1
|
Takeyasu M, Kozai K, Sugita M. Involvement of sodium-glucose cotransporter-1 activities in maintaining oscillatory Cl - currents from mouse submandibular acinar cells. J Comp Physiol B 2024; 194:21-32. [PMID: 38308715 PMCID: PMC10940492 DOI: 10.1007/s00360-024-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024]
Abstract
In salivary acinar cells, cholinergic stimulation induces elevations of cytosolic [Ca2+]i to activate the apical exit of Cl- through TMEM16A Cl- channels, which acts as a driving force for fluid secretion. To sustain the Cl- secretion, [Cl-]i must be maintained to levels that are greater than the electrochemical equilibrium mainly by Na+-K+-2Cl- cotransporter-mediated Cl- entry in basolateral membrane. Glucose transporters carry glucose into the cytoplasm, enabling the cells to produce ATP to maintain Cl- and fluid secretion. Sodium-glucose cotransporter-1 is a glucose transporter highly expressed in acinar cells. The salivary flow is suppressed by the sodium-glucose cotransporter-1 inhibitor phlorizin. However, it remains elusive how sodium-glucose cotransporter-1 contributes to maintaining salivary fluid secretion. To examine if sodium-glucose cotransporter-1 activity is required for sustaining Cl- secretion to drive fluid secretion, we analyzed the Cl- currents activated by the cholinergic agonist, carbachol, in submandibular acinar cells while comparing the effect of phlorizin on the currents between the whole-cell patch and the gramicidin-perforated patch configurations. Phlorizin suppressed carbachol-induced oscillatory Cl- currents by reducing the Cl- efflux dependent on the Na+-K+-2Cl- cotransporter-mediated Cl- entry in addition to affecting TMEM16A activity. Our results suggest that the sodium-glucose cotransporter-1 activity is necessary for maintaining the oscillatory Cl- secretion supported by the Na+-K+-2Cl- cotransporter activity in real time to drive fluid secretion. The concerted effort of sodium-glucose cotransporter-1, Na+-K+-2Cl- cotransporter, and apically located Cl- channels might underlie the efficient driving of Cl- secretion in different secretory epithelia from a variety of animal species.
Collapse
Affiliation(s)
- Misa Takeyasu
- Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Sugita
- Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
2
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
3
|
Peña-Münzenmayer G, Kondo Y, Salinas C, Sarmiento J, Brauchi S, Catalán MA. Activation of the Ae4 (Slc4a9) cation-driven Cl -/HCO 3- exchanger by the cAMP-dependent protein kinase in salivary gland acinar cells. Am J Physiol Gastrointest Liver Physiol 2021; 321:G628-G638. [PMID: 34585968 PMCID: PMC8887885 DOI: 10.1152/ajpgi.00145.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023]
Abstract
Ae4 transporters are critical for Cl- uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl-/HCO3- exchanger activity in SMG acinar cells from Ae2-/- mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to β-adrenergic receptor stimulation. Moreover, pretreatment with H89, an inhibitor of the cAMP-activated kinase (PKA), prevented the stimulation of Ae4 exchangers. We then expressed Ae4 in CHO-K1 cells and found that the Ae4-mediated activity was increased when Ae4 is coexpressed with the catalytic subunit of PKA (PKAc), which is constitutively active. Ae4 sequence analysis showed two potential PKA phosphorylation serine residues located at the intracellular NH2-terminal domain according to a homology model of Ae4. NH2-terminal domain Ser residues were mutated to alanine (S173A and S273A, respectively), where the Cl-/HCO3- exchanger activity displayed by the mutant S173A was not activated by PKA. Conversely, S273A mutant kept the PKA dependency. Together, we conclude that Ae4 is stimulated by PKA in SMG acinar cells by a mechanism that probably depends on the phosphorylation of S173.NEW & NOTEWORTHY We found that Ae4 exchanger activity in secretory salivary gland acinar cells is increased upon β-adrenergic receptor stimulation. The activation of Ae4 was prevented by H89, a nonselective PKA inhibitor. Protein sequence analysis revealed two residues (S173 and S273) that are potential targets of cAMP-dependent protein kinase (PKA). Experiments in CHO-K1 cells expressing S173A and S273A mutants showed that S173A, but not S273A, is not activated by PKA.
Collapse
Affiliation(s)
- Gaspar Peña-Münzenmayer
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Constanza Salinas
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Brauchi
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Marcelo A Catalán
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
4
|
Sneyd J, Vera-Sigüenza E, Rugis J, Pages N, Yule DI. Calcium Dynamics and Water Transport in Salivary Acinar Cells. Bull Math Biol 2021; 83:31. [PMID: 33594615 PMCID: PMC8018713 DOI: 10.1007/s11538-020-00841-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
Saliva is secreted from the acinar cells of the salivary glands, using mechanisms that are similar to other types of water-transporting epithelial cells. Using a combination of theoretical and experimental techniques, over the past 20 years we have continually developed and modified a quantitative model of saliva secretion, and how it is controlled by the dynamics of intracellular calcium. However, over approximately the past 5 years there have been significant developments both in our understanding of the underlying mechanisms and in the way these mechanisms should best be modelled. Here, we review the traditional understanding of how saliva is secreted, and describe how our work has suggested important modifications to this traditional view. We end with a brief description of the most recent data from living animals and discuss how this is now contributing to yet another iteration of model construction and experimental investigation.
Collapse
Affiliation(s)
- James Sneyd
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland, New Zealand.
| | | | | | | | - David I Yule
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, USA
| |
Collapse
|
5
|
Cadiz L, Jonz MG. A comparative perspective on lung and gill regeneration. ACTA ACUST UNITED AC 2020; 223:223/19/jeb226076. [PMID: 33037099 DOI: 10.1242/jeb.226076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to continuously grow and regenerate the gills throughout life is a remarkable property of fish and amphibians. Considering that gill regeneration was first described over one century ago, it is surprising that the underlying mechanisms of cell and tissue replacement in the gills remain poorly understood. By contrast, the mammalian lung is a largely quiescent organ in adults but is capable of facultative regeneration following injury. In the course of the past decade, it has been recognized that lungs contain a population of stem or progenitor cells with an extensive ability to restore tissue; however, despite recent advances in regenerative biology of the lung, the signaling pathways that underlie regeneration are poorly understood. In this Review, we discuss the common evolutionary and embryological origins shared by gills and mammalian lungs. These are evident in homologies in tissue structure, cell populations, cellular function and genetic pathways. An integration of the literature on gill and lung regeneration in vertebrates is presented using a comparative approach in order to outline the challenges that remain in these areas, and to highlight the importance of using aquatic vertebrates as model organisms. The study of gill regeneration in fish and amphibians, which have a high regenerative potential and for which genetic tools are widely available, represents a unique opportunity to uncover common signaling mechanisms that may be important for regeneration of respiratory organs in all vertebrates. This may lead to new advances in tissue repair following lung disease.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
6
|
Kinne R, Spokes KC, Silva P. Sugar uptake, metabolism, and chloride secretion in the rectal gland of the spiny dogfish Squalus acanthias. Am J Physiol Regul Integr Comp Physiol 2020; 319:R96-R105. [PMID: 32459971 DOI: 10.1152/ajpregu.00060.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rectal gland of the spiny dogfish Squalus acanthias secretes a salt solution isosmotic with plasma that maintains the salt homeostasis of the fish. It secretes salt against an electrochemical gradient that requires the expenditure of energy. Isolated rectal glands perfused without glucose secrete salt, albeit at a rate about 30% of glands perfused with 5 mM glucose. Gradually reducing the glucose concentration is associated with a progressive decrease in the secretion of chloride. The apparent Km for the exogenous glucose-dependent chloride secretion is around 2 mM. Phloretin and cytochalasin B, agents that inhibit facilitated glucose carriers of the solute carrier 2 (Slc2) family such as glucose transporter 2 (GLUT2), do not inhibit the secretion of chloride by the perfused rectal glands. Phloridzin, which inhibits Slc5 family of glucose symporters, or α-methyl-d-glucoside, which competitively inhibits the uptake of glucose through Slc5 symporters, inhibit the secretion of chloride. Thus the movement of glucose into the rectal gland cells appears to be mediated by a sodium-glucose symporter. Sodium-glucose cotransporter 1 (SGLT1), the first member of the Slc5 family of sodium-linked glucose symporters, was cloned from the rectal gland. No evidence of GLUT2 was found. The persistence of secretion of chloride in the absence of glucose in the perfusate suggests that there is an additional source of energy within the cells. The use of 2-mercapto-acetate did not result in any change in the secretion of chloride, suggesting that the oxidation of fatty acids is not the source of energy for the secretion of chloride. Perfusion of isolated glands with KCN in the absence of glucose further reduces the secretion of chloride but does not abolish it, again suggesting that there is another source of energy within the cells. Glucose was measured in the rectal gland cells and found to be at concentrations in the range of that in the perfusate. Glycogen measurements indicated that there are significant stores of glucose in the rectal gland. Moreover, glycogen synthase was partially cloned from rectal gland cells. The open reading frame of glycogen phosphorylase was also cloned from rectal gland cells. Measurements of glycogen phosphorylase showed that the enzyme is mostly in its active form in the cells. The cells of the rectal gland of the spiny dogfish require exogenous glucose to fully support the active secretion of salt. They have the means to transport glucose into the cells in the form of SGLT1. The cells also have an endogenous supply of glucose as glycogen and have the necessary elements to synthesize, store, and hydrolyze it.
