertain known functions of the protein preys. The protein preys include many that were previously known, but also many novel ones. Consideration of the novel ones suggests many aspects of NFAT5 regulation, interaction and function that were not previously appreciated, for example, hypertonicity inhibits NFAT5 by sumoylating it and the NFAT5 protein preys include components of the CHTOP complex that desumoylate proteins, an action that should contribute to activation of NFAT5.
Collapse
Affiliation(s)
- Jenna F DuMond
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Kevin Ramkissoon
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Xue Zhang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Yuichiro Izumi
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Xujing Wang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Koji Eguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shouguo Gao
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Maurice B Burg
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Joan D Ferraris
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| |
Collapse
|
14
|
Lo CS, Shi Y, Chang SY, Abdo S, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes. Diabetologia 2015; 58:2443-54. [PMID: 26232095 PMCID: PMC4572079 DOI: 10.1007/s00125-015-3700-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. METHODS Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. RESULTS Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. CONCLUSIONS/INTERPRETATION These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Yixuan Shi
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Shiao-Ying Chang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Shaaban Abdo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Isabelle Chenier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Janos G Filep
- Research Centre, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shao-Ling Zhang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada.
| | - John S D Chan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
15
|
Timucin AC, Bodur C, Basaga H. SIRT1 contributes to aldose reductase expression through modulating NFAT5 under osmotic stress: In vitro and in silico insights. Cell Signal 2015; 27:2160-72. [PMID: 26297866 DOI: 10.1016/j.cellsig.2015.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
So far, a myriad of molecules were characterized to modulate NFAT5 and its downstream targets. Among these NFAT5 modifiers, SIRT1 was proposed to have a promising role in NFAT5 dependent events, yet the exact underlying mechanism still remains obscure. Hence, the link between SIRT1 and NFAT5-aldose reductase (AR) axis under osmotic stress, was aimed to be delineated in this study. A unique osmotic stress model was generated and its mechanistic components were deciphered in U937 monocytes. In this model, AR expression and nuclear NFAT5 stabilization were revealed to be positively regulated by SIRT1 through utilization of pharmacological modulators. Overexpression and co-transfection studies of NFAT5 and SIRT1 further validated the contribution of SIRT1 to AR and NFAT5. The involvement of SIRT1 activity in these events was mediated via modification of DNA binding of NFAT5 to AR ORE region. Besides, NFAT5 and SIRT1 were also shown to co-immunoprecipitate under isosmotic conditions and this interaction was disrupted by osmotic stress. Further in silico experiments were conducted to investigate if SIRT1 directly targets NFAT5. In this regard, certain lysine residues of NFAT5, when kept deacetylated, were found to contribute to its DNA binding and SIRT1 was shown to directly bind K282 of NFAT5. Based on these in vitro and in silico findings, SIRT1 was identified, for the first time, as a novel positive regulator of NFAT5 dependent AR expression under osmotic stress in U937 monocytes.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Orhanli, Tuzla, Istanbul, Turkey.
| | - Cagri Bodur
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Orhanli, Tuzla, Istanbul, Turkey.
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Orhanli, Tuzla, Istanbul, Turkey.
| |
Collapse
|
16
|
Tardif G, Pelletier JP, Fahmi H, Hum D, Zhang Y, Kapoor M, Martel-Pelletier J. NFAT3 and TGF-β/SMAD3 regulate the expression of miR-140 in osteoarthritis. Arthritis Res Ther 2014; 15:R197. [PMID: 24257415 PMCID: PMC3978709 DOI: 10.1186/ar4387] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 11/12/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction MicroRNAs (miRNAs) down-regulate their target genes. The intronic miR-140, present in the WW domain containing E3 ubiquitin protein ligase 2 (WWP2) gene, decreases the expression of genes that play detrimental roles in osteoarthritis (OA). As the expression level of miR-140 is significantly decreased in human OA chondrocytes, we investigated its regulation in those cells. Methods Gene expression in human chondrocytes was determined by quantitative polymerase chain reaction (qPCR) and gene silencing was done in OA chondrocytes by transient transfection with specific small interfering RNAs (siRNAs). Binding sites of the miR-140 regulatory sequence (rsmiR-140) were identified by mutagenesis and chromatin immunoprecipitation (ChIP) in OA chondrocytes. The effects of translocation on OA chondrocytes were determined by immunocytochemistry and qPCR. Results In contrast to miR-140, the expression of WWP2 was similar in both normal and OA cells, suggesting that miR-140 has an additional level of regulation. rsmiR-140 showed activity and predicted binding sites for nuclear matrix transcription factor 4 (NMP4), myc-associated zinc (MAZ), nuclear factor of activated T-cells (NFAT), and mothers against decapentaplegic homolog 3 (SMAD3). Silencing NFAT3 (P ≤0.01) and SMAD3 (P ≤0.05) differentially regulated miR-140 independently of WWP2. Silencing NFAT5 decreased both miR-140 and WWP2 (P ≤0.003 and P ≤0.05, respectively). NFAT3 activation increased and transforming growth factor-β (TGF-β) decreased rsmiR-140 activity. Mutagenesis of rsmiR-140 and ChIP assays identified binding sites at which NFAT3 (activator) and SMAD3 (repressor) directly regulated miR-140. TGF-β interfered with NFAT3 translocation, and subsequently with miR-140 expression. Conclusions This is the first study to provide evidence of a regulatory mechanism of miR-140 independent of WWP2, and new and differential roles for NFAT3 and SMAD3 in the OA process in the regulation of miR-140 transcription. Such knowledge could advance therapeutic strategies targeting OA.
