1
|
Hasegawa JS, Silveira AC, Azevedo RA, Schamne JC, Rondon MUPB, Papoti M, Lima-Silva AE, Koehle MS, Bertuzzi R. No sex differences in performance and perceived fatigability during a self-paced endurance exercise performed under moderate hypoxia. Am J Physiol Regul Integr Comp Physiol 2025; 328:R352-R363. [PMID: 39925117 DOI: 10.1152/ajpregu.00145.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
This study examined potential sex differences in performance and perceived fatigability during a whole body endurance exercise performed under normoxia or moderate hypoxia. Nine males and eight females cyclists performed a 4-km cycling time trial under normoxia or hypoxia conditions. Performance fatigability and its central and peripheral determinants were measured via pre- to post-exercise changes in maximal voluntary isometric contraction (IMVC), voluntary activation (VA), and potentiated twitch force (TwPt) of knee extensors, respectively. Perceived fatigability was characterized via a rating of perceived exertion (RPE). Time to complete the trial was longer in hypoxia than normoxia in females (482 ± 24 vs. 465 ± 21 s) and males (433 ± 30 vs. 408 ± 31 s) (P = 0.039). There was no effect of sex or condition (P ≥ 0.370) for the magnitude of decrease in IMVC (female: normoxia = -14.3 ± 4.4%, hypoxia = -11.8 ± 5.2% vs. male: normoxia = -13.1 ± 9.4%, hypoxia = -12.9 ± 9.8%), TwPt (female: normoxia = -34.4 ± 11.4%, hypoxia = -31.8 ± 18.9% vs. male: normoxia = -30.5 ± 17.9%, hypoxia = -31.9 ± 20.9%), and VA (female: normoxia = -0.5 ± 2.3%, hypoxia = -1.6 ± 1.6% vs. male: normoxia = 0.8 ± 2.2%, hypoxia = -0.5 ± 1.3%). RPE was higher in hypoxia than in normoxia for both groups (P = 0.002). In conclusion, moderate hypoxia similarly impairs performance and perceived fatigability development in females and males during a 4-km cycling time trial.NEW & NOTEWORTHY In this study, we showed that females and males develop a similar hypoxia-induced impairment in endurance performance, perceived and performance fatigability during a 4-km cycling time trial. These novel findings indicate that females and males regulate their power output similarly during a 4-km cycling time trial under moderate hypoxia, likely to avoid prematurely exacerbating metabolic disturbances and thereby reaching comparable levels of performance fatigability by the end of the task.
Collapse
Affiliation(s)
- Julio S Hasegawa
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Andre C Silveira
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Rafael A Azevedo
- Applied Physiology and Nutrition Research Group-Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Julio Cezar Schamne
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Brazil
| | | | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Michael S Koehle
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
- Division of Sport and Exercise Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Farra SD, Jacobs I. Arterial desaturation rate does not influence self-selected knee extension force but alters ventilatory response to progressive hypoxia: A pilot study. Physiol Rep 2024; 12:e15892. [PMID: 38172088 PMCID: PMC10764295 DOI: 10.14814/phy2.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The absolute magnitude and rate of arterial desaturation each independently impair whole-body aerobic exercise. This study examined potential mechanisms underlying the rate-dependent relationship. Utilizing an exercise protocol involving unilateral, intermittent, isometric knee extensions (UIIKE), we provided sufficient reperfusion time between contractions to reduce the accumulation of intramuscular metabolic by-products that typically stimulate muscle afferents. The objective was to create a milieu conducive to accentuating any influence of arterial desaturation rate on muscular fatigue. Eight participants completed four UIIKE sessions, performing one 3 s contraction every 30s at a perceived intensity of 50% MVC for 25 min. Participants voluntarily adjusted their force generation to maintain perceptual effort at 50% MVC without feedback. Reductions in inspired oxygen fraction (FI O2 ) decreased arterial saturation from >98% to 70% with varying rates in three trials: FAST (5.3 ± 1.3 min), MED (11.8 ± 2.7 min), and SLOW (19.9 ± 3.7 min). FI O2 remained at 0.21 during the control trial. Force generation and muscle activation remained at baseline levels throughout UIIKE trials, unaffected by the magnitude or rate of desaturation. Minute ventilation increased with hypoxia (p < 0.05), and faster desaturation rates magnified this response. These findings demonstrate that arterial desaturation magnitude and rate independently affect ventilation, but do not influence fatigue development during UIIKE.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
- Tanenbaum Institute for Science in Sport, University of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Fullerton ZS, McNair BD, Marcello NA, Schmitt EE, Bruns DR. Exposure to High Altitude Promotes Loss of Muscle Mass That Is Not Rescued by Metformin. High Alt Med Biol 2022; 23:215-222. [PMID: 35653735 PMCID: PMC9526469 DOI: 10.1089/ham.2022.0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
Fullerton, Zackery S., Benjamin D. McNair, Nicholas A. Marcello, Emily E. Schmitt, and Danielle R. Bruns. Exposure to high altitude promotes loss of muscle mass that is not rescued by metformin. High Alt Med Biol. 23:215-222, 2022. Background: Exposure to high altitude (HA) causes muscle atrophy. Few therapeutic interventions attenuate muscle atrophy; however, the diabetic drug, metformin (Met), has been suggested as a potential therapeutic to preserve muscle mass with aging and obesity-related atrophy. The purpose of the present study was to test the hypothesis that HA would induce muscle atrophy that could be attenuated by Met. Methods: C57Bl6 male and female mice were exposed to simulated HA (∼5,200 m) for 4 weeks, while control (Con) mice remained at resident altitude (∼2,180 m). Met was administered in drinking water at 200 mg/(kg·day). We assessed muscle mass, myocyte cell size, muscle and body composition, and expression of molecular mediators of atrophy. Results: Mice exposed to HA were leaner and had a smaller hind limb complex (HLC) mass than Con mice. Loss of HLC mass and myocyte size were not attenuated by Met. Molecular markers for muscle atrophy were activated at HA in a sex-dependent manner. While the atrophic regulator, atrogin, was unchanged at HA or with Met, myostatin expression was upregulated at HA. In female mice, Met further stimulated myostatin expression. Conclusions: Although HA exposure resulted in loss of muscle mass, particularly in male mice, Met did not attenuate muscle atrophy. Identification of other interventions to preserve muscle mass during ascent to HA is warranted.
Collapse
Affiliation(s)
- Zackery S. Fullerton
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Benjamin D. McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Nicholas A. Marcello
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Emily E. Schmitt
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
- Wyoming WWAMI Medical Education, Laramie, Wyoming, USA
| | - Danielle R. Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
- Wyoming WWAMI Medical Education, Laramie, Wyoming, USA
| |
Collapse
|
4
|
Ruggiero L, Harrison SWD, Rice CL, McNeil CJ. Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiol (Oxf) 2022; 234:e13788. [PMID: 35007386 PMCID: PMC9286620 DOI: 10.1111/apha.13788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Ascent to high altitude is accompanied by a reduction in partial pressure of inspired oxygen, which leads to interconnected adjustments within the neuromuscular system. This review describes the unique challenge that such an environment poses to neuromuscular fatigability (peripheral, central and supraspinal) for individuals who normally reside near to sea level (SL) (<1000 m; ie, lowlanders) and for native highlanders, who represent the manifestation of high altitude-related heritable adaptations across millennia. Firstly, the effect of acute exposure to high altitude-related hypoxia on neuromuscular fatigability will be examined. Under these conditions, both supraspinal and peripheral fatigability are increased compared with SL. The specific mechanisms contributing to impaired performance are dependent on the exercise paradigm and amount of muscle mass involved. Next, the effect of chronic exposure to high altitude (ie, acclimatization of ~7-28 days) will be considered. With acclimatization, supraspinal fatigability is restored to SL values, regardless of the amount of muscle mass involved, whereas peripheral fatigability remains greater than SL except when exercise involves a small amount of muscle mass (eg, knee extensors). Indeed, when whole-body exercise is involved, peripheral fatigability is not different to acute high-altitude exposure, due to competing positive (haematological and muscle metabolic) and negative (respiratory-mediated) effects of acclimatization on neuromuscular performance. In the final section, we consider evolutionary adaptations of native highlanders (primarily Himalayans of Tibet and Nepal) that may account for their superior performance at altitude and lesser degree of neuromuscular fatigability compared with acclimatized lowlanders, for both single-joint and whole-body exercise.
