1
|
Weigand MR, Unsihuay Vila DM, Yang M, Hu H, Hernly E, Muhoberac M, Tichy S, Laskin J. Lipid Isobar and Isomer Imaging Using Nanospray Desorption Electrospray Ionization Combined with Triple Quadrupole Mass Spectrometry. Anal Chem 2024. [PMID: 38321595 DOI: 10.1021/acs.analchem.3c04705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Mass spectrometry imaging (MSI) is widely used for examining the spatial distributions of molecules in biological samples. Conventional MSI approaches, in which molecules extracted from the sample are distinguished based on their mass-to-charge ratio, cannot distinguish between isomeric species and some closely spaced isobars. To facilitate isobar separation, MSI is typically performed using high-resolution mass spectrometers. Nevertheless, the complexity of the mixture of biomolecules observed in each pixel of the image presents a challenge, even for modern mass spectrometers with the highest resolving power. Herein, we implement nanospray desorption electrospray ionization (nano-DESI) MSI on a triple quadrupole (QqQ) mass spectrometer for the spatial mapping of isobaric and isomeric species in biological tissues. We use multiple reaction monitoring acquisition mode (MRM) with unit mass resolution to demonstrate the performance of this new platform by imaging lipids in mouse brain and rat kidney tissues. We demonstrate that imaging in MRM mode may be used to distinguish between isobaric phospholipids requiring a mass resolving power of 3,800,000. Additionally, we have been able to image eicosanoid isomers, a largely unexplored class of signaling molecules present in tissues at low concentrations, in rat kidney tissue. This new capability substantially enhances the specificity and selectivity of MSI, enabling spatial localization of species that remain unresolved in conventional MSI experiments.
Collapse
Affiliation(s)
- Miranda R Weigand
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Daisy M Unsihuay Vila
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Manxi Yang
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Matthew Muhoberac
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Shane Tichy
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Voggel J, Fink G, Zelck M, Wohlfarth M, Post JM, Bindila L, Rauh M, Amann K, Alejandre Alcázar MA, Dötsch J, Nüsken KD, Nüsken E. Elevated n-3/n-6 PUFA ratio in early life diet reverses adverse intrauterine kidney programming in female rats. J Lipid Res 2022; 63:100283. [PMID: 36152882 PMCID: PMC9619183 DOI: 10.1016/j.jlr.2022.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Intrauterine growth restriction (IUGR) predisposes to chronic kidney disease via activation of proinflammatory pathways, and omega-3 PUFAs (n-3 PUFAs) have anti-inflammatory properties. In female rats, we investigated 1) how an elevated dietary n-3/n-6 PUFA ratio (1:1) during postnatal kidney development modifies kidney phospholipid (PL) and arachidonic acid (AA) metabolite content and 2) whether the diet counteracts adverse molecular protein signatures expected in IUGR kidneys. IUGR was induced by bilateral uterine vessel ligation or intrauterine stress through sham operation 3.5 days before term. Control (C) offspring were born after uncompromised pregnancy. On postnatal (P) days P2–P39, rats were fed control (n-3/n-6 PUFA ratio 1:20) or n-3 PUFA intervention diet (N3PUFA; ratio 1:1). Plasma parameters (P33), kidney cortex lipidomics and proteomics, as well as histology (P39) were studied. We found that the intervention diet tripled PL-DHA content (PC 40:6; P < 0.01) and lowered both PL-AA content (PC 38:4 and lyso-phosphatidylcholine 20:4; P < 0.05) and AA metabolites (HETEs, dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acids) to 25% in all offspring groups. After ligation, our network analysis of differentially expressed proteins identified an adverse molecular signature indicating inflammation and hypercoagulability. N3PUFA diet reversed 61 protein alterations (P < 0.05), thus mitigating adverse IUGR signatures. In conclusion, an elevated n-3/n-6 PUFA ratio in early diet strongly reduces proinflammatory PLs and mediators while increasing DHA-containing PLs regardless of prior intrauterine conditions. Counteracting a proinflammatory hypercoagulable protein signature in young adult IUGR individuals through early diet intervention may be a feasible strategy to prevent developmentally programmed kidney damage in later life.
Collapse
Affiliation(s)
- Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Gregor Fink
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Magdalena Zelck
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Maria Wohlfarth
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Julia M Post
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen, Erlangen, Germany
| | - Miguel A Alejandre Alcázar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany.
| |
Collapse
|
4
|
Li J, Zhang Y, Zhang J, Dong R, Guo J, Zhang Q. Oxidative Stress and Its Related Factors in Latent Autoimmune Diabetes in Adults. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5676363. [PMID: 34557548 PMCID: PMC8455198 DOI: 10.1155/2021/5676363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022]
Abstract
AIMS Few research was reported to explore oxidative stress in individuals with latent autoimmune diabetes in adults (LADA). Therefore, our goal is to study oxidative stress and related factors in LADA patients. METHODS In this study, 250 Chinese inpatients were diagnosed with LADA (n = 110) and type 2 diabetes mellitus (n = 140) and 140 healthy volunteers were recruited. Moreover, individuals with LADA were followed for 6 months to evaluate whether short-term glycemic control during hospitalization can improve oxidative stress. Clinical and laboratory measurements of height, weight, blood pressure, glycosylated hemoglobin (HbA1c), blood lipids, 8-isoprostaglandin F2α (8-iso-PGF2α), and superoxide dismutase (SOD) were performed. Stepwise multiple regression analyses were used to assess factors that related to oxidative stress in individuals with LADA. RESULTS Compared with patients with type 2 diabetes, individuals with LADA have better oxidative stress and worse oxidative stress than healthy volunteers. After multiple regression analyses, systolic blood pressure, HbA1c, duration of diabetes, and diabetic retinopathy were associated with 8-iso-PGF2α and HbA1c. Diabetic retinopathy and diabetic ketosis were associated with SOD in individuals with LADA. Our results also revealed that, after 6 months of follow-up, oxidative stress was improved to some extent in persons with LADA. CONCLUSIONS Our results show that compared with type 2 diabetes, LADA means less oxidative stress, and compared with healthy volunteers, it means more oxidative stress. Systolic blood pressure, HbA1c, duration of diabetes, diabetic retinopathy, and ketosis were associated with oxidative stress in individuals with LADA. Furthermore, short-term glycemic control can improve oxidative stress to some extent in individuals with LADA.
Collapse
Affiliation(s)
- Jinjin Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Rongna Dong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Juanjuan Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiumei Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| |
Collapse
|
5
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
6
|
Wang MH, Ibrahim AS, Hsiao G, Tawfik A, Al-Shabrawey M. A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage. Prostaglandins Other Lipid Mediat 2020; 148:106449. [PMID: 32360774 PMCID: PMC7728430 DOI: 10.1016/j.prostaglandins.2020.106449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Clinical studies have suggested that the renin-angiotensin system (RAS) may be a promising therapeutic target in treating diabetic retinopathy (DR). While AT1 receptor blockade decreased the incidence of DR in the DIRECT trial, it did not reduce the DR progression. Lack of understanding of the molecular mechanism of retinal microvascular damage induced by RAS is a critical barrier to the use of RAS blockade in preventing or treating DR. The purpose of this study is to investigate the interaction between soluble epoxide hydrolase (sEH) and the AT1 receptor in Angiotensin II (Ang II)- and diabetes-induced retinal microvascular damage. We demonstrate that Ang II increases retinal sEH levels, which is blunted by an AT1 blocker; administration of 11,12-epoxyeicosatrienoic acid (EET) exacerbates intravitreal Ang II-induced retinal albumin leakage; while sEH knockout (KO) and blockade reduce Ang II-induced retinal vascular remodeling, sEH KO causes retinal vascular leakage in Ang II-sEH KO mice; and sEH KO potentiates diabetes-induced retinal damage via promoting retinal vascular endothelial growth factor (VEGF) but reducing expression of tight junction proteins (ZO-1 and occludin). Our studies hold the promise of providing a new strategy, the use of combined EETs blockade with AT1 blocker, to prevent or reduce DR.