Collapse
|
17
|
Izumi Y, Burg MB, Ferraris JD. 14-3-3-β and -{varepsilon} contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity. Physiol Rep 2014; 2:e12000. [PMID: 24771694 PMCID: PMC4001879 DOI: 10.14814/phy2.12000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Having previously found that high NaCl causes rapid exit of 14‐3‐3 isoforms from the nucleus, we used siRNA‐mediated knockdown to test whether 14‐3‐3s contribute to the high NaCl‐induced increase in the activity of the osmoprotective transcription factor NFAT5. We find that, when NaCl is elevated, knockdown of 14‐3‐3‐β and/or 14‐3‐3‐ε decreases NFAT5 transcriptional activity, as assayed both by luciferase reporter and by the mRNA abundance of the NFAT5 target genes aldose reductase and the sodium‐ and chloride‐dependent betaine transporter, BGT1. Knockdown of other 14‐3‐3 isoforms does not significantly affect NFAT5 activity. 14‐3‐3‐β and/or 14‐3‐3‐ε do not act by affecting the nuclear localization of NFAT5, but by at least two other mechanisms: (1) 14‐3‐3‐β and 14‐3‐3‐ε increase protein abundance of NFAT5 and (2) they increase NFAT5 transactivating activity. When NaCl is elevated, knockdown of 14‐3‐3‐β and/or 14‐3‐3‐ε reduces the protein abundance of NFAT5, as measured by Western blot, without affecting the level of NFAT5 mRNA, and the knockdown also decreases NFAT5 transactivating activity, as measured by luciferase reporter. The 14‐3‐3s increase NFAT5 protein, not by increasing its translation, but by decreasing the rate at which it is degraded, as measured by cycloheximide chase. It is not clear at this point whether the 14‐3‐3s affect NFAT5 directly or indirectly through their effects on other proteins that signal activation of NFAT5. e12000 When NaCl is elevated, knockdown of 14‐3‐3‐β and/or 14‐3‐3‐ε reduces the protein abundance of NFAT5, as measured by Western blot, without affecting the level of NFAT5 mRNA, and the knockdown also decreases NFAT5 transactivating activity, as measured by luciferase reporter. The 14‐3‐3s increase NFAT5 protein, not by increasing its translation, but by decreasing the rate at which it is degraded, as measured by cycloheximide chase.
Collapse
Affiliation(s)
- Yuichiro Izumi
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
18
|
Cheung CY, Ko BC. NFAT5 in cellular adaptation to hypertonic stress - regulations and functional significance. J Mol Signal 2013; 8:5. [PMID: 23618372 PMCID: PMC3655004 DOI: 10.1186/1750-2187-8-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/11/2013] [Indexed: 12/22/2022] Open
Abstract
The Nuclear Factor of Activated T Cells-5 (NFAT5), also known as OREBP or TonEBP, is a member of the nuclear factors of the activated T cells family of transcription factors. It is also the only known tonicity-regulated transcription factor in mammals. NFAT5 was initially known for its role in the hypertonic kidney inner medulla for orchestrating a genetic program to restore the cellular homeostasis. Emerging evidence, however, suggests that NFAT5 might play a more diverse functional role, including a pivotal role in blood pressure regulation and the development of autoimmune diseases. Despite the growing significance of NFAT5 in physiology and diseases, our understanding of how its activity is regulated remains very limited. Furthermore, how changes in tonicities are converted into functional outputs via NFAT5 remains elusive. Therefore, this review aims to summarize our current knowledge on the functional roles of NFAT5 in osmotic stress adaptation and the signaling pathways that regulate its activity.