Collapse
Affiliation(s)
- Luca Ruggiero
- Laboratory of Physiomechanics of LocomotionDepartment of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Scott W. D. Harrison
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Charles L. Rice
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Chris J. McNeil
- Centre for Heart, Lung & Vascular HealthSchool of Health and Exercise SciencesUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
5
|
Rakshit R, Xiang Y, Yang J. Functional muscle group- and sex-specific parameters for a three-compartment controller muscle fatigue model applied to isometric contractions. J Biomech 2021; 127:110695. [PMID: 34454329 DOI: 10.1016/j.jbiomech.2021.110695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
The three-compartment controller with enhanced recovery (3CC-r) model of muscle fatigue has previously been validated separately for both sustained (SIC) and intermittent isometric contractions (IIC) using different objective functions, but its performance has not yet been tested against both contraction types simultaneously using a common objective function. Additionally, prior validation has been performed using common parameters at the joint level, whereas applications to many real-world tasks will require the model to be applied to agonistic and synergistic muscle groups. Lastly, parameters for the model have previously been derived for a mixed-sex cohort not considering the differece in fatigabilities between the sexes. In this work we validate the 3CC-r model using a comprehensive isometric contraction database drawn from 172 publications segregated by functional muscle group (FMG) and sex. We find that prediction errors are reduced by 19% on average when segregating the dataset by FMG alone, and by 34% when segregating by both sex and FMG. However, minimum prediction errors are found to be higher when validated against both SIC and IIC data together using torque decline as the outcome variable than when validated sequentially against hypothesized SIC intensity-endurance time curves with endurance time as the outcome variable and against raw IIC data with torque decline as the outcome variable.
Collapse
Affiliation(s)
- Ritwik Rakshit
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiang Xiang
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - James Yang
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
6
|
O'Halloran KD. Diaphragm fatigue: Similarities and differences between sexes. J Physiol 2020; 599:1023-1024. [PMID: 33347624 DOI: 10.1113/jp281081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Nell HJ, Castelli LM, Bertani D, Jipson AA, Meagher SF, Melo LT, Zabjek K, Reid WD. The effects of hypoxia on muscle deoxygenation and recruitment in the flexor digitorum superficialis during submaximal intermittent handgrip exercise. BMC Sports Sci Med Rehabil 2020; 12:16. [PMID: 32467763 PMCID: PMC7226965 DOI: 10.1186/s13102-020-00163-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/20/2020] [Indexed: 12/02/2022]
Abstract
Background Decreased oxygenation of muscle may be accentuated during exercise at high altitude. Monitoring the oxygen saturation of muscle (SmO2) during hand grip exercise using near infrared spectroscopy during acute exposure to hypoxia could provide a model for a test of muscle performance without the competing cardiovascular stresses that occur during a cycle ergometer or treadmill test. The purpose of this study was to examine and compare acute exposure to normobaric hypoxia versus normoxia on deoxygenation and recruitment of the flexor digitorum superficialis (FDS) during submaximal intermittent handgrip exercise (HGE) in healthy adults. Methods Twenty subjects (11 M/9 F) performed HGE at 50% of maximum voluntary contraction, with a duty cycle of 2 s:1 s until task failure on two occasions one week apart, randomly assigned to normobaric hypoxia (FiO2 = 12%) or normoxia (FiO2 = 21%). Near-infrared spectroscopy monitored SmO2, oxygenated (O2Hb), deoxygenated (HHb), and total hemoglobin (tHb) over the FDS. Surface electromyography derived root mean square and mean power frequency of the FDS. Results Hypoxic compared to normoxic HGE induced a lower FDS SmO2 (63.8 ± 2.2 vs. 69.0 ± 1.5, p = 0.001) and both protocols decreased FDS SmO2 from baseline to task failure. FDS mean power frequency was lower during hypoxic compared to normoxic HGE (64.0 ± 1.4 vs. 68.2 ± 2.0 Hz, p = 0.04) and both decreased mean power frequency from the first contractions to task failure (p = 0.000). Under both hypoxia and normoxia, HHb, tHb and root mean square increased from baseline to task failure whereas O2Hb decreased and then increased during HGE. Arterial oxygen saturation via pulse oximetry (SpO2) was lower during hypoxia compared to normoxia conditions (p = 0.000) and heart rate and diastolic blood pressure only demonstrated small increases. Task durations and the tension-time index of HGE did not differ between normoxic and hypoxic trials. Conclusion Hypoxic compared to normoxic HGE decreased SmO2 and induced lower mean power frequency in the FDS, during repetitive hand grip exercise however did not result in differences in task durations or tension-time indices. The fiber type composition of FDS, and high duty cycle and intensity may have contributed greater dependence on anaerobiosis.
Collapse
Affiliation(s)
- Hayley J Nell
- 1Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7 Canada
| | - Laura M Castelli
- 1Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7 Canada
| | - Dino Bertani
- 1Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7 Canada
| | - Aaron A Jipson
- 1Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7 Canada
| | - Sean F Meagher
- 1Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7 Canada
| | - Luana T Melo
- 1Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7 Canada
| | - Karl Zabjek
- 1Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7 Canada.,2KITE, Toronto Rehab-University Health Network, 550 University Ave, Toronto, ON M5G 2A2 Canada
| | - W Darlene Reid
- 1Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7 Canada.,2KITE, Toronto Rehab-University Health Network, 550 University Ave, Toronto, ON M5G 2A2 Canada.,3Interdepartmental Division of Critical Care Medicine, University of Toronto, Li Ka Shing Knowledge Institute, 209 Victoria Street, 4th Floor, Room 411, Toronto, ON M5B 1T8 Canada
| |
Collapse
|
8
|
Kavanagh JJ, Smith KA, Minahan CL. Sex differences in muscle activity emerge during sustained low-intensity contractions but not during intermittent low-intensity contractions. Physiol Rep 2020; 8:e14398. [PMID: 32281749 PMCID: PMC7153036 DOI: 10.14814/phy2.14398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023] Open
Abstract
Sex differences in motor performance may arise depending on the mode of contraction being performed. In particular, contractions that are held for long durations, rather than contractions that are interspersed with rest periods, may induce greater levels of fatigue in men compared to women. The purpose of this study was to examine fatigue responses in a cohort of healthy men (n = 7, age [mean] = 21.6 ± [SD] 1.1 year) and women (n = 7, age: 22.0 ± 2.0 year) during sustained isometric and intermittent isometric contractions. Two contraction protocols were matched for intensity (20% MVC) and total contraction time (600-s). Biceps brachii EMG and elbow flexion torque steadiness were examined throughout each protocol, and motor nerve stimulation was used to quantify central and peripheral fatigue. Overall, there were few sex-related differences in the fatigue responses during intermittent contractions. However, men exhibited progressively lower maximal torque generation (39% versus 27% decrease), progressively greater muscle activity (220% versus 144% increase), progressively greater declines in elbow flexion steadiness (354% versus 285% decrease), and progressively greater self-perception of fatigue (Borg scale: 8.8 ± 1.2 versus 6.3 ± 1.1) throughout the sustained contractions. The mechanism underlying fatigue responses had a muscle component, as voluntary activation of the biceps brachii did not differ between sexes, but the amplitude of resting twitches decreased throughout the sustained contractions (m: 32%, w: 10% decrease). As generating large sustained forces causes a progressive increase in intramuscular pressure and mechanical occlusion-which has the effect of enhancing metabolite accumulation and peripheral fatigue-it is likely that the greater maximal strength of men contributed to their exacerbated levels of fatigue.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Kristen A. Smith
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Clare L. Minahan
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
- Griffith Sports Physiology and PerformanceSchool of Allied Health SciencesGriffith UniversityGold CoastAustralia
| |
Collapse
|
9
|
Starling-Smith TM, La Monica MB, Stout JR, Fukuda DH. Minimal Effects of Moderate Normobaric Hypoxia on the Upper Body Work-Time Relationship in Recreationally Active Women. High Alt Med Biol 2020; 21:62-69. [PMID: 31928420 DOI: 10.1089/ham.2019.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Sex-based differences in metabolism and morphological characteristics may result in unique exercise responses during periods of limited oxygen availability. Purpose: To evaluate the effects of moderate normobaric hypoxia on the parameters of the work-time relationship during upper body exercise in women. Materials and Methods: Thirteen recreationally active women (age: 22.7 ± 2.6 years; height: 167 ± 8.6 cm; weight: 66.4 ± 9.7 kg; body fat: 27.6% ± 5% body fat) completed a maximal graded exercise test in both normobaric hypoxia (H; fraction of inspired oxygen (FiO2) = 0.14) and normoxia (N; FiO2 = 0.20) on an arm ergometer to determine peak oxygen uptake (VO2peak) and peak power output (PPO). Each participant completed four constant, work rate, arm-cranking time-to-exhaustion tests at 90%-120% PPO in both environmental conditions. Linear regression was used to estimate critical power (CP) and anaerobic capacity (W') through the work-time relationship during the constant work rate tests. Paired sample t-tests compared mean differences between VO2peak, PPO, CP, and W' between conditions (normoxia vs. hypoxia). Two-way (condition × intensity) repeated measures analysis of variance (ANOVA) was used to compare total work (TW) and time to exhaustion. Results: Hypoxia significantly reduced VO2peak (N: 1.73 ± 0.31 L·minute-1 vs. H: 1.62 ± 0.27 L·minute-1, p = 0.008), but had no effects on PPO (N: 78.08 ± 14.51 W vs. H: 75.38 ± 13.46 W, p = 0.09), CP (N: 57.44 ± 18.89 W vs. H: 56.01 ± 12.36 W, p = 0.55), and W' (N: 4.81 ± 1.01 kJ vs. H: 4.56 ± 0.91 kJ, p = 0.51). No significant condition × intensity interactions were noted for TW or time to exhaustion (p > 0.05). Conclusions: Moderate normobaric hypoxia significantly reduced VO2peak, but had minimal effects on CP and W' using the work-time model in women.
