1
|
Wei Q, Rojas D, Wang Q, Zapata-Pérez R, Xuan X, Molinero-Fernández Á, Crespo GA, Cuartero M. Wearable 3D-Printed Microneedle Sensor for Intradermal Temperature Monitoring. ACS Sens 2025. [PMID: 40230020 DOI: 10.1021/acssensors.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Accurate temperature monitoring plays a crucial role in understanding the physiological status of patients and the early diagnosis of diseases commonly associated with local and global infections. Intradermal temperature measurement is, in principle, more precise than skin surface detection, as it prevents interference from environmental temperature changes and skin secretions. However, to date, precise and reliable intradermal temperature monitoring in a real-time and continuous manner remains a challenge. We propose herein high-resolution 3D printing to fabricate a mechanically robust and biocompatible hollow microneedle, filled with a temperature-responsive conducting polymer (poly(3,4-ethylenedioxythiophene): polystyrenesulfonate, PEDOT:PSS) to develop a microneedle temperature sensor (T-MN). The significance is 2-fold: rational design of robust MNs with high resolution in the micrometer domain and the implementation of a conducting polymer in a MN format for temperature sensing. The analytical performance of the developed T-MN is in vitro evaluated under mimicked intradermal conditions, demonstrating good sensitivity (-0.74%° C-1), resolution (0.2 °C), repeatability (RSD = 2%), reproducibility (RSD = 2%), reversibility, and medium-term stability. On-body temperature monitoring is performed on six euthanized rats for 80 min. The results presented good agreement with those obtained using a commercial optical temperature probe, which was intradermally inserted into the rat skin. The reliability of utilizing the T-MN for precise and continuous intradermal temperature monitoring was successfully demonstrated, noting its potential use for patient monitoring in the near future but also temperature compensation for MN (bio)sensors that may need it.
Collapse
Affiliation(s)
- Qikun Wei
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, Stockholm SE-114 28, Sweden
| | - Daniel Rojas
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, Murcia 30107, Spain
| | - Qianyu Wang
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, Stockholm SE-114 28, Sweden
| | - Ruben Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, Murcia 30107, Spain
| | - Xing Xuan
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, Murcia 30107, Spain
| | - Águeda Molinero-Fernández
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, Murcia 30107, Spain
| | - Gastón A Crespo
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, Stockholm SE-114 28, Sweden
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, Murcia 30107, Spain
| | - María Cuartero
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, Stockholm SE-114 28, Sweden
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, Murcia 30107, Spain
| |
Collapse
|
2
|
Andrade MT, Barbosa NHS, Souza-Junior RCS, Fonseca CG, Damasceno WC, Regina-Oliveira K, Drummond LR, Bittencourt MA, Kunstetter AC, Andrade PVR, Hudson ASR, Prímola-Gomes TN, Teixeira-Coelho F, Coimbra CC, Pires W, Wanner SP. Aerobic performance in rats subjected to incremental-speed running exercise: A multiple regression analysis study emphasizing thermoregulation-related variables. J Therm Biol 2024; 126:104016. [PMID: 39653632 DOI: 10.1016/j.jtherbio.2024.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Single-variable analyses have limited ability to explain complex phenomena such as the regulation of prolonged physical (aerobic) performance. Our study aimed to identify predictors of performance in rats subjected to incremental-speed running exercise. Notably, most variables assessed were associated with rats' thermoregulation. We extracted data from 355 records obtained in 216 adult Wistar rats. Hierarchical multiple linear regression analyses were conducted to identify the predictive power of eight variables. The distance traveled, a performance index, was the dependent variable. The independent variables included body mass, biological sex, body core temperature (TCORE) measurement site, and the following thermoregulation-related variables: ambient temperature (TAMB), initial TCORE, exercise-induced change in TCORE (ΔTCORE), ΔTCORE from 0 to 10 min (ΔTCORE 0-10; when TCORE increase is fastest), and heat loss index (HLI). This analysis with eight variables revealed an adjusted R2 of 0.495; TAMB, ΔTCORE, body mass, and ΔTCORE 0-10 had the highest predictive powers (β values: -0.700, 0.463, -0.353, and -0.130, respectively). Additional analyses consisted of separate regressions for each TCORE index measured: abdominal (TABD), brain (TBRAIN), and colonic (TCOL) temperature. These analyses yielded adjusted R2 values of 0.608 (TABD), 0.550 (TBRAIN), and 0.437 (TCOL). Again, the distance traveled was primarily predicted by body mass and thermoregulation-related variables (TAMB, ΔTCORE, and ΔTCORE 0-10). Among these four variables, ΔTCORE was the only one with a positive β value (directly predicted performance), while the others had negative values. Collectively, these findings advance our understanding of performance regulation in rats, especially regarding the role of thermoregulation-related variables.
Collapse
Affiliation(s)
- Marcelo T Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Psychology Program, Faculdade de Minas (FAMINAS), Belo Horizonte, MG, Brazil
| | - Nicolas H S Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberto C S Souza-Junior
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cletiana G Fonseca
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - William C Damasceno
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kássya Regina-Oliveira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas R Drummond
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physical Education, Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Myla A Bittencourt
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana C Kunstetter
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro V R Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre S R Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thales N Prímola-Gomes
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Francisco Teixeira-Coelho
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Sport Sciences, Institute of Health Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Cândido C Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Physical Activity Laboratory, School of Physical Education, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
O’Brien F, Feetham CH, Staunton CA, Hext K, Barrett-Jolley R. Temperature modulates PVN pre-sympathetic neurones via transient receptor potential ion channels. Front Pharmacol 2023; 14:1256924. [PMID: 37920211 PMCID: PMC10618372 DOI: 10.3389/fphar.2023.1256924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus plays a vital role in maintaining homeostasis and modulates cardiovascular function via autonomic pre-sympathetic neurones. We have previously shown that coupling between transient receptor potential cation channel subfamily V Member 4 (Trpv4) and small-conductance calcium-activated potassium channels (SK) in the PVN facilitate osmosensing, but since TRP channels are also thermosensitive, in this report we investigated the temperature sensitivity of these neurones. Methods: TRP channel mRNA was quantified from mouse PVN with RT-PCR and thermosensitivity of Trpv4-like PVN neuronal ion channels characterised with cell-attached patch-clamp electrophysiology. Following recovery of temperature-sensitive single-channel kinetic schema, we constructed a predictive stochastic mathematical model of these neurones and validated this with electrophysiological recordings of action current frequency. Results: 7 thermosensitive TRP channel genes were found in PVN punches. Trpv4 was the most abundant of these and was identified at the single channel level on PVN neurones. We investigated the thermosensitivity of these Trpv4-like channels; open probability (Po) markedly decreased when temperature was decreased, mediated by a decrease in mean open dwell times. Our neuronal model predicted that PVN spontaneous action current frequency (ACf) would increase as temperature is decreased and in our electrophysiological experiments, we found that ACf from PVN neurones was significantly higher at lower temperatures. The broad-spectrum channel blocker gadolinium (100 µM), was used to block the warm-activated, Ca2+-permeable Trpv4 channels. In the presence of gadolinium (100 µM), the temperature effect was largely retained. Using econazole (10 µM), a blocker of Trpm2, we found there were significant increases in overall ACf and the temperature effect was inhibited. Conclusion: Trpv4, the abundantly transcribed thermosensitive TRP channel gene in the PVN appears to contribute to intrinsic thermosensitive properties of PVN neurones. At physiological temperatures (37°C), we observed relatively low ACf primarily due to the activity of Trpm2 channels, whereas at room temperature, where most of the previous characterisation of PVN neuronal activity has been performed, ACf is much higher, and appears to be predominately due to reduced Trpv4 activity. This work gives insight into the fundamental mechanisms by which the body decodes temperature signals and maintains homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Richard Barrett-Jolley
- Department of Musculoskeletal Ageing Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Baranauskiene N, Wang J, Eimantas N, Solianik R, Brazaitis M. Age-related differences in the neuromuscular performance of fatigue-provoking exercise under severe whole-body hyperthermia conditions. Scand J Med Sci Sports 2023; 33:1621-1637. [PMID: 37218443 DOI: 10.1111/sms.14403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE The purpose of this study was to determine if aging would lead to greater decline in neuromuscular function during a fatiguing task under severe whole-body hyperthermia conditions. METHODS Twelve young (aged 19-21 years) and 11 older (aged 65-80 years) males were enrolled in the study, which comprised a randomized control trial under a thermoneutral condition at an ambient temperature of 23°C (CON) and an experimental trial with passive lower body heating in 43°C water (HWI-43°C). Changes in neuromuscular function and fatigability, and physical performance-influencing factors such as psychological, thermoregulatory, neuroendocrine, and immune responses to whole-body hyperthermia were measured. RESULTS A slower increase in rectal temperature, and a lower heart rate, thermal sensation, and sweating rate were observed in older males than young males in response to HWI-43°C trial (p < 0.05). Nevertheless, prolactin increased more in response to hyperthermia in young males, while interleukin-6 and cortisol levels increased more in older males (p < 0.05). Peripheral dopamine levels decreased in older males and increased in young males in response to hyperthermia (p < 0.05). Surprisingly, older males demonstrated greater neuromuscular fatigability resistance and faster maximal voluntary contraction (MVC) torque recovery after a 2-min sustained isometric MVC task under thermoneutral and severe hyperthermic conditions (p < 0.05). CONCLUSION Neuromuscular performance during fatigue-provoking sustained isometric exercise under severe whole-body hyperthermia conditions appears to decline in both age groups, but a lower relative decline in torque production for older males may relate to lower psychological and thermophysiological strain along with a diminished dopamine response and prolactin release.
Collapse
Affiliation(s)
- Neringa Baranauskiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Junli Wang
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
5
|
Kane DA, Foo ACY, Noftall EB, Brebner K, Marangoni DG. Lactate shuttling as an allostatic means of thermoregulation in the brain. Front Neurosci 2023; 17:1144639. [PMID: 37250407 PMCID: PMC10217782 DOI: 10.3389/fnins.2023.1144639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Lactate, the redox-balanced end product of glycolysis, travels within and between cells to fulfill an array of physiologic functions. While evidence for the centrality of this lactate shuttling in mammalian metabolism continues to mount, its application to physical bioenergetics remains underexplored. Lactate represents a metabolic "cul-de-sac," as it can only re-enter metabolism by first being converted back to pyruvate by lactate dehydrogenase (LDH). Given the differential distribution of lactate producing/consuming tissues during metabolic stresses (e.g., exercise), we hypothesize that lactate shuttling vis-à-vis the exchange of extracellular lactate between tissues serves a thermoregulatory function, i.e., an allostatic strategy to mitigate the consequences of elevated metabolic heat. To explore this idea, the rates of heat and respiratory oxygen consumption in saponin-permeabilized rat cortical brain samples fed lactate or pyruvate were measured. Heat and respiratory oxygen consumption rates, and calorespirometric ratios were lower during lactate vs. pyruvate-linked respiration. These results support the hypothesis of allostatic thermoregulation in the brain with lactate.