Collapse
Affiliation(s)
- Chris Yk Cheung
- Department of Anatomical and Cellular Pathology, and The State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, The Prince of Wales Hospital, Rm 38019, Clinical Sciences Building, Shatin, Hong Kong, China.
| | | |
Collapse
|
19
|
Gautam M, Mathur A, Khan MA, Majumdar SS, Rai U. Transcriptome analysis of spermatogenically regressed, recrudescent and active phase testis of seasonally breeding wall lizards Hemidactylus flaviviridis. PLoS One 2013; 8:e58276. [PMID: 23536792 PMCID: PMC3594293 DOI: 10.1371/journal.pone.0058276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/01/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Reptiles are phylogenically important group of organisms as mammals have evolved from them. Wall lizard testis exhibits clearly distinct morphology during various phases of a reproductive cycle making them an interesting model to study regulation of spermatogenesis. Studies on reptile spermatogenesis are negligible hence this study will prove to be an important resource. METHODOLOGY/PRINCIPAL FINDINGS Histological analyses show complete regression of seminiferous tubules during regressed phase with retracted Sertoli cells and spermatognia. In the recrudescent phase, regressed testis regain cellular activity showing presence of normal Sertoli cells and developing germ cells. In the active phase, testis reaches up to its maximum size with enlarged seminiferous tubules and presence of sperm in seminiferous lumen. Total RNA extracted from whole testis of regressed, recrudescent and active phase of wall lizard was hybridized on Mouse Whole Genome 8×60 K format gene chip. Microarray data from regressed phase was deemed as control group. Microarray data were validated by assessing the expression of some selected genes using Quantitative Real-Time PCR. The genes prominently expressed in recrudescent and active phase testis are cytoskeleton organization GO 0005856, cell growth GO 0045927, GTpase regulator activity GO: 0030695, transcription GO: 0006352, apoptosis GO: 0006915 and many other biological processes. The genes showing higher expression in regressed phase belonged to functional categories such as negative regulation of macromolecule metabolic process GO: 0010605, negative regulation of gene expression GO: 0010629 and maintenance of stem cell niche GO: 0045165. CONCLUSION/SIGNIFICANCE This is the first exploratory study profiling transcriptome of three drastically different conditions of any reptilian testis. The genes expressed in the testis during regressed, recrudescent and active phase of reproductive cycle are in concordance with the testis morphology during these phases. This study will pave the way for deeper insight into regulation and evolution of gene regulatory mechanisms in spermatogenesis.
Collapse
Affiliation(s)
- Mukesh Gautam
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Amitabh Mathur
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Meraj Alam Khan
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Rai
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
20
|
Germann S, Gratadou L, Zonta E, Dardenne E, Gaudineau B, Fougère M, Samaan S, Dutertre M, Jauliac S, Auboeuf D. Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene 2012; 31:4536-4549. [PMID: 22266867 DOI: 10.1038/onc.2011.618] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/01/2011] [Accepted: 11/28/2011] [Indexed: 02/07/2023]
Abstract
Ddx5 and ddx17 are two highly related RNA helicases involved in both transcription and splicing. These proteins coactivate transcription factors involved in cancer such as the estrogen receptor alpha, p53 and beta-catenin. Ddx5 and ddx17 are part of the splicing machinery and can modulate alternative splicing, the main mechanism increasing the proteome diversity. Alternative splicing also has a role in gene expression level regulation when it is coupled to the nonsense-mediated mRNA decay (NMD) pathway. In this work, we report that ddx5 and ddx17 have a dual role in the control of the pro-migratory NFAT5 transcription factor. First, ddx5 and ddx17 act as transcriptional coactivators of NFAT5 and are required for activating NFAT5 target genes involved in tumor cell migration. Second, at the splicing level, ddx5 and ddx17 increase the inclusion of NFAT5 exon 5. As exon 5 contains a pre-mature translation termination codon, its inclusion leads to the regulation of NFAT5 mRNAs by the NMD pathway and to a decrease in NFAT5 protein level. Therefore, we demonstrated for the first time that a transcriptional coregulator can simultaneously regulate the transcriptional activity and alternative splicing of a transcription factor. This dual regulation, where ddx5 and ddx17 enhance the transcriptional activity of NFAT5 although reducing its protein expression level, suggests a critical role for ddx5 and ddx17 in tumor cell migration through the fine regulation of NFAT5 pathway.