Collapse
Affiliation(s)
| | | | - Jeffrey R Stout
- Department of Kinesiology, University of Central Florida, Orlando, Florida
| | - David H Fukuda
- Department of Kinesiology, University of Central Florida, Orlando, Florida
| |
Collapse
|
10
|
Looft JM, Herkert N, Frey-Law L. Modification of a three-compartment muscle fatigue model to predict peak torque decline during intermittent tasks. J Biomech 2018; 77:16-25. [PMID: 29960732 PMCID: PMC6092960 DOI: 10.1016/j.jbiomech.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/18/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
Abstract
This study aimed to test whether adding a rest recovery parameter, r, to the analytical three-compartment controller (3CC) fatigue model (Xia and Frey Law, 2008) will improve fatigue estimates during intermittent contractions. The 3CC muscle fatigue model uses differential equations to predict the flow of muscle between three muscle states: Resting (MR), Active (MA), and Fatigued (MF). This model uses a feedback controller to match the active state to target loads and two joint-specific parameters: F, fatigue rate controlling flow from active to fatigued compartments) and R, the recovery rate controlling flow from the fatigued to the resting compartments. This model does well to predict intensity-endurance time curves for sustained isometric tasks. However, previous studies find when rest intervals are present that the model over predicts fatigue. Intermittent rest periods would allow for the occurrence of subsequent reactive vasodilation and post-contraction hyperemia. We hypothesize a modified 3CC-r fatigue model will improve predictions of force decay during intermittent contractions with the addition of a rest recovery parameter, r, to augment recovery during rest intervals, representing muscle re-perfusion. A meta-analysis compiling intermittent fatigue data from 63 publications reporting decline in peak torque (% torque decline) were used for comparison. The original model over-predicted fatigue development from 19 to 29% torque decline; the addition of a rest multiplier significantly improved fatigue estimates to 6-10% torque decline. We conclude the addition of a rest multiplier to the three-compartment controller fatigue model provides a physiologically consistent modification for tasks involving rest intervals, resulting in improved estimates of muscle fatigue.
Collapse
Affiliation(s)
- John M Looft
- Department of Physical Therapy, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA
| | - Nicole Herkert
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Frey-Law
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
11
|
Collins JD, O'Sullivan L. Age and sex related differences in shoulder abduction fatigue. BMC Musculoskelet Disord 2018; 19:280. [PMID: 30081890 PMCID: PMC6080419 DOI: 10.1186/s12891-018-2191-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 07/13/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Injury prevalence data commonly indicate trends of higher rates of work-related musculoskeletal disorders in older workers over their younger counterparts, and for females more than males. The purpose of this study was to investigate age and sex-related differences in manifestations of shoulder muscle fatigue in a cohort of young and older working age males and females, in a single experiment design allowing for direct comparison of the fatigue effects between the target groups. METHODS We report upper trapezius muscle fibre Conduction Velocity (CV) as an indicative measure of muscle fatigability, and isometric endurance time, at three levels of shoulder abduction lifting force set relative to participants' maximal strength. RESULTS Upper trapezius conduction velocity was significantly different between the young and old groups (p = 0.002) as well as between males and females (p = 0.016). Shoulder abduction endurance time was affected by age (P = 0.024) but not sex (p = 0.170). CONCLUSIONS The study identified age-related improvement in muscle fatigue resistance and increased resistance for females over males, contrary to injury prevalence trends. The muscle fatigue effects are most likely explained by muscle fibre type composition. Experimental fatigue treatments of the upper trapezius were tested at exposures relative to the participants' strength. Absolute strength is higher when young and is generally higher for males. The findings of this study point towards age and sex-related differences in strength rather than in muscle fatigue resistance as a primary cause for the differences in the injury trends.
Collapse
Affiliation(s)
- John D Collins
- School of Design, University of Limerick, Limerick, Ireland
| | - Leonard O'Sullivan
- School of Design and Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
12
|
O'Halloran KD, Lewis P, McDonald F. Sex, stress and sleep apnoea: Decreased susceptibility to upper airway muscle dysfunction following intermittent hypoxia in females. Respir Physiol Neurobiol 2016; 245:76-82. [PMID: 27884793 DOI: 10.1016/j.resp.2016.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/19/2016] [Accepted: 11/20/2016] [Indexed: 12/21/2022]
Abstract
Obstructive sleep apnoea syndrome (OSAS) is a devastating respiratory control disorder more common in men than women. The reasons for the sex difference in prevalence are multifactorial, but are partly attributable to protective effects of oestrogen. Indeed, OSAS prevalence increases in post-menopausal women. OSAS is characterized by repeated occlusions of the pharyngeal airway during sleep. Dysfunction of the upper airway muscles controlling airway calibre and collapsibility is implicated in the pathophysiology of OSAS, and sex differences in the neuro-mechanical control of upper airway patency are described. It is widely recognized that chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoea, drives many of the morbid consequences characteristic of the disorder. In rodents, exposure to CIH-related redox stress causes upper airway muscle weakness and fatigue, associated with mitochondrial dysfunction. Of interest, in adults, there is female resilience to CIH-induced muscle dysfunction. Conversely, exposure to CIH in early life, results in upper airway muscle weakness equivalent between the two sexes at 3 and 6 weeks of age. Ovariectomy exacerbates the deleterious effects of exposure to CIH in adult female upper airway muscle, an effect partially restored by oestrogen replacement therapy. Intriguingly, female advantage intrinsic to upper airway muscle exists with evidence of substantially greater loss of performance in male muscle during acute exposure to severe hypoxic stress. Sex differences in upper airway muscle physiology may have relevance to human OSAS. The oestrogen-oestrogen receptor α axis represents a potential therapeutic target in OSAS, particularly in post-menopausal women.