Collapse
Affiliation(s)
- Daniel A. Kane
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Alexander C. Y. Foo
- Department of Chemistry, St. Francis Xavier University, Antigonish, NS, Canada
| | - Erin B. Noftall
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Karen Brebner
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | | |
Collapse
|
6
|
Andrade MT, Barbosa NHS, Souza-Junior RCS, Fonseca CG, Damasceno WC, Regina-Oliveira K, Drummond LR, Bittencourt MA, Kunstetter AC, Andrade PVR, Hudson ASR, Paula PH, Teixeira-Coelho F, Coimbra CC, Pires W, Wanner SP. Determinants of body core temperatures at fatigue in rats subjected to incremental-speed exercise: The prominent roles of ambient temperature, distance traveled, initial core temperature, and measurement site. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:761-775. [PMID: 36935415 DOI: 10.1007/s00484-023-02453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 05/09/2023]
Abstract
Understanding the factors that underlie the physical exercise-induced increase in body core temperature (TCORE) is essential to developing strategies to counteract hyperthermic fatigue and reduce the risk of exertional heatstroke. This study analyzed the contribution of six factors to TCORE attained at fatigue in Wistar rats (n = 218) subjected to incremental-speed treadmill running: ambient temperature (TAMB), distance traveled, initial TCORE, body mass, measurement site, and heat loss index (HLI). First, we ran hierarchical multiple linear regression analyses with data from different studies conducted in our laboratory (n = 353 recordings). We observed that TAMB, distance traveled, initial TCORE, and measurement site were the variables with predictive power. Next, regression analyses were conducted with data for each of the following TCORE indices: abdominal (TABD), brain cortex (TBRAIN), or colonic (TCOL) temperature. Our findings indicated that TAMB, distance traveled (i.e., an exercise performance-related variable), initial TCORE, and HLI predicted the three TCORE indices at fatigue. Most intriguingly, HLI was inversely related to TABD and TBRAIN but positively associated with TCOL. Lastly, we compared the temperature values at fatigue among these TCORE indices, and the following descendent order was noticed - TCOL, TABD, and TBRAIN - irrespective of TAMB where experiments were conducted. In conclusion, TCORE in rats exercised to fatigue depends primarily on environmental conditions, performance, pre-exercise TCORE, and measurement site. Moreover, the influence of cutaneous heat loss on TCOL is qualitatively different from the influence on TABD and TBRAIN, and the temperature values at fatigue are not homogenous within the body core.
Collapse
Affiliation(s)
- Marcelo T Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Nicolas H S Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Roberto C S Souza-Junior
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Cletiana G Fonseca
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - William C Damasceno
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Kássya Regina-Oliveira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Lucas R Drummond
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
- Department of Physical Education, Universidade do Estado de Minas Gerais, Unidade Divinópolis, MG, Divinópolis, Brazil
| | - Myla A Bittencourt
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Ana C Kunstetter
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Pedro V R Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Alexandre S R Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Pedro H Paula
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
| | - Francisco Teixeira-Coelho
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
- Department of Sport Sciences, Institute of Health Sciences, Universidade Federal do Triângulo Mineiro, MG, Uberaba, Brazil
| | - Cândido C Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil
- Physical Activity Laboratory, School of Physical Education, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, MG, 31.270-901, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Zhou Q, Fu X, Xu J, Dong S, Liu C, Cheng D, Gao C, Huang M, Liu Z, Ni X, Hua R, Tu H, Sun H, Shen Q, Chen B, Zhang J, Zhang L, Yang H, Hu J, Yang W, Pei W, Yao Q, Sheng X, Zhang J, Yang WZ, Shen WL. Hypothalamic warm-sensitive neurons require TRPC4 channel for detecting internal warmth and regulating body temperature in mice. Neuron 2023; 111:387-404.e8. [PMID: 36476978 DOI: 10.1016/j.neuron.2022.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Precise monitoring of internal temperature is vital for thermal homeostasis in mammals. For decades, warm-sensitive neurons (WSNs) within the preoptic area (POA) were thought to sense internal warmth, using this information as feedback to regulate body temperature (Tcore). However, the cellular and molecular mechanisms by which WSNs measure temperature remain largely undefined. Via a pilot genetic screen, we found that silencing the TRPC4 channel in mice substantially attenuated hypothermia induced by light-mediated heating of the POA. Loss-of-function studies of TRPC4 confirmed its role in warm sensing in GABAergic WSNs, causing additional defects in basal temperature setting, warm defense, and fever responses. Furthermore, TRPC4 antagonists and agonists bidirectionally regulated Tcore. Thus, our data indicate that TRPC4 is essential for sensing internal warmth and that TRPC4-expressing GABAergic WSNs function as a novel cellular sensor for preventing Tcore from exceeding set-point temperatures. TRPC4 may represent a potential therapeutic target for managing Tcore.
Collapse
Affiliation(s)
- Qian Zhou
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Xu
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Shiming Dong
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Changhao Liu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Dali Cheng
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Cuicui Gao
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minhua Huang
- Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiduo Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xinyan Ni
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hongqing Tu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Hongbin Sun
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Baoting Chen
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Liye Zhang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wei Yang
- Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Xing Sheng
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, China.
| | - Wen Z Yang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Wei L Shen
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Andrade MT, Goulart KNO, Barbosa NHS, Soares DD, Andrade AGP, Gonçalves DAP, Mendes TT, Coimbra CC, Wanner SP. Core body temperatures of rats subjected to treadmill exercise to fatigue or exhaustion: The journal Temperature toolbox. Temperature (Austin) 2022; 10:287-312. [PMID: 37554383 PMCID: PMC10405761 DOI: 10.1080/23328940.2022.2115274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022] Open
Abstract
This study systematically reviewed the literature reporting the changes in rats' core body temperature (TCORE) induced by either incremental- or constant-speed running to fatigue or exhaustion. In addition, multiple linear regression analyses were used to determine the factors contributing to the TCORE values attained when exercise was interrupted. Four databases (EMBASE, PubMed, SPORTDiscus, and Web of Science) were searched in October 2021, and this search was updated in August 2022. Seventy-two studies (n = 1,538 rats) were included in the systematic review. These studies described heterogeneous experimental conditions; for example, the ambient temperature ranged from 5 to 40°C. The rats quit exercising with TCORE values varying more than 8°C among studies, with the lowest and highest values corresponding to 34.9°C and 43.4°C, respectively. Multiple linear regression analyses indicated that the ambient temperature (p < 0.001), initial TCORE (p < 0.001), distance traveled (p < 0.001; only incremental exercises), and running speed and duration (p < 0.001; only constant exercises) contributed significantly to explaining the variance in the TCORE at the end of the exercise. In conclusion, rats subjected to treadmill running exhibit heterogeneous TCORE when fatigued or exhausted. Moreover, it is not possible to determine a narrow range of TCORE associated with exercise cessation in hyperthermic rats. Ambient temperature, initial TCORE, and physical performance-related variables are the best predictors of TCORE at fatigue or exhaustion. From a broader perspective, this systematic review provides relevant information for selecting appropriate methods in future studies designed to investigate exercise thermoregulation in rats.
Collapse
Affiliation(s)
- Marcelo T. Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine N. O. Goulart
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nicolas H. S. Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danusa D. Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André G. P. Andrade
- Biomechanics Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago T. Mendes
- Department of Physical Education, Faculty of Education, Universidade Federal da Bahia, Salvador, Brazil
| | - Cândido C. Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel P. Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Eimantas N, Ivanove S, Baranauskiene N, Solianik R, Brazaitis M. Modulation of neuromuscular excitability in response to acute noxious heat exposure has no additional effects on central and peripheral fatigability. Front Physiol 2022; 13:936885. [PMID: 36035478 PMCID: PMC9412021 DOI: 10.3389/fphys.2022.936885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Whole-body hyperthermia (WBH) has an adverse effect on the nervous system and neurophysiological performance. In the present study, we examined whether short-duration whole-body immersion in 45°C water (HWI-45°C), which produces a strong neural and temperature flux without inducing WBH, can increase or impair neurophysiological performance in humans. Methods: Fifteen men (aged 25 ± 6 years) were enrolled in this study and participated in three experiments: 1) a brief (5-min) immersion of the whole body in 37°C water (WI-37°C); 2) a brief (5-min) HWI-45°C; and 3) a control trial in a thermoneutral condition at an ambient temperature of 24°C and 60% relative humidity. Before and after the immersions, neuromuscular function (electromyographic activity, reflexes, electrically and voluntary induced torque production, voluntary muscle activation level) were tested. To provoke central inhibition, the participants performed a sustained 2-min maximal voluntary contraction (MVC). Results: Thermophysiological strain was greater after HWI-45°C than after WI-37°C. Electrophysiological modulations of motor drive transmission and peripheral modulations of muscle contractility properties in response to HWI-45°C seemed to have little effect on central activation of the exercising muscles and no effect on MVC production. Conclusion: Although exposure to acute noxious heat was effective in evoking neuromuscular excitability, the increases in core temperature (∼0.2°C) and muscle temperature (∼0.6°C) did not induce moderate or severe WBH. These changes did not seem to affect central structures; that is, there were no additional increases in central and/or peripheral fatigue during a sustained 2-min MVC.
Collapse
|
10
|
Marino FE, Sibson BE, Lieberman DE. The evolution of human fatigue resistance. J Comp Physiol B 2022; 192:411-422. [PMID: 35552490 PMCID: PMC9197885 DOI: 10.1007/s00360-022-01439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
Humans differ from African great apes in numerous respects, but the chief initial difference setting hominins on their unique evolutionary trajectory was habitual bipedalism. The two most widely supported selective forces for this adaptation are increased efficiency of locomotion and improved ability to feed in upright contexts. By 4 million years ago, hominins had evolved the ability to walk long distances but extreme selection for endurance capabilities likely occurred later in the genus Homo to help them forage, power scavenge and persistence hunt in hot, arid conditions. In this review we explore the hypothesis that to be effective long-distance walkers and especially runners, there would also have been a strong selective benefit among Homo to resist fatigue. Our hypothesis is that since fatigue is an important factor that limits the ability to perform endurance-based activities, fatigue resistance was likely an important target for selection during human evolution for improved endurance capabilities. We review the trade-offs between strength, power, and stamina in apes and Homo and discuss three biological systems that we hypothesize humans evolved adaptations for fatigue resistance: neurological, metabolic and thermoregulatory. We conclude that the evolution of endurance at the cost of strength and power likely also involved the evolution of mechanisms to resist fatigue.