Collapse
Affiliation(s)
- Mong-Heng Wang
- Department of Physiology, Augusta University, Augusta, GA, USA.
| | - Ahmed S Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Cellular Biology and Anatomy, USA; Culver Vision Discovery Institute and Ophthalmology, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Cellular Biology and Anatomy, USA; Culver Vision Discovery Institute and Ophthalmology, USA.
| |
Collapse
|
7
|
Rund KM, Peng S, Greite R, Claaßen C, Nolte F, Oger C, Galano JM, Balas L, Durand T, Chen R, Gueler F, Schebb NH. Dietary omega-3 PUFA improved tubular function after ischemia induced acute kidney injury in mice but did not attenuate impairment of renal function. Prostaglandins Other Lipid Mediat 2019; 146:106386. [PMID: 31698142 DOI: 10.1016/j.prostaglandins.2019.106386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is an important complication after major surgery and solid organ transplantation. Here, we present a dietary omega-3 polyunsaturated fatty acid (n3-PUFA) supplementation study to investigate whether pre-treatment can reduce ischemia induced AKI in mice. METHODS Male 12-14 week old C57BL/6 J mice received a linoleic acid rich sunflower oil based standard diet containing 10 % fat (STD) or the same diet enriched with n3-PUFA (containing 1 % EPA and 1 % DHA) (STD + n3). After 14 days of feeding bilateral 30 min renal ischemia reperfusion injury (IRI) was conducted to induce AKI and mice were sacrificed at 24 h. Serum creatinine and blood urea nitrogen (BUN) as well as liver enzyme elevation were measured. Kidney damage was analyzed by histology and immunohistochemistry. Furthermore, pro-inflammatory cytokines (IL-6, MCP-1) were determined by qPCR. FA and oxylipin pattern were quantified in blood and kidneys by GC-FID and LC-MS/MS, respectively. RESULTS n3-PUFA supplementation prior to renal IRI increased systemic and renal levels of n3-PUFA. Consistently, eicosanoids and other oxylipins derived from n3-PUFA including precursors of specialized pro-resolving mediators were elevated while n6-PUFA derived mediators such as pro-inflammatory prostaglandins were decreased. Feeding of n3-PUFA did not attenuate renal function impairment, morphological renal damage and inflammation characterized by IL-6 and MCP-1 elevation or neutrophil infiltration. However, the tubular transport marker alpha-1 microglobulin (A1M) was significantly higher expressed in proximal tubular epithelial cells of STD + n3 compared to STD fed mice. This indicates a better integrity of proximal tubular epithelial cells and thus significant protection of tubular function. In addition, heme oxygenase-1 (HO-1) which protects tubular function was also up-regulated in the treatment group receiving n3-PUFA supplemented chow. DISCUSSION We showed that n3-PUFA pre-treatment did not affect overall renal function or renal inflammation in a mouse model of moderate ischemia induced AKI, but tubular transport was improved. In conclusion, dietary n3-PUFA supplementation altered the oxylipin levels significantly but did not protect from renal function deterioration or attenuate ischemia induced renal inflammation.
Collapse
Affiliation(s)
- Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Shu Peng
- Nephrology, Hannover Medical School, Hannover, Germany; Department of Thoracic surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Robert Greite
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Cornelius Claaßen
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Fabian Nolte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Hannover, Germany.
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany.
| |
Collapse
|
8
|
Yeboah MM, Hye Khan MA, Chesnik MA, Skibba M, Kolb LL, Imig JD. Role of the cytochrome P-450/ epoxyeicosatrienoic acids pathway in the pathogenesis of renal dysfunction in cirrhosis. Nephrol Dial Transplant 2019; 33:1333-1343. [PMID: 29361048 DOI: 10.1093/ndt/gfx354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
Abstract
Background Hepatorenal syndrome (HRS) is a life-threatening complication of advanced liver cirrhosis that is characterized by hemodynamic alterations in the kidney and other vascular beds. Cytochrome P(CYP)-450 enzymes metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acids. These eicosanoids regulate blood pressure, vascular tone and renal tubular sodium transport under both physiological and pathophysiological states. Methods Experiments were performed to investigate the role of the CYP system in the pathogenesis of renal dysfunction during cirrhosis. Rats underwent bile duct ligation (BDL) or sham surgery and were studied at 2, 4 and 5 weeks post-surgery. In additional experiments, post-BDL rats were treated with three daily intraperitoneal doses of either the selective epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH) or a vehicle, starting on Day 22 after surgery. Results BDL led to progressive renal dysfunction that was associated with reduced renal cortical perfusion but without any overt histologic changes, consistent with HRS. CYP isoform enzyme expression was significantly altered in BDL rats. In the kidney, CYP2C23 expression was upregulated at both the mRNA and protein levels in BDL rats, while CYP2C11 was downregulated. Histologically, the changes in CYP2C23 and CYP2C11 expression were localized to the renal tubules. EET production was increased in the kidneys of BDL rats as assessed by urinary eicosanoid levels. Finally, treatment with the selective epoxygenase inhibitor MSPPOH significantly reduced renal function and renal cortical perfusion in BDL rats, suggesting a homeostatic role for epoxygenase-derived eicosanoids. Conclusions The CYP/EET pathway might represent a novel therapeutic target for modulating renal dysfunction in advanced cirrhosis.
Collapse
Affiliation(s)
- Michael M Yeboah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marla A Chesnik
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melissa Skibba
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lauren L Kolb
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Abstract
Therapeutics for arachidonic acid pathways began with the development of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX). The enzymatic pathways and arachidonic acid metabolites and respective receptors have been successfully targeted and therapeutics developed for pain, inflammation, pulmonary and cardiovascular diseases. These drugs target the COX and lipoxygenase pathways but not the third branch for arachidonic acid metabolism, the cytochrome P450 (CYP) pathway. Small molecule compounds targeting enzymes and CYP epoxy-fatty acid metabolites have evolved rapidly over the last two decades. These therapeutics have primarily focused on inhibiting soluble epoxide hydrolase (sEH) or agonist mimetics for epoxyeicosatrienoic acids (EET). Based on preclinical animal model studies and human studies, major therapeutic indications for these sEH inhibitors and EET mimics/analogs are renal and cardiovascular diseases. Novel small molecules that inhibit sEH have advanced to human clinical trials and demonstrate promise for cardiovascular diseases. Challenges remain for sEH inhibitor and EET analog drug development; however, there is a high likelihood that a drug that acts on this third branch of arachidonic acid metabolism will be utilized to treat a cardiovascular or kidney disease in the next decade.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
10
|
Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr Drug Metab 2018; 19:513-522. [PMID: 29380698 PMCID: PMC6182932 DOI: 10.2174/1389200219666180129151948] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023]
Abstract
Background: Tacrolimus (Tac, or FK506), a calcineurin inhibitor (CNI), is the first-line immu-nosuppressant which consists of the footstone as immunosuppressive regimens in kidney transplantation. However, the drug toxicity and the significant differences of pharmacokinetics (PK) and pharmacodynam-ics (PD) among individuals are hidden troubles for clinical application. Recently, emerging evidences of Tac pharmacogenetics (PG) regarding drug absorption, metabolism, disposition, excretion and response are discovered for better understanding of this drug. Method: We reviewed the published articles regarding the Tac PG and its effects on PK and PD in kidney transplantation. In addition, we summarized information on polygenic algorithms. Results: The polymorphism of genes encoding metabolic enzymes and transporters related to Tac were largely investigated, but the results were inconsistent. In addition to CYP3A4, CYP3A5 and P-gp (also known as ABCB1), single nucleotide polymorphisms (SNPs) might also affect the PK and PD parameters of Tac. Conclusion: The correlation between Tac PK, PD and PG is very complex. Although many factors need to be verified, it is envisaged that thorough understanding of PG may assist clinicians to predict the optimal starting dosage, help adjust the maintenance regimen, as well as identify high risk patients for adverse ef-fects or drug inefficacy
Collapse
Affiliation(s)
- Meng Yu
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mouze Liu
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Yingzi Ming
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
11
|
Association of CYP3A5, CYP2C8, and ABCB1 Polymorphisms With Early Renal Injury in Chinese Liver Transplant Recipients Receiving Tacrolimus. Transplant Proc 2018; 50:3258-3265. [PMID: 30577195 DOI: 10.1016/j.transproceed.2018.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND The purpose of this study is to explore the association of CYP3A5, ABCB1, and CYP2C8 polymorphisms with the risk of developing early kidney impairment in Chinese liver transplant recipients receiving tacrolimus. METHODS CYP3A5, ABCB1, and CYP2C8 polymorphisms were genotyped in the Chinese liver transplant recipients in the study receiving tacrolimus for at least 2 years by polymerase chain reaction and high-resolution melting method. Serum cystatin C and urine microprotein (α1-microglobulin, microalbumin, transferrin, and immunoglobulin) of liver transplant recipients were used to determine both the status of early renal injury and the lesion part. RESULTS We documented 3 genotypes of CYP3A5 and ABCB1 and only 2 genotypes of CYP2C8 in our cohort. The levels of cystatin C and all 4 indicators of the urine microprotein in the recipient group were significantly higher than those in the control group (P < .05). The concentrations of transferrin differed significantly in each CYP3A5 genotype group (P < .05). Based on diverse CYP2C8 genotypes, we divided all the recipients into 2 groups: CYP2C8*1*1 group and CYP2C8*3*1 group. The concentrations of α1-microglobulin and cystatin C differed significantly between the 2 groups (P < .05). For CYP2C8*3, the positive predictive value is 68.5% and negative predictive value is 70.2%. For CYP3A5*3, the positive predictive value is 55.3% and negative predictive value is 60.4%. CONCLUSIONS CYP2C8*3 and CYP3A5*3 appear to be predictive of risk of tacrolimus-induced early renal impairment. CYP3A5*3 was associated with the risk of early renal glomerular lesion, while CYP2C8*3 was associated with the risk of the tubulointerstitial injury. ABCB1 polymorphisms (both C3435T and C1236T) were not associated with the early renal injury in liver transplant recipients.
