1
|
Yen K, Miller B, Kumagai H, Silverstein A, Cohen P. Mitochondrial-derived microproteins: from discovery to function. Trends Genet 2025; 41:132-145. [PMID: 39690001 PMCID: PMC11794013 DOI: 10.1016/j.tig.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Given the uniqueness of the mitochondria, and the fact that they have their own genome, mitochondrial-derived microproteins (MDPs) are similar to, but different from, nuclear-encoded microproteins. The discovery of an increasing number of microproteins from this organelle and the importance of mitochondria to cellular and organismal health make it a priority to study this novel class of proteins in search of possible therapeutic targets and cures. In this review, we discuss the history of MDP discovery, describe the function of each MDP, and conclude with future goals and techniques to help discover more MDPs.
Collapse
Affiliation(s)
- Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Brendan Miller
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Ana Silverstein
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Soltany A, Daryanoosh F, Gholampour F, Sadat Hosseini N, Khoramipour K. Potential Role of High-Intensity Interval Training-Induced Increase in Humanin Levels for the Management of Type 2 Diabetes. J Cell Mol Med 2025; 29:e70396. [PMID: 39936487 PMCID: PMC11815479 DOI: 10.1111/jcmm.70396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
This study investigated the effect of 8 weeks of high-intensity interval training (HIIT) on oxidative stress, inflammation, and apoptosis in rats with type 2 diabetes (T2D), focusing on the role of the Humanin (HN). In this study, 28 male Wistar rats were assigned to one of four groups: healthy control (CO), diabetes control (T2D), exercise (EX), and diabetes + exercise (T2D + EX). After diabetes induction (2-month high-fat diet and injection of 35 mg/kg streptozotocin), the animals in the EX and T2D + EX groups underwent an 8-week HIIT protocol (4-10, interval of 80%-100% of maximum speed). HOMA-IR, fasting blood glucose, and HN levels were measured in the serum. The expression of HN, Bax, Bcl-2, CAT, GPx, MDA, TNFα, and IL-10 was measured in the soleus muscle. Our results showed that the serum level of HN and the muscle levels of IL-10, SOD, CAT, and Bax were higher in the T2D + EX group than in the T2D group. However, the HOMA-IR index and the muscle levels of MDA, TNFα, and Bcl-2 were lower in the T2D + EX group than in the T2D group. Muscle levels of HN and GPx showed no significant difference between the T2D + EX and T2D groups. The result of Pearson analysis showed a significant correlation between HN and MDA, SOD, Bax and Bcl-2. This study provides evidence that there is a correlation between serum Humanin levels and HIIT. HIIT benefits T2D rats by reducing inflammation and oxidative stress. Given Humanin's established involvement in inflammation and oxidative stress, it is possible that the benefits of HIIT on T2D rats are mediated by humanin.