Collapse
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland.
| | - Philip Lewis
- Department of Physiology, University College Cork, Cork, Ireland; Institute and Policlinic for Occupational Medicine, Environmental Medicine and Preventative Research, University of Cologne, Germany
| | - Fiona McDonald
- Physiology, School of Medicine, University College Dublin, Dublin, Ireland; School of Clinical Sciences, Bristol University, Bristol, United Kingdom
| |
Collapse
|
13
|
Lewis P, O'Halloran KD. Sex differences in murine sternohyoid muscle tolerance of acute severe hypoxic stress. Physiol Res 2016; 65:843-851. [PMID: 27429123 DOI: 10.33549/physiolres.933169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Given that sex differences inherent to muscle might at least contribute to male risk for obstructive sleep apnoea syndrome (OSAS), our objective was to test the hypothesis that male sternohyoid muscle exhibits greater susceptibility to severe hypoxic stress compared with female muscle. Adult male and female C57Bl6/J mouse sternohyoid isometric and isotonic functional properties were examined ex vivo at 35 °C in tissue baths under control and severe hypoxic conditions. Hypoxia was detrimental to peak force (Fmax), work (Wmax) and power (Pmax), but not shortening velocity (Vmax). Two-way analysis of variance revealed a significant sex x gas interaction for Fmax (p<0.05), revealing inferior hypoxic tolerance in male sternohyoid muscle. However, increases in male shortening velocity in severe hypoxia preserved power-generating capacity which was equivalent to values determined in female muscle. Fmax decline in hypoxic female sternohyoid was considerably less than in male muscle, illustrating an inherent tolerance of force-generating capacity mechanisms to hypoxic stress in female airway dilator muscle. We speculate that this could confer a distinct advantage in vivo in terms of the defense of upper airway caliber.
Collapse
Affiliation(s)
- P Lewis
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland.
| | | |
Collapse
|
14
|
McDonald FB, Williams R, Sheehan D, O'Halloran KD. Early life exposure to chronic intermittent hypoxia causes upper airway dilator muscle weakness, which persists into young adulthood. Exp Physiol 2015; 100:947-66. [PMID: 26096367 DOI: 10.1113/ep085003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/07/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? Chronic intermittent hypoxia (CIH) is a dominant feature of respiratory control disorders, which are common. We sought to examine the effects of exposure to CIH during neonatal development on respiratory muscle form and function in male and female rats. What is the main finding and its importance? Exposure to CIH during neonatal development caused sternohyoid muscle weakness in both sexes; an effect that persisted into young adult life upon return to normoxia. Upper airway dilator muscle dysfunction in vivo could predispose to airway collapse, leading to impaired respiratory homeostasis. Chronic intermittent hypoxia (CIH) is a feature of sleep-disordered breathing, which is very common. Exposure to CIH is associated with aberrant plasticity in the respiratory control system including the final effector organs, the striated muscles of breathing. We reasoned that developmental age and sex are key factors determining the functional response of respiratory muscle to CIH. We tested the hypothesis that exposure to CIH causes persistent impairment of sternohyoid muscle function due to oxidative stress and that males are more susceptible to CIH-induced muscle impairment than females. Wistar rat litters (with respective dams) were exposed to intermittent hypoxia for 12 cycles per hour, 8 h per day for 3 weeks from the first day of life [postnatal day (P) 0]. Sham experiments were run in parallel. Half of each litter was studied on P22; the other half was returned to normoxia and studied on P42. Functional properties of the sternohyoid muscle were determined ex vivo. Exposure to CIH significantly decreased sternohyoid muscle force in both sexes; an effect that persisted into young adult life. Chronic intermittent hypoxia had no effect on sternohyoid muscle endurance. Chronic intermittent hypoxia did not affect sternohyoid myosin fibre type, succinate dehydrogenase or glycerol-3-phosphate dehydrogenase activities, or protein free thiol and carbonyl content. Muscles exposed to CIH had smaller cross-sectional areas, consistent with the observation of muscle weakness. In human infants with disordered breathing, CIH-induced upper airway dilator muscle weakness could increase the propensity for airway narrowing or collapse, which could serve to perpetuate impaired respiratory homeostasis.
Collapse
Affiliation(s)
- Fiona B McDonald
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Robert Williams
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - David Sheehan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Dublin, Ireland.,Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Abstract
Oxygen-sensing mechanisms have evolved to maintain cell and tissue homeostasis since the ability to sense and respond to changes in oxygen is essential for survival. The primary site of oxygen sensing occurs at the level of the carotid body which in response to hypoxia signals increased ventilation without the need for new protein synthesis. Chronic hypoxia activates cellular sensing mechanisms which lead to protein synthesis designed to alter cellular metabolism so cells can adapt to the low oxygen environment without suffering toxicity. The master regulator of the cellular response is hypoxia-inducible factor (HIF). Activation of this system under condition of hypobaric hypoxia leads to weight loss accompanied by increased basal metabolic rate and suppression of appetite. These effects are dose dependent, gender and genetic specific, and results in adverse effects if the exposure is extreme. Hypoxic adipose tissue may represent a unified cellular mechanism for variety of metabolic disorders, and insulin resistance in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Deborah J Clegg
- Biomedical Research, Cedars-Sinai Medical Center, Beverly Hills, California, USA
| |
Collapse
|
16
|
Palmer BF, Clegg DJ. Ascent to altitude as a weight loss method: the good and bad of hypoxia inducible factor activation. Obesity (Silver Spring) 2014; 22:311-7. [PMID: 23625659 PMCID: PMC4091035 DOI: 10.1002/oby.20499] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/18/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Given the epidemic of obesity worldwide there is a need for more novel and effective weight loss methods. Altitude is well known to be associated with weight loss and has actually been used as a method of weight reduction in obese subjects. This review demonstrates the critical role of hypoxia inducible factor (HIF) in bringing about reductions in appetite and increases in energy expenditure characteristic of hypobaric hypoxia DESIGN AND METHODS A MEDLINE search of English language articles through February 2013 identified publications associating altitude or hypobaric hypoxia with key words to include HIF, weight loss, appetite, basal metabolic rate, leptin, cellular energetics, and obesity. The data from these articles were synthesized to formulate a unique and novel mechanism by which HIF activation leads to alterations in appetite, basal metabolic rate, and reductions in body adiposity. RESULTS A synthesis of previously published literature revealed mechanisms by which altitude induces activation of HIF, thereby suggesting this transcription factor regulates changes in cellular metabolism/energetics, activation of the central nervous system, as well as peripheral pathways leading to reductions in food intake and increases in energy expenditure. CONCLUSIONS Here a unifying hypothesis is present suggesting that activation of HIF under conditions of altitude potentially leads to metabolic benefits that are dose dependent, gender and genetic specific, and results in adverse effects if the exposure is extreme.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
17
|
Tissue Oxygenation in Men and Women During Repeated-Sprint Exercise. Int J Sports Physiol Perform 2012; 7:59-67. [DOI: 10.1123/ijspp.7.1.59] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose:To understand the role of O2 utilization in the sex differences of fatigue during intermittent activity, we compared the cerebral (prefrontal lobe) and muscle (vastus lateralis) oxygenation of men and women during repeated-sprint exercise (RSE).Methods:Ten men and 10 women matched for initial-sprint mechanical work performed ten, 10 s cycle sprints (with 30 s of rest) under normoxic (NM: 21% FIO2) and acute hypoxic (HY: 13% FIO2) conditions in a randomized single-blind and crossover design. Mechanical work was calculated and arterial O2 saturation (SpO2) was estimated via pulse oximetry during every sprint. Cerebral and muscle oxy- (O2Hb) and deoxy-hemoglobin (HHb) were monitored continuously by near-infrared spectroscopy.Results:Compared with NM, work decrement was accentuated (P = 0.01) in HY for both men (–16.4 ± 10.3%) and women (–16.8 ± 9.0%). This was associated with lower SpO2 and lower cerebral Δ[O2Hb] in both sexes (–13.6 ± 7.5%, P = .008, and –134.5 ± 73.8%, P = .003, respectively). These HY-induced changes were nearly identical in these men and women matched for initial-sprint work. Muscle Δ[HHb] increased 9-fold (P = .009) and 5-fold (P = .02) in men and women, respectively, and plateaued. This muscle deoxygenation was not exacerbated in HY.Conclusions:Results indicate that men and women matched for initial-sprint work experience similar levels of fatigue and systemic, cerebral, and peripheral adjustments during RSE performed in NM and HY. These data suggest that cerebral deoxygenation imposes a limitation to repeated-sprint performance.