Collapse
|
12
|
Arnold WR, Baylon JL, Tajkhorshid E, Das A. Arachidonic Acid Metabolism by Human Cardiovascular CYP2J2 Is Modulated by Doxorubicin. Biochemistry 2017; 56:6700-6712. [PMID: 29200270 DOI: 10.1021/acs.biochem.7b01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Doxorubicin (DOX) is a chemotherapeutic that is used in the treatment of a wide variety of cancers. However, it causes cardiotoxicity partly because of the formation of reactive oxygen species. CYP2J2 is a human cytochrome P450 that is strongly expressed in cardiomyocytes. It converts arachidonic acid (AA) into four different regioisomers of epoxyeicosatrienoic acids (EETs). Using kinetic analyses, we show that AA metabolism by CYP2J2 is modulated by DOX. We show that cytochrome P450 reductase, the redox partner of CYP2J2, metabolizes DOX to 7-deoxydoxorubicin aglycone (7-de-aDOX). This metabolite then binds to CYP2J2 and inhibits and alters the preferred site of metabolism of AA, leading to a change in the ratio of the EET regioisomers. Furthermore, molecular dynamics simulations indicate that 7-de-aDOX and AA can concurrently bind to the CYP2J2 active site to produce these changes in the site of AA metabolism. To determine if these observations are unique to DOX/7-de-aDOX, we use noncardiotoxic DOX analogues, zorubicin (ZRN) and 5-iminodaunorubicin (5-IDN). ZRN and 5-IDN inhibit CYP2J2-mediated AA metabolism but do not change the ratio of EET regioisomers. Altogether, we demonstrate that DOX and 7-de-aDOX inhibit CYP2J2-mediated AA metabolism and 7-de-aDOX binds close to the active site to alter the ratio of cardioprotective EETs. These mechanistic studies of CYP2J2 can aid in the design of new alternative DOX derivatives.
Collapse
Affiliation(s)
- William R Arnold
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Computational Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Javier L Baylon
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Computational Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Computational Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Computational Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Hammoud SH, Omar AG, Eid AA, El-Mas MM. CYP4A/CYP2C modulation of the interaction of calcium channel blockers with cyclosporine on EDHF-mediated renal vasodilations in rats. Toxicol Appl Pharmacol 2017; 334:110-119. [DOI: 10.1016/j.taap.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023]
|
14
|
Devassy JG, Yamaguchi T, Monirujjaman M, Gabbs M, Ravandi A, Zhou J, Aukema HM. Distinct effects of dietary flax compared to fish oil, soy protein compared to casein, and sex on the renal oxylipin profile in models of polycystic kidney disease. Prostaglandins Leukot Essent Fatty Acids 2017; 123:1-13. [PMID: 28838555 DOI: 10.1016/j.plefa.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
Oxylipins are bioactive lipids derived from polyunsaturated fatty acids (PUFA) that are important regulators of kidney function and health. Targeted lipidomic analyses of renal oxylipins from four studies of rodent models of renal disease were performed to investigate the differential effects of dietary flax compared to fish oil, soy protein compared to casein, and sex. Across all studies, dietary fish oil was more effective than flax oil in reducing n-6 PUFA derived oxylipins and elevating eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived oxylipins, whereas dietary flax oil resulted in higher α-linolenic acid (ALA) oxylipins. Dietary soy protein compared to casein resulted in higher linoleic acid (LA) derived oxylipins. Kidneys from females had higher levels of arachidonic acid (AA) oxylipins, but similar or lower levels of oxylipins from other PUFA. Modulation of the oxylipin profile by diet and sex may help elucidate their effects on renal physiology and health.
Collapse
Affiliation(s)
- Jessay G Devassy
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada
| | - Tamio Yamaguchi
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada; Department of Clinical Nutrition, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Md Monirujjaman
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada
| | - Melissa Gabbs
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Jing Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard, Medical School, Boston, MA, United States
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada; Manitoba Institute of Child Health, Winnipeg, MB, Canada.
| |
Collapse
|
15
|
Bioactive lipids derived from arachidonic acid metabolism in different types of renal replacement therapy. Chem Phys Lipids 2017; 206:71-77. [PMID: 28533146 DOI: 10.1016/j.chemphyslip.2017.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Metabolism and plasma concentration of lipids and lipid-derived compounds play an important role in kidney physiology and pathological processes. The component of membrane phospholipids - arachidonic acid (AA) and its active derivatives - eicosanoids are involved in the development of hypertension, diabetes, inflammation and may contribute to progression of chronic kidney disease (CKD). The purpose of the study was to determine, whether the type of renal replacement therapy has an effect on eicosanoids metabolism. MATERIALS AND METHODS The study included 145 patients with CKD: on conservative treatment (n=68), on peritoneal dialysis (PD) (n=23) and undergoing chronic haemodialysis (HD) (n=54). The concentrations of TXB2, 20-HETE, 8-epi-PGF2α in platelet poor plasma (PPP) were determined using the ELISA method and 5-HETE, 12-HETE, 15-HETE were measured using the RP-HPLC. RESULTS The concentrations of TXB2 in HD group, both before (2.28±0.72ng/mL) and after (1.49±0.63ng/mL) haemodialysis treatment differed significantly from PD group (57.76±6.13ng/mL). Haemodialysis session led to the significant decrease in TXB2 plasma concentration (p=0.046). 20-HETE concentrations in HD group (113.55±107.54pg/mL and 199.54±142.98pg/mL before and after haemodialysis, respectively) were significantly higher than in CKD 3-5 group (8.96±12.66pg/mL) and PD group (47.78±34.07pg/mL). The highest concentration of 12-HETE was obtained in PD patients (3.58±3.99ng/mL) and differed significantly from HD group after haemodialysis (0.97±0.28ng/mL) and CKD3-5 group (1.06±0.52ng/mL). The concentrations of 5-HETE, 15-HETE and 8-epi-PGF2α-III did not differ significantly among examined groups. CONCLUSIONS The concentrations of active AA metabolites depend on the mode of renal replacement therapy and are associated with intensity of oxidative stress. They might be considered as potential indicators of kidney damage.