Collapse
Affiliation(s)
- Rolf Kinne
- Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany.,Mount Desert Island Biological Laboratory, Salsbury Cove, Maine
| | - Katherine C Spokes
- Department of Medicine, Beth Israel Hospital, and Harvard Medical School, Boston, Massachusetts.,Mount Desert Island Biological Laboratory, Salsbury Cove, Maine
| | - Patricio Silva
- Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania.,Mount Desert Island Biological Laboratory, Salsbury Cove, Maine
| |
Collapse
|
7
|
Larsen ME, Abel DC, Crane DP, Parker SL, Yancey PH, Keller BA, Grubbs DR. Unique osmoregulatory morphology in primitive sharks: an intermediate state between holocephalan and derived shark secretory morphology. JOURNAL OF FISH BIOLOGY 2019; 95:1331-1341. [PMID: 31566735 DOI: 10.1111/jfb.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Discovery of an unusual rectal gland in the Atlantic sixgill shark Hexanchus vitulus led us to examine the rectal glands of 31 species of sharks to study diversity in rectal-gland morphology. Twenty-four of 31 species of sharks had digitiform glands (mean width-length ratio ± SD = 0.17 ± 0.04) previously assumed to be characteristic of all elasmobranchs regardless of habitat depth or phylogenetic age. Rectal glands from the family Somniosidae were kidney bean-shaped (mean width: length ± SD = 0.46 ± 0.05); whereas those from families Echinorhinidae and Hexanchidae were lobulate (mean width: length ± SD = 0.55 ± 0.06). Rectal gland width: length were different among species with digitiform morphology and lobulate morphology (ANOVA; R2 = 0.9; df = 15, 386; 401, F = 219.24; P < 0.001). Histological and morphological characteristics of the digitiform morphology from deep-sea sharks were similar to those from shallow-water sharks. Histology of lobulate rectal glands from hexanchids were characterised by tubule bundles separated by smooth muscle around a central lumen. Additionally, we examined plasma chemistry of four species of sharks with digitiform rectal glands and two species with lobulate rectal-gland morphology to see if there were differences between morphologies. Plasma chemistry analysis showed that urea and trimethylamine N-oxide (TMAO) followed the piezolyte hypothesis, with TMAO being highest and urea being lowest in deep-sea sharks. Among electrolytes, Na+ was highest in species with lobulate rectal glands. Hexanchids and echinorhinids both have lobulate rectal glands similar to those of holocephalans, despite the more than 400 million years separating these two groups. The morphological similarities between the lobulate rectal-gland anatomy of primitive sharks and the secretory morphology of holocephalans may represent an intermediate state between Holocephali and derived shark species.
Collapse
Affiliation(s)
- Matthew E Larsen
- Department of Coastal and Marine Systems Science, Coastal Carolina University, Conway, South Carolina, USA
| | - Daniel C Abel
- Department of Marine Science, Coastal Carolina University, Conway, South Carolina, USA
| | - Derek P Crane
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Scott L Parker
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Paul H Yancey
- Department of Biology, Whitman College, Walla Walla, Washington, USA
| | - Bryan A Keller
- Coastal and Marine Laboratory, Florida State University, St. Teresa, Florida, USA
| | - Dean R Grubbs
- Coastal and Marine Laboratory, Florida State University, St. Teresa, Florida, USA
| |
Collapse
|
8
|
Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na +-K +-2Cl - cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 2019; 316:C525-C544. [PMID: 30576237 PMCID: PMC6482671 DOI: 10.1152/ajpcell.00026.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Choroid plexus epithelial cells (CPECs) secrete cerebrospinal fluid (CSF). They express Na+-K+-ATPase and Na+-K+-2Cl- cotransporter 1 (NKCC1) on their apical membrane, deviating from typical basolateral membrane location in secretory epithelia. Given this peculiarity, the direction of basal net ion fluxes mediated by NKCC1 in CPECs is controversial, and cotransporter function is unclear. Determining the direction of basal NKCC1-mediated fluxes is critical to understanding the function of apical NKCC1. If NKCC1 works in the net efflux mode, it may be directly involved in CSF secretion. Conversely, if NKCC1 works in the net influx mode, it would have an absorptive function, contributing to intracellular Cl- concentration ([Cl-]i) and cell water volume (CWV) maintenance needed for CSF secretion. We resolve this long-standing debate by electron microscopy (EM), live-cell-imaging microscopy (LCIM), and intracellular Na+ and Cl- measurements in single CPECs of NKCC1+/+ and NKCC1-/- mouse. NKCC1-mediated ion and associated water fluxes are tightly linked, thus their direction is inferred by measuring CWV changes. Genetic or pharmacological NKCC1 inactivation produces CPEC shrinkage. EM of NKCC1-/- CPECs in situ shows they are shrunken, forming large dilations of their basolateral extracellular spaces, yet remaining attached by tight junctions. Normarski LCIM shows in vitro CPECs from NKCC1-/- are ~17% smaller than NKCC1+/+. CWV measurements in calcein-loaded CPECs show that bumetanide (10 μM) produces ~16% decrease in CWV in NKCC1+/+ but not in NKCC1-/- CPECs. Our findings suggest that under basal conditions apical NKCC1 is continuously active and works in the net inward flux mode maintaining [Cl-]i and CWV needed for CSF secretion.
Collapse
Affiliation(s)
- Jeannine M C Gregoriades
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Aaron Madaris
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University , Dayton, Ohio
| | - Francisco J Alvarez
- Department of Neuroscience, Cell Biology and Physiology, Wright State University , Dayton, Ohio
| | | |
Collapse
|
9
|
Vera-Sigüenza E, Pages N, Rugis J, Yule DI, Sneyd J. A Mathematical Model of Fluid Transport in an Accurate Reconstruction of Parotid Acinar Cells. Bull Math Biol 2019; 81:699-721. [PMID: 30484039 PMCID: PMC7219794 DOI: 10.1007/s11538-018-0534-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/13/2018] [Indexed: 01/04/2023]
Abstract
Salivary gland acinar cells use the calcium ([Formula: see text]) ion as a signalling messenger to regulate a diverse range of intracellular processes, including the secretion of primary saliva. Although the underlying mechanisms responsible for saliva secretion are reasonably well understood, the precise role played by spatially heterogeneous intracellular [Formula: see text] signalling in these cells remains uncertain. In this study, we use a mathematical model, based on new and unpublished experimental data from parotid acinar cells (measured in excised lobules of mouse parotid gland), to investigate how the structure of the cell and the spatio-temporal properties of [Formula: see text] signalling influence the production of primary saliva. We combine a new [Formula: see text] signalling model [described in detail in a companion paper: Pages et al. in Bull Math Biol 2018, submitted] with an existing secretion model (Vera-Sigüenza et al. in Bull Math Biol 80:255-282, 2018. https://doi.org/10.1007/s11538-017-0370-6 ) and solve the resultant model in an anatomically accurate three-dimensional cell. Our study yields three principal results. Firstly, we show that spatial heterogeneities of [Formula: see text] concentration in either the apical or basal regions of the cell have no significant effect on the rate of primary saliva secretion. Secondly, in agreement with previous work (Palk et al., in J Theor Biol 305:45-53, 2012. https://doi.org/10.1016/j.jtbi.2012.04.009 ) we show that the frequency of [Formula: see text] oscillation has no significant effect on the rate of primary saliva secretion, which is determined almost entirely by the mean (over time) of the apical and basal [Formula: see text]. Thirdly, it is possible to model the rate of primary saliva secretion as a quasi-steady-state function of the cytosolic [Formula: see text] averaged over the entire cell when modelling the flow rate is the only interest, thus ignoring all the dynamic complexity not only of the fluid secretion mechanism but also of the intracellular heterogeneity of [Formula: see text]. Taken together, our results demonstrate that an accurate multiscale model of primary saliva secretion from a single acinar cell can be constructed by ignoring the vast majority of the spatial and temporal complexity of the underlying mechanisms.
Collapse
Affiliation(s)
- Elías Vera-Sigüenza
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland, New Zealand.
| | - Nathan Pages
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland, New Zealand
| | - John Rugis
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland, New Zealand
| | - David I Yule
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland, New Zealand
| |
Collapse
|
10
|
Fine LG. Are Current Strategies for Building a Human Kidney Misguided? Speculative Alternatives. J Am Soc Nephrol 2018; 29:2780-2782. [PMID: 30377234 DOI: 10.1681/asn.2018080822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Leon G Fine
- Program in the History of Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
11
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Osmoregulation in the Plotosidae Catfish: Role of the Salt Secreting Dendritic Organ. Front Physiol 2018; 9:761. [PMID: 30018560 PMCID: PMC6037869 DOI: 10.3389/fphys.2018.00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Unlike other marine teleosts, the Plotosidae catfishes reportedly have an extra-branchial salt secreting dendritic organ (DO). Salinity acclimation [brackishwater (BW) 3aaa, seawater (SWcontrol) 34aaa, and hypersaline water (HSW) 60aaa] for 14 days was used to investigate the osmoregulatory abilities of Plotosus lineatus through measurements of blood chemistry, muscle water content (MWC), Na+/K+-ATPase (NKA) specific activity and ion transporter expression in gills, DO, kidney and intestine. Ion transporter expression was determined using immunoblotting, immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR). HSW elevated mortality, plasma osmolality and ions, and hematocrit, and decreased MWC indicating an osmoregulatory challenge. NKA specific activity and protein levels were significantly higher in DO compared to gill, kidney and intestine at all salinities. NKA specific activity increased in kidney and posterior intestine with HSW but only kidney showed correspondingly higher NKA α-subunit protein levels. Since DO mass was greater in HSW, the total amount of DO NKA activity expressed per gram fish was greater indicating higher overall capacity. Gill NKA and V-ATPase protein levels were greater with HSW acclimation but this was not reflected in NKA activity, mRNA or ionocyte abundance. BW acclimation resulted in lower NKA activity in gill, kidney and DO. Cl- levels were better regulated and the resulting strong ion ratio in BW suggests a metabolic acidosis. Elevated DO heat shock protein 70 levels in HSW fish indicate a cellular stress. Strong NKA and NKCC1 (Na+:K+:2Cl- cotransporter1) co-localization was observed in DO parenchymal cells, which was rare in gill ionocytes. NKCC1 immunoblot expression was only detected in DO, which was highest at HSW. Cystic fibrosis transmembrane regulator Cl- channel (CFTR) localize apically to DO NKA immunoreactive cells. Taken together, the demonstration of high NKA activity in DO coexpressed with NKCC1 and CFTR indicates the presence of the conserved secondary active Cl- secretion mechanism found in other ion transporting epithelia suggesting a convergent evolution with other vertebrate salt secreting organs. However, the significant osmoregulatory challenge of HSW indicates that the DO may be of limited use under more extreme salinity conditions in contrast to the gill based ionoregulatory strategy of marine teleosts.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João Coimbra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jonathan M Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
12
|
New saliva secretion model based on the expression of Na +-K + pump and K + channels in the apical membrane of parotid acinar cells. Pflugers Arch 2018; 470:613-621. [PMID: 29344775 DOI: 10.1007/s00424-018-2109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl- efflux and the subsequent paracellular Na+ transport. In this model, the Na+-K+ pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl- transport via basolateral Na+-K+-2Cl- cotransport is generated by the Na+-K+ pump. In addition, the continuous electrochemical gradient for Cl- flow during acinar cell stimulation is maintained by the basolateral K+ efflux. However, using a combination of single-cell electrophysiology and Ca2+-imaging, we demonstrate that photolysis of Ca2+ close to the apical membrane of parotid acinar cells triggered significant K+ current, indicating that a substantial amount of K+ is secreted into the lumen during stimulation. Nevertheless, the K+ content of the primary saliva is relatively low, suggesting that K+ might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na+-K+ pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K+ from and secretes Na+ to the lumen, which can partially supplement the paracellular Na+ pathway.