Collapse
Affiliation(s)
- Afsaneh Soltany
- Department of Biology, College of ScienceShiraz UniversityShirazIran
| | - Farhad Daryanoosh
- Department of Sports Sciences, Faculty of Educational Sciences and PsychologyShiraz UniversityShirazIran
| | | | - Najmeh Sadat Hosseini
- Physiology and Neuroscience Research Center, Institute of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health SciencesMiguel de Cervantes European University (UEMC)ValladolidSpain
| |
Collapse
|
3
|
Lang A, Oehler D, Benkhoff M, Reinders Y, Barcik M, Shahrjerdi K, Kaldirim M, Sickmann A, Dannenberg L, Polzin A, Pfeiler S, Kelm M, Grandoch M, Jung C, Gerdes N. Mitochondrial Creatine Kinase 2 (Ckmt2) as a Plasma-Based Biomarker for Evaluating Reperfusion Injury in Acute Myocardial Infarction. Biomedicines 2024; 12:2368. [PMID: 39457679 PMCID: PMC11504053 DOI: 10.3390/biomedicines12102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myocardial infarction (AMI), characterized by irreversible heart muscle damage and impaired cardiac function caused by myocardial ischemia, is a leading cause of global mortality. The damage associated with reperfusion, particularly mitochondrial dysfunction and reactive oxygen species (ROS) formation, has emerged as a crucial factor in the pathogenesis of cardiac diseases, leading to the recognition of mitochondrial proteins as potential markers for myocardial damage. This study aimed to identify differentially expressed proteins based on the type of cardiac injury, in particular those with and without reperfusion. METHODS Male C57Bl/6J mice were either left untreated, sham-operated, received non-reperfused AMI, or reperfused AMI. Twenty-four hours after the procedures, left ventricular (LV) function and morphological changes including infarct size were determined using echocardiography and triphenyl tetrazolium chloride (TTC) staining, respectively. In addition, plasma was isolated and subjected to untargeted mass spectrometry and, further on, the ELISA-based validation of candidate proteins. RESULTS We identified mitochondrial creatine kinase 2 (Ckmt2) as a differentially regulated protein in plasma of mice with reperfused but not non-reperfused AMI. Elevated levels of Ckmt2 were significantly associated with infarct size and impaired LV function following reperfused AMI, suggesting a specific involvement in reperfusion damage. CONCLUSIONS Our study highlights the potential of plasma Ckmt2 as a biomarker for assessing reperfusion injury and its impact on cardiac function and morphology in the acute phase of MI.
Collapse
Affiliation(s)
- Alexander Lang
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Daniel Oehler
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Marcel Benkhoff
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany; (Y.R.); (A.S.)
| | - Maike Barcik
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Khatereh Shahrjerdi
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Madlen Kaldirim
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany; (Y.R.); (A.S.)
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Lisa Dannenberg
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Amin Polzin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Maria Grandoch
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
- Institute for Translational Pharmacology, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
4
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Li Y, Li Z, Ren Y, Lei Y, Yang S, Shi Y, Peng H, Yang W, Guo T, Yu Y, Xiong Y. Mitochondrial-derived peptides in cardiovascular disease: Novel insights and therapeutic opportunities. J Adv Res 2024; 64:99-115. [PMID: 38008175 PMCID: PMC11464474 DOI: 10.1016/j.jare.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications. AIM OF REVIEW This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Ying Lei
- School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Silong Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuqi Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Han Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Weijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Tiantian Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
6
|
Zhang H, Zhang Y, Zhang J, Jia D. Exercise Alleviates Cardiovascular Diseases by Improving Mitochondrial Homeostasis. J Am Heart Assoc 2024; 13:e036555. [PMID: 39291488 DOI: 10.1161/jaha.124.036555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Engaging in regular exercise and physical activity contributes to delaying the onset of cardiovascular diseases (CVDs). However, the physiological mechanisms underlying the benefits of regular exercise or physical activity in CVDs remain unclear. The disruption of mitochondrial homeostasis is implicated in the pathological process of CVDs. Exercise training effectively delays the onset and progression of CVDs by significantly ameliorating the disruption of mitochondrial homeostasis. This includes improving mitochondrial biogenesis, increasing mitochondrial fusion, decreasing mitochondrial fission, promoting mitophagy, and mitigating mitochondrial morphology and function. This review provides a comprehensive overview of the benefits of physical exercise in the context of CVDs, establishing a connection between the disruption of mitochondrial homeostasis and the onset of these conditions. Through a detailed examination of the underlying molecular mechanisms within mitochondria, the study illuminates how exercise can provide innovative perspectives for future therapies for CVDs.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Yuxuan Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Jiaqiao Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Dandan Jia
- School of Exercise and health Shanghai University of Sport Shanghai China
| |
Collapse
|
7
|
Das D, Podder S. Microscale marvels: unveiling the macroscopic significance of micropeptides in human health. Brief Funct Genomics 2024; 23:624-638. [PMID: 38706311 DOI: 10.1093/bfgp/elae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.