Collapse
|
16
|
Epoxyeicosatrienoic Acid as Therapy for Diabetic and Ischemic Cardiomyopathy. Trends Pharmacol Sci 2016; 37:945-962. [DOI: 10.1016/j.tips.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
17
|
Chrysant SG. Effects of High Salt Intake on Blood Pressure and Cardiovascular Disease: The Role of COX Inhibitors. Clin Cardiol 2016; 39:240-2. [PMID: 26997359 PMCID: PMC6490875 DOI: 10.1002/clc.22536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Indexed: 11/06/2022] Open
Abstract
Sodium has a bidirectional effect on blood pressure (BP) and cardiovascular disease (CVD). High sodium intake increases both BP and CVD, whereas low sodium intake decreases them. The significance of this association has been debated for years, mostly due to the inconsistency of data, but recently it has been revived due to new evidence about the harmful effects of sodium. Recent studies have indicated that high sodium intake was associated with an increase in BP and CVD, which in 2010 was estimated to have accounted for 1.65 million deaths worldwide. Based on this evidence, the American Heart Association has issued a Science Advisory statement regarding the significance of high sodium intake in relation to the incidence of hypertension and CVD. In addition to high sodium intake, experimental studies have shown that the coadministration of nonsteroidal anti-inflammatory drugs further aggravates the harmful effects of high sodium intake. The interrelationship of high sodium intake and nonsteroidal anti-inflammatory drugs will be discussed in this commentary.
Collapse
Affiliation(s)
- Steven G. Chrysant
- Department of CardiologyUniversity of Oklahoma College of MedicineOklahoma CityOklahoma
| |
Collapse
|
18
|
Khan NS, Song CY, Thirunavukkarasu S, Fang XR, Bonventre JV, Malik KU. Cytosolic Phospholipase A2α Is Essential for Renal Dysfunction and End-Organ Damage Associated With Angiotensin II-Induced Hypertension. Am J Hypertens 2016; 29:258-65. [PMID: 26045535 DOI: 10.1093/ajh/hpv083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The kidney plays an important role in regulating blood pressure (BP). cPLA2α in the kidney is activated by various agents including angiotensin II (Ang II) and selectively releases arachidonic acid (AA) from tissue lipids, generating pro- and antihypertensive eicosanoids. Since activation of cPLA2α is the rate-limiting step in AA release, this study was conducted to determine its contribution to renal dysfunction and end-organ damage associated with Ang II-induced hypertension. METHODS cPLA2α(+/+) and cPLA2α(-/-) mice were infused with Ang II (700 ng/ kg/min) or its vehicle for 13 days. Mice were placed in metabolic cages to monitor their food and water intake, and urine was collected and its volume was measured. Doppler imaging was performed to assess renal hemodynamics. On the 13th day of Ang II infusion, mice were sacrificed and their tissues and blood collected for further analysis. RESULTS Ang II increased renal vascular resistance, water intake, and urine output and Na(+) excretion, decreased urine osmolality, and produced proteinuria in cPLA2α(+/+) mice. Ang II also caused accumulation of F4/80(+) macrophages and CD3(+) T cells and renal fibrosis, and increased oxidative stress in the kidneys of cPLA2α(+/+) mice. All these effects of Ang II were minimized in cPLA2α(-/-) mice. CONCLUSION cPLA2α contributes to renal dysfunction, inflammation, and end-organ damage, most likely via the action of pro-hypertensive eicosanoids and increased oxidative stress associated with Ang II-induced hypertension. Thus, cPLA2α could serve as a potential therapeutic target for treating renal dysfunction and end-organ damage in hypertension.
Collapse
Affiliation(s)
- Nayaab S Khan
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chi Young Song
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shyamala Thirunavukkarasu
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xiao R Fang
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital Boston, Harvard Medical School, Harvard Institute of Medicine, Boston, Massachusetts, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| |
Collapse
|
19
|
Huang H, Al-Shabrawey M, Wang MH. Cyclooxygenase- and cytochrome P450-derived eicosanoids in stroke. Prostaglandins Other Lipid Mediat 2015; 122:45-53. [PMID: 26747234 DOI: 10.1016/j.prostaglandins.2015.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
Abstract
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX) and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in cardiovascular diseases and stroke. Evidence has demonstrated the important functions of these eicosanoids in regulating cerebral vascular tone, cerebral blood flow, and autoregulation of cerebral circulation. Although COX-2 inhibitors have been suggested as potential treatments for stroke, adverse events, including an increased risk of stroke, occur following long-term use of coxibs. It is important to note that prolonged treatment with rofecoxib increased circulating levels of 20-hydroxyeicosatetraenoic acid (20-HETE), and 20-HETE blockade is a possible strategy to prevent coxib-induced stroke events. It appears that 20-HETE has detrimental effects in the brain, and that its blockade exerts cerebroprotection against ischemic stroke and subarachnoid hemorrhage (SAH). There is clear evidence that activation of EP2 and EP4 receptors exerts cerebroprotection against ischemic stroke. Several elegant studies have contributed to defining the importance of stabilizing the levels of epoxyeicosatrienoic acids (EETs), by inhibiting or deleting soluble epoxide hydrolase (sEH), in stroke research. These reports support the notion that sEH blockade is cerebroprotective against ischemic stroke and SAH. Here, we summarize recent findings implicating these eicosanoid pathways in cerebral vascular function and stroke. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of ischemic stroke and SAH.
Collapse
Affiliation(s)
- Hui Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China; Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mohamed Al-Shabrawey
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University, Augusta, GA 30912, United states
| | - Mong-Heng Wang
- Department of Physiology, Georgia Regents University, Augusta, GA 30912, United states.
| |
Collapse
|
20
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Trans-10,cis-12-conjugated linoleic acid worsens renal pathology and alters cyclooxygenase derived oxylipins in obesity-associated nephropathy. J Nutr Biochem 2015; 26:130-7. [DOI: 10.1016/j.jnutbio.2014.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022]
|
22
|
Song J, Lu Y, Lai EY, Wei J, Wang L, Chandrashekar K, Wang S, Shen C, Juncos LA, Liu R. Oxidative status in the macula densa modulates tubuloglomerular feedback responsiveness in angiotensin II-induced hypertension. Acta Physiol (Oxf) 2015; 213:249-58. [PMID: 25089004 DOI: 10.1111/apha.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
AIM Tubuloglomerular feedback (TGF) is an important mechanism in control of signal nephron glomerular filtration rate. The oxidative stress in the macula densa, primarily determined by the interactions between nitric oxide (NO) and superoxide (O2-), is essential in maintaining the TGF responsiveness. However, few studies examining the interactions between and amount of NO and O2- generated by the macula densa during normal and hypertensive states. METHODS In this study, we used isolated perfused juxtaglomerular apparatus to directly measure the amount and also studied the interactions between NO and O2- in macula densa in both physiological and slow pressor Angiotensin II (Ang II)-induced hypertensive mice. RESULTS We found that slow pressor Ang II at a dose of 600 ng kg(-1) min(-1) for two weeks increased mean arterial pressure by 26.1 ± 5.7 mmHg. TGF response increased from 3.4 ± 0.2 μm in control to 5.2 ± 0.2 μm in hypertensive mice. We first measured O2- generation by the macula densa and found it was undetectable in control mice. However, O2- generation by the macula densa increased to 21.4 ± 2.5 unit min(-1) in Ang II-induced hypertensive mice. We then measured NO generation and found that NO generation by the macula densa was 138.5 ± 9.3 unit min(-1) in control mice. The NO was undetectable in the macula densa in hypertensive mice infused with Ang II. CONCLUSIONS Under physiological conditions, TGF response is mainly controlled by the NO generated in the macula densa; in Ang II induced hypertension, the TGF response is mainly controlled by the O2- generated by the macula densa.