Collapse
|
13
|
Vera-Sigüenza E, Catalán MA, Peña-Münzenmayer G, Melvin JE, Sneyd J. A Mathematical Model Supports a Key Role for Ae4 (Slc4a9) in Salivary Gland Secretion. Bull Math Biol 2017; 80:255-282. [PMID: 29209914 DOI: 10.1007/s11538-017-0370-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022]
Abstract
We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two [Formula: see text] exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by [Formula: see text] movement. Here, a basolateral [Formula: see text] adenosine triphosphatase pump (NaK-ATPase) and a [Formula: see text]-[Formula: see text]-[Formula: see text] cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with [Formula: see text] well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of [Formula: see text] ions from the internal stores of acinar cells, which triggers saliva secretion. [Formula: see text]-dependent [Formula: see text] and [Formula: see text] channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that [Formula: see text] anion exchangers (Ae), coupled with a basolateral [Formula: see text] ([Formula: see text]) (Nhe1) antiporter, regulate intracellular pH and act as a secondary [Formula: see text] uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823-G837, 1992; Melvin et al. in Annu Rev Physiol 67:445-469, 2005. https://doi.org/10.1146/annurev.physiol.67.041703.084745 ). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate [Formula: see text] decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677-10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary [Formula: see text] uptake and thus a key mechanism for saliva secretion. Here, by using 'in-silico' Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger's cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.
Collapse
Affiliation(s)
- Elías Vera-Sigüenza
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland CBD, New Zealand.
| | - Marcelo A Catalán
- Departamento de Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Gaspar Peña-Münzenmayer
- Center for Interdisciplinary Studies on the Nervous System (CISNe) and Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - James E Melvin
- Secretory Mechanisms and Dysfunction Section, Division of Intramural Research, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland CBD, New Zealand
| |
Collapse
|
14
|
Peña-Münzenmayer G, George AT, Shull GE, Melvin JE, Catalán MA. Ae4 (Slc4a9) is an electroneutral monovalent cation-dependent Cl-/HCO3- exchanger. J Gen Physiol 2017; 147:423-36. [PMID: 27114614 PMCID: PMC4845690 DOI: 10.1085/jgp.201611571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
Ae4 (Slc4a9) belongs to the Slc4a family of Cl(-)/HCO3 (-) exchangers and Na(+)-HCO3 (-) cotransporters, but its ion transport cycle is poorly understood. In this study, we find that native Ae4 activity in mouse salivary gland acinar cells supports Na(+)-dependent Cl(-)/HCO3 (-) exchange that is comparable with that obtained upon heterologous expression of mouse Ae4 and human AE4 in CHO-K1 cells. Additionally, whole cell recordings and ion concentration measurements demonstrate that Na(+) is transported by Ae4 in the same direction as HCO3 (-) (and opposite to that of Cl(-)) and that ion transport is not associated with changes in membrane potential. We also find that Ae4 can mediate Na(+)-HCO3 (-) cotransport-like activity under Cl(-)-free conditions. However, whole cell recordings show that this apparent Na(+)-HCO3 (-) cotransport activity is in fact electroneutral HCO3 (-)/Na(+)-HCO3 (-) exchange. Although the Ae4 anion exchanger is thought to regulate intracellular Cl(-) concentration in exocrine gland acinar cells, our thermodynamic calculations predict that the intracellular Na(+), Cl(-), and HCO3 (-) concentrations required for Ae4-mediated Cl(-) influx differ markedly from those reported for acinar secretory cells at rest or under sustained stimulation. Given that K(+) ions share many properties with Na(+) ions and reach intracellular concentrations of 140-150 mM (essentially the same as extracellular [Na(+)]), we hypothesize that Ae4 could mediate K(+)-dependent Cl(-)/HCO3 (-) exchange. Indeed, we find that Ae4 mediates Cl(-)/HCO3 (-) exchange activity in the presence of K(+) as well as Cs(+), Li(+), and Rb(+) In summary, our results strongly suggest that Ae4 is an electroneutral Cl(-)/nonselective cation-HCO3 (-) exchanger. We postulate that the physiological role of Ae4 in secretory cells is to promote Cl(-) influx in exchange for K(+)(Na(+)) and HCO3 (-) ions.
Collapse
Affiliation(s)
- Gaspar Peña-Münzenmayer
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Alvin T George
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - James E Melvin
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Marcelo A Catalán
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
The activity of the rectal gland of the North Pacific spiny dogfish Squalus suckleyi is glucose dependent and stimulated by glucagon-like peptide-1. J Comp Physiol B 2017; 187:1155-1161. [DOI: 10.1007/s00360-017-1102-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 11/26/2022]
|
16
|
Telles CJ, Decker SE, Motley WW, Peters AW, Mehr AP, Frizzell RA, Forrest JN. Functional and molecular identification of a TASK-1 potassium channel regulating chloride secretion through CFTR channels in the shark rectal gland: implications for cystic fibrosis. Am J Physiol Cell Physiol 2016; 311:C884-C894. [PMID: 27653983 PMCID: PMC5206301 DOI: 10.1152/ajpcell.00030.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/18/2016] [Indexed: 11/22/2022]
Abstract
In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K+ conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K+ channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K+ channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5' and 3' rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of -90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K+ channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease.
Collapse
Affiliation(s)
- Connor J Telles
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Sarah E Decker
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - William W Motley
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Alexander W Peters
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Ali Poyan Mehr
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Raymond A Frizzell
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - John N Forrest
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| |
Collapse
|
17
|
Cozzi RRF, Robertson GN, Spieker M, Claus LN, Zaparilla GMM, Garrow KL, Marshall WS. Paracellular pathway remodeling enhances sodium secretion by teleost fish in hypersaline environments. ACTA ACUST UNITED AC 2015; 218:1259-69. [PMID: 25750413 DOI: 10.1242/jeb.117317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/02/2023]
Abstract
In vertebrate salt-secreting epithelia, Na(+) moves passively down an electrochemical gradient via a paracellular pathway. We assessed how this pathway is modified to allow Na(+) secretion in hypersaline environments. Mummichogs (Fundulus heteroclitus) acclimated to hypersaline [2× seawater (2SW), 64‰] for 30 days developed invasive projections of accessory cells with an increased area of tight junctions, detected by punctate distribution of CFTR (cystic fibrosis transmembrane conductance regulator) immunofluorescence and transmission electron miscroscopy of the opercular epithelia, which form a gill-like tissue rich in ionocytes. Distribution of CFTR was not explained by membrane raft organization, because chlorpromazine (50 μmol l(-1)) and filipin (1.5 μmol l(-1)) did not affect opercular epithelia electrophysiology. Isolated opercular epithelia bathed in SW on the mucosal side had a transepithelial potential (Vt) of +40.1±0.9 mV (N=24), sufficient for passive Na(+) secretion (Nernst equilibrium voltage≡ENa=+24.11 mV). Opercular epithelia from fish acclimated to 2SW and bathed in 2SW had higher Vt of +45.1±1.2 mV (N=24), sufficient for passive Na(+) secretion (ENa=+40.74 mV), but with diminished net driving force. Bumetanide block of Cl(-) secretion reduced Vt by 45% and 29% in SW and 2SW, respectively, a decrease in the driving force for Na(+) extrusion. Estimates of shunt conductance from epithelial conductance (Gt) versus short-circuit current (Isc) plots (extrapolation to zero Isc) suggested a reduction in total epithelial shunt conductance in 2SW-acclimated fish. In contrast, the morphological elaboration of tight junctions, leading to an increase in accessory-cell-ionocyte contact points, suggests an increase in local paracellular conductance, compensating for the diminished net driving force for Na(+) and allowing salt secretion, even in extreme salinities.