Collapse
Affiliation(s)
- Deepyaman Das
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| |
Collapse
|
8
|
Ha CP, Hua TNM, Vo VTA, Om J, Han S, Cha SK, Park KS, Jeong Y. Humanin activates integrin αV-TGFβ axis and leads to glioblastoma progression. Cell Death Dis 2024; 15:464. [PMID: 38942749 PMCID: PMC11213926 DOI: 10.1038/s41419-024-06790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024]
Abstract
The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFβ) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFβR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFβR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.
Collapse
Affiliation(s)
- Cuong P Ha
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Tuyen N M Hua
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Jiyeon Om
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Sangwon Han
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Seung-Kuy Cha
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Kyu-Sang Park
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| |
Collapse
|
9
|
Kim KH, Lee CB. Socialized mitochondria: mitonuclear crosstalk in stress. Exp Mol Med 2024; 56:1033-1042. [PMID: 38689084 PMCID: PMC11148012 DOI: 10.1038/s12276-024-01211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Traditionally, mitochondria are considered sites of energy production. However, recent studies have suggested that mitochondria are signaling organelles that are involved in intracellular interactions with other organelles. Remarkably, stressed mitochondria appear to induce a beneficial response that restores mitochondrial function and cellular homeostasis. These mitochondrial stress-centered signaling pathways have been rapidly elucidated in multiple organisms. In this review, we examine current perspectives on how mitochondria communicate with the rest of the cell, highlighting mitochondria-to-nucleus (mitonuclear) communication under various stresses. Our understanding of mitochondria as signaling organelles may provide new insights into disease susceptibility and lifespan extension.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea.
| | - Cho Bi Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea
| |
Collapse
|
10
|
Atakan MM, Türkel İ, Özerkliğ B, Koşar ŞN, Taylor DF, Yan X, Bishop DJ. Small peptides: could they have a big role in metabolism and the response to exercise? J Physiol 2024; 602:545-568. [PMID: 38196325 DOI: 10.1113/jp283214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Exercise is a powerful non-pharmacological intervention for the treatment and prevention of numerous chronic diseases. Contracting skeletal muscles provoke widespread perturbations in numerous cells, tissues and organs, which stimulate multiple integrated adaptations that ultimately contribute to the many health benefits associated with regular exercise. Despite much research, the molecular mechanisms driving such changes are not completely resolved. Technological advancements beginning in the early 1960s have opened new avenues to explore the mechanisms responsible for the many beneficial adaptations to exercise. This has led to increased research into the role of small peptides (<100 amino acids) and mitochondrially derived peptides in metabolism and disease, including those coded within small open reading frames (sORFs; coding sequences that encode small peptides). Recently, it has been hypothesized that sORF-encoded mitochondrially derived peptides and other small peptides play significant roles as exercise-sensitive peptides in exercise-induced physiological adaptation. In this review, we highlight the discovery of mitochondrially derived peptides and newly discovered small peptides involved in metabolism, with a specific emphasis on their functions in exercise-induced adaptations and the prevention of metabolic diseases. In light of the few studies available, we also present data on how both single exercise sessions and exercise training affect expression of sORF-encoded mitochondrially derived peptides. Finally, we outline numerous research questions that await investigation regarding the roles of mitochondrially derived peptides in metabolism and prevention of various diseases, in addition to their roles in exercise-induced physiological adaptations, for future studies.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - İbrahim Türkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Özerkliğ
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Victoria, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Min SH, Kang GM, Park JW, Kim MS. Beneficial Effects of Low-Grade Mitochondrial Stress on Metabolic Diseases and Aging. Yonsei Med J 2024; 65:55-69. [PMID: 38288646 PMCID: PMC10827639 DOI: 10.3349/ymj.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria function as platforms for bioenergetics, nutrient metabolism, intracellular signaling, innate immunity regulators, and modulators of stem cell activity. Thus, the decline in mitochondrial functions causes or correlates with diabetes mellitus and many aging-related diseases. Upon stress or damage, the mitochondria elicit a series of adaptive responses to overcome stress and restore their structural integrity and functional homeostasis. These adaptive responses to low-level or transient mitochondrial stress promote health and resilience to upcoming stress. Beneficial effects of low-grade mitochondrial stress, termed mitohormesis, have been observed in various organisms, including mammals. Accumulated evidence indicates that treatments boosting mitohormesis have therapeutic potential in various human diseases accompanied by mitochondrial stress. Here, we review multiple cellular signaling pathways and interorgan communication mechanisms through which mitochondrial stress leads to advantageous outcomes. We also discuss the relevance of mitohormesis in obesity, diabetes, metabolic liver disease, aging, and exercise.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Jae Woo Park
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea.