Collapse
|
18
|
El-Khoury R, Bradford A, O'Halloran KD. Chronic hypobaric hypoxia increases isolated rat fast-twitch and slow-twitch limb muscle force and fatigue. Physiol Res 2012; 61:195-201. [PMID: 22292723 DOI: 10.33549/physiolres.932140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- R El-Khoury
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen’s Green, Dublin, Ireland
| | | | | |
Collapse
|
19
|
de Oliveira CMC, Kubrusly M, Mota RS, Choukroun G, Neto JB, da Silva CAB. Adductor pollicis muscle thickness: a promising anthropometric parameter for patients with chronic renal failure. J Ren Nutr 2011; 22:307-16. [PMID: 22056150 DOI: 10.1053/j.jrn.2011.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 07/16/2011] [Accepted: 07/18/2011] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Protein-calorie malnutrition is a prevalent disorder in chronic renal failure (CRF) and a major risk factor for increased mortality in hemodialysis (HD) patients. Although many methods have been used to assess malnutrition in CRF, the role of adductor pollicis muscle thickness (APMt) is not established yet. AIMS This study aimed to analyze the APMt in HD patients and to investigate the correlation between APMt and conventional anthropometric, laboratory, and bioelectrical impedance markers, as well as its association with mortality/morbidity in a period of 12 months of follow-up. SUBJECTS AND METHODS The study included 143 HD patients from a single facility. After dialysis, the dry weight, height, mid-arm circumference, triceps skinfold thickness, and APMt were measured. Subsequently, the body mass index, percentage of standard body weight, the mid-arm muscle circumference, and the mid-arm muscle area were calculated. Blood counts were performed for hemoglobin, creatinine, and albumin. Patients were also submitted to a single-frequency tetrapolar bioimpedance test for measuring resistance, reactance, phase angle, and percentage of body cell mass. The correlation between APMt and anthropometric, laboratory, and bioelectrical impedance parameters was calculated using Pearson's linear correlation. Multiple linear regression analysis was used to select independent risk factors to death and hospitalizations in 6 and 12 months of follow-up, among parameters selected by univariate analysis. RESULTS Patients were aged 52.2 ± 16.6 years (20 to 83 years) on average, 58% were men, and mean dialysis vintage was 5.27 ± 5.12 years. APMt was 11.85 ± 1.63 mm (men, 12.34 ± 1.53; women, 11.19 ± 1.51; P < .0001). APMt was positively correlated with body mass index (r = 0.37; P < .0001), mid-arm circumference (r = 0.437; P < .0001), mid-arm muscle circumference (r = 0.494; P < .0001), mid-arm muscle area (r = 0.449; P < .0001), percentage of standard body weight (r = 0.355; P = .000), creatinine (r = 0.230; P = .006), albumin (r = 0.207; P = .013), percentage of body cell mass (r = 0.293; P = .000), and phase angle (r = 0.402; P < .0001), and negatively correlated with resistance (r = -0.403; P < .0001). The APMt ≤10.6 mm was associated with a 3.3 times greater risk of hospitalization within 6 months of follow-up (OR = 3.3, 95% CI: 1.13 to 9.66; P = .029) compared with patients with an APMt >10.6 mm. The APMt was not associated with risk of death at 6 and 12 months or hospitalization within 12 months of follow-up. CONCLUSION This is the first study testing APMt as an anthropometric marker in HD patients. The parameter is easy to measure and does not seem to be significantly affected by variations in hydration status. The parameter was significantly correlated with markers reflecting the condition of the muscle compartment, but not with parameters estimating the fat mass. The determination of an APMt cutoff point for malnutrition in patients with CRF and its correlation with morbidity and mortality will require further investigation in clinical studies.
Collapse
|
20
|
Skelly JR, Edge D, Shortt CM, Jones JFX, Bradford A, O'Halloran KD. Tempol ameliorates pharyngeal dilator muscle dysfunction in a rodent model of chronic intermittent hypoxia. Am J Respir Cell Mol Biol 2011; 46:139-48. [PMID: 21868712 DOI: 10.1165/rcmb.2011-0084oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory muscle dysfunction is implicated in the pathophysiology of obstructive sleep apnea syndrome (OSAS), an oxidative stress disorder prevalent in men. Pharmacotherapy for OSAS is an attractive option, and antioxidant treatments may prove beneficial. We examined the effects of chronic intermittent hypoxia (CIH) on breathing and pharyngeal dilator muscle structure and function in male and female rats. Additionally, we tested the efficacy of antioxidant treatment in preventing (chronic administration) or reversing (acute administration) CIH-induced effects in male rats. Adult male and female Wistar rats were exposed to alternating cycles of normoxia and hypoxia (90 s each; Fi(O(2)) = 5% O(2) at nadir; Sa(O(2)) ∼ 80%) or sham treatment for 8 h/d for 9 days. Tempol (1 mM, superoxide dismutase mimetic) was administered to subgroups of sham- and CIH-treated animals. Breathing was assessed by whole-body plethysmography. Sternohyoid muscle contractile and endurance properties were examined in vitro. Muscle fiber type and cross-sectional area and the activity of key metabolic enzymes were determined. CIH decreased sternohyoid muscle force in male rats only. This was not attributable to fiber transitions or alterations in oxidative or glycolytic enzyme activity. Muscle weakness after CIH was prevented by chronic Tempol supplementation and was reversed by acute antioxidant treatment in vitro. CIH increased normoxic ventilation in male rats only. Sex differences exist in the effects of CIH on the respiratory system, which may contribute to the higher prevalence of OSAS in male subjects. Antioxidant treatment may be beneficial as an adjunct OSAS therapy.
Collapse
Affiliation(s)
- J Richard Skelly
- Department of Physiology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
21
|
Katayama K, Ishida K, Iwamoto E, Iemitsu M, Koike T, Saito M. Hypoxia augments muscle sympathetic neural response to leg cycling. Am J Physiol Regul Integr Comp Physiol 2011; 301:R456-64. [PMID: 21593431 DOI: 10.1152/ajpregu.00119.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was demonstrated that acute hypoxia increased muscle sympathetic nerve activity (MSNA) by using a microneurographic method at rest, but its effects on dynamic leg exercise are unclear. The purpose of this study was to clarify changes in MSNA during dynamic leg exercise in hypoxia. To estimate peak oxygen uptake (Vo(2 peak)), two maximal exercise tests were conducted using a cycle ergometer in a semirecumbent position in normoxia [inspired oxygen fraction (Fi(O(2)) = 0.209] and hypoxia (Fi(O(2)) = 0.127). The subjects performed four submaximal exercise tests; two were MSNA trials in normoxia and hypoxia, and two were hematological trials under each condition. In the submaximal exercise test, the subjects completed two 15-min exercises at 40% and 60% of their individual Vo(2 peak) in normoxia and hypoxia. During the MSNA trials, MSNA was recorded via microneurography of the right median nerve at the elbow. During the hematological trials, the subjects performed the same exercise protocol as during the MSNA trials, but venous blood samples were obtained from the antecubital vein to assess plasma norepinephrine (NE) concentrations. MSNA increased at 40% Vo(2 peak) exercise in hypoxia, but not in normoxia. Plasma NE concentrations did not increase at 40% Vo(2 peak) exercise in hypoxia. MSNA at 40% and 60% Vo(2 peak) exercise were higher in hypoxia than in normoxia. These results suggest that acute hypoxia augments muscle sympathetic neural activation during dynamic leg exercise at mild and moderate intensities. They also suggest that the MSNA response during dynamic exercise in hypoxia could be different from the change in plasma NE concentrations.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
The effect of recovery time on strength performance following a high-intensity bench press workout in males and females. Int J Sports Physiol Perform 2010; 5:184-96. [PMID: 20625191 DOI: 10.1123/ijspp.5.2.184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine the effects of training sessions, involving high-resistance, low-repetition bench press exercise, on strength recovery patterns, as a function of gender and training background. METHODS The subjects were 12 athletes (6 males and 6 females) and age-matched college students of both genders (4 males and 4 females). The subjects completed a 3-wk resistance training program involving a bench press exercise, 3 d/wk, to become familiar with the testing procedure. After the completion of the resistance training program, the subjects, on three consecutive weeks, participated in two testing sessions per week, baseline session and recovery session. During the testing sessions, subjects performed five sets of the bench press exercise at 50% to 100% of perceived five repetition maximum (5-RM). Following the weekly baseline sessions, subjects rested during a 4-, 24-, or 48-h recovery period. Strength measurements were estimates of one repetition maximum (1-RM), using equivalent percentages for the number of repetitions completed by the subject at the perceived 5-RM effort of the bench press exercise. RESULTS The full-factorial ANOVA model revealed a Gender by Recovery Period by Testing Session interaction effect, F(2, 32) = 10.65; P < .05. Among male subjects, decreases in estimated 1-RM were detected at the 4- and 24-h recovery times. There were no differences in muscle strength among the female subjects, regardless of recovery time. CONCLUSIONS For bench press exercises, using different recovery times of 48 h for males and 4 h for females may optimize strength development as a function of gender.