Collapse
Affiliation(s)
- Frank E Marino
- School of Allied Health, Exercise and Sport Science, Charles Sturt University, Bathurst, NSW, 2795, Australia.
| | - Benjamin E Sibson
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Rzechorzek NM, Thrippleton MJ, Chappell FM, Mair G, Ercole A, Cabeleira M, Rhodes J, Marshall I, O'Neill JS. A daily temperature rhythm in the human brain predicts survival after brain injury. Brain 2022; 145:2031-2048. [PMID: 35691613 PMCID: PMC9336587 DOI: 10.1093/brain/awab466] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
Patients undergo interventions to achieve a 'normal' brain temperature; a parameter that remains undefined for humans. The profound sensitivity of neuronal function to temperature implies the brain should be isothermal, but observations from patients and non-human primates suggest significant spatiotemporal variation. We aimed to determine the clinical relevance of brain temperature in patients by establishing how much it varies in healthy adults. We retrospectively screened data for all patients recruited to the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) High Resolution Intensive Care Unit Sub-Study. Only patients with direct brain temperature measurements and without targeted temperature management were included. To interpret patient analyses, we prospectively recruited 40 healthy adults (20 males, 20 females, 20-40 years) for brain thermometry using magnetic resonance spectroscopy. Participants were scanned in the morning, afternoon, and late evening of a single day. In patients (n = 114), brain temperature ranged from 32.6 to 42.3°C and mean brain temperature (38.5 ± 0.8°C) exceeded body temperature (37.5 ± 0.5°C, P < 0.0001). Of 100 patients eligible for brain temperature rhythm analysis, 25 displayed a daily rhythm, and the brain temperature range decreased in older patients (P = 0.018). In healthy participants, brain temperature ranged from 36.1 to 40.9°C; mean brain temperature (38.5 ± 0.4°C) exceeded oral temperature (36.0 ± 0.5°C) and was 0.36°C higher in luteal females relative to follicular females and males (P = 0.0006 and P < 0.0001, respectively). Temperature increased with age, most notably in deep brain regions (0.6°C over 20 years, P = 0.0002), and varied spatially by 2.41 ± 0.46°C with highest temperatures in the thalamus. Brain temperature varied by time of day, especially in deep regions (0.86°C, P = 0.0001), and was lowest at night. From the healthy data we built HEATWAVE-a 4D map of human brain temperature. Testing the clinical relevance of HEATWAVE in patients, we found that lack of a daily brain temperature rhythm increased the odds of death in intensive care 21-fold (P = 0.016), whilst absolute temperature maxima or minima did not predict outcome. A warmer mean brain temperature was associated with survival (P = 0.035), however, and ageing by 10 years increased the odds of death 11-fold (P = 0.0002). Human brain temperature is higher and varies more than previously assumed-by age, sex, menstrual cycle, brain region, and time of day. This has major implications for temperature monitoring and management, with daily brain temperature rhythmicity emerging as one of the strongest single predictors of survival after brain injury. We conclude that daily rhythmic brain temperature variation-not absolute brain temperature-is one way in which human brain physiology may be distinguished from pathophysiology.
Collapse
Affiliation(s)
| | - Michael J Thrippleton
- Edinburgh Imaging (Royal Infirmary of Edinburgh) Facility, Edinburgh EH16 4SA, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Grant Mair
- Edinburgh Imaging (Royal Infirmary of Edinburgh) Facility, Edinburgh EH16 4SA, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Box 93 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Manuel Cabeleira
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Jonathan Rhodes
- Department of Anaesthesia, Critical Care and Pain Medicine, NHS Lothian, Room No. S8208 (2nd Floor), Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Ian Marshall
- Edinburgh Imaging (Royal Infirmary of Edinburgh) Facility, Edinburgh EH16 4SA, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
12
|
O'Brien F, Staunton CA, Barrett-Jolley R. Systemic application of the transient receptor potential vanilloid-type 4 antagonist GSK2193874 induces tail vasodilation in a mouse model of thermoregulation. Biol Lett 2022; 18:20220129. [PMID: 35702981 PMCID: PMC9198786 DOI: 10.1098/rsbl.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
In humans, skin is a primary thermoregulatory organ, with vasodilation leading to rapid body cooling, whereas in Rodentia the tail performs an analogous function. Many thermodetection mechanisms are likely to be involved including transient receptor potential vanilloid-type 4 (TRPV4), an ion channel with thermosensitive properties. Previous studies have shown that TRPV4 is a vasodilator by local action in blood vessels, so here, we investigated whether constitutive TRPV4 activity affects Mus muscularis tail vascular tone and thermoregulation. We measured tail blood flow by pressure plethysmography in lightly sedated M. muscularis (CD1 strain) at a range of ambient temperatures, with and without intraperitoneal administration of the blood-brain barrier crossing TRPV4 antagonist GSK2193874. We also measured heart rate (HR) and blood pressure. As expected for a thermoregulatory organ, we found that tail blood flow increased with temperature. However, unexpectedly, we found that GSK2193874 increased tail blood flow at all temperatures, and we observed changes in HR variability. Since local TRPV4 activation causes vasodilation that would increase tail blood flow, these data suggest that increases in tail blood flow resulting from the TRPV4 antagonist may arise from a site other than the blood vessels themselves, perhaps in central cardiovascular control centres.
Collapse
Affiliation(s)
- Fiona O'Brien
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Caroline A. Staunton
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
13
|
Petersen PC, Vöröslakos M, Buzsáki G. Brain temperature affects quantitative features of hippocampal sharp wave ripples. J Neurophysiol 2022; 127:1417-1425. [PMID: 35389772 PMCID: PMC9109799 DOI: 10.1152/jn.00047.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Biochemical mechanisms are temperature dependent. Brain temperature shows wide variations across brain states, and such changes may explain quantitative changes in network oscillations. Here, we report on the relationship between various hippocampal sharp wave ripple features to brain temperature. Ripple frequency, occurrence rate, and duration correlated with temperature dynamics. By focal manipulation of the brain temperature in the hippocampal CA1 region, we show that ripple frequency can be increased and decreased by local heating and cooling, respectively. Changes of other parameters, such as the rate of sharp wave-ripple complex (SPW-R) and ripple duration were not consistently affected. Our findings suggest that brain temperature in the CA1 region plays a leading role in affecting ripple frequency, whereas other parameters of SPW-Rs may be determined by mechanisms upstream from the CA1 region. These findings illustrate that physiological variations of brain temperature exert important effects on hippocampal circuit operations.NEW & NOTEWORTHY During physiological conditions, brain temperature fluctuates approximately 3°C between sleep and active waking. Here, we show that features of hippocampal ripples, including the rate of occurrence, peak frequency, and duration are correlated with brain temperature variations. Focal bidirectional manipulation of temperature in the hippocampal CA1 region in awake rodents show that ripple frequency can be altered in the direction expected from the correlational observations, implying that temperature plays a significant role.
Collapse
Affiliation(s)
- Peter C Petersen
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
| | - Mihály Vöröslakos
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
| | - György Buzsáki
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
- Department of Neurology, School of Medicine, New York University, New York City, New York
| |
Collapse
|
14
|
Reliability of physical performance and thermoregulatory parameters in rats subjected to incremental treadmill running. J Therm Biol 2022; 108:103270. [DOI: 10.1016/j.jtherbio.2022.103270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/02/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
|
15
|
Chen Y, Yu T, Deuster P. Astaxanthin Protects Against Heat-induced Mitochondrial Alterations in Mouse Hypothalamus. Neuroscience 2021; 476:12-20. [PMID: 34543676 DOI: 10.1016/j.neuroscience.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
The hypothalamus plays an essential role in regulating whole-body energy and temperature homeostasis when adapting to environmental changes. We previously reported that heat exposure causes mitochondrial dysfunction and apoptosis in mouse skeletal muscle, and pretreatment with astaxanthin (AST), an antioxidant, prevents this effect. How the hypothalamus responds to heat stress remains largely unexplored. In this study, we investigated the effects of heat exposure on hypothalamic mitochondria in mice with and without AST pretreatment. During heat exposure, both vehicle and AST-treated mice had a hyperthermic response though no significant differences in peak core body temperature were noted between the two groups. Heat exposure induced mitochondrial fission in the hypothalamus, as manifested by increased mitochondrial fragmentation and expression of both total and phosphorylated dynamin-related protein 1. In addition, transmission electron microscopy revealed damaged and degraded mitochondria in the hypothalamus of heat-exposed mice. Heat induced apoptosis and mitophagy were further confirmed by increased formation of reactive oxygen species, activation of caspase 3/7 and expression of LC3 proteins. Moreover, heat exposure increased the expression of PINK1 and Parkin in mouse hypothalamus. In contrast, pretreatment with AST reduced these effects. These results demonstrate that heat stress-induced hypothalamic apoptosis is associated with altered mitochondrial dynamics favoring fission and mitophagy. AST protects the hypothalamus against heat-induced injury by preserving redox homeostasis and mitochondrial integrity.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Patricia Deuster
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
16
|
Costa KB, Leite HR, Garcia BCC, Ottone VO, Mendonça GDR, Cordeiro PJ, Chaves PR, Deus FA, Tossige-Gomes R, Coimbra CC, Rocha-Vieira E. Storage Duration Affects the Quantification of Oxidative Stress Markers in the Gastrocnemius, Heart, and Brain of Mice Submitted to a Maximum Exercise. Biopreserv Biobank 2021; 20:3-11. [PMID: 34252291 DOI: 10.1089/bio.2020.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of sample storage duration on the quantification of oxidative stress markers in the gastrocnemius, heart, and brain of mice submitted to a maximum swimming exercise. Thiobarbituric acid reactive substances (TBARSs), protein carbonyl derivatives, total antioxidant capacity (TAC), and the activity of superoxide dismutase (SOD) and catalase (CAT) were quantified in fresh tissues and in samples stored at -80°C for 1, 3, or 6 months, from exercised (n = 13) and nonexercised mice (n = 13). Except for protein carbonyl derivatives in the heart, the exercise resulted in the modification of all markers in all fresh-evaluated samples (p < 0.001). The storage duration did not modify the effect of exercise on protein carbonyl derivatives and TAC. TBARS was stable for 3 months in the gastrocnemius and for 1 month in frozen heart and brain. Accordingly, the exercise effect on TBARS levels observed in fresh samples was absent in the gastrocnemius frozen for 6 months (p = 0.98) and in the heart and brain frozen for 3 months (p = 0.07 and 0.28, respectively) or more (p = 0.21 for heart and p > 0.99 for brain). In addition, CAT and SOD activities were reduced by storage duration in all tissues evaluated (p < 0.05). Our findings show that sample storage duration alters the quantification of oxidative stress markers in mice submitted to maximum exercise, and its effect is tissue and marker dependent. Some recommendations to achieve more accurate and reproducible data in the exercise physiology and oxidative stress markers field are presented.