| |
Collapse
|
12
|
Kal S, Mahata S, Jati S, Mahata SK. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives. Peptides 2024; 172:171147. [PMID: 38160808 PMCID: PMC10838678 DOI: 10.1016/j.peptides.2023.171147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.
Collapse
Affiliation(s)
- Satadeepa Kal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Department of Anesthesiology, Riverside University Health System, Moreno Valley, CA, USA
| | - Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
13
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
Peng M, Zhou Y, Wang Y, Yi Z, Li S, Wan C. Identified Small Open Reading Frame-Encoded Peptides in Human Serum with Nanoparticle Protein Coronas. J Proteome Res 2024; 23:368-376. [PMID: 38006349 DOI: 10.1021/acs.jproteome.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The low-molecular-weight proteins (LMWP) in serum and plasma are related to various human diseases and can be valuable biomarkers. A small open reading frame-encoded peptide (SEP) is one kind of LMWP, which has been found to function in many bioprocesses and has also been found in human blood, making it a potential biomarker. The detection of LMWP by a mass spectrometry (MS)-based proteomic assay is often inhibited by the wide dynamic range of serum/plasma protein abundance. Nanoparticle protein coronas are a newly emerging protein enrichment method. To analyze SEPs in human serum, we have developed a protocol integrated with nanoparticle protein coronas and liquid chromatography (LC)/MS/MS. With three nanoparticles, TiO2, Fe3O4@SiO2, and Fe3O4@SiO2@TiO2, we identified 164 new SEPs in the human serum sample. Fe3O4@SiO2 and a nanoparticle mixture obtained the maximum number and the largest proportion of identified SEPs, respectively. Compared with acetonitrile-based extraction, nanoparticle protein coronas can cover more small proteins and SEPs. The magnetic nanoparticle is also fit for high-throughput parallel protein separation before LC/MS. This method is fast, efficient, reproducible, and easy to operate in 96-well plates and centrifuge tubes, which will benefit the research on SEPs and biomarkers.
Collapse
Affiliation(s)
- Mingbo Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yutian Zhou
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yi Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zi Yi
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Shenglan Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
15
|
Xiao J, Zhang Q, Shan Y, Ye F, Zhang X, Cheng J, Wang X, Zhao Y, Dan G, Chen M, Sai Y. The Mitochondrial-Derived Peptide (MOTS-c) Interacted with Nrf2 to Defend the Antioxidant System to Protect Dopaminergic Neurons Against Rotenone Exposure. Mol Neurobiol 2023; 60:5915-5930. [PMID: 37380822 DOI: 10.1007/s12035-023-03443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
MOTS-c is a 16-amino acid mitochondrial-derived peptide reported to be involved in regulating energy metabolism. However, few studies have reported the role of MOTS-c on neuron degeneration. In this study, it was aimed to explore the action of MOTS-c in rotenone-induced dopaminergic neurotoxicity. In an in vitro study, it was observed that rotenone could influence the expression and localization of MOTS-c significantly in PC12 cells, with more MOTS-c translocating into the nucleus from mitochondria. Further study showed that the translocation of MOTS-c from the mitochondria into the nucleus could directly interact with Nrf2 to regulate HO-1 and NQO1 expression in PC12 cells exposed to rotenone, which had been suggested to