Collapse
Affiliation(s)
- J. Song
- State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - Y. Lu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University; Hanzhou China
| | - J. Wei
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - K. Chandrashekar
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - S. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - C. Shen
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. A. Juncos
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - R. Liu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| |
Collapse
|
23
|
Knights KM, Rowland A, Miners JO. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 2014; 76:587-602. [PMID: 23362865 DOI: 10.1111/bcp.12086] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/23/2013] [Indexed: 12/28/2022] Open
Abstract
Although knowledge of human renal cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and their role in xenobiotic and endobiotic metabolism is limited compared with hepatic drug and chemical metabolism, accumulating evidence indicates that human kidney has significant metabolic capacity. Of the drug metabolizing P450s in families 1 to 3, there is definitive evidence for only CYP 2B6 and 3A5 expression in human kidney. CYP 1A1, 1A2, 1B1, 2A6, 2C19, 2D6 and 2E1 are not expressed in human kidney, while data for CYP 2C8, 2C9 and 3A4 expression are equivocal. It is further known that several P450 enzymes involved in the metabolism of arachidonic acid and eicosanoids are expressed in human kidney, CYP 4A11, 4F2, 4F8, 4F11 and 4F12. With the current limited evidence of drug substrates for human renal P450s drug-endobiotic interactions arising from inhibition of renal P450s, particularly effects on arachidonic acid metabolism, appear unlikely. With respect to the UGTs, 1A5, 1A6, 1A7, 1A9, 2B4, 2B7 and 2B17 are expressed in human kidney, whereas UGT 1A1, 1A3, 1A4, 1A8, 1A10, 2B10, 2B11 and 2B15 are not. The most abundantly expressed renal UGTs are 1A9 and 2B7, which play a significant role in the glucuronidation of drugs, arachidonic acid, prostaglandins, leukotrienes and P450 derived arachidonic acid metabolites. Modulation by drug substrates (e.g. NSAIDs) of the intrarenal activity of UGT1A9 and UGT2B7 has the potential to perturb the metabolism of renal mediators including aldosterone, prostaglandins and 20-hydroxyeicosatetraenoic acid, thus disrupting renal homeostasis.
Collapse
Affiliation(s)
- Kathleen M Knights
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
24
|
Liu Y, Jia Z, Sun Y, Zhou L, Downton M, Chen R, Zhang A, Yang T. Postnatal regulation of 15-hydroxyprostaglandin dehydrogenase in the rat kidney. Am J Physiol Renal Physiol 2014; 307:F388-95. [PMID: 24647712 DOI: 10.1152/ajprenal.00512.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) has an established role in postnatal kidney development. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is recently identified as an endogenous inhibitor of COX-2, limiting the production of COX-2-derived prostanoids in several pathological conditions. The present study was undertaken to examine the regulation of renal 15-PGDH expression during postnatal kidney development in rats compared with COX-2. qRT-PCR and immunoblotting demonstrated that 15-PGDH mRNA and protein in the kidney were present in neonates, peaked in the second postnatal week, and then declined sharply to very low level in adulthood. Immunostaining demonstrated that at the second postnatal week, renal 15-PGDH protein was predominantly found in the proximal tubules stained positive for Na/H exchanger 3 and brush borders (periodic acid-Schiff), whereas COX-2 protein was restricted to macular densa and adjacent thick ascending limbs. Interestingly, in the fourth postnatal week, 15-PGDH protein was redistributed to thick ascending limbs stained positive for the Na-K-2Cl cotransporter. After 6 wk of age, 15-PGDH protein was found in the granules in subsets of the proximal tubules. Overall, these results support a possibility that 15-PGDH may regulate postnatal kidney development through interaction with COX-2.
Collapse
Affiliation(s)
- Ying Liu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah
| | - Zhanjun Jia
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah
| | - Ying Sun
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Maicy Downton
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah
| | - Ren Chen
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China; and
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah; Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China;
| |
Collapse
|
25
|
Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2014; 45:311-52. [PMID: 23865864 DOI: 10.3109/03602532.2013.806537] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2) is an enzyme mainly found in human extrahepatic tissues, with predominant expression in the cardiovascular systems and lower levels in the intestine, kidney, lung, pancreas, brain, liver, etc. During the past 15 years, CYP2J2 has attracted much attention for its epoxygenase activity in arachidonic acid (AA) metabolism. It converts AA to four epoxyeicosatrienoic acids (EETs) that have various biological effects, especially in the cardiovascular systems. In recent publications, CYP2J2 is shown highly expressed in various human tumor cells, and its EET metabolites are demonstrated to implicate in the pathologic development of human cancers. CYP2J2 is also a human CYP that involved in phase I xenobiotics metabolism. Antihistamine drugs and many other compounds were identified as the substrates of CYP2J2, and studies have demonstrated that these substrates have a broad structural diversity. CYP2J2 is found not readily induced by known P450 inducers; however, its expression could be regulated in some pathological conditions, might through the activator protein-1(AP-1), the AP-1-like element and microRNA let-7b. Several genetic mutations in the CYP2J2 gene have been identified in humans, and some of them have been shown to have potential associations with some diseases. With the increasing awareness of its roles in cancer disease and drug metabolism, studies about CYP2J2 are still going on, and various inhibitors of CYP2J2 have been determined. Further studies are needed to delineate the roles of CYP2J2 in disease pathology, drug development and clinical practice.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
26
|
Ibrahim NHM, Jia Y, Devassy JG, Yamaguchi T, Aukema HM. Renal cyclooxygenase and lipoxygenase products are altered in polycystic kidneys and by dietary soy protein and fish oil treatment in the Han:SPRD-Cy rat. Mol Nutr Food Res 2013; 58:768-81. [PMID: 24170691 DOI: 10.1002/mnfr.201300332] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 01/12/2023]
Abstract
SCOPE Dietary fish oil (FO) and soy protein (SP) are two interventions that slow disease progression in the Han:SPRD-Cy rat model of polycystic kidney disease (PKD). Inhibition of cyclooxygenase (COX)-derived eicosanoids also reduces disease progression, but the role of lipoxygenase (LOX) products in this disease is not known. METHODS AND RESULTS Since dietary FO and SP have been shown to alter eicosanoid formation via differing mechanisms, Han:SPRD-Cy rats were given diets containing either casein protein (CP) or SP, and soy oil (SO) or FO. Analysis of eicosanoids revealed that renal COX products were higher and LOX products were lower in diseased kidneys. SP feeding resulted in lower COX products, activity and COX1 protein and higher LOX products in the diseased kidneys in parallel with reduced renal cyst growth and fibrosis. By comparison, FO reduced both COX and LOX products produced from n-6 fatty acids and increased 3-series prostanoids in both normal and diseased cortex and medulla, but these differences did not parallel effects on disease. CONCLUSION Renal COX-derived eicosanoids are elevated and LOX products are reduced in this model of kidney disease. The effects of dietary SP, but not FO, on renal eicosanoids parallel the effects on disease.