Collapse
Affiliation(s)
- Karine B Costa
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Hercules R Leite
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Bruna C C Garcia
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Vinicius O Ottone
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Gabriela D R Mendonça
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrício J Cordeiro
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrícia R Chaves
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Franciele A Deus
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Rosalina Tossige-Gomes
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Candido C Coimbra
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Programa de Pós-graduação em Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
17
|
Rothhaas R, Chung S. Role of the Preoptic Area in Sleep and Thermoregulation. Front Neurosci 2021; 15:664781. [PMID: 34276287 PMCID: PMC8280336 DOI: 10.3389/fnins.2021.664781] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep and body temperature are tightly interconnected in mammals: warming up our body helps to fall asleep and the body temperature in turn drops while falling asleep. The preoptic area of the hypothalamus (POA) serves as an essential brain region to coordinate sleep and body temperature. Understanding how these two behaviors are controlled within the POA requires the molecular identification of the involved circuits and mapping their local and brain-wide connectivity. Here, we review our current understanding of how sleep and body temperature are regulated with a focus on recently discovered sleep- and thermo-regulatory POA neurons. We further discuss unresolved key questions including the anatomical and functional overlap of sleep- and thermo-regulatory neurons, their pathways and the role of various signaling molecules. We suggest that analysis of genetically defined circuits will provide novel insights into the mechanisms underlying the coordinated regulation of sleep and body temperature in health and disease.
Collapse
Affiliation(s)
- Rebecca Rothhaas
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Sela Y, Hoekstra MM, Franken P. Sub-minute prediction of brain temperature based on sleep-wake state in the mouse. eLife 2021; 10:62073. [PMID: 33683202 PMCID: PMC7939547 DOI: 10.7554/elife.62073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Although brain temperature has neurobiological and clinical importance, it remains unclear which factors contribute to its daily dynamics and to what extent. Using a statistical approach, we previously demonstrated that hourly brain temperature values co-varied strongly with time spent awake (Hoekstra et al., 2019). Here we develop and make available a mathematical tool to simulate and predict cortical temperature in mice based on a 4-s sleep-wake sequence. Our model estimated cortical temperature with remarkable precision and accounted for 91% of the variance based on three factors: sleep-wake sequence, time-of-day ('circadian'), and a novel 'prior wake prevalence' factor, contributing with 74%, 9%, and 43%, respectively (including shared variance). We applied these optimized parameters to an independent cohort of mice and predicted cortical temperature with similar accuracy. This model confirms the profound influence of sleep-wake state on brain temperature, and can be harnessed to differentiate between thermoregulatory and sleep-wake-driven effects in experiments affecting both.
Collapse
Affiliation(s)
- Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Marieke Mb Hoekstra
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Danner RM, Coomes CM, Derryberry EP. Simulated heat waves reduce cognitive and motor performance of an endotherm. Ecol Evol 2021; 11:2261-2272. [PMID: 33717453 PMCID: PMC7920763 DOI: 10.1002/ece3.7194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
Heat waves cause mass mortality of animals, including humans, across the globe annually, which has drawn new attention to how animals cope with high air temperatures. Recent field research has explored behavioral responses to high air temperatures, which can influence reproductive success and mortality.Less well studied are the effects of high air temperatures on cognition, which may underlie behavioral changes. Specifically, it is poorly known if cognitive declines occur at high temperatures, and if cognitive and motor components of behavior are similarly affected.We tested how well zebra finches (Taeniopygia guttata castanotis), a model for cognition research, performed two learned foraging tasks (color association and detour-reaching) at mild (22°C) and high (43 and 44°C) air temperatures that occur naturally in their range. We habituated birds to the trial conditions and temperatures on days preceding the test trials and at the trial temperature for 30 min immediately prior to each test trial. Trials lasted less than 10 min. At high air temperatures, zebra finches exhibited heat dissipation behaviors during most tasks, suggesting thermoregulatory challenge.Cognitive performance declined at high air temperatures in two of three measures: Color association was unaffected, but birds missed more food rewards, and did more unproductive behaviors. Motor performance declined at high temperatures on the color association task, including longer times to complete the task, move between food rewards, and process individual seeds. Performance declines varied among components of behavior and among individuals.We combined our behavioral data with existing climate data and predicted that in the austral summer of 2018-2019, zebra finches experienced air temperatures that caused cognitive and motor declines in our captive birds in 34% and 45% of their Australian range, respectively.This study provides novel experimental evidence that high air temperatures cause cognitive and motor performance decline in birds. Further, our results provide insights to how those declines might affect bird ecology and evolution. First, differences in declines among behavioral components may allow identification of behaviors that are most susceptible to decline in the wild. Second, variation in performance declines and heat dissipation behaviors among individuals suggests variability in heat tolerance, which could lead to differential fitness in the wild. Last, these results suggest that high air temperatures cause cognitive declines in the wild and that understanding cognition could help refine predictive models of population persistence.
Collapse
Affiliation(s)
- Raymond M. Danner
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNCUSA
| | - Casey M. Coomes
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLAUSA
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Elizabeth P. Derryberry
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLAUSA
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
20
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
21
|
Onitsuka S, Zheng X, Hasegawa H. Ice slurry ingestion before and during exercise inhibit the increase in core and deep-forehead temperatures in the second half of the exercise in a hot environment. J Therm Biol 2020; 94:102760. [PMID: 33293001 DOI: 10.1016/j.jtherbio.2020.102760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Many studies have reported that pre-exercise ice slurry ingestion improves exercise performance; however, it may increase the risk of developing heat stroke. Some studies have suggested that pre-exercise ice slurry ingestion accelerates the core temperature increase that occurs during exercise. Therefore, this study aimed to investigate whether the ingestion of ice slurry before and during exercise can inhibit this acceleration. Moreover, we measured the deep-forehead temperature (Tdeep head) to determine whether ice slurry ingestion before and during exercise can maintain this reduction in brain temperature. Eleven male participants at room temperature (24 °C, 50% relative humidity [RH]) ingested 7.5 g/kg of ice slurry or a thermoneutral sports drink within 30 min. They then exercised for approximately 60 min at 50% of the maximal oxygen uptake in a hot environment (34 °C, 50% RH) while ingesting 1.25 g/kg of ice slurry or a thermoneutral sports drink every 10 min. Rectal temperature (Tre), Tdeep head, forehead skin temperature, mean skin temperature, heart rate, nude body mass, and urine specific gravity were measured as physiological indices. The rating of perceived exertion, thermal sensation, and thermal comfort were measured at 5-min intervals throughout the experiment. The Tre and Tdeep head during the second half of the exercise session were significantly reduced after ingestion of the ice slurry before and during exercise (p < 0.05). In addition, the rate of increase in Tre and Tdeephead slowed during the second half of the exercise session after the ingestion of the ice slurry before and during exercise (p < 0.05). These results indicate that the increases in Tre and Tdeep head, reflecting brain temperature in the second half of the exercise session, were significantly inhibited by ice slurry ingestion before and during exercise.
Collapse
Affiliation(s)
- Sumire Onitsuka
- Faculty of Human Health Science, Hiroshima Bunka Gakuen University, Japan.
| | - Xinyan Zheng
- Department of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Hiroshi Hasegawa
- Graduate School of Humanities and Social Sciences, Hiroshima University, Japan
| |
Collapse
|
22
|
Shang FLT, Wanner SP, Damasceno WC, Martins YAT, Silva A, Prado LS. Independent effects of rapid eye movement sleep deprivation and exposure to environmental heat stress on aerobic performance and thermoregulatory responses in exercising rats. Temperature (Austin) 2020; 8:188-201. [PMID: 33997117 DOI: 10.1080/23328940.2020.1829939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence indicates that aerobic performance is degraded either by environmental heat stress or sleep deprivation. However, whether these conditions interact to produce more significant performance impairment deserves further investigation. Therefore, this study investigated the effects of experimental sleep deprivation (24 h or 96 h) on aerobic performance and thermoregulatory responses in rats exercised on a treadmill at different environmental conditions. Adult male Wistar rats were subjected to rapid eye movement sleep deprivation (RSD) using the modified multiple platform method and were then subjected to an incremental-speed exercise until they were fatigued. Treadmill running was performed in a temperate (24°C) or warm (31°C) environment, and the colonic temperature (an index of core body temperature; TCORE) and the tail-skin temperature (TSKIN; an index of cutaneous heat loss) were recorded. 24-h and 96-h RSD produced small magnitude reductions in aerobic performance (Cohen's d = 0.47-0.58) and minor changes in thermoregulation. Relative to control rats, sleep-deprived rats showed a higher TCORE at the exercise initiation and a higher threshold for activating cutaneous heat loss, but unchanged TCORE and TSKIN at fatigue. Exercise at 31°C induced large reductions in performance (d = 0.82-1.29) and marked changes in thermoregulation, as evidenced by higher TCORE and TSKIN at fatigue, compared to exercise at 24°C. Interestingly, none of the effects induced by RSD were exacerbated by environmental heat stress and vice-versa, indicating that both conditions did not interact. We conclude that RSD and heat stress modulate aerobic performance and thermoregulatory responses by acting independently.
Collapse
Affiliation(s)
- Felipe Lioe Teh Shang
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - William Coutinho Damasceno
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ygor Antônio Tinoco Martins
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andressa Silva
- Psychobiology and Exercise Studies Centre, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciano Sales Prado
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Lim CL. Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7795. [PMID: 33114437 PMCID: PMC7662600 DOI: 10.3390/ijerph17217795] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
The international community has recognized global warming as an impending catastrophe that poses significant threat to life on earth. In response, the signatories of the Paris Agreement (2015) have committed to limit the increase in global mean temperature to < 1.5 °C from pre-industry period, which is defined as 1950-1890. Considering that the protection of human life is a central focus in the Paris Agreement, the naturally endowed properties of the human body to protect itself from environmental extremes should form the core of an integrated and multifaceted solution against global warming. Scholars believe that heat and thermoregulation played important roles in the evolution of life and continue to be a central mechanism that allows humans to explore, labor and live in extreme conditions. However, the international effort against global warming has focused primarily on protecting the environment and on the reduction of greenhouse gases by changing human behavior, industrial practices and government policies, with limited consideration given to the nature and design of the human thermoregulatory system. Global warming is projected to challenge the limits of human thermoregulation, which can be enhanced by complementing innate human thermo-plasticity with the appropriate behavioral changes and technological innovations. Therefore, the primary aim of this review is to discuss the fundamental concepts and physiology of human thermoregulation as the underlying bases for human adaptation to global warming. Potential strategies to extend human tolerance against environmental heat through behavioral adaptations and technological innovations will also be discussed. An important behavioral adaptation postulated by this review is that sleep/wake cycles would gravitate towards a sub-nocturnal pattern, especially for outdoor activities, to avoid the heat in the day. Technologically, the current concept of air conditioning the space in the room would likely steer towards the concept of targeted body surface cooling. The current review was conducted using materials that were derived from PubMed search engine and the personal library of the author. The PubMed search was conducted using combinations of keywords that are related to the theme and topics in the respective sections of the review. The final set of articles selected were considered "state of the art," based on their contributions to the strength of scientific evidence and novelty in the domain knowledge on human thermoregulation and global warming.