be involved in the antioxidant defense system. In vivo and in vitro experiments demonstrated that exogenous MOTS-c pretreatment could protect PC12 cells and rats from mitochondrial dysfunction and oxidative stress induced by rotenone. Moreover, MOTS-c pretreatment significantly decreased the loss of TH, PSD95, and SYP protein expression in the striatum of rats exposed to rotenone. In addition, MOTS-c pretreatment could clearly alleviate the downregulated expression of Nrf2, HO-1, and NQO1, as well as the upregulated Keap1 protein expression in the striatum of rotenone-treated rats. Taken together, these findings suggested that MOTS-c could directly interact with Nrf2 to activate the Nrf2/HO-1/NQO1 signal pathway to defend the antioxidant system to prevent dopaminergic neurons from rotenone-induced oxidative stress and neurotoxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Jingsong Xiao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Qifu Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yaohui Shan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jin Cheng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xiaogang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yuanpeng Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Guorong Dan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingliang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yan Sai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
16
|
Delgado-Peraza F, Nogueras-Ortiz C, Simonsen AH, Knight DD, Yao PJ, Goetzl EJ, Jensen CS, Høgh P, Gottrup H, Vestergaard K, Hasselbalch SG, Kapogiannis D. Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer's disease. Alzheimers Res Ther 2023; 15:156. [PMID: 37730689 PMCID: PMC10510190 DOI: 10.1186/s13195-023-01303-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Neuron-derived extracellular vesicles (NDEVs) in blood may be used to derive biomarkers for the effects of exercise in Alzheimer's disease (AD). For this purpose, we studied changes in neuroprotective proteins proBDNF, BDNF, and humanin in plasma NDEVs from patients with mild to moderate AD participating in the randomized controlled trial (RCT) of exercise ADEX. METHODS proBDNF, BDNF, and humanin were quantified in NDEVs immunocaptured from the plasma of 95 ADEX participants, randomized into exercise and control groups, and collected at baseline and 16 weeks. Exploratorily, we also quantified NDEV levels of putative exerkines known to respond to exercise in peripheral tissues. RESULTS NDEV levels of proBDNF, BDNF, and humanin increased in the exercise group, especially in APOE ε4 carriers, but remained unchanged in the control group. Inter-correlations between NDEV biomarkers observed at baseline were maintained after exercise. NDEV levels of putative exerkines remained unchanged. CONCLUSIONS Findings suggest that the cognitive benefits of exercise could be mediated by the upregulation of neuroprotective factors in NDEVs. Additionally, our results indicate that AD subjects carrying APOE ε4 are more responsive to the neuroprotective effects of physical activity. Unchanged NDEV levels of putative exerkines after physical activity imply that exercise engages different pathways in neurons and peripheral tissues. Future studies should aim to expand upon the effects of exercise duration, intensity, and type in NDEVs from patients with early AD and additional neurodegenerative disorders. TRIAL REGISTRATION The Effect of Physical Exercise in Alzheimer Patients (ADEX) was registered in ClinicalTrials.gov on April 30, 2012 with the identifier NCT01681602.