Collapse
|
23
|
KATAYAMA KEISHO, YOSHITAKE YASUHIDE, WATANABE KOHEI, AKIMA HIROSHI, ISHIDA KOJI. Muscle Deoxygenation during Sustained and Intermittent Isometric Exercise in Hypoxia. Med Sci Sports Exerc 2010; 42:1269-78. [DOI: 10.1249/mss.0b013e3181cae12f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Men and women exhibit a similar time to task failure for a sustained, submaximal elbow extensor contraction. Eur J Appl Physiol 2009; 108:1089-98. [PMID: 20024575 DOI: 10.1007/s00421-009-1323-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Sex differences in muscle fatigue-resistance have been observed in a variety of muscles and under several conditions. This study compared the time to task failure (TTF) of a sustained isometric elbow extensor (intensity 15% of maximal strength) contraction in young men (n = 12) and women (n = 11), and examined if their neurophysiologic adjustments to fatigue differed. Motor-evoked potential amplitude (MEP), silent period duration, interference electromyogram (EMG) amplitude, maximal muscle action potential (M (max)), heart rate, and mean arterial pressure were measured at baseline, during the task, and during a 2-min ischemia period. Men and women did not differ in TTF (478.2 +/- 31.9 vs. 500.4 +/- 41.3 s; P = 0.67). We also performed an exploratory post hoc cluster analysis, and classified subjects as low (n = 15) or high endurance (n = 8) based on TTF (415.3 +/- 16.0 vs. 626.7 +/- 25.8 s, respectively). The high-endurance group exhibited a lower MEP and EMG at baseline (MEP 16.3 +/- 4.1 vs. 37.2 +/- 3.0% M (max), P < 0.01; EMG 0.98 +/- 0.18 vs. 1.85 +/- 0.26% M (max), P = 0.03). These findings suggest no sex differences in elbow extensor fatigability, in contrast to observations from other muscle groups. The cluster analyses results indicated that high- and low-endurance groups displayed neurophysiologic differences at baseline (before performing the fatigue task), but that they did not differ in fatigue-induced changes in their neurophysiologic adjustments to the task.
Collapse
|
25
|
Billaut F, Smith K. Sex alters impact of repeated bouts of sprint exercise on neuromuscular activity in trained athletes. Appl Physiol Nutr Metab 2009; 34:689-99. [PMID: 19767805 DOI: 10.1139/h09-058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study characterized the effect of sex on neuromuscular activity during repeated bouts of sprint exercise. Thirty-three healthy male and female athletes performed twenty 5-s cycle sprints separated by 25 s of rest. Mechanical work and integrated electromyograhs (iEMG) of 4 muscles of the dominant lower limb were calculated in every sprint. The iEMG signals from individual muscles were summed to represent overall electrical activity of these muscles (sum-iEMG). Neuromuscular efficiency (NME) was calculated as the ratio of mechanical work and sum-iEMG for every sprint. Arterial oxygen saturation was estimated (SpO2) with pulse oximetry throughout the protocol. The sprint-induced work decrement (18.9% vs. 29.6%; p < 0.05) and sum-iEMG reduction (11.4% vs. 19.4%; p < 0.05) were less for the women than for the men. However, the sprints decreased NME (10.1%; p < 0.05) and SpO2 (3.4%; p < 0.05) without showing sex dimorphism. Changes in SpO2 and sum-iEMG were strongly correlated in both sexes (men, R2 = 0.87; women, R2 = 0.91; all p < 0.05), although the slope of this relationship differed (6.3 +/- 2.9 vs. 3.8 +/- 1.6, respectively; p < 0.05). It is suggested that the sex difference in fatigue during repeated bouts of sprint exercise is not likely to be explained by a difference in muscle contractility impairment in men and women, but may be due to a sex difference in muscle recruitment strategy. We speculate that women would be less sensitive to arterial O2 desaturation than men, which may trigger lower neuromuscular adjustments to exhaustive exercise.
Collapse
Affiliation(s)
- François Billaut
- The Integrative Physiology Unit, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | |
Collapse
|
26
|
Deschenes MR, McCoy RW, Holdren AN, Eason MK. Gender influences neuromuscular adaptations to muscle unloading. Eur J Appl Physiol 2009; 105:889-97. [DOI: 10.1007/s00421-008-0974-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2008] [Indexed: 11/28/2022]
|
27
|
Howlett RA, Hogan MC. Effect of hypoxia on fatigue development in rat muscle composed of different fibre types. Exp Physiol 2007; 92:887-94. [PMID: 17545215 DOI: 10.1113/expphysiol.2007.037291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study investigated the relationship between hypoxia and the rate of fatigue development in contracting rat hindlimb muscles composed primarily of different fibre types. Hindlimb muscles of 11 rats were exposed, and the soleus (SOL) and gastrocnemius/plantaris (GP) were each isolated with circulation intact and attached to individual force transducers. Rats were then equilibrated with either normoxic (N; arterial partial pressure of O(2) 87.7 +/- 1.5 mmHg) or hypoxic conditions (H; arterial partial pressure of O(2) 30.0 +/- 2.4 mmHg) using an inspired O(2) fraction of 0.21 and 0.10, respectively. The stimulation protocol consisted of 2 min each at 0.125, 0.25, 0.33 and 0.5 tetanic contractions s(-1) sequentially for both conditions. Following the 8 min stimulation period, relative developed muscle tension (% of maximal) was nearly identical for both H and N in SOL (54.2 +/- 3.5 versus 54.3 +/- 4.2%), but was significantly (P < 0.05) lower in H than N (10.8 +/- 0.9 versus 43.0 +/- 8.9%) in GP, indicating a greater amount of fatigue during hypoxia only in the GP. Soleus phosphocreatine (PCr) content fell to similar levels (24.1 +/- 1.6 versus 21.1 +/- 4.9 mmol (kg dry weight (dw))(-1)) during both H and N, but in the white portion of the gastrocnemius (WG), PCr was significantly lower following H than N (14.3 +/- 1.5 versus 34.0 +/- 6.0 mmol (kg dw)(-1)). Similarly, muscle lactate increased in both fibre types at fatigue, but only in WG was the increase significantly greater with H (SOL 7.1 +/- 2.0 versus 5.3 +/- 1.1 mmol (kg dw)(-1); WG 13.7 +/- 4.5 versus 5.3 +/- 2.2 mmol (kg dw)(-1)). Increases in calculated muscle [H(+)], free ADP and free AMP were similar between N and H in SOL but were significantly greater during H compared with N in WG. These data demonstrate that hypoxia induces greater fatigue and disruption of cellular homeostasis in rat hindlimb muscle composed primarily of fibres with low oxidative capacity compared with those of a more oxidative type.