Collapse
Affiliation(s)
- Regina R F Cozzi
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - George N Robertson
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Melanie Spieker
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Lauren N Claus
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Gabriella M M Zaparilla
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Kelly L Garrow
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - William S Marshall
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| |
Collapse
|
18
|
A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc Natl Acad Sci U S A 2015; 112:2263-8. [PMID: 25646474 DOI: 10.1073/pnas.1415739112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)). Ca(2+)-dependent salivation was abolished in Tmem16A(-/-) mice, demonstrating that Tmem16A is obligatory for Ca(2+)-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A(-/-) mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr(∆F508/∆F508)) or ClC-2 (Clcn2(-/-)) Cl(-) channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl(-) channel. Indeed, Cl(-) channel blockers abolished fluid secretion, indicating that Cl(-) channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic-induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A(-/-) mice identify Tmem16A as the Cl(-) channel essential for muscarinic, Ca(2+)-dependent fluid secretion in adult mouse salivary glands.
Collapse
|
19
|
Abstract
Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal "osmoreceptors" that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water balance. Fine-tuning of water absorption occurs along the collecting duct, and depends on unique structural modifications of renal tubular epithelium that confer a wide range of water permeability. In this article, we review the mechanisms that ensure water homeostasis as well as the fundamentals of disorders of water balance.
Collapse
Affiliation(s)
- John Danziger
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
20
|
Kelley CA, Decker SE, Silva P, Forrest JN. Gastric inhibitory peptide, serotonin, and glucagon are unexpected chloride secretagogues in the rectal gland of the skate (Leucoraja erinacea). Am J Physiol Regul Integr Comp Physiol 2014; 306:R674-80. [PMID: 24553297 DOI: 10.1152/ajpregu.00531.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of the rectal gland of the dogfish shark 50 years ago, experiments with this tissue have greatly aided our understanding of secondary active chloride secretion and the secretagogues responsible for this function. In contrast, very little is known about the rectal gland of skates. In the present experiments, we performed the first studies in the perfused rectal gland of the little skate (Leucoraja erinacea), an organ weighing less than one-tenth of the shark rectal gland. Our results indicate that the skate gland can be studied by modified perfusion techniques and in primary culture monolayers, and that secretion is blocked by the inhibitors of membrane proteins required for secondary active chloride secretion. Our major finding is that three G protein-coupled receptor agonists, the incretin gastric inhibitory polypeptide (GIP), also known as glucose-dependent insulinotropic peptide, as well as glucagon and serotonin, are unexpected potent chloride secretagogues in the skate but not the shark. Glucagon stimulated chloride secretion to a mean value of 1,661 ± 587 μeq·h(-1)·g(-1) and serotonin stimulated to 2,893 ± 699 μeq·h(-1)·g(-1). GIP stimulated chloride secretion to 3,733 ± 679 μeq·h(-1)·g(-1) and significantly increased tissue cAMP content compared with basal conditions. This is the first report of GIP functioning as a chloride secretagogue in any species or tissue.
Collapse
Affiliation(s)
- Catherine A Kelley
- Nephrology Division, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | |
Collapse
|
21
|
GUSTAFSSON JK, HANSSON GC, SJÖVALL H. Ulcerative colitis patients in remission have an altered secretory capacity in the proximal colon despite macroscopically normal mucosa. Neurogastroenterol Motil 2012; 24:e381-91. [PMID: 22726848 PMCID: PMC4871264 DOI: 10.1111/j.1365-2982.2012.01958.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND One of the hallmarks of acute colitis is loss of epithelial transport. For unknown reasons, many patients still suffer from GI symptoms during remission, indicating a sustained imbalance between absorption and secretion. We hypothesize that the colonic epithelium becomes more reactive to secretagogues to compensate for a failing barrier. METHODS Biopsies from ascending colon and sigmoid colon of UC patients in remission and controls were mounted in Ussing chambers. Membrane current (Im) and epithelial capacitance (Cp) were used as markers for anion secretion and mucus exocytosis. Carbachol (1 mmol L(-1) ) and forskolin (10 μmol L(-1) ) were used to study Ca(2+) and cAMP-mediated secretion. KEY RESULTS Baseline values showed segmental patterns with higher Im in ascending colon and higher Cp in sigmoid colon of both UC patients and controls, but the patterns did not differ between the groups. The Im response to forskolin was increased (+35%) in the ascending colon of UC patients and the Im response to carbachol was decreased (-40%) in the same segment. No group differences were seen in the distal colon for either the forskolin or carbachol-induced Im responses. The Cp response to carbachol was instead up-regulated in the distal colon of UC patients, but remained unaffected in the proximal colon. CONCLUSIONS & INFERENCES The proximal colonic mucosa of UC patients in remission seems to shift its reactivity to secretagogues, becoming more sensitive to cAMP-dependent secretion and less sensitive to Ca(2+) -dependent secretion. This phenomenon may contribute to residual diarrhea in this patient group, despite resolution of inflammation.
Collapse
Affiliation(s)
- J. K. GUSTAFSSON
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - G. C. HANSSON
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H. SJÖVALL
- Department of Internal Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Almassy J, Won JH, Begenisich TB, Yule DI. Apical Ca2+-activated potassium channels in mouse parotid acinar cells. ACTA ACUST UNITED AC 2012; 139:121-33. [PMID: 22291145 PMCID: PMC3269790 DOI: 10.1085/jgp.201110718] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ca2+ activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca2+] was used to investigate if Ca2+-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca2+-buffering conditions that produced brief, localized increases in [Ca2+] after focal laser photolysis of caged Ca2+. Conditions were used to isolate K+ and Cl− conductances. Photolysis at the apical PM resulted in a robust increase in K+ and Cl− currents. A localized reduction in [Ca2+] at the apical PM after photolysis of Diazo-2, a caged Ca2+ chelator, resulted in a decrease in both K+ and Cl− currents. The K+ currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance “maxi-K” (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34–sensitive K+ currents were also observed in BK-null parotid acini. In contrast, when the [Ca2+] was increased at the basal or lateral PM, no increase in either K+ or Cl− currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.
Collapse
Affiliation(s)
- Janos Almassy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm(2)) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (V(t)) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (G(t)) and equivalent short circuit current (I(eq)(sc)) in the presence and absence of selected Na(+) and Cl(-) transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance.
Collapse
Affiliation(s)
- A K M Shamsuddin
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0830, USA
| | | |
Collapse
|
24
|
Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ. Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells. J Physiol 2011; 588:4089-101. [PMID: 20819947 DOI: 10.1113/jphysiol.2010.194738] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Water transport by the Na+-K+-2Cl(-) cotransporter (NKCC1) was studied in confluent cultures of pigmented epithelial (PE) cells from the ciliary body of the fetal human eye. Interdependence among water, Na+ and Cl(-) fluxes mediated by NKCC1 was inferred from changes in cell water volume, monitored by intracellular self-quenching of the fluorescent dye calcein. Isosmotic removal of external Cl(-) or Na+ caused a rapid efflux of water from the cells, which was inhibited by bumetanide (10 μm). When returned to the control solution there was a rapid water influx that required the simultaneous presence of external Na+ and Cl(-). The water influx could proceed uphill, against a transmembrane osmotic gradient, suggesting that energy contained in the ion fluxes can be transferred to the water flux. The influx of water induced by changes in external [Cl(-)] saturated in a sigmoidal fashion with a Km of 60 mm, while that induced by changes in external [Na+] followed first order kinetics with a Km of about 40 mm. These parameters are consistent with ion transport mediated by NKCC1. Our findings support a previous investigation, in which we showed water transport by NKCC1 to be a result of a balance between ionic and osmotic gradients. The coupling between salt and water transport in NKCC1 represents a novel aspect of cellular water homeostasis where cells can change their volume independently of the direction of an osmotic gradient across the membrane. This has relevance for both epithelial and symmetrical cells.
Collapse
Affiliation(s)
- Steffen Hamann
- Nordic Centre for Water Imbalance Related Disorders, Institute of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
25
|
Evans DH. A brief history of the study of fish osmoregulation: the central role of the Mt. Desert Island Biological Laboratory. Front Physiol 2010; 1:13. [PMID: 21423356 PMCID: PMC3059943 DOI: 10.3389/fphys.2010.00013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/28/2010] [Indexed: 11/22/2022] Open
Abstract
The Mt. Desert Island Biological Laboratory (MDIBL) has played a central role in the study of fish osmoregulation for the past 80 years. In particular, scientists at the MDIBL have made significant discoveries in the basic pattern of fish osmoregulation, the function of aglomerular kidneys and proximal tubular secretion, the roles of NaCl cotransporters in intestinal uptake and gill and rectal gland secretion, the role of the shark rectal gland in osmoregulation, the mechanisms of salt secretion by the teleost fish gill epithelium, and the evolution of the ionic uptake mechanisms in fish gills. This short review presents the history of these discoveries and their relationships to the study of epithelial transport in general.
Collapse
Affiliation(s)
- David H Evans
- Department of Biology, University of Florida Gainesville, FL, USA.
| |
Collapse
|
26
|
Burnett KG, Bain LJ, Baldwin WS, Callard GV, Cohen S, Di Giulio RT, Evans DH, Gómez-Chiarri M, Hahn ME, Hoover CA, Karchner SI, Katoh F, MacLatchy DL, Marshall WS, Meyer JN, Nacci DE, Oleksiak MF, Rees BB, Singer TD, Stegeman JJ, Towle DW, Van Veld PA, Vogelbein WK, Whitehead A, Winn RN, Crawford DL. Fundulus as the premier teleost model in environmental biology: opportunities for new insights using genomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2007; 2:257-86. [PMID: 18071578 PMCID: PMC2128618 DOI: 10.1016/j.cbd.2007.09.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.