Collapse
Affiliation(s)
- Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
24
|
Poole DC, Copp SW, Colburn TD, Craig JC, Allen DL, Sturek M, O'Leary DS, Zucker IH, Musch TI. Guidelines for animal exercise and training protocols for cardiovascular studies. Am J Physiol Heart Circ Physiol 2020; 318:H1100-H1138. [PMID: 32196357 DOI: 10.1152/ajpheart.00697.2019] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whole body exercise tolerance is the consummate example of integrative physiological function among the metabolic, neuromuscular, cardiovascular, and respiratory systems. Depending on the animal selected, the energetic demands and flux through the oxygen transport system can increase two orders of magnitude from rest to maximal exercise. Thus, animal models in health and disease present the scientist with flexible, powerful, and, in some instances, purpose-built tools to explore the mechanistic bases for physiological function and help unveil the causes for pathological or age-related exercise intolerance. Elegant experimental designs and analyses of kinetic parameters and steady-state responses permit acute and chronic exercise paradigms to identify therapeutic targets for drug development in disease and also present the opportunity to test the efficacy of pharmacological and behavioral countermeasures during aging, for example. However, for this promise to be fully realized, the correct or optimal animal model must be selected in conjunction with reproducible tests of physiological function (e.g., exercise capacity and maximal oxygen uptake) that can be compared equitably across laboratories, clinics, and other proving grounds. Rigorously controlled animal exercise and training studies constitute the foundation of translational research. This review presents the most commonly selected animal models with guidelines for their use and obtaining reproducible results and, crucially, translates state-of-the-art techniques and procedures developed on humans to those animal models.
Collapse
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - David L Allen
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Michael Sturek
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
25
|
Fuller A, Hetem RS, Meyer LCR, Mitchell D, Maloney SK. Ultradian oscillations in brain temperature in sheep: implications for thermoregulatory control? J Comp Physiol B 2019; 190:125-138. [PMID: 31834490 DOI: 10.1007/s00360-019-01248-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
We compared body temperature patterns and selective brain cooling (SBC) in eight adult female sheep in an indoor (22-25 °C) and outdoor (mean ~ 21 °C) environment, by measuring brain, carotid arterial, and jugular venous blood temperatures at 5-min intervals using implanted data loggers. To investigate whether ultradian oscillations in brain temperature had thermoregulatory consequences for the sheep, we determined the cranial arterio-venous (AV) temperature difference as an indicator of respiratory evaporative heat loss (REHL). The 24-h pattern of SBC was similar in both environments, despite carotid blood temperature fluctuating 0.4 °C more outdoors compared to indoors. The sheep employed SBC more often during the night than during the day, but SBC was abolished at intervals of 1-3 h throughout the 24-h period. The suppression of SBC appeared to be associated with events that increased sympathetic nervous system activity, including shifts between stages of sleep. Short-term changes (over 5-min) in brain temperature were positively correlated with changes in the AV temperature difference 5 min later, and negatively correlated with changes in carotid temperature 10 min later. These data support the idea that increases in brain temperature modulate thermoregulation by increasing REHL, which leads to a decrease in carotid blood temperature. Ultradian oscillations in core temperature of sheep, therefore, appear to arise as a consequence of frequent brain temperature changes invoked by non-thermal inputs, in animals housed both in indoor and outdoor environments.
Collapse
Affiliation(s)
- Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Robyn S Hetem
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Jan Smuts Avenue, Johannesburg, South Africa
| | - Leith C R Meyer
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
- Centre for Veterinary Wildlife Studies and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Soutpan Road, Pretoria, South Africa
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Perth, 6009, Australia
| | - Shane K Maloney
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Perth, 6009, Australia
| |
Collapse
|
26
|
Tan CL, Knight ZA. Regulation of Body Temperature by the Nervous System. Neuron 2019; 98:31-48. [PMID: 29621489 DOI: 10.1016/j.neuron.2018.02.022] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/24/2023]
Abstract
The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future.
Collapse
Affiliation(s)
- Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158.
| |
Collapse
|
27
|
Gomes LHLS, Drummond LR, Campos HO, Rezende LMTD, Carneiro-Júnior MA, Oliveira A, Natali AJ, Prímola-Gomes TN. Thermoregulation in Hypertensive Rats during Exercise: Effects of Physical Training. Arq Bras Cardiol 2019; 112:534-542. [PMID: 30892385 PMCID: PMC6555570 DOI: 10.5935/abc.20190050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/15/2019] [Indexed: 11/21/2022] Open
Abstract
Background Spontaneously hypertensive rats (SHR) show deficit in thermal balance during
physical exercise. Objective To assess the effects of low-intensity physical exercise training on thermal
balance of hypertensive rats undergoing an acute exercise protocol. Methods Sixteen-week-old male Wistar rats and SHR were allocated into four groups:
control Wistar rats (C-WIS), trained Wistar (T-WIS), control SHR (C-SHR) and
trained SHR (T-SHR). Treadmill exercise training was performed for 12 weeks.
Blood pressure, resting heart rate and total exercise time was measured
before and after the physical exercise program. After the exercise program,
a temperature sensor was implanted in the abdominal cavity, and the animals
subjected to an acute exercise protocol, during which internal body
temperature, tail skin temperature and oxygen consumption until fatigue were
continuously recorded. Mechanical efficiency (ME), work, heat dissipation
threshold and sensitivity were calculated. Statistical significance was set
at 5%. Results Physical training and hypertension had no effect on thermal balance during
physical exercise. Compared with C-WIS, the T-WIS group showed higher heat
production, which was counterbalanced by higher heat dissipation.
Hypertensive rats showed lower ME than normotensive rats, which was not
reversed by the physical training. Conclusion Low-intensity physical training did not affect thermal balance in SHR
subjected to acute exercise.
Collapse
|
28
|
Hoekstra MM, Emmenegger Y, Hubbard J, Franken P. Cold-inducible RNA-binding protein (CIRBP) adjusts clock-gene expression and REM-sleep recovery following sleep deprivation. eLife 2019; 8:43400. [PMID: 30720431 PMCID: PMC6379088 DOI: 10.7554/elife.43400] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Sleep depriving mice affects clock-gene expression, suggesting that these genes contribute to sleep homeostasis. The mechanisms linking extended wakefulness to clock-gene expression are, however, not well understood. We propose CIRBP to play a role because its rhythmic expression is i) sleep-wake driven and ii) necessary for high-amplitude clock-gene expression in vitro. We therefore expect Cirbp knock-out (KO) mice to exhibit attenuated sleep-deprivation-induced changes in clock-gene expression, and consequently to differ in their sleep homeostatic regulation. Lack of CIRBP indeed blunted the sleep-deprivation incurred changes in cortical expression of Nr1d1, whereas it amplified the changes in Per2 and Clock. Concerning sleep homeostasis, KO mice accrued only half the extra REM sleep wild-type (WT) littermates obtained during recovery. Unexpectedly, KO mice were more active during lights-off which was accompanied with faster theta oscillations compared to WT mice. Thus, CIRBP adjusts cortical clock-gene expression after sleep deprivation and expedites REM-sleep recovery.
Collapse
Affiliation(s)
- Marieke Mb Hoekstra
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jeffrey Hubbard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
The influence of thermal inputs on brain regulation of exercise: An evolutionary perspective. PROGRESS IN BRAIN RESEARCH 2018. [PMID: 30390835 DOI: 10.1016/bs.pbr.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The relationship between performance, heat load and the ability to withstand serious thermal insult is a key factor in understanding how endurance is regulated. The capacity to withstand high thermal loads is not unique to humans and is typical to all mammals. Thermoregulation is an evolutionary adaptation which is species specific and should be regarded as a survival strategy rather than purely a physiological response. The fact that mammals have selected ~37°C as a set point could be a key factor in understanding our endurance capabilities and strategy. Endurance presents a significant challenge to bodily homeostasis while our thermoregulatory strategy is able to cope exquisitely under the most unfavorable conditions. The ability of the CNS to regulate this strategy is key in athletic performance since the thermoregulatory center is located within the brain and receives input from multiple systems and deploys effector responses as needed. This chapter will discuss the evolution of thermoregulation in humans and propose that the brain is more than sufficiently capable of maintaining thermal-homeostasis because of its evolutionary path. As such, this is connected to our ability to modulate efferent drive during heat strain and in so doing provides us with the capability to pace during endurance events in the heat.