Collapse
Affiliation(s)
- Richard A Howlett
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0623, USA
| | | |
Collapse
|
28
|
Siafaka A, Angelopoulos E, Kritikos K, Poriazi M, Basios N, Gerovasili V, Andreou A, Roussos C, Nanas S. Acute Effects of Smoking on Skeletal Muscle Microcirculation Monitored by Near-Infrared Spectroscopy. Chest 2007; 131:1479-85. [PMID: 17494797 DOI: 10.1378/chest.06-2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Cigarette smoking predisposes to vascular disease. Our study aimed to assess the acute effects of cigarette smoking on peripheral microcirculation using near-infrared spectroscopy (NIRS) and to compare microcirculatory function of smokers with that of nonsmokers. METHODS We examined 65 healthy volunteers: 25 smokers (14 men and 11 women; age range, 20 to 27 years) and 40 nonsmokers (31 men and 9 women; age range, 19 to 38 years). Smokers had refrained from smoking for 2 h prior to the examination. Tissue O(2) saturation (Sto(2)), defined as the percentage of hemoglobin saturation in the microvasculature compartments, was measured with a probe placed on the thenar muscle. Sto(2) baseline values were recorded for 5 min. Subsequently, the brachial artery occlusion technique was applied to evaluate microcirculatory function before, during, and after smoking one cigarette. RESULTS Sto(2) before smoking was 85 +/- 6% (mean +/- SD), not differing significantly between men and women (84.4 +/- 6.6% vs 85.6 +/- 5.8%, respectively; p = 0.721). Sto(2) did not change significantly during smoking. O(2) consumption rate was significantly greater in women (33.4 +/- 6.7 Sto(2) U/min vs 25.7 +/- 7.1 Sto(2) U/min, p = 0.032) at baseline and throughout the smoking session. O(2) consumption rate was reduced during smoking (p < 0.001) and at 5 min after the smoking session. Smoking had a significant effect on vascular reactivity (p = 0.015), with no significant differences between genders. Five minutes after smoking, vascular reactivity had returned to approximately normal levels. CONCLUSION Smoking acutely affects microcirculatory function. NIRS is a noninvasive, operator-independent technique that can document these effects. It seems promising for the prospective evaluation of the effects of long-term exposure to cigarette smoke.
Collapse
Affiliation(s)
- Angeliki Siafaka
- First Critical Care Department, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moore LG, Grover RF. Jack Reeves and his science. Respir Physiol Neurobiol 2006; 151:96-108. [PMID: 16386471 DOI: 10.1016/j.resp.2005.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 11/30/2022]
Abstract
John T. (Jack) Reeves' science is reviewed across the 37 years of his research career at the University of Colorado Health Sciences Center, a period which occupied approximately half his remarkable life. His contributions centered on understanding the inter-relatedness as well as the underlying mechanisms controlling the various components of the O(2) transport system. We review here his studies on exercise performance; these encompassed about half his scientific output with the other half being devoted to the study of hypoxic pulmonary hypertension. Early studies concerned cardiac output, showing how it was a balance between O(2) uptake and O(2) extraction, and that cardiac output during exercise at high altitude was reduced, most likely because of decreased plasma volume and left ventricular filling. Jack's many studies addressed virtually every aspect of the O(2) transport system -- adding significantly to our understanding of the syndromes of altitude illness, the mechanisms by which ventilatory sensitivity to hypoxia and hypercapnia influenced ventilatory acclimatization, and the contributions of the various limbs of the autonomic nervous system on systemic blood pressure, vascular resistance and substrate utilization. His scientific career ended abruptly in 2004 when struck by a car while biking to work, but his legacy remains in his more than 385+ research articles or chapters, the 40+ fellows he trained, and the countless number of younger (and older) scientists for whom he served as a role model for learning how to scrutinize their data and present their findings in clear and sometimes bold prose. An integral man, he is sorely missed.
Collapse
Affiliation(s)
- Lorna G Moore
- Colorado Center for Altitude Medicine and Physiology (CCAMP), Campus Box B123, University of Colorado at Denver and Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA.
| | | |
Collapse
|
30
|
Russ DW, Lanza IR, Rothman D, Kent-Braun JA. Sex differences in glycolysis during brief, intense isometric contractions. Muscle Nerve 2005; 32:647-55. [PMID: 16025523 DOI: 10.1002/mus.20396] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously observed less muscle fatigue in women than men under conditions of intact circulation, but similar fatigue across the sexes during local ischemia. Thus, we hypothesized that women utilize their aerobic metabolic pathways to a greater extent than do men. To test this hypothesis, we examined the extent to which different pathways of intramuscular adenosine triphosphate (ATP) production were utilized by men and women during maximal voluntary isometric contractions. Force production during 15-s and 60-s contractions were recorded in parallel sessions. In one session, central activation was assessed with electrical stimulation. In the other, phosphorus magnetic resonance spectroscopy was used to quantify muscle oxidative capacity, and the contributions of glycolysis and oxidative phosphorylation to ATP synthesis during the 60-s contraction. Fatigue and central activation were similar in men and women during both the 15-s and 60-s contractions. The rate constants of phosphocreatine recovery following the 15-s contraction were similar in men and women, indicating similar oxidative capacities. Men exhibited greater acidosis and peak glycolytic rates compared with women during the 60-s contraction, with no differences observed in creatine kinase flux or the percent of oxidative capacity utilized. We conclude that men exhibit greater in vivo glycolysis during brief, intense isometric contractions. Although this metabolic difference did not contribute to any observable differences in fatigue in the present study, these results highlight a potentially important mechanism to explain sex-related differences in muscle function.
Collapse
Affiliation(s)
- David W Russ
- Department of Exercise Science, Totman 108, University of Massachusetts, Amherst, 01035, USA
| | | | | | | |
Collapse
|
31
|
Friedl KE. Biomedical Research on Health and Performance of Military Women: Accomplishments of the Defense Women's Health Research Program (DWHRP). J Womens Health (Larchmt) 2005; 14:764-802. [PMID: 16313206 DOI: 10.1089/jwh.2005.14.764] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In 1994, Congress provided dollar 40 M for biomedical research on issues of importance for military women. This supported 104 intramural and 30 extramural studies and launched an era of research to narrow the knowledge gap on protection and enhancement of health and performance of military women. Projects addressed issues specific to female physiology (e.g., gynecological health in the field, maternal malaria), problems with higher prevalence for women (e.g., marginal iron deficiency, stress fracture), and issues of drug and materiel safety that had only been extrapolated from studies of men (e.g., chemical agent prophylaxis, fatigue countermeasures). Several important assumptions about female physiology and occupational risks were found to be astoundingly wrong. Hormonal changes through the menstrual cycle were less important to acute health risks and performance than predicted, exercise did not increase risk for amenorrhea and consequent bone mineral loss, and women tolerated G-forces and could be as safe as men in the cockpit if their equipment was designed for normal size and strength ranges. Data on personal readiness issues, such as body fat, physical fitness, nutrition, and postpartum return to duty, allowed reconsideration of standards that were gender appropriate and not simply disconnected adjustments to existing male standards. Other discoveries directly benefited men as well as women, including development of medical surveillance databases, identification of task strength demands jeopardizing safety and performance, and greater understanding of the effects of psychosocial stress on health and performance. This surge of research has translated into advances for the welfare of service women and the readiness of the entire force; relevant gender issues are now routine considerations for researchers and equipment developers, and some key remaining research gaps of special importance to military women continue to be investigated.