Collapse
|
21
|
Lo CS, Chang SY, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS. Heterogeneous nuclear ribonucleoprotein F suppresses angiotensinogen gene expression and attenuates hypertension and kidney injury in diabetic mice. Diabetes 2012; 61:2597-608. [PMID: 22664958 PMCID: PMC3447919 DOI: 10.2337/db11-1349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated the impact of heterogeneous nuclear ribonucleoprotein F (hnRNP F) overexpression on angiotensinogen (Agt) gene expression, hypertension, and renal proximal tubular cell (RPTC) injury in high-glucose milieu both in vivo and in vitro. Diabetic Akita transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs were created, and the effects on systemic hypertension, Agt gene expression, renal hypertrophy, and interstitial fibrosis were studied. We also examined immortalized rat RPTCs stably transfected with control plasmid or plasmid containing hnRNP F cDNA in vitro. The results showed that hnRNP F overexpression attenuated systemic hypertension, suppressed Agt and transforming growth factor-β1 (TGF-β1) gene expression, and reduced urinary Agt and angiotensin II levels, renal hypertrophy, and glomerulotubular fibrosis in Akita hnRNP F-Tg mice. In vitro, hnRNP F overexpression prevented the high-glucose stimulation of Agt and TGF-β1 mRNA expression and cellular hypertrophy in RPTCs. These data suggest that hnRNP F plays a modulatory role and can ameliorate hypertension, renal hypertrophy, and interstitial fibrosis in diabetes. The underlying mechanism is mediated, at least in part, via the suppression of intrarenal Agt gene expression in vivo. hnRNP F may be a potential target in the treatment of hypertension and kidney injury in diabetes.
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | - Shiao-Ying Chang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | - Janos G. Filep
- Research Centre, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Shao Ling Zhang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | - John S.D. Chan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Université de Montréal, Hôtel-Dieu Hospital, Montreal, Quebec, Canada
- Corresponding author: John S.D. Chan,
| |
Collapse
|
22
|
Li J, Ferraris JD, Yu D, Singh T, Izumi Y, Wang G, Gucek M, Burg MB. Proteomic analysis of high NaCl-induced changes in abundance of nuclear proteins. Physiol Genomics 2012; 44:1063-71. [PMID: 22991206 DOI: 10.1152/physiolgenomics.00068.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian cells are normally stressed by high interstitial NaCl in the renal medulla and by lesser elevation of NaCl in several other tissues. High NaCl damages proteins and DNA and can kill cells. Known protective responses include nuclear translocation of the transcription factor NFAT5 and other proteins. In order better to understand the extent and significance of changes in nuclear protein abundance, we extracted nuclear and cytoplasmic proteins separately from HEK293 cells and measured by LC-MS/MS (iTRAQ) changes of abundance of proteins in the extracts in response to high NaCl at three time points: 1 h, 8 h, and adapted for two passages. We confidently identified a total of 3,190 proteins; 163 proteins changed significantly at least at one time point in the nucleus. We discerned the biological significance of the changes by Gene Ontology and protein network analysis. Proteins that change in the nucleus include ones involved in protein folding and localization, microtubule-based process, regulation of cell death, cytoskeleton organization, DNA metabolic process, RNA processing, and cell cycle. Among striking changes in the nucleus, we found a decrease of all six 14-3-3 isoforms; dynamic changes of "cytoskeletal" proteins, suggestive of nucleoskeletal reorganization; rapid decrease of tubulins; and dynamic changes of heat shock proteins. Identification of these changes of nuclear protein abundance enhances our understanding of high NaCl-induced cellular stress, and provides leads to previously unknown damages and protective responses.
Collapse
Affiliation(s)
- Jinxi Li
- Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pic E, Gagné JP, Poirier GG. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1. Expert Rev Proteomics 2012; 8:759-74. [PMID: 22087659 DOI: 10.1586/epr.11.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.