Collapse
Affiliation(s)
- Francheska Delgado-Peraza
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Carlos Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, 2100, Copenhagen, Denmark
| | - De'Larrian DeAnté Knight
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward J Goetzl
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Research Department, Campus for Jewish Living, San Francisco, CA, 94112, USA
| | - Camilla Steen Jensen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, 2100, Copenhagen, Denmark
| | - Peter Høgh
- Department of Neurology, Zealand University Hospital, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Hanne Gottrup
- Department of Neurology, Dementia Clinic, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Karsten Vestergaard
- Department of Neurology, Dementia Clinic, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
17
|
Emser SV, Spielvogel CP, Millesi E, Steinborn R. Mitochondrial polymorphism m.3017C>T of SHLP6 relates to heterothermy. Front Physiol 2023; 14:1207620. [PMID: 37675281 PMCID: PMC10478271 DOI: 10.3389/fphys.2023.1207620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Heterothermic thermoregulation requires intricate regulation of metabolic rate and activation of pro-survival factors. Eliciting these responses and coordinating the necessary energy shifts likely involves retrograde signalling by mitochondrial-derived peptides (MDPs). Members of the group were suggested before to play a role in heterothermic physiology, a key component of hibernation and daily torpor. Here we studied the mitochondrial single-nucleotide polymorphism (SNP) m.3017C>T that resides in the evolutionarily conserved gene MT-SHLP6. The substitution occurring in several mammalian orders causes truncation of SHLP6 peptide size from twenty to nine amino acids. Public mass spectrometric (MS) data of human SHLP6 indicated a canonical size of 20 amino acids, but not the use of alternative translation initiation codons that would expand the peptide. The shorter isoform of SHLP6 was found in heterothermic rodents at higher frequency compared to homeothermic rodents (p < 0.001). In heterothermic mammals it was associated with lower minimal body temperature (T b, p < 0.001). In the thirteen-lined ground squirrel, brown adipose tissue-a key organ required for hibernation, showed dynamic changes of the steady-state transcript level of mt-Shlp6. The level was significantly higher before hibernation and during interbout arousal and lower during torpor and after hibernation. Our finding argues to further explore the mode of action of SHLP6 size isoforms with respect to mammalian thermoregulation and possibly mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Sarah V. Emser
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Thamarai Kannan H, Issac PK, Dey N, Guru A, Arockiaraj J. A Review on Mitochondrial Derived Peptide Humanin and Small Humanin-Like Peptides and Their Therapeutic Strategies. Int J Pept Res Ther 2023; 29:86. [DOI: 10.1007/s10989-023-10558-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 10/16/2023]
|
19
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Bucci C, Leeuwenburgh C, Marzetti E. Mitochondrial-derived vesicles in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 2023; 143:37-45. [PMID: 35367122 DOI: 10.1016/j.semcdb.2022.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/25/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial remodeling is crucial to meet the bioenergetic demand to support muscle contractile activity during daily tasks and muscle regeneration following injury. A set of mitochondrial quality control (MQC) processes, including mitochondrial biogenesis, dynamics, and mitophagy, are in place to maintain a well-functioning mitochondrial network and support muscle regeneration. Alterations in any of these pathways compromises mitochondrial quality and may potentially lead to impaired myogenesis, defective muscle regeneration, and ultimately loss of muscle function. Among MQC processes, mitophagy has gained special attention for its implication in the clearance of dysfunctional mitochondria via crosstalk with the endo-lysosomal system, a major cell degradative route. Along this pathway, additional opportunities for mitochondrial disposal have been identified that may also signal at the systemic level. This communication occurs via inclusion of mitochondrial components within membranous shuttles named mitochondrial-derived vesicles (MDVs). Here, we discuss MDV generation and release as a mitophagy-complementing route for the maintenance of mitochondrial homeostasis in skeletal myocytes. We also illustrate the possible role of muscle-derived MDVs in immune signaling during muscle remodeling and adaptation.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, USA
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Department of Geriatrics and Orthopedics, Rome, Italy.