Collapse
Affiliation(s)
- Karl E Friedl
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760-5007, USA.
| |
Collapse
|
32
|
Heneghan N. The influence of gender on skeletal muscle endurance capacity. PHYSICAL THERAPY REVIEWS 2005. [DOI: 10.1179/108331905x68529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Khan S, Evans AAL, Hughes S, Smith ME. Beta-endorphin decreases fatigue and increases glucose uptake independently in normal and dystrophic mice. Muscle Nerve 2005; 31:481-6. [PMID: 15704144 DOI: 10.1002/mus.20286] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
beta-Endorphin and a C-terminal analogue have been shown to decrease muscle fatigue and increase glucose uptake in muscles of normal mice. In order to provide evidence whether these peptides might be useful in muscle-wasting conditions and whether the two actions of the peptides are interdependent, the effect of beta-endorphin on muscle fatigue and glucose uptake was studied using isolated hemidiaphragm preparations of dystrophic mice as well as normal mice. Muscle contractions were elicited by high-frequency stimulation of the phrenic nerve. Glucose uptake was measured using (nonmetabolizable) 2-deoxy-D-[1-(3)H]glucose. beta-Endorphin and the C-terminal analogue reduced fatigue in normal muscles of males but not females. Insulin had no effect in either sex. The peptides increased 2-deoxyglucose uptake in contracting and noncontracting muscles of normal males and females. beta-Endorphin reduced fatigue and increased deoxyglucose uptake in dystrophic muscles. The effect on fatigue was not due to increased glucose uptake, as the energy substrate present was pyruvate. Nerve stimulation released beta-endorphin immunoreactivity from intramuscular nerves of dystrophic mice. It is hypothesized that beta-endorphin released from motor nerves as well as from the pituitary could be responsible for improving muscle function during exercise. beta-Endorphin or analogues could have therapeutic use in muscle-wasting disease.
Collapse
Affiliation(s)
- Salim Khan
- Department of Physiology, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
34
|
Pincivero DM, Coelho AJ, Campy RM. Gender differences in perceived exertion during fatiguing knee extensions. Med Sci Sports Exerc 2004; 36:109-17. [PMID: 14707776 DOI: 10.1249/01.mss.0000106183.23941.54] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To examine gender differences in knee extensor strength, fatigue, and perceived exertion during a single set of continuous dynamic knee extensor contractions. METHODS Fifteen men and 15 women were evaluated for their one-repetition maximum (1RM) during a single-leg, inertial knee extension with their right leg. All subjects then completed a single set of repeated knee extensions with a load equivalent to 50% of their 1RM to failure. Subjects lifted the weight by performing a knee extension, held the weight with the knee extended for 1-2 s, and then lowered the weight in a slow and controlled manner. Perceived exertion was measured after completion of each repetition, by viewing a modified Borg category-ratio (CR-10) scale. Perceived exertion responses were standardized across subjects via linear interpolation and power function modeling. The linear interpolated perceived exertion estimates were then examined for linear, quadratic, and cubic trends across the repetitions. RESULTS Men lifted a significantly greater amount of mass than women, when corrected for body mass. Men and women did not differ significantly in the number of repetitions performed to failure. Women displayed significantly higher power function exponents for the perceived exertion response than men (0.72 +/- 0.16 and 0.57 +/- 0.16, respectively) and demonstrated statistically nonsignificant greater increases in perceived exertion than men across the repetitions. CONCLUSIONS The major findings of this study indicated that: 1) men inherently possessed greater knee extensor strength than women; 2) submaximal fatiguing knee extensor performance did not differ between genders; 3) model selection had a significant impact on standardizing perceived exertion estimates; and 4) subtle gender differences in the perceived exertion response may have existed during submaximal, fatiguing resistance exercise.
Collapse
|
35
|
Calbet JAL, Rådegran G, Boushel R, Søndergaard H, Saltin B, Wagner PD. Plasma volume expansion does not increase maximal cardiac output or VO2 max in lowlanders acclimatized to altitude. Am J Physiol Heart Circ Physiol 2004; 287:H1214-24. [PMID: 15142851 DOI: 10.1152/ajpheart.00840.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Q̇max) decrease. This investigation aimed to determine whether reduction of Q̇max at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 ± 0.6 yr; mean ± SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 ± 0.39 liters) and again 2–4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 ± 0.34 liters). PV expansion had no effect on Q̇max, maximal O2 consumption (V̇o2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body V̇o2 was maintained by greater systemic O2 extraction ( P < 0.05). Leg blood flow was elevated ( P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg V̇o2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Q̇max and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Q̇max at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.
Collapse
Affiliation(s)
- José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35010 Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
36
|
Lameu EB, Gerude MF, Campos AC, Luiz RR. The thickness of the adductor pollicis muscle reflects the muscle compartment and may be used as a new anthropometric parameter for nutritional assessment. Curr Opin Clin Nutr Metab Care 2004; 7:293-301. [PMID: 15075921 DOI: 10.1097/00075197-200405000-00009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Contraction of the adductor pollicis muscle after electrical stimulation (electromyogram) or dynamometry (hand-grip tests) has been evaluated in a variety of clinical conditions as a parameter to assess nutritional status. However, adductor pollicis muscle thickness has not been investigated as an anthropometric parameter. RECENT FINDINGS Prolonged immobilization and non-use of lower and upper limb muscles causes atrophy. Adductor pollicis muscle function is normal in patients with stable chronic obstructive pulmonary disease and multiple sclerosis, whereas the musculature of lower limbs suffers more pronounced functional alterations. Structure and function are relatively preserved in upper limb muscles, probably because of the maintenance of some daily activities involving the arms. Inactivity as a result of a reduction in daily activities is probably the driving factor for these changes. Forearm immobilization for 21 days caused no significant change in muscle morphology, but caused a deterioration in muscle function. Virtually all routinely developed activities requiring opposition of the thumb muscle and repetitive exercise of one muscle group for a given period of time maintain muscle size and function. Apathy is often observed as malnutrition progresses, reducing daily working activity and aggravating adductor pollicis muscle loss besides the muscular catabolism caused by disease. SUMMARY This study provides the first estimates of adductor pollicis muscle thickness in normal healthy individuals. The adductor pollicis muscle has a positive correlation with anthropometric variables that estimate muscle mass, but fails to correlate with parameters that estimate fat mass. This measurement is now being evaluated as an anthropometric parameter in clinical studies.
Collapse
Affiliation(s)
- Edson Braga Lameu
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
37
|
Russ DW, Kent-Braun JA. Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol (1985) 2003; 94:2414-22. [PMID: 12562681 DOI: 10.1152/japplphysiol.01145.2002] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several studies have suggested that women may be more resistant to muscle fatigue than men (Fulco CS, Rock PB, Muza SA, Lammi E, Cymerman A, Butterfield G, Moore, LG, Braun B, and Lewis SF. Acta Physiol Scand 167: 233-239, 1999) possibly because of differences in muscle oxidative metabolism. We evaluated muscle fatigue produced by intermittent, maximal volitional isometric contractions of the dorsiflexor muscles of healthy young (21-34 yr) men (n = 8) and women (n = 8) under two conditions: free-flow (FF) circulation and ischemia. Measures of voluntary and stimulated (10- and 50-Hz) force, central activation ratio (CAR), and compound muscle action potential (CMAP) were collected in each session. The ischemic protocol induced greater fatigue than the FF protocol, in both sexes, and was associated with greater reductions in CAR, CMAP, stimulated force, and the ratio of 10- to 50-Hz force compared with the FF condition. Women fatigued less than men in FF but not during ischemia, and this difference was roughly paralleled by a difference in CAR. No sex effects on the CMAP, tetanic force, and measures of excitation-contraction coupling function were found in the FF condition, suggesting that the primary mechanism behind the difference in fatigue was a relatively greater impairment of central activation in men. The observation that ischemia eliminated the sex differences in fatigue is consistent with a number of studies (Kent-Braun JA, Ng AV, Doyle JW, and Towse TF. J Appl Physiol 93: 1813-1823, 2002) relating fatigue to muscle metabolism and might be the result of sex-based differences in metabolic pathway utilization during muscle contraction.
Collapse
Affiliation(s)
- David W Russ
- Department of Exercise Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
38
|
Sightings. High Alt Med Biol 2001. [DOI: 10.1089/152702901753397036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|