Collapse
Affiliation(s)
- Karen G. Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA
| | - Lisa J. Bain
- Clemson Institute of Environmental Toxicology, Clemson University; Pendleton, SC 29670, USA
| | - William S. Baldwin
- Clemson Institute of Environmental Toxicology, Clemson University; Pendleton, SC 29670, USA
| | | | - Sarah Cohen
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA 94120, USA
| | - Richard T. Di Giulio
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | - David H. Evans
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Fumi Katoh
- Department of Biology, St. Francis Xavier University, Antigonish, N.S. B2G 2W5, Canada
| | - Deborah L. MacLatchy
- Faculty of Science, Wilfred Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - William S. Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, N.S. B2G 2W5, Canada
| | - Joel N. Meyer
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | - Diane E. Nacci
- US Environmental Protection Agency Office of Research and Development, Narragansett, RI 02882, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Thomas D. Singer
- School of Optometry, University of Waterloo, Waterloo, ON, N2L 3G1, CANADA
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David W. Towle
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, Maine 04672, USA
| | - Peter A. Van Veld
- The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Wolfgang K. Vogelbein
- The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Andrew Whitehead
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Richard N. Winn
- Aquatic Biotechnology and Environmental Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
27
|
Nair S, Kashyap R, Laboisse CL, Hopfer U, Gratzl M. Time resolved secretion of chloride from a monolayer of mucin-secreting epithelial cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:411-9. [PMID: 17968537 DOI: 10.1007/s00249-007-0226-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 09/17/2007] [Accepted: 10/03/2007] [Indexed: 11/29/2022]
Abstract
Short-circuit current (Isc) measurement is used to quantify transepithelial ion flux. This technique provides a direct measure of net charge transport across a cell monolayer. Isc however, lacks chemical selectivity. Chemically resolved ion fluxes may be much greater than Isc, and differ in different biological processes. This work describes a novel experimental approach and deconvolution method to obtain temporally resolved ion fluxes at epithelial cell monolayers. HT29-Cl.16E cells, a sub clone of the human colonic cancer cell line HT29 was used as a model cell line to validate this approach in the context of epithelial transport studies. This cell line is known to secrete chloride in response to purinergic stimulation. Changes in chloride concentration after stimulation with 1 mM ATP plus 50 nM phorbol-myristate acetate (PMA) are recorded with a chloride ion-selective electrode (ISE) at a short distance (approximately 50 microm) from the monolayer. The recorded concentrations are transformed to corresponding chloride flux across the monolayer using a deconvolution algorithm for extracellular mass transport based on minimization of the shape error function (Nair and Gratzl in Anal Chem 77:2875-2888, 2005). Simultaneous voltage clamp yields the associated net electrical charge flux (Isc). The dynamics of Cl(-) flux did correlate with that of the electrical flux, but was found to be greater in amplitude. This suggests that Cl(-) may not be the only ion secreted. The method of simultaneously assessing ionic and electrical fluxes with a temporal resolution of seconds provides unique information about the dynamics of solute fluxes across the apical membrane.
Collapse
Affiliation(s)
- Sumitha Nair
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
28
|
Selvam S, Thomas PB, Gukasyan HJ, Yu AS, Stevenson D, Trousdale MD, Mircheff AK, Schechter JE, Smith RE, Yiu SC. Transepithelial bioelectrical properties of rabbit acinar cell monolayers on polyester membrane scaffolds. Am J Physiol Cell Physiol 2007; 293:C1412-9. [PMID: 17699637 DOI: 10.1152/ajpcell.00200.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our quest to develop a tissue-engineered tear secretory system, we have tried to demonstrate active transepithelial ion fluxes across rabbit lacrimal acinar cell monolayers on polyester membrane scaffolds to evaluate the bioelectrical properties of the cultured cells. Purified lacrimal gland acinar cells were seeded onto polyester membrane inserts and cultured to confluency. Morphological properties of the cell monolayers were evaluated by transmission electron microscopy and immunofluorescence staining for Na(+),K(+)-ATPase and the tight junction-associated protein occludin. Sections revealed cell monolayers with well-maintained epithelial cell polarity, i.e., presence of apical (AP) secretory granules, microvilli, and junctional complexes. Na(+),K(+)-ATPase was localized on both the basal-lateral and apical plasma membranes. The presence of tight cell junctions was demonstrated by a positive circumferential stain for occludin. Bioelectrical properties of the cell monolayers were studied in Ussing chambers under short-circuit conditions. Active ion fluxes were evaluated by inhibiting the short-circuit current (I(sc)) with a Na(+),K(+)-ATPase inhibitor, ouabain (100 microM; basal-lateral, BL), and under Cl(-)-free buffer conditions after carbachol stimulation (CCh; 100 microM). The directional apical secretion of Cl(-) was demonstrated through pharmacological analysis, using amiloride (1 mM; BL) and bumetanide (0.1 mM; BL), respectively. Regulated protein secretion was evaluated by measuring the beta-hexosaminidase catalytic activity in the AP culture medium in response to 100 microM basal CCh. In summary, rabbit lacrimal acinar cell monolayers generate a Cl(-)-dependent, ouabain-sensitive AP --> BL I(sc) in response to CCh, consistent with current models for Na(+)-dependent Cl(-) secretion.
Collapse
Affiliation(s)
- Shivaram Selvam
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shuttleworth TJ, Thompson J, Munger RS, Wood CM. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias. ACTA ACUST UNITED AC 2007; 209:4701-16. [PMID: 17114403 DOI: 10.1242/jeb.02564] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We compared in vivo responses of rectal gland secretion to carbonic anhydrase (CA) inhibition (10(-4) mol l(-1) acetazolamide) in volume-loaded dogfish with in vitro responses in an isolated-perfused gland stimulated with 5 x 10(-6) mol l(-1) forskolin and removed from systemic influences. We also measured respiratory gas exchange in the perfused gland, described the acid-base status of the secreted fluid, and determined the relative importance of various extracellular and intracellular acid-base parameters in controlling rectal gland secretion in vitro. In vivo, acetazolamide inhibited Cl(-) secretion and decreased pHi in the rectal gland, but interpretation was confounded by an accompanying systemic respiratory acidosis, which would also have contributed to the inhibition. In the perfused gland, M(CO(2)) and M(O(2)) increased in linear relation to increases in Cl(-) secretion rate. CA inhibition (10(-4) mol l(-1) acetazolamide) had no effect on Cl(-) secretion rate or pHi in the perfused gland, in contrast to in vivo, but caused a transitory 30% inhibition of M(CO(2)) (relative to stable M(O(2))) and elevation in secretion P(CO(2)) effects, which peaked at 2 h and attenuated by 3.5-4 h. Secretion was inhibited by acidosis and stimulated by alkalosis; the relationship between relative Cl(-) secretion rate and pHe was almost identical to that seen in vivo. Experimental manipulations of perfusate pH, P(CO(2)) and HCO(3)(-) concentration, together with measurements of pHi, demonstrated that these responses were most strongly correlated with changes in pHe, and were not related to changes in P(CO(2)), extracellular HCO(3)(-), or intracellular HCO(3)(-) levels, though changes in pHi may also have played a role. The acid-base status of the secreted fluid varied with that of the perfusate, secretion pH remaining about 0.3-0.5 units lower, and changing in concert with pHe rather than pHi; secretion HCO(3)(-) concentrations remained low, even in the face of greatly elevated perfusate HCO(3)(-) concentrations. We conclude that pH effects on rectal gland secretion rate are adaptive, that CA functions to catalyze the hydration of CO(2), thereby maintaining a gradient for diffusive efflux of CO(2) from the working cells, and that differences in response to CA inhibition likely reflect the higher perfusion-to-secretion ratio in vitro than in vivo.
Collapse
Affiliation(s)
- Trevor J Shuttleworth
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
30
|
Jespersen T, Grunnet M, Olesen SP. The KCNQ1 potassium channel: from gene to physiological function. Physiology (Bethesda) 2006; 20:408-16. [PMID: 16287990 DOI: 10.1152/physiol.00031.2005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The voltage-gated KCNQ1 (KvLQT1, Kv7.1) potassium channel plays a crucial role in shaping the cardiac action potential as well as in controlling the water and salt homeostasis in several epithelial tissues. KCNQ1 channels in these tissues are tightly regulated by auxiliary proteins and accessory factors, capable of modulating the properties of the channel complexes. This paper reviews the current knowledge about the KCNQ1 channel with a major focus on interacting proteins and physiological functions.
Collapse
Affiliation(s)
- Thomas Jespersen
- Department of Medical Physiology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
31
|
Abstract
The developing distal lung epithelium displays an evolving liquid transport phenotype, reflecting a changing and dynamic balance between Cl- ion secretion and Na+ ion absorption, which in turn reflects changing functional requirements. Thus in the fetus, Cl--driven liquid secretion predominates throughout gestation and generates a distending pressure to stretch the lung and stimulate growth. Increasing Na+ absorptive capacity develops toward term, anticipating the switch to an absorptive phenotype at birth and beyond. There is some empirical evidence of ligand-gated regulation of Cl- transport and of regulation via changes in the driving force for Cl- secretion. Epinephrine, O2, glucocorticoid, and thyroid hormones interact to stimulate Na+ absorption by increasing Na+ pump activity and apical Na+ conductance (GNa+) to bring about the switch from net secretion to net absorption as lung liquid is cleared from the lung at birth. Postnatally, the lung lumen contains a small Cl--based liquid secretion that generates a surface liquid layer, but the lung retains a large absorptive capacity to prevent alveolar flooding and clear edema fluid. This review explores the mechanisms underlying the functional development of the lung epithelium and draws upon evidence from classic integrative physiological studies combined with molecular physiology approaches.