Collapse
Affiliation(s)
- Emilie Pic
- Centre de Recherche du CHUQ ? Pavillon CHUL, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | | | | |
Collapse
|
24
|
Gabert BJ, Kültz D. Osmoprotective proteome adjustments in mouse kidney papilla. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:435-48. [PMID: 21236367 DOI: 10.1016/j.bbapap.2011.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 12/23/2022]
Abstract
The papilla of the mammalian kidney must tolerate greatly varying degrees of hyperosmotic stress during urine concentration and depending on whole organism hydration state. To identify proteome adaptations supporting cell function and survival in such a harsh environment we compared the proteome of a) the hyperosmotic renal papilla with that of adjacent iso-osmotic cortex tissue and b) the renal papilla of diuretic versus that of anti-diuretic mice. Though functionally distinct the papilla is in close physical proximity to the renal cortex, an iso-osmotic region. Proteomic differences between the papilla and cortex of C57BL6 mice were identified using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry. We found 37 different proteins characteristic of the cortex and 16 proteins over-represented in the papilla. Regional specificity was confirmed by Western blot and further substantiated by immunohistochemistry for selected proteins. Proteins that are characteristic of the renal papilla include αB crystallin, Hsp beta-1, Hsp90, 14-3-3 protein, glutathione S-transferase, aldose reductase, actin and tropomyosin. Gene ontology analysis confirmed a significant increase in molecular functions associated with protein chaperoning and cell stabilization. Proteins over-represented in the cortex were largely related to routine metabolism. During antidiuresis 15 different proteins changed significantly while 18 different proteins changed significantly during diuresis relative to normally hydrated controls. Changes were confirmed by Western blot for selected proteins. Proteins that are significantly altered by diuretic state are associated with cell structure (actin, tubulin), signaling (Rho GDP dissociation inhibitor, abhydrolase domain-containing protein 14B), chaperone functioning (Hsp beta-1, αB crystallin, T complex protein-1) and anti-oxidant functions (α-enolase, GAPDH and LDH). Taken together our study reveals that specific proteins involved in protein folding, cytoskeletal stabilization, antioxidant responses, and stress signaling contribute greatly to the unique hyperosmotic stress resistant phenotype of the kidney papilla.
Collapse
Affiliation(s)
- B J Gabert
- Department of Animal Science, University of Califonia, Davis, CA, USA
| | | |
Collapse
|
25
|
Gallazzini M, Heussler GE, Kunin M, Izumi Y, Burg MB, Ferraris JD. High NaCl-induced activation of CDK5 increases phosphorylation of the osmoprotective transcription factor TonEBP/OREBP at threonine 135, which contributes to its rapid nuclear localization. Mol Biol Cell 2011; 22:703-14. [PMID: 21209322 PMCID: PMC3046065 DOI: 10.1091/mbc.e10-08-0681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
When activated by high NaCl, the transcription factor TonEBP/OREBP increases transcription of osmoprotective genes. High NaCl activates CDK5 kinase, which directly phosphorylates TonEBP/OREBP on threonine 135. This contributes to rapid nuclear translocation of TonEBP/OREBP, accelerating transcription of its osmoprotective target genes. When activated by high NaCl, tonicity-responsive enhancer–binding protein/osmotic response element–binding protein (TonEBP/OREBP) increases transcription of osmoprotective genes. High NaCl activates TonEBP/OREBP by increasing its phosphorylation, nuclear localization, and transactivating activity. In HEK293 cells, mass spectrometry shows phosphorylation of TonEBP/OREBP-S120, -S134, -T135, and -S155. When those residues are individually mutated to alanine, nuclear localization is greater for S155A, less for S134A and T135A, and unchanged for S120A. High osmolality increases phosphorylation at T135 in HEK293 cells and in rat renal inner medullas in vivo. In HEK293 cells, high NaCl activates cyclin-dependent kinase 5 (CDK5), which directly phosphorylates TonEBP/OREBP-T135. Inhibition of CDK5 activity reduces the rapid high NaCl–induced nuclear localization of TonEBP/OREBP but does not affect its transactivating activity. High NaCl induces nuclear localization of TonEBP/OREBP faster (≤2 h) than it increases its overall protein abundance (≥6 h). Inhibition of CDK5 reduces the increase in TonEBP/OREBP transcriptional activity that has occurred by 4 h after NaCl is raised, associated with less nuclear TonEBP/OREBP at that time, but does not reduce either activity or nuclear TonEBP/OREBP after 16 h. Thus high NaCl–induced increase of the overall abundance of TonEBP/OREBP, by itself, eventually raises its effective level in the nucleus, but its rapid CDK5-dependent nuclear localization accelerates the process, speeding transcription of osmoprotective target genes.