Collapse
|
30
|
Zaretsky DV, Kline H, Zaretskaia MV, Rusyniak DE. Automatic analysis of treadmill running to estimate times to fatigue and exhaustion in rodents. PeerJ 2018; 6:e5017. [PMID: 30002953 PMCID: PMC6037152 DOI: 10.7717/peerj.5017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022] Open
Abstract
Introduction The determination of fatigue and exhaustion in experimental animals is complicated by the subjective nature of the measurement. Typically, it requires an observer to watch exercising animals, e.g. rats running on the treadmill, and to identify the time of the event. In this study, we hypothesized that automatic analysis of the time-averaged position of a rat on a treadmill could be an objective way for estimating times to fatigue and exhaustion. To test this hypothesis, we compared these times measured by a human observer to the results of an automated video tracking system. Methods Rats, previously familiarized to running on the treadmill, ran at a fixed speed with zero incline, until exhaustion. The experiments were performed at either room temperature (24 °C) or in a hot environment (32 °C). Each experiment was video recorded. A trained observer estimated the times to fatigue and exhaustion. Then, video tracking software was used to determine the position of the animals on the treadmill belt. The times to fatigue and exhaustion were determined, based on the position on the treadmill using predefined criteria. Results Manual scores and the average position on the treadmill had significant correlation. Both the observer and the automated video tracking determined that exercise in a hot environment, compared with the exercise at room temperature, results in shorter times to exhaustion and fatigue. Also, estimates of times made by the observer and the automated video tracking were not statistically different from each other. Discussion A similarity between the estimates of times to fatigue and exhaustion made by the observer and the automated technique suggests that video tracking of rodents running on a treadmill can be used to determine both parameters in experimental studies. Video tracking technique allows for a more objective measure and would allow for an increased performance in experimentation. The Supplemental information to this manuscript contains an Excel file, which includes the code in Virtual Basic with freeware license, to process and visualize running data and automatically estimate the times to fatigue and exhaustion. Instructions for the software are also included.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hannah Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Zaretsky DV, Kline H, Zaretskaia MV, Brown MB, Durant PJ, Alves NJ, Rusyniak DE. Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment. Brain Res 2018; 1689:12-20. [PMID: 29577887 DOI: 10.1016/j.brainres.2018.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
Abstract
Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hannah Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mary Beth Brown
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, USA
| | - Pamela J Durant
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan J Alves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Onitsuka S, Nakamura D, Onishi T, Arimitsu T, Takahashi H, Hasegawa H. Ice slurry ingestion reduces human brain temperature measured using non-invasive magnetic resonance spectroscopy. Sci Rep 2018; 8:2757. [PMID: 29426888 PMCID: PMC5807509 DOI: 10.1038/s41598-018-21086-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
We previously reported that ice slurry ingestion reduced forehead skin temperature, thereby potentially reducing brain temperature (Tbrain). Therefore, in the current study, we investigated the effect of ice slurry ingestion on Tbrain using proton magnetic resonance spectroscopy, which is a robust, non-invasive method. Eight male participants ingested 7.5 g/kg of either a thermoneutral drink (37 °C; CON) or ice slurry (-1 °C; ICE) for about 5 min following a 15-min baseline period. Then, participants remained at rest for 30 min. As physiological indices, Tbrain, rectal temperature (Tre), mean skin temperature, nude body mass, and urine specific gravity were measured. Subjective thermal sensation (TS) and thermal comfort (TC) were measured before and after the experiment. Tbrain and Tre significantly reduced after ingestion of ICE compared with after ingestion of CON, and there was a significant correlation between Tbrain and Tre. The other physiological indices were not significantly different between beverage conditions. TS and TC were significantly lower with ICE than with CON (p < 0.05). These results indicate that ice slurry ingestion can cool the brain, as well as the body's core.
Collapse
Affiliation(s)
- Sumire Onitsuka
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, 739-8521, Japan.,Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | | | | | - Takuma Arimitsu
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | | | - Hiroshi Hasegawa
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, 739-8521, Japan.
| |
Collapse
|
33
|
Kunstetter AC, Barbosa NHS, Moraes MM, Pinto VA, Soares DD, Pires W, Wanner SP. Pre-exercise exposure to the treadmill setup changes the cardiovascular and thermoregulatory responses induced by subsequent treadmill running in rats. Temperature (Austin) 2017; 5:109-122. [PMID: 30377632 DOI: 10.1080/23328940.2017.1388343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022] Open
Abstract
Different methodological approaches have been used to conduct experiments with rats subjected to treadmill running. Some experimenters have exposed rats to the treadmill setup before initiating exercise to minimize the influences of handling and being placed in an anxiety-inducing environment on the physiological responses to subsequent running. Other experimenters have subjected rats to exercise immediately after placing them on the treadmill. Thus, the present study aimed to evaluate the effects of pre-exercise exposure to the treadmill on physical performance and cardiovascular and thermoregulatory responses during subsequent exercise. Male Wistar rats were subjected to fatiguing incremental-speed exercise at 24°C immediately after being placed on the treadmill or after being exposed to the treadmill for 70 min following removal from their home cages. Core body temperature (TCORE), tail-skin temperature (TSKIN), heart rate (HR) and mean arterial pressure (MAP) were recorded throughout the experiments. Rats exposed to the treadmill started exercise with higher TCORE, lower HR and MAP, and unaltered TSKIN. This exposure did not influence performance, but it markedly affected the exercise-induced increases in the four physiological parameters evaluated; for example, the TSKIN increased earlier and at a higher TCORE. Moreover, previous treadmill exposure notably allowed expected exercise-induced changes in cardiovascular parameters to be observed. Collectively, these data indicate that pre-exercise exposure to the treadmill induces important effects on physiological responses during subsequent treadmill running. The present data are particularly relevant for researchers planning experiments involving physical exercise and the recording of physiological parameters in rats.
Collapse
Affiliation(s)
- Ana C Kunstetter
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Nicolas H S Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Michele M Moraes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Valéria A Pinto
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil.,Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares (MG), Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
34
|
Guillemette M, Woakes AJ, Larochelle J, Polymeropoulos ET, Granbois JM, Butler PJ, Pelletier D, Frappell PB, Portugal SJ. Does hyperthermia constrain flight duration in a short-distance migrant? Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0386. [PMID: 27528776 DOI: 10.1098/rstb.2015.0386] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/12/2022] Open
Abstract
While some migratory birds perform non-stop flights of over 11 000 km, many species only spend around 15% of the day in flight during migration, posing a question as to why flight times for many species are so short. Here, we test the idea that hyperthermia might constrain flight duration (FD) in a short-distance migrant using remote biologging technology to measure heart rate, hydrostatic pressure and body temperature in 19 migrating eider ducks (Somateria mollissima), a short-distance migrant. Our results reveal a stop-and-go migration strategy where migratory flights were frequent (14 flights day(-1)) and short (15.7 min), together with the fact that body temperature increases by 1°C, on average, during such flights, which equates to a rate of heat storage index (HSI) of 4°C h(-1) Furthermore, we could not find any evidence that short flights were limited by heart rate, together with the fact that the numerous stops could not be explained by the need to feed, as the frequency of dives and the time spent feeding were comparatively small during the migratory period. We thus conclude that hyperthermia appears to be the predominant determinant of the observed migration strategy, and suggest that such a physiological limitation to FD may also occur in other species.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.
Collapse
Affiliation(s)
- Magella Guillemette
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | | | | | - Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Tasmania 7001, Australia
| | - Jean-Marc Granbois
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | - Patrick J Butler
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David Pelletier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1 Cégep de Rimouski, Rimouski, Québec, Canada G5L 4H6
| | | | - Steven J Portugal
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
35
|
Zheng X, Takatsu S, Ishikawa R, Hasegawa H. Moderate intensity, exercise-induced catecholamine release in the preoptic area and anterior hypothalamus in rats is enhanced in a warm environment. J Therm Biol 2017; 71:123-127. [PMID: 29301680 DOI: 10.1016/j.jtherbio.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022]
Abstract
Thermoeffector responses and core body temperature (Tcore) homeostasis during exercise are affected by both ambient temperature and exercise intensity. We have previously reported that Tcore, heat loss responses, and catecholamine release in the preoptic area and anterior hypothalamus (PO/AH) increased during incremental treadmill running. However, no previous study has examined whether changes in the thermoregulatory responses at warm ambient temperature are related to catecholamine responses during moderate intensity exercise in rats. Therefore, the aim of the present study was to investigate the responsiveness of neurotransmission in the PO/AH to moderate intensity exercise at different ambient temperatures, and to relate this to changes in thermoregulation. We measured the monoamine levels in the PO/AH and the thermoregulatory responses in exercising rats simultaneously using a combination of methods, including in vivo microdialysis, biotelemetry, and animal O2/CO2 metabolism measuring system. On the day of experiments, rats ran for 60min at a speed of 18mmin-1 on a treadmill at a 5% gradient, in an ambient temperature of 23°C or 30°C. Tcore, tail skin temperature (Ttail; an index of heat loss), and oxygen consumption (V̇O2: an index of heat production) were monitored. Dopamine (DA), noradrenaline (NA), and serotonin (5-HT) levels were measured by high performance liquid chromatography (HPLC) with electrochemical detection. Exercise significantly increased the Tcore, Ttail, and V̇O2 values, as well as DA and NA release in the PO/AH at both temperatures, and the increases were more pronounced at the warm ambient temperature. The results suggest that the increase in the Tcore, heat production, and heat loss responses even during moderate intensity running in a warm environment are likely associated with an increase in DA and NA release in the PO/AH region.
Collapse
Affiliation(s)
- Xinyan Zheng
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu, Shanghai 200438, China
| | - Satomi Takatsu
- Graduate School of Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8521, Japan
| | - Ryo Ishikawa
- Graduate School of Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8521, Japan
| | - Hiroshi Hasegawa
- Graduate School of Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8521, Japan.
| |
Collapse
|
36
|
Morozova E, Yoo Y, Behrouzvaziri A, Zaretskaia M, Rusyniak D, Zaretsky D, Molkov Y. Amphetamine enhances endurance by increasing heat dissipation. Physiol Rep 2017; 4:4/17/e12955. [PMID: 27604402 PMCID: PMC5027360 DOI: 10.14814/phy2.12955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/11/2016] [Indexed: 12/05/2022] Open
Abstract
Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine‐trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine‐treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise‐induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles.
Collapse
Affiliation(s)
| | - Yeonjoo Yoo
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indiana
| | - Abolhassan Behrouzvaziri
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indiana
| | - Maria Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dmitry Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yaroslav Molkov
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indiana Department of Mathematics and Statistics, Georgia State University, Georgia
| |
Collapse
|
37
|
Bieber C, Cornils JS, Hoelzl F, Giroud S, Ruf T. The costs of locomotor activity? Maximum body temperatures and the use of torpor during the active season in edible dormice. J Comp Physiol B 2017; 187:803-814. [PMID: 28321493 PMCID: PMC5486539 DOI: 10.1007/s00360-017-1080-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/14/2016] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
Measuring T b during the active season can provide information about the timing of reproduction and the use of short bouts of torpor and may be used as a proxy for the locomotor activity of animals (i.e., maximum T b). This kind of information is especially important to understand life-history strategies and energetic costs and demands in hibernating mammals. We investigated T b throughout the active season in edible dormice (Glis glis), since they (i) have an expensive arboreal life-style, (ii) are known to show short bouts of torpor, and (iii) are adapted to pulsed resources (mast of beech trees). We show here for the first time that maximum T b's in free-living active dormice (during the night) increase regularly and for up to 8 h above 40 °C, which corresponds to slight hyperthermia, probably due to locomotor activity. The highest weekly mean maximum T b was recorded 1 week prior to hibernation (40.45 ± 0.07 °C). At the beginning of the active season and immediately prior to hibernation, the mean maximum T b's were lower. The time dormice spent at T b above 40 °C varied between sexes, depending on mast conditions. The date of parturition could be determined by a sudden increase in mean T b (plus 0.49 ± 0.04 °C). The occurrence of short torpor bouts (<24 h) was strongly affected by the mast situation with much higher torpor frequencies in mast-failure years. Our data suggest that locomotor activity is strongly affected by environmental conditions, and that sexes respond differently to these changes.