Collapse
Affiliation(s)
- Richard E Olver
- Tayside Institute of Child Health, Lung Membrane Transport Group, Division of Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom.
| | | | | |
Collapse
|
32
|
Worrell RT, Oghene J, Matthews JB. Ammonium effects on colonic Cl- secretion: anomalous mole fraction behavior. Am J Physiol Gastrointest Liver Physiol 2004; 286:G14-22. [PMID: 12946942 DOI: 10.1152/ajpgi.00196.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A significant amount of ammonium (NH4+) is absorbed by the colon. The nature of NH4+ effects on transport and NH4+ transport itself in colonic epithelium is poorly understood. The goal of this study was to elucidate the effects of NH4+ on cAMP-stimulated Cl- secretion in the colonic cell line T84. In HEPES-buffered solutions, application of basolateral NH4+ resulted in a reduced level of Cl- secretory current. The effect of NH4+ appears to occur by at least three mechanisms: 1) basolateral membrane depolarization, 2) a competitive effect with K+, and 3) a long-term (>20 min) increase in transepithelial resistance (TER). The competitive effect with K+ exhibits anomalous mole fraction behavior. Transepithelial current relative to that in 10 mM basolateral K+ was inhibited 15% by 10 mM NH4+ alone and by 30% with a mixture of 2 mM K+ and 8 mM NH4+. A mole fraction mix of 2 mM K+:8 mM NH4+ produced a greater inhibition of basolateral membrane K+ current than pure K+ or NH4+ alone. Similar anomalous behavior was also observed for inhibition of bumetanide-sensitive 36Cl- uptake, e.g., Na+-K+-2Cl- -cotransporter (NKCC-1). No anomalous effect was observed on Na+-K+-ATPase current. Both NKCC-1 and Na+-K+-ATPase activity were elevated in 10 mM NH4+ with respect to 10 mM K+. The effect on TER did not exhibit anomalous mole fraction behavior. The overall effect of basolateral NH4+ on cAMP-stimulated transport is dependent on the [K+]o /[NH4+]o ratio at the basolateral membrane, where o is outside of the cell.
Collapse
Affiliation(s)
- Roger T Worrell
- Epithelial Pathobiology Group, Department of Surgery, University of Cincinnati, Cincinnati, OH 45219, USA.
| | | | | |
Collapse
|
33
|
Warth R, Barhanin J. Function of K+ channels in the intestinal epithelium. J Membr Biol 2003; 193:67-78. [PMID: 12879155 DOI: 10.1007/s00232-002-2001-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2002] [Indexed: 12/21/2022]
Affiliation(s)
- R Warth
- Physiologisches Institut, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|
34
|
Affiliation(s)
- P Y D Wong
- Department of Physiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
35
|
Park MK, Lomax RB, Tepikin AV, Petersen OH. Local uncaging of caged Ca(2+) reveals distribution of Ca(2+)-activated Cl(-) channels in pancreatic acinar cells. Proc Natl Acad Sci U S A 2001; 98:10948-53. [PMID: 11535807 PMCID: PMC58579 DOI: 10.1073/pnas.181353798] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In exocrine acinar cells, Ca(2+)-activated Cl(-) channels in the apical membrane are essential for fluid secretion, but it is unclear whether such channels are important for Cl(-) uptake at the base. Whole-cell current recording, combined with local uncaging of caged Ca(2+), was used to reveal the Cl(-) channel distribution in mouse pancreatic acinar cells, where approximately 90% of the current activated by Ca(2+) in response to acetylcholine was carried by Cl(-). When caged Ca(2+) in the cytosol was uncaged locally in the apical pole, the Cl(-) current was activated, whereas local Ca(2+) uncaging in the basal or lateral areas of the cell had no effect. Even when Ca(2+) was uncaged along the whole inner surface of the basolateral membrane, no Cl(-) current was elicited. There was little current deactivation at a high cytosolic Ca(2+) concentration ([Ca(2+)](c)), but at a low [Ca(2+)](c) there was clear voltage-dependent deactivation, which increased with hyperpolarization. Functional Ca(2+)-activated Cl(-) channels are expressed exclusively in the apical membrane and channel opening is strictly regulated by [Ca(2+)](c) and membrane potential. Ca(2+)-activated Cl(-) channels do not mediate Cl(-) uptake at the base, but acetylcholine-elicited local [Ca(2+)](c) spiking in the apical pole can regulate fluid secretion by controlling the opening of these channels in the apical membrane.
Collapse
Affiliation(s)
- M K Park
- Medical Research Council Secretory Control Research Group, Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | | | | | | |
Collapse
|
36
|
Bovell DL, Clunes MT, Roussa E, Burry J, Elder HY. Vacuolar-type H+ -ATPase distribution in unstimulated and acetylcholine-activated isolated human eccrine sweat glands. THE HISTOCHEMICAL JOURNAL 2000; 32:409-13. [PMID: 10987504 DOI: 10.1023/a:1004087120735] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The presence and cellular distribution of subunits of the V1 sector of the vacuolar-type H+ -ATPase (V-ATPase) was investigated in isolated human eccrine sweat glands. In every instance, V-ATPase was located in the cytoplasm and apical membranes of the luminal cells of the reabsorptive duct segment. In the secretory coil, both diffuse and perinuclear staining was demonstrated in the secretory cells, with additional expression at the apical and basolateral membranes and on the intercellular canaliculi. There was no detectable difference in V-ATPase expression as a result of prior application of 100 microM acetylcholine.
Collapse
Affiliation(s)
- D L Bovell
- School of Biological and Biomedical Sciences, Glasgow Caledonian University, UK
| | | | | | | | | |
Collapse
|
37
|
Banderali U, Brochiero E, Lindenthal S, Raschi C, Bogliolo S, Ehrenfeld J. Control of apical membrane chloride permeability in the renal A6 cell line by nucleotides. J Physiol 1999; 519 Pt 3:737-51. [PMID: 10457087 PMCID: PMC2269550 DOI: 10.1111/j.1469-7793.1999.0737n.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The effect of extracellular nucleotides applied on the apical side of polarised A6 cells grown on permeant filters was investigated by measuring the changes in (i) the 36Cl efflux through the apical membranes, (ii) the intracellular chloride concentrations (aCli, measured with N-(6-methoxyquinolyl) acetoethyl ester, MQAE), (iii) ICl, the short-circuit current in the absence of Na+ transport and (iv) the characteristics of the apical chloride channels using a patch-clamp approach. 2. ATP or UTP (0.1-500 microM) transiently stimulated ICl. The sequence of purinergic agonist potencies was UTP = ATP > ADP >> the P2X-selective agonist beta,gamma-methylene ATP = the P2Y-selective agonist 2-methylthioATP. Suramin (100 microM) as the P2Y antagonist Reactive Blue 2 (10 microM) had no effect on the UTP (or ATP)-stimulated current. These findings are consistent with the presence of P2Y2-like receptors located on the apical membranes of A6 cells. Apical application of adenosine also transiently increased ICl. This effect was blocked by theophylline while the UTP-stimulated ICl was not. The existence of a second receptor, of the P1 type is proposed. 3. ATP (or UTP)-stimulated ICl was blocked by apical application of 200 microM N-phenylanthranilic acid (DPC) or 100 microM niflumic acid while 100 microM glibenclamide was ineffective. 4. Ionomycin and thapsigargin both transiently stimulated ICl; the nucleotide stimulation of ICl was not suppressed by pre-treatment with these agents. Chlorpromazin (50 microM), a Ca2+-calmodulin inhibitor strongly inhibited the stimulation of ICl induced either by apical UTP or by ionomycin application. BAPTA-AM pre-treatment of A6 cells blocked the UTP-stimulated ICl. Niflumic acid also blocked the ionomycin stimulated ICl. 5. A fourfold increase in 36Cl effluxes through the apical membranes was observed after ATP or UTP application. These increases of the apical chloride permeability could also be observed when following aCli changes. Apical application of DPC (1 mM) or 5-nitro-2(3-phenylpropylamino)benzoic acid (NPPB; 500 microM) produced an incomplete inhibition of 36Cl effluxes through the apical membranes in ATP-stimulated and in untreated monolayers. 6. In single channel patch-clamp experiments, an apical chloride channel with a unitary single channel conductance of 7.3 +/- 0.6 pS (n = 12) was usually observed. ATP application induced the activation of one or more of these channels within a few minutes. 7. These results indicate that multiple purinergic receptor subtypes are present in the apical membranes of A6 cells and that nucleotides can act as modulators of Cl- secretion in renal cells.
Collapse
Affiliation(s)
- U Banderali
- Laboratoire de Physiologie des Membranes cellulaires (laboratoire Jean Maetz), Universite de Nice Sophia-Antipolis, ERS 1253 CNRS, Villefranche-sur-mer, France
| | | | | | | | | | | |
Collapse
|
38
|
Lau KR, Evans RL, Case RM. Intracellular Cl- concentration in striated intralobular ducts from rabbit mandibular salivary glands. Pflugers Arch 1994; 427:24-32. [PMID: 8058473 DOI: 10.1007/bf00585938] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intralobular striated ducts have been isolated from rabbit mandibular salivary glands and maintained in primary culture for up to 2 days. Such ducts were loaded with the Cl(-)-sensitive fluorescent dye N-(ethoxycarbonylmethyl)-(6-methoxyquinolinium bromide) (MQAE) and intracellular Cl- concentration ([Cl-]i) monitored using a fluorescence microscope. Intracellular Cl- could be rapidly and reversibly emptied from striated duct cells by replacing Cl- in the superfusing solution with NO(3)-. [Cl-]i could be lowered by removal of external Na+, exposure to 10 microM amiloride or to 10 microM 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). Both amiloride and DIDS were able to inhibit the recovery of [Cl-]i after an initial exposure to Na(+)- or Cl(-)-free solution. The amiloride derivatives, benzamil (2 microM) and N-isobutyl-N-methylamiloride (MIBA), (10 microM) also lowered [Cl-]i by similar amounts as 10 microM amiloride. Varying external K+ concentration ([K+]o) also affected [Cl-]i. Increasing [K+]o increased [Cl-]i, but decreasing [K+]o did not decrease [Cl-]i. Instead, [Cl-]i was also increased when [K+]o was lowered below the control value. Bumetanide (0.1 mM) lowered [Cl-]i by only a small amount, while ouabain (1 mM) had no significant effect on [Cl-]i. These data are consistent with current models of electrolyte transport in salivary ducts which include Cl- channels, Na+ channels, and Na+/H+ exchangers in the apical membrane. The effects of low [K+]o can be interpreted in terms of a K(+)-dependent exit mechanism for Cl-.