Collapse
Affiliation(s)
- Morgan Gallazzini
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kunin M, Dmitrieva NI, Gallazzini M, Shen RF, Wang G, Burg MB, Ferraris JD. Mediator of DNA damage checkpoint 1 (MDC1) contributes to high NaCl-induced activation of the osmoprotective transcription factor TonEBP/OREBP. PLoS One 2010; 5:e12108. [PMID: 20711462 PMCID: PMC2920327 DOI: 10.1371/journal.pone.0012108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 07/12/2010] [Indexed: 01/17/2023] Open
Abstract
Background Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. Methodology We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. Principal Findings We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability. The identification was confirmed by Western analysis. We used small interfering RNA knockdown of MDC1 to characterize its osmotic function. Knocking down MDC1 reduces high NaCl-induced increases in TonEBP/OREBP transcriptional and transactivating activity, but has no significant effect on its nuclear localization. We confirm six previously known phosphorylation sites in MDC1, but do not find evidence that high NaCl increases phosphorylation of MDC1. It is suggestive that MDC1 acts as a DNA damage response protein since hypertonicity reversibly increases DNA breaks, and other DNA damage response proteins, like ATM, also associate with TonEBP/OREBP and contribute to its activation by hypertonicity. Conclusions/Significance MDC1 associates with TonEBP/OREBP and contributes to high NaCl-induced increase of that factor's transcriptional activity.
Collapse
Affiliation(s)
- Margarita Kunin
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Natalia I. Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Morgan Gallazzini
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Rong-Fong Shen
- Proteomics Core Facility, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Maurice B. Burg
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Joan D. Ferraris
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
27
|
Gallazzini M, Yu MJ, Gunaratne R, Burg MB, Ferraris JD. c-Abl mediates high NaCl-induced phosphorylation and activation of the transcription factor TonEBP/OREBP. FASEB J 2010; 24:4325-35. [PMID: 20585028 DOI: 10.1096/fj.10-157362] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor TonEBP/OREBP promotes cell survival during osmotic stress. High NaCl-induced phosphorylation of TonEBP/OREBP at tyrosine-143 was known to be an important factor in increasing its activity in cell culture. We now find that TonEBP/OREBP also is phosphorylated at tyrosine-143 in rat renal inner medulla, dependent on the interstitial osmolality. c-Abl seemed likely to be the kinase that phosphorylates TonEBP/OREBP because Y143 is in a consensus c-Abl phosphorylation site. We now confirm that, as follows. High NaCl increases c-Abl activity. Specific inhibition of c-Abl by imatinib, siRNA, or c-Abl kinase dead drastically reduces high NaCl-induced TonEBP/OREBP activity by reducing its nuclear location and transactivating activity. c-Abl associates with TonEBP/OREBP (coimmunoprecipitation) and phosphorylates TonEBP/OREBP-Y143 both in cell and in vitro. High NaCl-induced activation of ataxia telangiectasia mutated, previously known to contribute to activation of TonEBP/OREBP, depends on c-Abl activity. Thus, c-Abl is the kinase responsible for high NaCl-induced phosphorylation of TonEBP/OREBP-Y143, which contributes to its increased activity.
Collapse
Affiliation(s)
- Morgan Gallazzini
- Laboratory of Kidney and Electrolyte Metabolism, National Heart Lung and Blood Institute, Bethesda, MD 20892-1603,
| | | | | | | | | |
Collapse
|
28
|
Di Paola D, Rampakakis E, Chan MK, Arvanitis DN, Zannis-Hadjopoulos M. Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation. Nucleic Acids Res 2010; 38:2314-31. [PMID: 20064876 PMCID: PMC2853114 DOI: 10.1093/nar/gkp1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 01/05/2023] Open
Abstract
Using libraries of replication origins generated previously, we identified three clones that supported the autonomous replication of their respective plasmids in transformed, but not in normal cells. Assessment of their in vivo replication activity by in situ chromosomal DNA replication assays revealed that the chromosomal loci corresponding to these clones coincided with chromosomal replication origins in all cell lines, which were more active by 2-3-fold in the transformed by comparison to the normal cells. Evaluation of pre-replication complex (pre-RC) protein abundance at these origins in transformed and normal cells by chromatin immunoprecipitation assays, using anti-ORC2, -cdc6 and -cdt1 antibodies, showed that they were bound by these pre-RC proteins in all cell lines, but a 2-3-fold higher abundance was observed in the transformed by comparison to the normal cells. Electrophoretic mobility shift assays (EMSAs) performed on the most efficiently replicating clone, using nuclear extracts from the transformed and normal cells, revealed the presence of a DNA replication complex in transformed cells, which was barely detectable in normal cells. Subsequent supershift EMSAs suggested the presence of transformation-specific complexes. Mass spectrometric analysis of these complexes revealed potential new protein players involved in DNA replication that appear to correlate with cellular transformation.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Emmanouil Rampakakis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Man Kid Chan
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Dina N. Arvanitis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Maria Zannis-Hadjopoulos
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
29
|
Kumar R. Role of naturally occurring osmolytes in protein folding and stability. Arch Biochem Biophys 2009; 491:1-6. [DOI: 10.1016/j.abb.2009.09.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 11/24/2022]
|
30
|
The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress. PLoS One 2009; 4:e5245. [PMID: 19381288 PMCID: PMC2667631 DOI: 10.1371/journal.pone.0005245] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/19/2009] [Indexed: 11/20/2022] Open
Abstract
Background Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. Methodology/Principal Findings We have generated conditional knockout mice to obtain NFAT5−/− T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5−/− cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5−/− cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5−/− lymphocytes. Conclusions/Significance We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.