Collapse
Affiliation(s)
- Naser H M Ibrahim
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
27
|
Differential role of cyclooxygenase-1 and -2 on renal vasoconstriction to α1-adrenoceptor stimulation in normotensive and hypertensive rats. Life Sci 2013; 93:552-7. [DOI: 10.1016/j.lfs.2013.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 12/20/2022]
|
28
|
Ren Y, D'Ambrosio MA, Garvin JL, Wang H, Carretero OA. Prostaglandin E2 mediates connecting tubule glomerular feedback. Hypertension 2013; 62:1123-8. [PMID: 24060896 DOI: 10.1161/hypertensionaha.113.02040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Connecting tubule glomerular feedback (CTGF) is a mechanism in which Na reabsorption in the connecting tubule (CNT) causes afferent arteriole (Af-Art) dilation. CTGF is mediated by eicosanoids, including prostaglandins and epoxyeicosatrienoic acids; however, their exact nature and source remain unknown. We hypothesized that during CTGF, the CNT releases prostaglandin E2, which binds its type 4 receptor (EP4) and dilates the Af-Art. Rabbit Af-Arts with the adherent CNT intact were microdissected, perfused, and preconstricted with norepinephrine. CTGF was elicited by increasing luminal NaCl in the CNT from 10 to 80 mmol/L. We induced CTGF with or without the EP4 receptor blocker ONO-AE3-208 added to the bath in the presence of the epoxyeicosatrienoic acid synthesis inhibitor MS-PPOH. ONO-AE3-208 abolished CTGF (control, 9.4 ± 0.5; MS-PPOH+ONO-AE3-208, -0.6 ± 0.2 μm; P<0.001; n=6). To confirm these results, we used a different, specific EP4 blocker, L161982 (10(-5) mol/L), that also abolished CTGF (control, 8.5 ± 0.9; MS-PPOH+L161982, 0.8 ± 0.4 μm; P<0.001; n=6). To confirm that the eicosanoids that mediate CTGF are released from the CNT rather than the Af-Art, we first disrupted the Af-Art endothelium with an antibody and complement. Endothelial disruption did not affect CTGF (7.9 ± 0.9 versus 8.6 ± 0.6 μm; P=NS; n=7). We then added arachidonic acid to the lumen of the CNT while maintaining zero NaCl in the perfusate. Arachidonic acid caused dose-dependent dilation of the attached Af-Art (from 8.6 ± 1.2 to 15.3 ± 0.7 μm; P<0.001; n=6), and this effect was blocked by ONO-AE3-208 (10(-7) mol/L). We conclude that during CTGF, the CNT releases prostaglandin E2, which acts on EP4 on the Af-Art inducing endothelium-independent dilation.
Collapse
Affiliation(s)
- Yilin Ren
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202.
| | | | | | | | | |
Collapse
|
29
|
Glucocorticoid mediates the transcription of OAT-PG, a kidney-specific prostaglandin transporter. Pflugers Arch 2013; 466:925-35. [PMID: 24057348 DOI: 10.1007/s00424-013-1351-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/30/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
OAT-PG is a kidney-specific prostaglandin transporter and exclusively expressed at the basolateral membrane of proximal tubules in rodent kidneys. We previously reported that OAT-PG was dominantly expressed in the male kidney similar to the other SLC22 family proteins as organic anion transporter (OAT) 1 and OAT3. Recently, Wegner et al. revealed that a transcription factor, B-cell CLL/lymphoma 6 (BCL6), is associated with the male-dominant expressions of OAT1 and OAT3 in the rat kidney. Here, we performed the luciferase assay to investigate whether OAT-PG is also transcriptionally regulated by BCL6. However, the promoter activity of OAT-PG was not directly affected by BCL6 overexpression nor the testosterone treatment, suggesting that different regulatory mechanisms underlie the male-dominant transcriptional regulation of OAT-PG compared to those of OAT1 and OAT3. We newly found that adrenalectomy (Adx) of male rat caused a significant reduction of OAT-PG expression without any significant changes in the OAT1 and OAT3 expressions, and it was recovered by the dexamethasone administration. Furthermore, the renocortical PGE2 concentration was markedly increased in Adx male rat, concomitant with the downregulation of OAT-PG, and it was reduced to the basal level by dexamethasone treatment. In the luciferase assay, dexamethasone stimulated OAT-PG promoter activity but not OAT1. The luciferase activity responsiveness to dexamethasone was significantly reduced by the deletion of glucocorticoid response elements in the OAT-PG promoter region. These results suggest that glucocorticoid plays an important role in the regulation of the renocortical PGE2 concentration by the transcriptional regulation of OAT-PG in the rat kidney.
Collapse
|
30
|
Alexanian A, Sorokin A. Targeting 20-HETE producing enzymes in cancer - rationale, pharmacology, and clinical potential. Onco Targets Ther 2013; 6:243-55. [PMID: 23569388 PMCID: PMC3615879 DOI: 10.2147/ott.s31586] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies demonstrate that lipid mediator 20-Hydroxyeicosatetraenoic acid (20-HETE) synthesis and signaling are associated with the growth of cancer cells in vitro and in vivo. Stable 20-HETE agonists promote the proliferation of cancer cells, whereas selective inhibitors of the 20-HETE-producing enzymes of the Cytochrome (CYP450)4A and CYP4F families can block the proliferation of glioblastoma, prostate, renal cell carcinoma, and breast cancer cell lines. A recent observation that the expression of CYP4A/4F genes was markedly elevated in thyroid, breast, colon, and ovarian cancer further highlights the significance of 20-HETE-producing enzymes in the progression of different types of human cancer. These findings provide the rationale for targeting 20-HETE-producing enzymes in human cancers and set the basis for the development of novel therapeutic strategies for anticancer treatment.
Collapse
Affiliation(s)
- Anna Alexanian
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
31
|
The renal injury and inflammation caused by ischemia–reperfusion are reduced by genetic inhibition of TNF-αR1: A comparison with infliximab treatment. Eur J Pharmacol 2013; 700:134-46. [DOI: 10.1016/j.ejphar.2012.11.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 11/25/2012] [Accepted: 11/28/2012] [Indexed: 11/15/2022]
|
32
|
Wakefield AP, Ogborn MR, Ibrahim N, Aukema HM. A dietary conjugated linoleic acid treatment that slows renal disease progression alters renal cyclooxygenase-2-derived prostanoids in the Han: SPRD-cy rat. J Nutr Biochem 2012; 23:908-14. [DOI: 10.1016/j.jnutbio.2011.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/22/2010] [Accepted: 04/20/2011] [Indexed: 01/11/2023]
|
33
|
Anti-inflammatory effects of epoxyeicosatrienoic acids. Int J Vasc Med 2012; 2012:605101. [PMID: 22848834 PMCID: PMC3405717 DOI: 10.1155/2012/605101] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/20/2012] [Indexed: 01/15/2023] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are generated by the activity of both selective and also more general cytochrome p450 (CYP) enzymes on arachidonic acid and inactivated largely by soluble epoxide hydrolase (sEH), which converts them to their corresponding dihydroxyeicosatrienoic acids (DHETs). EETs have been shown to have a diverse range of effects on the vasculature including relaxation of vascular tone, cellular proliferation, and angiogenesis as well as the migration of smooth muscle cells. This paper will highlight the growing evidence that EETs also mediate a number of anti-inflammatory effects in the cardiovascular system. In particular, numerous studies have demonstrated that potentiation of EET activity using different methods can inhibit inflammatory gene expression and signalling pathways in endothelial cells and monocytes and in models of cardiovascular diseases. The mechanisms by which EETs mediate their effects are largely unknown but may include direct binding to peroxisome proliferator-activated receptors (PPARs), G-protein coupled receptors (GPCRs), or transient receptor potential (TRP) channels, which initiate anti-inflammatory signalling cascades.