Collapse
Affiliation(s)
- K R Lau
- Department of Physiological Sciences, University of Manchester, UK
| | | | | |
Collapse
|
39
|
Abstract
Even though the same Cl channel (CFTR) is common to certain fluid transport functions that are oppositely directed, i.e., secretion and absorption, only fluid secretion has clearly been shown to be acutely regulated. It is now clear that fluid secretion activated by beta-adrenergic stimulation is controlled by cAMP-mediated opening and closing of CFTR-Cl channels. Since the conductance of the human sweat duct is almost wholly due to CFTR-Cl conductance (CFTR-GCl), we sought to determine whether salt absorption via CFTR-Cl channels could also be subject to acute regulation in this purely absorptive epithelium. After alpha-toxin permeabilization, we found that addition of cAMP resulted in a large increase in Cl diffusion potentials across the apical membrane and a more than twofold increase in the average membrane conductance. Since the cAMP effects were dependent on Cl alone, not on Na, and since apical Cl conductance appears to be almost exclusively comprised of CFTR-GCl, we surmise that this form of electrolyte absorption like secretion is also subject to acute control through CFTR-GCl. Acute regulation of absorption involves both activation by phosphorylation (PKA) and inactivation by dephosphorylation (unknown endogenous phosphatase) of CFTR. Phosphorylation of CFTR was shown by the facts that CFTR-GCl could be activated by cAMP and inhibited by the kinase antagonist staurosporine, or by removal of either substrate ATP or Mg2+ cofactor. Inactivation of CFTR-GCl by endogenous phosphatase(s) was indicated by a spontaneous but reversible loss of CFTR-GCl upon removal of cAMP. Such loss of CFTR-GCl activity could be prevented either by application of phosphatase inhibitors or by using phosphatase-resistant ATP-gamma-S as substrate to phosphorylate CFTR. We surmise that absorptive function is subject to rapid regulation which can be switched "on" and "off" acutely by a control system that is common to both absorptive and secretory processes and that this control is crucial to switching between conductive and nonconductive transport mechanisms during salt absorption.
Collapse
Affiliation(s)
- M M Reddy
- Division of Biomedical Sciences, University of California, Riverside 92521-0121
| | | |
Collapse
|
40
|
Turner RJ, Paulais M, Manganel M, Lee SI, Moran A, Melvin JE. Ion and water transport mechanisms in salivary glands. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1993; 4:385-91. [PMID: 8373993 DOI: 10.1177/10454411930040031801] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R J Turner
- Clinical Investigations and Patient Care Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
41
|
Melvin JE, Zhang GH. Altered responses to agonists after chronic in vivo atropine administration in rat parotid acini. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1993; 4:427-34. [PMID: 8397000 DOI: 10.1177/10454411930040032401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Salivary gland hypofunction, resulting from a variety of perturbations including prescribed medications, is associated with adverse effects on the health of the oral cavity. In the present study, we investigated the in vivo effects of chronic administration of atropine, a muscarinic antagonist, on the acute response of rat parotid acini to alpha-adrenergic and muscarinic stimulation. The regulation of intracellular pH (pHi) and cytosolic free Ca2+ ([Ca2+]i) were monitored using dual wavelength microfluorometry of the ion-sensitive fluorescent dyes, BCECF and fura-2, respectively. Chronic atropine treatment (40 mg/kg/d for 4 weeks) significantly increased the magnitude of the initial (< 30 s) agonist-induced rise in [Ca2+]i, but did not alter the sustained increase in [Ca2+]i (> 2 min). The generation of inositol trisphosphates and inositol tetrakisphosphates after 30 s of muscarinic stimulation was not significantly altered. The resting Cl- content as well as the stimulated Cl- loss, were reduced in parotid acini after chronic atropine administration. In addition, the muscarinic- and alpha-adrenergic-induced intracellular acidification was blunted, suggesting that reduced HCO3- efflux occurs in acini isolated from atropine-treated animals. Our results indicate (1) that chronic atropine treatment does not inhibit the receptor-coupled generation of inositol phosphates or the resulting rise in [Ca2+]i and (2) chronic treatment may prevent the production of saliva either by reducing the driving force for anion-dependent fluid secretion or by preventing the activation of the anion efflux pathway.
Collapse
Affiliation(s)
- J E Melvin
- Rochester Caries Research Center, University of Rochester, NY 14642
| | | |
Collapse
|
42
|
Paulais M, Turner RJ. Beta-adrenergic upregulation of the Na(+)-K(+)-2Cl- cotransporter in rat parotid acinar cells. J Clin Invest 1992; 89:1142-7. [PMID: 1313447 PMCID: PMC442971 DOI: 10.1172/jci115695] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We used the pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)-5(6')-carboxyfluorescein to monitor the recovery of the intracellular pH (pHi) of rat parotid acini from an NH4(+)-induced alkaline load. This recovery was markedly inhibited by the loop diuretic bumetanide and by Cl- removal, indicating that it is largely due to NH4+ entry via the basolateral Na(+)-K(+)-2Cl- cotransporter. The rate of recovery of pHi was enhanced threefold by pretreatment (37.5 s) with isoproterenol (K1/2 = 21.5 nM) or norepinephrine (in the presence of phentolamine), and blocked by the beta 1-specific antagonist atenolol, indicating an upregulation of cotransport activity by beta 1-adrenergic stimulation. The effect of isoproterenol was prevented by protein kinase inhibitors and mimicked by cAMP analogues, and by maneuvers known to increase cytosolic cAMP levels in these cells, consistent with the involvement of protein kinase A. Physiologically, such an upregulation of the acinar Na(+)-K(+)-2Cl- cotransporter would lead to an increase in acinar chloride uptake across the basolateral membrane, and consequently, an increase in overall chloride and fluid secretion. Prevention of this upregulation by beta-blockers and possibly by other commonly used clinical agents may account for the dry mouth and dry eyes experienced by some patients taking these medications.
Collapse
Affiliation(s)
- M Paulais
- Clinical Investigations and Patient Care Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
43
|
Sansom SC, Carosi SL. Properties of single- and double-barreled Cl channels of shark rectal gland in planar bilayers. J Membr Biol 1992; 126:67-73. [PMID: 1375650 DOI: 10.1007/bf00233461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chloride channels from the apical plasma membrane fraction of rectal gland of Squalus acanthias were characterized by incorporation into planar bilayers in the presence of cAMP-PK/ATP. In a total of 80 bilayer preparations, 21 Cl-selective channels were observed as single channels and 13 as pairs. This was a significantly greater number of double Cl channels than expected from a binomial distribution. The double Cl channels were divided into two groups based on kinetic and voltage-dependent behavior. One group had properties identical to the single channels (gb1) while the other was consistent with a double-barreled channel (gb2) with coordinated activity between proto-channels. The single-channel slope conductances of gb1 and gb2 from -60 to +20 mV with a 250/70 mM KCl gradient were 41 and 75 pS, respectively. With symmetrical 250 mM KCl, the I-V relation of gb1 showed outward rectification with 47.8 +/- 6.6 pS at cis negative potentials and 68.9 +/- 6.1 pS at cis positive potentials. gb1 was open from 70 to 95% at all electrochemical potentials from -80 to +40 mV. gb2 was steeply voltage dependent between -80 and -20 mV. Both gb1 and gb2 were insensitive to Ca (from 100 nm to 1 microM), blocked by 0.1 mM DIDS and highly selective for chloride. These data suggest that double-barreled Cl channels are related to the family of small, outwardly rectifying Cl channels of epithelial membranes.
Collapse
Affiliation(s)
- S C Sansom
- Department of Medicine, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
44
|
Kelley GG, Aassar OS, Forrest JN. Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland. J Clin Invest 1991; 88:1933-9. [PMID: 1752953 PMCID: PMC295771 DOI: 10.1172/jci115517] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The present studies define the physiologic role of endogenous adenosine in the perfused shark rectal gland, a model epithelia for hormone-stimulated chloride transport. Chloride ion secretion, and venous adenosine and inosine concentrations increased in parallel in response to hormone stimulation. From a basal rate of 157 +/- 26 mu eq/h per g, chloride secretion increased to 836 +/- 96 and 2170 +/- 358 with 1 and 10 microM forskolin, venous adenosine increased from 5.0 +/- 1 to 126 +/- 29 and 896 +/- 181 nM, and inosine increased from 30 +/- 9 to 349 +/- 77 and 1719 +/- 454 nM (all P less than 0.01). Nitrobenzylthioinosine (NBTI), a nucleoside transport inhibitor, completely blocked the release of adenosine and inosine. Inhibition of chloride transport with bumetanide, an inhibitor of the Na+/K+/2Cl- cotransporter, or ouabain, an inhibitor of Na+/K+ ATPase activity, reduced venous adenosine and inosine to basal values. When the interaction of endogenous adenosine with extracellular receptors was prevented by adenosine deaminase, NBTI, or 8-phenyltheophylline, the chloride transport response to secretagogues increased by 1.7-2.3-fold. These studies demonstrate that endogenous adenosine is released in response to hormone-stimulated cellular work and acts at A1 adenosine receptors as a feedback inhibitor of chloride transport.