Collapse
Affiliation(s)
- Claudia Bieber
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| | - Jessica S Cornils
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Franz Hoelzl
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Sylvain Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| |
Collapse
|
38
|
Machado FSM, Fóscolo DRC, Poletini MO, Coimbra CC. Influence of Time-of-Day on Maximal Exercise Capacity Is Related to Daily Thermal Balance but Not to Induced Neuronal Activity in Rats. Front Physiol 2016; 7:464. [PMID: 27790157 PMCID: PMC5063920 DOI: 10.3389/fphys.2016.00464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/27/2016] [Indexed: 11/13/2022] Open
Abstract
In the present study, we investigated whether the daily fluctuations of internal body temperature (Tb) and spontaneous locomotor activity (SLA) interact with the thermal and neuronal adjustments induced by high-intensity aerobic exercise until fatigue. The body temperature and SLA of adult Wistar rats (n = 23) were continuously recorded by telemetry for 48 h. Then, the rats were subjected to a protocol of graded exercise until fatigue or rest on the treadmill during light and dark-phases. Tb, tail skin temperature and ambient temperature during each experimental session were recorded. At the end of the last experimental session, the animals were anaesthetized; the brains were perfused and removed for immunohistochemical analysis of c-fos neuronal activation. The daily rhythms of SLA and Tb were strongly correlated (r = 0.88 and p < 0.001), and this was followed by a daily oscillation in both the ratio and the correlation index between these variables (p < 0.001). Exercise capacity was associated with a lower resting Tb (p < 0.01) and was higher in the light-phase (p < 0.001), resulting in an increased capacity to accumulate heat during exercise (p < 0.01). Independent of time-of-day, high intensity exercise strongly activated the hypothalamic paraventricular nucleus (PVN), the supra-optic nucleus (SON) and the locus coeruleus (LC) (p < 0.001) but not the suprachiasmatic nucleus (SCN). Taken together, our results points toward a role of the circadian system in a basal activity control of the thermoregulatory system as an important component for the onset of physical activities. In fact, rather than directly limiting the adjustments induced by exercise the present study brings new evidence that the effect of time-of-day on exercise performance occurs at the threshold level for each thermoregulatory system effector activity. This assumption is based on the observed resilience of the central clock to high-intensity exercise and the similarities in exercise-induced neuronal activation in the PVN, SON, and LC.
Collapse
Affiliation(s)
- Frederico S M Machado
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Daniela R C Fóscolo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Maristela O Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
39
|
Drummond LR, Kunstetter AC, Vaz FF, Campos HO, de Andrade AGP, Coimbra CC, Natali AJ, Wanner SP, Prímola-Gomes TN. Brain Temperature in Spontaneously Hypertensive Rats during Physical Exercise in Temperate and Warm Environments. PLoS One 2016; 11:e0155919. [PMID: 27214497 PMCID: PMC4877067 DOI: 10.1371/journal.pone.0155919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
This study aimed to evaluate brain temperature (Tbrain) changes in spontaneously hypertensive rats (SHRs) subjected to two different physical exercise protocols in temperate or warm environments. We also investigated whether hypertension affects the kinetics of exercise-induced increases in Tbrain relative to the kinetics of abdominal temperature (Tabd) increases. Male 16-week-old normotensive Wistar rats (NWRs) and SHRs were implanted with an abdominal temperature sensor and a guide cannula in the frontal cortex to enable the insertion of a thermistor to measure Tbrain. Next, the animals were subjected to incremental-speed (initial speed of 10 m/min; speed was increased by 1 m/min every 3 min) or constant-speed (60% of the maximum speed) treadmill running until they were fatigued in a temperate (25°C) or warm (32°C) environment. Tbrain, Tabd and tail skin temperature were measured every min throughout the exercise trials. During incremental and constant exercise at 25°C and 32°C, the SHR group exhibited greater increases in Tbrain and Tabd relative to the NWR group. Irrespective of the environment, the heat loss threshold was attained at higher temperatures (either Tbrain or Tabd) in the SHRs. Moreover, the brain-abdominal temperature differential was lower at 32°C in the SHRs than in the NWRs during treadmill running. Overall, we conclude that SHRs exhibit enhanced brain hyperthermia during exercise and that hypertension influences the kinetics of the Tbrain relative to the Tabd increases, particularly during exercise in a warm environment.
Collapse
Affiliation(s)
- Lucas Rios Drummond
- Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ana Cançado Kunstetter
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Filipe Ferreira Vaz
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Helton Oliveira Campos
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Cândido Celso Coimbra
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Antônio José Natali
- Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Samuel Penna Wanner
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Thales Nicolau Prímola-Gomes
- Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| |
Collapse
|
40
|
Wanner SP, Prímola-Gomes TN, Pires W, Guimarães JB, Hudson ASR, Kunstetter AC, Fonseca CG, Drummond LR, Damasceno WC, Teixeira-Coelho F. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology. Temperature (Austin) 2015; 2:457-75. [PMID: 27227066 PMCID: PMC4844073 DOI: 10.1080/23328940.2015.1119615] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 01/18/2023] Open
Abstract
Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.
Collapse
Affiliation(s)
- Samuel Penna Wanner
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Thales Nicolau Prímola-Gomes
- Laboratório de Biologia do Exercício; Departamento de Educação Física; Universidade Federal de Viçosa ; Viçosa (MG), Brazil
| | - Washington Pires
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Juliana Bohnen Guimarães
- Laboratório de Fisiologia do Exercício; Universidade Estadual de Minas Gerais ; Ibirité (MG), Brazil
| | - Alexandre Sérvulo Ribeiro Hudson
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Ana Cançado Kunstetter
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Cletiana Gonçalves Fonseca
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Lucas Rios Drummond
- Laboratório de Biologia do Exercício; Departamento de Educação Física; Universidade Federal de Viçosa ; Viçosa (MG), Brazil
| | - William Coutinho Damasceno
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Francisco Teixeira-Coelho
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais; Belo Horizonte (MG), Brazil; Centro de Formação de Professores; Universidade Federal do Recôncavo da Bahia; Amargosa (BA), Brazil
| |
Collapse
|
41
|
VanHaitsma TA, Light AR, Light KC, Hughen RW, Yenchik S, White AT. Fatigue sensation and gene expression in trained cyclists following a 40 km time trial in the heat. Eur J Appl Physiol 2015; 116:541-52. [PMID: 26705248 DOI: 10.1007/s00421-015-3311-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/09/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE We examined the effect of race-effort cycling exercise with and without heat stress on post-exercise perceptions of fatigue and pain, as well as mRNA expression in genes related to exercise responses. METHODS Trained cyclists (n = 20) completed 40 km time trials during temperate (TC, 21 °C) and hot (HC, 35 °C) conditions. Blood lactates were measured 1 and 5 min post-exercise. Venous blood samples and ratings of fatigue and pain perceptions were obtained at baseline and at 0.5, 8, 24, and 48 h post-exercise. Leukocyte mRNA expression was performed for metabolite detecting, adrenergic, monoamine, and immune receptors using qPCR. RESULTS Significantly lower mean power (157 ± 32.3 vs 187 ± 40 W) and lactates (6.4 ± 1.7 vs 8.8 ± 3.2 and 4.2 ± 1.5 vs 6.6 ± 2.7 mmol L(-1) at 1- and 5-min post-exercise) were observed for HC versus TC, respectively (p < 0.05). Increases (p < 0.05) in physical fatigue and pain perception during TTs did not differ between TC and HC (p > 0.30). Both trials resulted in significant post-exercise decreases in metabolite detecting receptors ASIC3, P2X4, TRPV1, and TRPV4; increases in adrenergic receptors α2a, α2c, and β1; decreases in adrenergic β2, the immune receptor TLR4, and dopamine (DRD4); and increases in serotonin (HTR1D) and IL-10 (p < 0.05). Post-exercise IL-6 differed between TC and HC, with significantly greater increases observed following HC (p < 0.05). CONCLUSIONS Both TT performances appeared to be regulated around a specific sensory perception of fatigue and pain. Heat stress may have compensated for lower lactate during HC, thereby matching changes in metabolite detecting and other mRNAs across conditions.
Collapse
Affiliation(s)
- Timothy A VanHaitsma
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA. .,Westmont College, 955 LaPaz Road, Santa Barbara, CA, 93108, USA.
| | - Alan R Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Kathleen C Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Ronald W Hughen
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Sarah Yenchik
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Andrea T White
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Ambient temperature influences the neural benefits of exercise. Behav Brain Res 2015; 299:27-31. [PMID: 26608539 DOI: 10.1016/j.bbr.2015.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 11/23/2022]
Abstract
Many of the neural benefits of exercise require weeks to manifest. It would be useful to accelerate onset of exercise-driven plastic changes, such as increased hippocampal neurogenesis. Exercise represents a significant challenge to the brain because it produces heat, but brain temperature does not rise during exercise in the cold. This study tested the hypothesis that exercise in cold ambient temperature would stimulate hippocampal neurogenesis more than exercise in room or hot conditions. Adult female rats had exercise access 2h per day for 5 days at either room (20 °C), cold (4.5 °C) or hot (37.5 °C) temperature. To label dividing hippocampal precursor cells, animals received daily injections of BrdU. Brains were immunohistochemically processed for dividing cells (Ki67+), surviving cells (BrdU+) and new neurons (doublecortin, DCX) in the hippocampal dentate gyrus. Animals exercising at room temperature ran significantly farther than animals exercising in cold or hot conditions (room 1490 ± 400 m; cold 440 ± 102 m; hot 291 ± 56 m). We therefore analyzed the number of Ki67+, BrdU+ and DCX+ cells normalized for shortest distance run. Contrary to our hypothesis, exercise in either cold or hot conditions generated significantly more Ki67+, BrdU+ and DCX+ cells compared to exercise at room temperature. Thus, a limited amount of running in either cold or hot ambient conditions generates more new cells than a much greater distance run at room temperature. Taken together, our results suggest a simple means by which to augment exercise effects, yet minimize exercise time.
Collapse
|
43
|
Zheng X, Hasegawa H. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats. Pharmacol Biochem Behav 2015; 140:82-9. [PMID: 26604076 DOI: 10.1016/j.pbb.2015.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/15/2022]
Abstract
We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; p<0.05). NECA decreased the core body temperature (Tcore), oxygen consumption, which is an index of heat production, tail skin temperature, which is an index of heat loss, and extracellular dopamine (DA) release at rest and during exercise. Furthermore, caffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release.