Collapse
|
34
|
do Carmo JM, da Silva AA, Morgan J, Jim Wang YX, Munusamy S, Hall JE. Inhibition of soluble epoxide hydrolase reduces food intake and increases metabolic rate in obese mice. Nutr Metab Cardiovasc Dis 2012; 22:598-604. [PMID: 21190818 PMCID: PMC3094595 DOI: 10.1016/j.numecd.2010.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/02/2010] [Accepted: 10/25/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS This study evaluated the responses to soluble epoxide hydrolase (s-EH) inhibition, an essential enzyme in the metabolism of arachidonic acid, on food intake, body weight and metabolic parameters in mice fed a high fat-high fructose diet (HFD) for 10 weeks. METHODS AND RESULTS After 5 weeks of HFD, mice were divided into two groups: 1) s-EH inhibitor (AR9281, 200mg/kg/day by gavage twice daily), and 2) vehicle (0.3ml per gavage). Food intake, body weight, oxygen consumption (VO(2)), carbon dioxide production (VCO(2)), respiratory quotient (RQ), and motor activity were measured weekly for more 5 weeks. HFD increased body weight (37±1 vs. 26±1g), and plasma of glucose (316±8 vs. 188±27mg/dl), insulin (62.1±8.1 vs. 15.5±5.0μU/ml), and leptin levels (39.4±3.6 vs. 7.5±0.1ng/ml) while reducing VO(2), VCO(2) and motor activity. s-EH inhibition for 5 weeks decreased caloric intake by ~32% and increased VO(2) by ~17% (42.8±1.4 vs. 50.2±1.5ml/kg/min) leading to significant weight loss. Inhibition of s-EHi also caused significant reductions in plasma leptin levels and visceral fat content. Uncoupling protein 1 (UCP1) content in brown adipose tissue was also elevated by ~50% during s-EH inhibition compared to vehicle treatment. CONCLUSION These results suggest that s-EH inhibition with AR9281 promotes weight loss by reducing appetite and increasing metabolic rate, and that increased UCP1 content may contribute to the increase in energy expenditure.
Collapse
Affiliation(s)
- J M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, United States.
| | | | | | | | | | | |
Collapse
|
35
|
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 2012; 92:101-30. [PMID: 22298653 DOI: 10.1152/physrev.00021.2011] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
36
|
Burgess A, Vanella L, Bellner L, Schwartzman ML, Abraham NG. Epoxyeicosatrienoic acids and heme oxygenase-1 interaction attenuates diabetes and metabolic syndrome complications. Prostaglandins Other Lipid Mediat 2012; 97:1-16. [PMID: 22100745 PMCID: PMC3261364 DOI: 10.1016/j.prostaglandins.2011.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/05/2011] [Accepted: 10/17/2011] [Indexed: 12/19/2022]
Abstract
MSCs are considered to be the natural precursors to adipocyte development through the process of adipogenesis. A link has been established between decreased protective effects of EETs or HO-1 and their interaction in metabolic syndrome. Decreases in HO-1 or EET were associated with an increase in adipocyte stem cell differentiation and increased levels of inflammatory cytokines. EET agonist (AKR-I-27-28) inhibited MSC-derived adipocytes and decreased the levels of inflammatory cytokines. We further describe the role of CYP-epoxygenase expression, HO expression, and circulating cytokine levels in an obese mouse, ob/ob(-/-) mouse model. Ex vivo measurements of EET expression within MSCs derived from ob/ob(-/-) showed decreased levels of EETs that were increased by HO induction. This review demonstrates that suppression of HO and EET systems exist in MSCs prior to the development of adipocyte dysfunction. Further, adipocyte dysfunction can be ameliorated by induction of HO-1 and CYP-epoxygenase, i.e. EET.
Collapse
Affiliation(s)
- Angela Burgess
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, OH 43614
| | - Luca Vanella
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, OH 43614
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595
| | | | - Nader G. Abraham
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, OH 43614
| |
Collapse
|
37
|
Sodhi K, Puri N, Inoue K, Falck JR, Schwartzman ML, Abraham NG. EET agonist prevents adiposity and vascular dysfunction in rats fed a high fat diet via a decrease in Bach 1 and an increase in HO-1 levels. Prostaglandins Other Lipid Mediat 2011; 98:133-42. [PMID: 22209722 DOI: 10.1016/j.prostaglandins.2011.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
Recent reports have shown interplay between EETs (epoxides) and the heme oxygenase (HO) system in attenuating adipogenesis in cell culture models; prompting an examination of the effectiveness of EET agonist on obesity and associated cardio-metabolic dysfunction. Patho-physiological effects of an EET agonist (NUDSA) were contrasted in the absence and in the presence of stannous mesoporphyrin (an HO inhibitor) in SD rats fed a high fat (58%, HF) for 16 weeks. Animals on HF diet exhibited enhanced oxidative stress, increased levels of inflammatory cytokines and decreased levels of adiponectin along with reduced vascular and adipose tissue levels of EETs, HO-1; as compared to control rats (11% dietary fat). Treatment with NUDSA not only reversed serum adiponectin and vascular and adipose tissue levels of EETs and HO-1, but also, decreased blood pressure, subcutaneous and visceral fat content and serum TNFα and IL-6 levels in rats on HF diet. Aortic endothelial function, peNOS expression and adipose tissue markers of energy homeostasis i.e. pAMPK, Sirt1 and FAS, impaired in rats fed a HF diet, were restored in animals treated with this EET agonist. That NUDSA enhanced HO-1 expression, was accompanied by increase in p-GSK-3β and pAKT levels along with attenuation of adipose tissue levels of Bach 1--the transcriptional suppresser of HO-1 expression. Prevention of these beneficial effects of NUDSA, in animals on HF diet and concurrently exposed to NUDSA and SnMP, supports the role of EET-HO interaction in mediating such effects. Taken together, our findings suggest that the EETs stimulate HO-1 expression via suppression of Bach 1 and interplay of these two systems affords vascular and metabolic protection in diet induced obesity.
Collapse
Affiliation(s)
- Komal Sodhi
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine, Health Education Building, 3000 Arlington Avenue, Toledo, OH 43614-2598, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ebenezar KK, Wong AKO, Smith FG. Haemodynamic responses to angiotensin II in conscious lambs: role of nitric oxide and prostaglandins. Pflugers Arch 2011; 463:399-404. [DOI: 10.1007/s00424-011-1065-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/16/2011] [Accepted: 11/23/2011] [Indexed: 11/25/2022]
|
39
|
Jiang H, Anderson GD, McGiff JC. The red blood cell participates in regulation of the circulation by producing and releasing epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2011; 98:91-3. [PMID: 22178722 DOI: 10.1016/j.prostaglandins.2011.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 12/27/2022]
Abstract
Red blood cells (RBCs) have an important function in regulation of the circulation by producing and releasing epoxyeicosatrienoic acids (EETs) in response to a low O₂ environment such as encountered in the cardiac microcirculation during exercise. RBCs, in their role as sensors of low pO₂, release ATP and critical lipid mediators, the EETs. Both cis- and trans-EETs are synthesized and stored in RBCs and are hydrolyzed by soluble epoxide hydrolases (sEH). The trans-EETs differ from cis-EETs in their higher vascular potencies and more rapid metabolism by sEH. Thus, inhibition of sEH results in greater trans-EET levels and increased positive vascular effects of trans-EETs vs cis-EETs. The trans-EETs are responsible for a significant decline in the elevated blood pressure in the spontaneously hypertensive rat on treatment with a sEH inhibitor to raise EET levels. We predict that trans-EETs and cis-EETs will occupy important therapeutic roles in a broad spectrum of diseases and abnormal physiological conditions such as that resulting from high salt intake and hypertension.
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
40
|
Cyclooxygenase-2 and kidney failure. Prostaglandins Other Lipid Mediat 2011; 98:86-90. [PMID: 22119250 DOI: 10.1016/j.prostaglandins.2011.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/11/2023]
Abstract
Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease.
Collapse
|
41
|
Hatano R, Onoe K, Obara M, Matsubara M, Kanai Y, Muto S, Asano S. Sex hormones induce a gender-related difference in renal expression of a novel prostaglandin transporter, OAT-PG, influencing basal PGE2 concentration. Am J Physiol Renal Physiol 2011; 302:F342-9. [PMID: 22031854 DOI: 10.1152/ajprenal.00366.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Based on the nucleotide sequence of a mouse prostaglandin-specific transporter (mOAT-PG), we identified a rat homolog (rOAT-PG) which shares 80% identity with mOAT-PG in a deduced amino acid sequence. rOAT-PG transports PGE(2) and colocalizes with 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a metabolic enzyme for PGs, in proximal tubules, suggesting that rOAT-PG is involved in PGE(2) clearance to regulate its physiological function in the renal cortex. We found that the expression level of rOAT-PG in the renal cortex was much higher in male rats than in female rats whereas there was no gender difference in the expression level of cyclooxygenase-2, a key enzyme producing PGE(2), and 15-PGDH in the renal cortex. Tissue PGE(2) concentration in the renal cortex was lower in male rats than in female rats, suggesting that renocortical PGE(2) concentration is primarily determined by the expression level of OAT-PG, which is regulated differently between male and female rats. Castration of male rat led to a remarkable reduction in OAT-PG expression and a significant increase in renocortical PGE(2) concentration. These alterations were recovered by testosterone supplementation. These results suggest that OAT-PG is involved in local PGE(2) clearance in the renal cortex. Although the physiological importance of the gender difference in local PGE(2) clearance is still unclear, these findings might be a key to clarifying the physiological roles of PGE(2) in the kidney.