Collapse
Affiliation(s)
- G G Kelley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
45
|
Ashton N, Argent BE, Green R. Characteristics of fluid secretion from isolated rat pancreatic ducts stimulated with secretin and bombesin. J Physiol 1991; 435:533-46. [PMID: 1770448 PMCID: PMC1181475 DOI: 10.1113/jphysiol.1991.sp018523] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. Micropuncture techniques were used to study the cellular mechanisms of fluid secretion by interlobular ducts isolated from the pancreas of copper-deficient rats. 2. Perifusing ducts with a calcium-free buffer containing 5 mM-EGTA reduced the volume of fluid secreted in the presence of 10 nM-bombesin by 62%, whereas fluid secretion measured in the presence of 10 nM-secretin was reduced by only 26%. 3. The anion selectivities of the fluid secretions evoked by secretin and bombesin were different. The anion sequence for secretin was: Br- = I- = NO3- = Cl- (1.0) much greater than thiocyanate = gluconate (0.3); whereas the sequence for bombesin was: Br- = Cl- (1.0) greater than I- = NO3- (0.6) greater than thiocyanate = gluconate (approximately 0.3). 4. SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid; mM), reduced fluid secretion measured in the presence of bombesin by 61%, but had no effect on the response to secretin. 5. The K+ channel blockers, barium (3 mM) and tetraethylammonium (TEA; 10 mM), inhibited fluid secretion measured in the presence of both secretin and bombesin by between 52 and 66%. 6. From these results, we conclude that secretin and bombesin may utilize different intracellular signalling pathways and, furthermore, may activate different anion secretory mechanisms within the pancreatic ductal epithelium. However, the effect of the potassium channel blockers is consistent with both peptides activating secretory mechanisms which are electrogenic, and which depend for their operation on potassium efflux across the basolateral membrane of the duct cell.
Collapse
Affiliation(s)
- N Ashton
- Department of Physiological Sciences, University Medical Schools, Manchester, Newcastle upon Tyne
| | | | | |
Collapse
|
46
|
Wuttke WA, Berry MS. Rapid co-transport of sodium and chloride ions in giant salivary gland cells of the leech Haementeria ghilianii. J Physiol 1990; 427:51-69. [PMID: 2213605 PMCID: PMC1189919 DOI: 10.1113/jphysiol.1990.sp018160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. Double-barrelled Cl(-)-selective microelectrodes were used to measure the apparent intracellular Cl- activity (aiCl) and membrane potential (Em) of leech salivary gland cells. In standard physiological solution buffered with HEPES (10 mM), intracellular Cl- activity (corrected for interference) was 38 +/- 8 mM (n = 11) compared to a value of 12.8 mM expected for passive Cl- distribution. The mean Em was -49.4 +/- 8.2 mV (n = 21) which was about 27 mV negative to the Cl- equilibrium potential. 2. Removal of external Cl- led to a slow fall in aiCl until a steady-state level of 4-11 mM was reached in 30-60 min. Recovery of aiCl on readdition of external Cl- took only 2-3 min. The uptake followed an exponential time course having a single rate constant of 1.73 +/- 0.1 min-1 (n = 5) whereas the loss appeared to occur in two phases. Changes in external Cl- produced immediate changes in Em which were the opposite of those expected for a high Cl- permeability, i.e. Cl- removal produced an immediate hyperpolarization (3-18 mV) and readdition of Cl- produced a transient depolarization (5-22 mV). 3. The intracellular accumulation of Cl- was dependent on the external Cl- activity. Even when the external Cl- concentration was reduced to 3%, the cells accumulated Cl- against an electrochemical gradient. 4. Cl- accumulation was temperature sensitive (Q10 approximately 2). 5. On removal of external Na+, aiCl fell to a level which was close to that expected for passive distribution. The active reaccumulation of Cl-, after intracellular Cl- depletion, was abolished in the absence of external Na+; aiCl slowly increased to its passive level. Steady-state aiCl or its recovery by Cl(-)-depleted cells was not affected by the absence of K+ in the bathing solution. 6. The reaccumulation of Cl- was not affected by furosemide (1-5 mM), bumetanide (10(-4) M), amiloride (10(-3) M) or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS, 10(-4) M). 7. Removal of external Cl- caused a fall in intracellular Na+ activity (aiNa, measured with Na(+)-selective microelectrodes) from 15.9 +/- 6.8 mM (n = 9) to 2.5 +/- 1.3 mM (n = 3). When external Cl- was readded, aiNa rose to 46.5 +/- 6.6 mM (n = 3) before slowly recovering towards its original value. The maximal change in aiNa was 41.7 +/- 4.5 mM (n = 3) and the rate constant for Na+ uptake was 1.8 +/- 0.4 min-1 (n = 3).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W A Wuttke
- Biomedical and Physiological Research Group, School of Biological Sciences, University College of Swansea, Singleton Park
| | | |
Collapse
|
47
|
Lau KR, Howorth AJ, Case RM. The effects of bumetanide, amiloride and Ba2+ on fluid and electrolyte secretion in rabbit salivary gland. J Physiol 1990; 425:407-27. [PMID: 2213584 PMCID: PMC1189856 DOI: 10.1113/jphysiol.1990.sp018111] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. In order to distinguish between models of anion secretion, the effects of transport inhibitors on saliva flow rate and electrolyte composition were studied during the plateau phase of secretion in rabbit mandibular salivary glands. 2. Bumetanide, an inhibitor of Na+,K+,2Cl- co-transport, inhibited flow rate (by 60%) and reduced Cl- concentration. K+ and HCO3- concentrations were increased. Forskolin, an adenylate cyclase activator which inhibits ductal transport, did not significantly affect this pattern of changes. 3. Amiloride, used at concentrations that would inhibit Na(+)-H+ exchange, inhibited flow rate (by 30%). Cl- concentration was initially increased before subsequently decreasing at the same time as HCO3- concentration increased. These concentration changes can probably be attributed to ductal transport. When amiloride was applied to glands perfused with nominally HCO3- -free solutions, inhibition of flow rate was rapid and almost complete. 4. When amiloride and bumetanide were both present in the perfusate, flow rate was inhibited by 92%. The pattern of electrolyte changes was not significantly different from that observed in the presence of bumetanide alone. 5. Inhibition of K+ channel activity using Ba2+ also inhibited flow rate. Cl- concentration was increased as was K+ concentration. HCO3- concentration was not increased. 6. The anion exchange inhibitor DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) had no effect on either flow rate or electrolyte concentration. It did, however, elicit secretion in the absence of acetylcholine. 7. The data suggest that Na(+)-H+ and Cl- -HCO3- exchangers are unlikely to be involved in fluid and electrolyte secretion in these glands as suggested by some authors. Most of the data can be explained by postulating the existence of non-specific anion channels in the apical membranes of the acinar cells.
Collapse
Affiliation(s)
- K R Lau
- Department of Physiological Sciences, University of Manchester
| | | | | |
Collapse
|
48
|
Kelley GG, Poeschla EM, Barron HV, Forrest JN. A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP. J Clin Invest 1990; 85:1629-36. [PMID: 1970583 PMCID: PMC296615 DOI: 10.1172/jci114614] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the in vitro perfused rectal gland of the dogfish shark (Squalus acanthias), the adenosine analogue 2-chloroadenosine (2Clado) completely and reversibly inhibited forskolin-stimulated chloride secretion with an IC50 of 5 nM. Other A1 receptor agonists including cyclohexyladenosine (CHA), N-ethylcarboxamideadenosine (NECA) and R-phenylisopropyl-adenosine (R-PIA) also completely inhibited forskolin stimulated chloride secretion. The "S" stereoisomer of PIA (S-PIA) was a less potent inhibitor of forskolin stimulated chloride secretion, consistent with the affinity profile of PIA stereoisomers for an A1 receptor. The adenosine receptor antagonists 8-phenyltheophylline and 8-cyclopentyltheophylline completely blocked the effect of 2Clado to inhibit forskolin-stimulated chloride secretion. When chloride secretion and tissue cyclic (c)AMP content were determined simultaneously in perfused glands, 2Clado completely inhibited secretion but only inhibited forskolin stimulated cAMP accumulation by 34-40%, indicating that the mechanism of inhibition of secretion by 2Clado is at least partially cAMP independent. Consistent with these results, A1 receptor agonists only modestly inhibited (9-15%) forskolin stimulated adenylate cyclase activity and 2Clado markedly inhibited chloride secretion stimulated by a permeant cAMP analogue, 8-chlorophenylthio cAMP (8CPT cAMP). These findings provide the first evidence for a high affinity A1 adenosine receptor that inhibits hormone stimulated ion transport in a model epithelia. A major portion of this inhibition occurs by a mechanism that is independent of the cAMP messenger system.
Collapse
Affiliation(s)
- G G Kelley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
49
|
Martinez JR. Cellular mechanisms underlying the production of primary secretory fluid in salivary glands. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1990; 1:67-78. [PMID: 1966239 DOI: 10.1177/10454411900010010601] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J R Martinez
- Lovelace Medical Foundation, Albuquerque, New Mexico
| |
Collapse
|
50
|
Manganel M, Turner RJ. Agonist-induced activation of Na+/H+ exchange in rat parotid acinar cells. J Membr Biol 1989; 111:191-8. [PMID: 2559203 DOI: 10.1007/bf01871782] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO3- -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive 22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated two-fold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring approximately 15 min of acinar incubation with carbachol to reach completion, and was blocked by the presence of the muscarinic antagonist atropine (2 x 10(-5) M) in the pretreatment medium. The effect of carbachol was dose dependent with K0.5 approximately 3 x 10(-6) M. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the alpha-adrenergic agonist epinephrine, but not with the beta-adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increased apparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluid-secretory response of the rat parotid.
Collapse
Affiliation(s)
- M Manganel
- Clinical Investigations Branch, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|