| |
Collapse
|
20
|
Moore TM, Lee S, Olsen T, Morselli M, Strumwasser AR, Lin AJ, Zhou Z, Abrishami A, Garcia SM, Bribiesca J, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Nguyen CQA, Anand ATS, Yackly A, Mendoza LQ, Leyva BK, Aliman C, Artiga DJ, Meng Y, Charugundla S, Pan C, Jedian V, Seldin MM, Ahn IS, Diamante G, Blencowe M, Yang X, Mouisel E, Pellegrini M, Turcotte LP, Birkeland KI, Norheim F, Drevon CA, Lusis AJ, Hevener AL. Conserved multi-tissue transcriptomic adaptations to exercise training in humans and mice. Cell Rep 2023; 42:112499. [PMID: 37178122 PMCID: PMC11352395 DOI: 10.1016/j.celrep.2023.112499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/04/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over 50 complex traits before and after exercise intervention in middle-aged men and a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids. Although ∼33% of genes differentially expressed in skeletal muscle following the exercise intervention are similar in mice and humans independent of BMI, responsiveness of adipose tissue to exercise-stimulated weight loss appears controlled by species and underlying genotype. We leveraged genetic diversity to generate prediction models of metabolic trait responsiveness to volitional activity offering a framework for advancing personalized exercise prescription. The human and mouse data are publicly available via a user-friendly Web-based application to enhance data mining and hypothesis development.
Collapse
Affiliation(s)
- Timothy M Moore
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Sindre Lee
- Department of Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander R Strumwasser
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Amanda J Lin
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Aaron Abrishami
- Department of Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Steven M Garcia
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer Bribiesca
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph L Lee
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Rucker
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Q A Nguyen
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Akshay T S Anand
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Aidan Yackly
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Lorna Q Mendoza
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Brayden K Leyva
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Claudia Aliman
- Department of Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel J Artiga
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonghong Meng
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarada Charugundla
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Vida Jedian
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus M Seldin
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - In Sook Ahn
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Montgomery Blencowe
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 Inserm, Paul Sabatier University, Toulouse, France
| | - Matteo Pellegrini
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Lorraine P Turcotte
- Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kåre I Birkeland
- Department of Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Frode Norheim
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aldons J Lusis
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Iris Cantor-UCLA Women's Health Research Center, Los Angeles, CA, USA; Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Los Angeles, CA, USA.
| |
Collapse
|
21
|
Dabravolski SA. Mitochondria-derived peptides in healthy ageing and therapy of age-related diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:197-215. [PMID: 37437978 DOI: 10.1016/bs.apcsb.2023.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by mitochondrial DNA and involved in various stress-protecting mechanisms. To date, eight mitochondrial-derived peptides have been identified: MOTS-c sequence is hidden in the 12 S rRNA gene (MT-RNR1), and the other 7 (humanin and small humanin-like peptides 1-6) are encoded by the 16 S rRNA (MT-RNR2) gene. While the anti-apoptotic, anti-inflammatory and cardioprotective activities of MDPs are well described, recent research suggests that MDPs are sensitive metabolic sensors, closely connected with mtDNA mutation-associated diseases and age-associated metabolic disorders. In this chapter, we focus on the recent progress in understanding the metabolo-protective properties of MDPs, their role in maintenance of the cellular and mitochondrial homeostasis associated with age-related diseases: Alzheimer's disease, cognitive decline, macular degeneration and cataracts. Also, we will discuss MDPs-based and MDPs-targeted interventions to treat age-related diseases and extend a healthy lifespan.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel 2161002, Israel.
| |
Collapse
|
22
|
Coradduzza D, Congiargiu A, Chen Z, Cruciani S, Zinellu A, Carru C, Medici S. Humanin and Its Pathophysiological Roles in Aging: A Systematic Review. BIOLOGY 2023; 12:558. [PMID: 37106758 PMCID: PMC10135985 DOI: 10.3390/biology12040558] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decline in cellular functions and proliferation, resulting in increased cellular damage and death. These conditions play an essential role in aging and significantly contribute to the development of age-related complications. Humanin is a mitochondrial-derived peptide (MDP), encoded by mitochondrial DNA, playing a cytoprotective role to preserve mitochondrial function and cell viability under stressful and senescence conditions. For these reasons, humanin can be exploited in strategies aiming to counteract several processes involved in aging, including cardiovascular disease, neurodegeneration, and cancer. Relevance of these conditions to aging and disease: Senescence appears to be involved in the decay in organ and tissue function, it has also been related to the development of age-related diseases, such as cardiovascular conditions, cancer, and diabetes. In particular, senescent cells produce inflammatory cytokines and other pro-inflammatory molecules that can participate to the development of such diseases. Humanin, on the other hand, seems to contrast the development of such conditions, and it is also known to play a role in these diseases by promoting the death of damaged or malfunctioning cells and contributing to the inflammation often associated with them. Both senescence and humanin-related mechanisms are complex processes that have not been fully clarified yet. Further research is needed to thoroughly understand the role of such processes in aging and disease and identify potential interventions to target them in order to prevent or treat age-related conditions. OBJECTIVES This systematic review aims to assess the potential mechanisms underlying the link connecting senescence, humanin, aging, and disease.