Collapse
Affiliation(s)
- Xinyan Zheng
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Hiroshi Hasegawa
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
44
|
Yoo Y, LaPradd M, Kline H, Zaretskaia MV, Behrouzvaziri A, Rusyniak DE, Molkov YI, Zaretsky DV. Exercise activates compensatory thermoregulatory reaction in rats: a modeling study. J Appl Physiol (1985) 2015; 119:1400-10. [PMID: 26472864 DOI: 10.1152/japplphysiol.00392.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022] Open
Abstract
The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats (Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures (Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this "ready-to-run" phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry.
Collapse
Affiliation(s)
- Yeonjoo Yoo
- Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indiana
| | - Michelle LaPradd
- Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indiana
| | | | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yaroslav I Molkov
- Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indiana
| | - Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
45
|
Audet GN, Quinn CM, Leon LR. Point-of-care cardiac troponin test accurately predicts heat stroke severity in rats. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1264-72. [PMID: 26290107 DOI: 10.1152/ajpregu.00286.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022]
Abstract
Heat stroke (HS) remains a significant public health concern. Despite the substantial threat posed by HS, there is still no field or clinical test of HS severity. We suggested previously that circulating cardiac troponin (cTnI) could serve as a robust biomarker of HS severity after heating. In the present study, we hypothesized that (cTnI) point-of-care test (ctPOC) could be used to predict severity and organ damage at the onset of HS. Conscious male Fischer 344 rats (n = 16) continuously monitored for heart rate (HR), blood pressure (BP), and core temperature (Tc) (radiotelemetry) were heated to maximum Tc (Tc,Max) of 41.9 ± 0.1°C and recovered undisturbed for 24 h at an ambient temperature of 20°C. Blood samples were taken at Tc,Max and 24 h after heat via submandibular bleed and analyzed on ctPOC test. POC cTnI band intensity was ranked using a simple four-point scale via two blinded observers and compared with cTnI levels measured by a clinical blood analyzer. Blood was also analyzed for biomarkers of systemic organ damage. HS severity, as previously defined using HR, BP, and recovery Tc profile during heat exposure, correlated strongly with cTnI (R(2) = 0.69) at Tc,Max. POC cTnI band intensity ranking accurately predicted cTnI levels (R(2) = 0.64) and HS severity (R(2) = 0.83). Five markers of systemic organ damage also correlated with ctPOC score (albumin, alanine aminotransferase, blood urea nitrogen, cholesterol, and total bilirubin; R(2) > 0.4). This suggests that cTnI POC tests can accurately determine HS severity and could serve as simple, portable, cost-effective HS field tests.
Collapse
Affiliation(s)
- Gerald N Audet
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Carrie M Quinn
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
46
|
Goodall S, Charlton K, Hignett C, Prichard J, Barwood M, Howatson G, Thomas K. Augmented supraspinal fatigue following constant-load cycling in the heat. Scand J Med Sci Sports 2015; 25 Suppl 1:164-72. [DOI: 10.1111/sms.12370] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Affiliation(s)
- S. Goodall
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - K. Charlton
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - C. Hignett
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - J. Prichard
- Institue of Health & Society; Newcastle University; Newcastle UK
| | - M. Barwood
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - G. Howatson
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
- Water Research Group; School of Environmental Sciences and Development; Northwest University; Potchefstroom South Africa
| | - K. Thomas
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| |
Collapse
|
47
|
The time of day differently influences fatigue and locomotor activity: is body temperature a key factor? Physiol Behav 2014; 140:8-14. [PMID: 25479573 DOI: 10.1016/j.physbeh.2014.11.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/23/2022]
Abstract
The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (p<0.05). In contrast, we observed that both SLA and Tb were higher during the dark-phase (p<0.01). Notably, the correlation analysis between the amount of SLA and the running capacity observed at each phase of the daily cycle revealed that, regardless of the time of the day, both types of locomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, p<0.01) without a direct relationship between them. This finding provides further support for the existence of specific control mechanisms for each type of physical activity. In conclusion, our data indicate that the relationship between the body temperature and different types of physical activity might be affected by the light/dark cycle. These results mean that, although exercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark.
Collapse
|
48
|
Abstract
Amphetamine (Amp) increases exercise duration. It is thought to do so by masking fatigue, but there have been very few studies looking at the effect of amphetamine on maximal oxygen consumption (VO2MAX) and running economy. Furthermore, it is unknown if amphetamine's effect on exercise duration occurs in a warm environment. We conducted separate experiments in male Sprague-Dawley rats testing the effect of amphetamine on VO2MAX (n = 12), running economy (n = 12), and exercise duration (n = 24) in a warm environment. For VO2MAX and running economy, rats were randomized to either amphetamine at 1 mg/kg (Amp-1) or 2 mg/kg (Amp-2). Animals served as their own controls in a crossover design with the administration order counter-balanced. To study the effect of amphetamine on exercise duration, we conducted run-to-exhaustion treadmill testing on rats in a 32˚C environment following administration of Amp-1, Amp-2, or Saline. Compared to control, Amp-2 increased VO2MAX (by 861 ± 184 ml/kg/hr, p = 0.005) and the time to VO2MAX (by 2.5 ± 0.8 min, p = 0.03). Amp-1 had no effect on VO2MAX but increased the time to VO2MAX (by 1.7 ± 0.5 min, p = 0.03). Neither dose improved running economy. In the warm, only rats in the Amp-1 group (+9.4 min, p = 0.02) had an increased time to exhaustion. Compared to control (41.6 ± 0.3°C), both amphetamine doses had higher temperatures at exhaustion: Amp-1 (42.0 ± 0.2°C) and Amp-2 (42.1 ± 0.2°C). Our results suggest that ergogenic effect of amphetamine occurs by masking fatigue but this effect may be offset in the warm with higher doses.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, 720 Eskenazi Ave, Indianapolis, Indiana, USA, 46202
| | - Mary Beth Brown
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, 1140 W Michigan St, Indianapolis, Indiana, USA, 46202
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, 720 Eskenazi Ave, Indianapolis, Indiana, USA, 46202
| | - Pamela J Durant
- Department of Emergency Medicine, Indiana University School of Medicine, 720 Eskenazi Ave, Indianapolis, Indiana, USA, 46202
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, 720 Eskenazi Ave, Indianapolis, Indiana, USA, 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barhill Drive, Indianapolis, Indiana, USA, 46202
| |
Collapse
|
49
|
Fonseca CG, Pires W, Lima MRM, Guimarães JB, Lima NRV, Wanner SP. Hypothalamic temperature of rats subjected to treadmill running in a cold environment. PLoS One 2014; 9:e111501. [PMID: 25365556 PMCID: PMC4218756 DOI: 10.1371/journal.pone.0111501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/30/2014] [Indexed: 12/02/2022] Open
Abstract
Different strategies for cooling the body prior to or during physical exercise have been shown to improve prolonged performance. Because of ethical and methodological issues, no studies conducted in humans have evaluated the changes in brain temperature promoted by cooling strategies. Therefore, our first aim sought to measure the hypothalamic temperature (Thyp) of rats subjected to treadmill running in a cold environment. Moreover, evidence suggests that Thyp and abdominal temperature (Tabd) are regulated by different physiological mechanisms. Thus, this study also investigated the dynamics of exercise-induced changes in Thyp and Tabd at two ambient temperatures: 25°C (temperate environment) and 12°C (cold). Adult male Wistar rats were used in these experiments. The rats were implanted with a guide cannula in the hypothalamus and a temperature sensor in the abdominal cavity. After recovery from this surgery, the rats were familiarized with running on a treadmill and were then subjected to the two experimental trials: constant-speed running (20 m/min) at 12°C and 25°C. Both Thyp and Tabd increased during exercise at 25°C. In contrast, Thyp and Tabd remained unchanged during fatiguing exercise at 12°C. The temperature differential (i.e., Thyp - Tabd) increased during the initial min of running at 25°C and thereafter decreased toward pre-exercise values. Interestingly, external cooling prevented this early increase in the temperature differential from the 2nd to the 8th min of running. In addition, the time until volitional fatigue was higher during the constant exercise at 12°C compared with 25°C. Together, our results indicate that Thyp and Tabd are regulated by different mechanisms in running rats and that external cooling affected the relationship between both temperature indexes observed during exercise without environmental thermal stress. Our data also suggest that attenuated hypothalamic hyperthermia may contribute to improved performance in cold environments.
Collapse
Affiliation(s)
- Cletiana Gonçalves Fonseca
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Milene Rodrigues Malheiros Lima
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Juliana Bohnen Guimarães
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
- Instituto Superior de Educação Anísio Teixeira, Universidade Estadual de Minas Gerais, Ibirité (MG), Brazil
| | - Nilo Resende Viana Lima
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
- * E-mail:
| |
Collapse
|
50
|
Rakesh V, Stallings JD, Reifman J. A virtual rat for simulating environmental and exertional heat stress. J Appl Physiol (1985) 2014; 117:1278-86. [PMID: 25277741 DOI: 10.1152/japplphysiol.00614.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Severe cases of environmental or exertional heat stress can lead to varying degrees of organ dysfunction. To understand heat-injury progression and develop efficient management and mitigation strategies, it is critical to determine the thermal response in susceptible organs under different heat-stress conditions. To this end, we used our previously published virtual rat, which is capable of computing the spatiotemporal temperature distribution in the animal, and extended it to simulate various heat-stress scenarios, including 1) different environmental conditions, 2) exertional heat stress, 3) circadian rhythm effect on the thermal response, and 4) whole body cooling. Our predictions were consistent with published in vivo temperature measurements for all cases, validating our simulations. We observed a differential thermal response in the organs, with the liver experiencing the highest temperatures for all environmental and exertional heat-stress cases. For every 3°C rise in the external temperature from 40 to 46°C, core and organ temperatures increased by ∼0.8°C. Core temperatures increased by 2.6 and 4.1°C for increases in exercise intensity from rest to 75 and 100% of maximal O2 consumption, respectively. We also found differences as large as 0.8°C in organ temperatures for the same heat stress induced at different times during the day. Even after whole body cooling at a relatively low external temperature (1°C for 20 min), average organ temperatures were still elevated by 2.3 to 2.5°C compared with normothermia. These results can be used to optimize experimental protocol designs, reduce the amount of animal experimentation, and design and test improved heat-stress prevention and management strategies.
Collapse
Affiliation(s)
- Vineet Rakesh
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland; and
| | - Jonathan D Stallings
- Environmental Health Program, United States Army Center for Environmental Health Research, Fort Detrick, Maryland
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, Maryland; and
| |
Collapse
|