Collapse
|
31
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1054] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
32
|
Gagné JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, Dawson TM, Poirier GG. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res 2008; 36:6959-76. [PMID: 18981049 PMCID: PMC2602769 DOI: 10.1093/nar/gkn771] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli.
Collapse
Affiliation(s)
- Jean-Philippe Gagné
- Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cells of almost all organisms accumulate organic osmolytes when exposed to hyperosmolality, most often in the form of high salt or urea. In this review, we discuss 1) how the organic osmolytes protect; 2) the identity of osmolytes in Archaea, bacteria, yeast, plants, marine animals, and mammals; 3) the mechanisms by which they are accumulated; 4) sensors of osmolality; 5) the signaling pathways involved; and 6) mutual counteraction by urea and methylamines.
Collapse
Affiliation(s)
- Maurice B Burg
- Department of Health and Human Services, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1603, USA.
| | | |
Collapse
|
34
|
Burg MB, Ferraris JD. Intracellular organic osmolytes: function and regulation. J Biol Chem 2008. [PMID: 18256030 DOI: 10.1974/jbc.r700042200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells of almost all organisms accumulate organic osmolytes when exposed to hyperosmolality, most often in the form of high salt or urea. In this review, we discuss 1) how the organic osmolytes protect; 2) the identity of osmolytes in Archaea, bacteria, yeast, plants, marine animals, and mammals; 3) the mechanisms by which they are accumulated; 4) sensors of osmolality; 5) the signaling pathways involved; and 6) mutual counteraction by urea and methylamines.
Collapse
Affiliation(s)
- Maurice B Burg
- Department of Health and Human Services, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1603, USA.
| | | |
Collapse
|
35
|
Pisitkun T, Hoffert JD, Yu MJ, Knepper MA. Tandem mass spectrometry in physiology. Physiology (Bethesda) 2008; 22:390-400. [PMID: 18073412 DOI: 10.1152/physiol.00025.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tandem mass spectrometry coupled to liquid chromatography (LC-MS/MS) allows identification of proteins in a complex mixture without need for protein purification ("shotgun" proteomics). Recent progress in LC-MS/MS-based quantification, phosphoproteomic analysis, and targeted LC-MS/MS using multiple reaction monitoring (MRM) has made LC-MS/MS a powerful tool for the study of cell physiology.
Collapse
Affiliation(s)
- Trairak Pisitkun
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
36
|
Irarrazabal CE, Williams CK, Ely MA, Birrer MJ, Garcia-Perez A, Burg MB, Ferraris JD. Activator protein-1 contributes to high NaCl-induced increase in tonicity-responsive enhancer/osmotic response element-binding protein transactivating activity. J Biol Chem 2007; 283:2554-63. [PMID: 18056707 DOI: 10.1074/jbc.m703490200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) is a Rel protein that activates transcription of osmoprotective genes at high extracellular NaCl. Other Rel proteins NFAT1-4 and NF-kappaB complex with activator protein-1 (AP-1) to transactivate target genes through interaction at composite NFAT/NF-kappaB.AP-1 sites. TonEBP/OREBP target genes commonly have one or more conserved AP-1 binding sites near TonEBP/OREBP cognate elements (OREs). Also, TonEBP/OREBP and the AP-1 proteins c-Fos and c-Jun are all activated by high NaCl. We now find, using an ORE.AP-1 reporter from the target aldose reductase gene or the same reporter with a mutated AP-1 site, that upon stimulation by high extracellular NaCl, 1) the presence of a wild type, but not a mutated, AP-1 site contributes to TonEBP/OREBP-dependent transcription and 2) AP-1 dominant negative constructs inhibit TonEBP/OREBP-dependent transcription provided the AP-1 site is not mutated. Using supershifts and an ORE.AP-1 probe, we find c-Fos and c-Jun present in combination with TonEBP/OREBP. Also, c-Fos and c-Jun coimmunoprecipitate with TonEBP/OREBP, indicating physical association. Small interfering RNA knockdown of either c-Fos or c-Jun inhibits high NaCl-induced increase of mRNA abundance of the TonEBP/OREBP target genes AR and BGT1. Furthermore, a dominant negative AP-1 also reduces high NaCl-induced increase of TonEBP/OREBP transactivating activity. Inhibition of p38, which is known to stimulate TonEBP/OREBP transcriptional activity, reduces high NaCl-dependent transcription of an ORE.AP-1 reporter only if the AP-1 site is intact. Thus, AP-1 is part of the TonEBP/OREBP enhanceosome, and its role in high NaCl-induced activation of TonEBP/OREBP may require p38 activity.