Collapse
Affiliation(s)
- Ryo Hatano
- Dept. of Molecular Physiology, College of Pharmaceutical Sciences, Kusatsu-City, Shiga, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Luo P, Wang MH. Eicosanoids, β-cell function, and diabetes. Prostaglandins Other Lipid Mediat 2011; 95:1-10. [PMID: 21757024 DOI: 10.1016/j.prostaglandins.2011.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in diverse diseases, including type 1 and type 2 diabetes. During the last 30 years, evidence has been accumulated that suggests important functions for eicosanoids in the control of pancreatic β-cell function and destruction. AA metabolites of the COX pathway, especially prostaglandin E(2) (PGE(2)), appear to be significant factors to β-cell dysfunction and destruction, participating in the pathogenesis of diabetes and its complications. Several elegant studies have contributed to the sorting out of the importance of 12-LOX eicosanoids in cytokine-mediated inflammation in pancreatic β cells. The role of CYP eicosanoids in diabetes is yet to be explored. A recent publication has demonstrated that stabilizing the levels of epoxyeicosatrienoic acids (EETs), CYP eicosanoids, by inhibiting or deleting soluble epoxide hydrolase (sEH) improves β-cell function and reduces β-cell apoptosis in diabetes. In this review we summarize recent findings implicating these eicosanoid pathways in diabetes and its complications. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Pengcheng Luo
- Department of Nephrology, Renmin Hospital of Wuhan University, China
| | | |
Collapse
|
43
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
44
|
Esposito E, Mondello S, Di Paola R, Mazzon E, Italiano D, Paterniti I, Mondello P, Aloisi C, Cuzzocrea S. Glutamine contributes to ameliorate inflammation after renal ischemia/reperfusion injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:493-508. [PMID: 21394482 DOI: 10.1007/s00210-011-0610-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 02/01/2011] [Indexed: 01/05/2023]
Abstract
The aim of this study was to investigate the effects of glutamine in an in vivo rat model of renal ischemia/reperfusion (I/R) injury. Male Wistar rats underwent bilateral renal pedicle clamping for 45 min followed by reperfusion for 6 h. Glutamine (1.5 mg/kg) was administered intraperitoneally (i.p.) 15 min prior to reperfusion. Plasma concentrations of urea, creatinine, γ-glutamyl transferase (γ-GT), and aspartate aminotransferase (AST) were measured for the assessment of renal function and reperfusion injury. Markers of oxidative stress, expression of the pro-inflammatory mediators inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), AT-1 expression, and changes in the oxidative stress-sensitive nuclear factor kappa B (NF-κB) signaling pathway were measured to investigate whether glutamine can reduce the renal dysfunction. Kidney myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels were measured for assessment of polymorphonuclear (PMN) cell infiltration and lipid peroxidation, respectively. Renal sections were used for histologic grading of renal injury and for immunohistochemical localization of nitrotyrosine and poly(ADP-ribose) synthetase (PARS). In vivo, glutamine significantly reduced the increase in urea, creatinine, γ-GT, AST, produced by renal ischemia/reperfusion (I/R), suggesting an improvement in both renal function and injury. Glutamine significantly reduced iNOS and NF-κB, kidney MPO activity and MDA levels, indicating a reduction in PMN infiltration and lipid peroxidation, respectively. Glutamine reduced the histological evidence of renal damage associated with I/R and caused a substantial reduction in the staining for nitrotyrosine and PARS, suggesting reduced nitrosative and oxidative stress. Moreover, glutamine attenuated the reduction of COX-2 expression and prevented the increased AT-1 expression after I/R. Our results suggest that glutamine reduces the renal dysfunction and injury associated with I/R of the kidney.
Collapse
Affiliation(s)
- Emanuela Esposito
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
46
|
CYP2C9 variants and blood pressure response to salt: when salt sensitivity meets pharmacogenomics. J Hypertens 2011; 29:29-31. [DOI: 10.1097/hjh.0b013e32834091a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Ebenezar KK, Sharbaf FG, Qi W, Smith FG. Do prostaglandins modulate renal haemodynamic effects of endothelin-1 in conscious lambs? Can J Physiol Pharmacol 2010; 88:161-7. [PMID: 20237591 DOI: 10.1139/y09-122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that vasodilatory prostaglandins buffer the renal vasoconstrictor effects of endothelin-1 (ET-1) early in life, renal haemodynamic responses to ET-1 were measured in 2 groups of conscious, chronically instrumented lambs at 1-2 weeks of age (group I, n = 11) and 6 weeks of age (group II, n = 10). Lambs were pretreated with vehicle or 1 mg x kg(-1) indomethacin, a nonselective cyclooxygenase inhibitor, and renal haemodynamic effects were measured continuously for 1 min before (control) and 5 min after intra-arterial injection of 250 ng x kg(-1) ET-1. In group II lambs, there was a marked decrease in renal blood flow (RBF) and renal vascular conductance (RVC) elicited by ET-1 administration, as we have previously described. This response was not altered by vehicle or indomethacin pretreatment. In group I lambs, there was an initial increase but no decrease in RBF and RVC elicited by ET-1 administration, as we have previously described, and this response was also not altered by either vehicle or indomethacin. These results suggest that endogenously produced prostaglandins do not appear to modulate the renal haemodynamic effects of ET-1 in conscious lambs during postnatal maturation.
Collapse
Affiliation(s)
- Kumar Kesavarao Ebenezar
- Department of Physiology & Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | | | |
Collapse
|
48
|
Baker AC, de Mattos A, Watkins S, German JB, Troppmann C, Perez R. Pretransplant Free Fatty Acids (FFA) and Allograft Survival in Renal Transplantation1. J Surg Res 2010; 164:182-7. [DOI: 10.1016/j.jss.2010.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 07/03/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
|
49
|
Maddens B, Daminet S, Smets P, Meyer E. Escherichia coli Pyometra Induces Transient Glomerular and Tubular Dysfunction in Dogs. J Vet Intern Med 2010; 24:1263-70. [DOI: 10.1111/j.1939-1676.2010.0603.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
50
|
Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:210-22. [PMID: 20869469 DOI: 10.1016/j.bbapap.2010.09.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA), such as epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid, serve as second messengers of various hormones and growth factors and play pivotal roles in the regulation of vascular, renal and cardiac function. As discussed in the present review, virtually all of the major AA metabolizing CYP isoforms accept a variety of other polyunsaturated fatty acids (PUFA), including linoleic, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), as efficient alternative substrates. The metabolites of these alternative PUFAs also elicit profound biological effects. The CYP enzymes respond to alterations in the chain-length and double bond structure of their substrates with remarkable changes in the regio- and stereoselectivity of product formation. The omega-3 double bond that distinguishes EPA and DHA from their omega-6 counterparts provides a preferred epoxidation site for CYP1A, CYP2C, CYP2J and CYP2E subfamily members. CYP4A enzymes that predominantly function as AA ω-hydroxylases show largely increased (ω-1)-hydroxylase activities towards EPA and DHA. Taken together, these findings indicate that CYP-dependent signaling pathways are highly susceptible to changes in the relative bioavailability of the different PUFAs and may provide novel insight into the complex mechanisms that link essential dietary fatty acids to the development of cardiovascular disease.
Collapse
|