Collapse
Affiliation(s)
- Carlos E Irarrazabal
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health/DHHS, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ito T, Asakura K, Tougou K, Fukuda T, Kubota R, Nonen S, Fujio Y, Azuma J. Regulation of cytochrome P450 2E1 under hypertonic environment through TonEBP in human hepatocytes. Mol Pharmacol 2007; 72:173-81. [PMID: 17440116 DOI: 10.1124/mol.106.033480] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the liver as well as the other organs are continually exposed to the change of osmotic status, it has never been investigated whether activities and gene expressions of drug-metabolizing enzymes, including cytochromes P450, are dependent on osmotic change in the liver. In the present study, we determined that CYP2E1 is induced under hypertonic environments at a transcriptional level in human primary hepatocytes, as assessed by cDNA microarray and real time-reverse transcription-polymerase chain reaction analyses. Both a protein level and the catalytic activity of CYP2E1 were consistently increased in response to hypertonic conditions. In promoter-reporter assay, it was demonstrated that -586 to -566 in the CYP2E1 5'-flanking region was necessary for 2E1 promoter activation by hypertonic stimulation. It is noteworthy that tonicity-response element (TonE) consensus sequence was found at -578 to -568 in human CYP2E1 5'-flanking region, and electrophoretic mobility shift assay demonstrated the interaction of TonE binding protein (TonEBP) with TonE motif of CYP2E1 promoter. Furthermore, cotransfection of a CYP2E1 promoter construct with wild-type TonEBP expression vector enhanced promoter activity under both isotonic and hypertonic conditions, whereas dominant-negative TonEBP suppressed an induction of CYP2E1 promoter activity. These results indicate that the level of CYP2E1 is induced by hypertonic condition via TonEBP transactivation. The present study suggests that osmotic status may influence individual responses to the substrate of CYP2E1.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Maloney A, Clarke PA, Naaby-Hansen S, Stein R, Koopman JO, Akpan A, Yang A, Zvelebil M, Cramer R, Stimson L, Aherne W, Banerji U, Judson I, Sharp S, Powers M, deBilly E, Salmons J, Walton M, Burlingame A, Waterfield M, Workman P. Gene and Protein Expression Profiling of Human Ovarian Cancer Cells Treated with the Heat Shock Protein 90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin. Cancer Res 2007; 67:3239-53. [PMID: 17409432 DOI: 10.1158/0008-5472.can-06-2968] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The promising antitumor activity of 17-allylamino-17-demethoxygeldanamycin (17AAG) results from inhibition of the molecular chaperone heat shock protein 90 (HSP90) and subsequent degradation of multiple oncogenic client proteins. Gene expression microarray and proteomic analysis were used to profile molecular changes in the A2780 human ovarian cancer cell line treated with 17AAG. Comparison of results with an inactive analogue and an alternative HSP90 inhibitor radicicol indicated that increased expression of HSP72, HSC70, HSP27, HSP47, and HSP90beta at the mRNA level were on-target effects of 17AAG. HSP27 protein levels were increased in tumor biopsies following treatment of patients with 17AAG. A group of MYC-regulated mRNAs was decreased by 17AAG. Of particular interest and novelty were changes in expression of chromatin-associated proteins. Expression of the heterochromatin protein 1 was increased, and expression of the histone acetyltransferase 1 and the histone arginine methyltransferase PRMT5 was decreased by 17AAG. PRMT5 was shown to be a novel HSP90-binding partner and potential client protein. Cellular protein acetylation was reduced by 17AAG, which was shown to have an antagonistic interaction on cell proliferation with the histone deacetylase inhibitor trichostatin A. This mRNA and protein expression analysis has provided new insights into the complex molecular pharmacology of 17AAG and suggested new genes and proteins that may be involved in response to the drug or be potential biomarkers of drug action.
Collapse
Affiliation(s)
- Alison Maloney
- Haddow Laboratories, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|