Collapse
Affiliation(s)
| | | | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
23
|
Burtscher J, Soltany A, Visavadiya NP, Burtscher M, Millet GP, Khoramipour K, Khamoui AV. Mitochondrial stress and mitokines in aging. Aging Cell 2023; 22:e13770. [PMID: 36642986 PMCID: PMC9924952 DOI: 10.1111/acel.13770] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023] Open
Abstract
Mitokines are signaling molecules that enable communication of local mitochondrial stress to other mitochondria in distant cells and tissues. Among those molecules are FGF21, GDF15 (both expressed in the nucleus) and several mitochondrial-derived peptides, including humanin. Their responsiveness to mitochondrial stress induces mitokine-signaling in response for example to exercise, following mitochondrial challenges in skeletal muscle. Such signaling is emerging as an important mediator of exercise-derived and dietary strategy-related molecular and systemic health benefits, including healthy aging. A compensatory increase in mitokine synthesis and secretion could preserve mitochondrial function and overall cellular vitality. Conversely, resistance against mitokine actions may also develop. Alterations of mitokine-levels, and therefore of mitokine-related inter-tissue cross talk, are associated with general aging processes and could influence the development of age-related chronic metabolic, cardiovascular and neurological diseases; whether these changes contribute to aging or represent "rescue factors" remains to be conclusively shown. The aim of the present review is to summarize the expanding knowledge on mitokines, the potential to modulate them by lifestyle and their involvement in aging and age-related diseases. We highlight the importance of well-balanced mitokine-levels, the preventive and therapeutic properties of maintaining mitokine homeostasis and sensitivity of mitokine signaling but also the risks arising from the dysregulation of mitokines. While reduced mitokine levels may impair inter-organ crosstalk, also excessive mitokine concentrations can have deleterious consequences and are associated with conditions such as cancer and heart failure. Preservation of healthy mitokine signaling levels can be achieved by regular exercise and is associated with an increased lifespan.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Afsaneh Soltany
- Department of Biology, Faculty of ScienceUniversity of ShirazShirazIran
| | - Nishant P. Visavadiya
- Department of Exercise Science and Health PromotionFlorida Atlantic UniversityBoca RatonFloridaUSA
| | - Martin Burtscher
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Grégoire P. Millet
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Neuroscience Research Center, Institute of Neuropharmacology, and Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
| | - Andy V. Khamoui
- Department of Exercise Science and Health PromotionFlorida Atlantic UniversityBoca RatonFloridaUSA
| |
Collapse
|
24
|
Kumagai H, Miller B, Kim SJ, Leelaprachakul N, Kikuchi N, Yen K, Cohen P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes (Basel) 2023; 14:286. [PMID: 36833212 PMCID: PMC9956216 DOI: 10.3390/genes14020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sports genetics research began in the late 1990s and over 200 variants have been reported as athletic performance- and sports injuries-related genetic polymorphisms. Genetic polymorphisms in the α-actinin-3 (ACTN3) and angiotensin-converting enzyme (ACE) genes are well-established for athletic performance, while collagen-, inflammation-, and estrogen-related genetic polymorphisms are reported as genetic markers for sports injuries. Although the Human Genome Project was completed in the early 2000s, recent studies have discovered previously unannotated microproteins encoded in small open reading frames. Mitochondrial microproteins (also called mitochondrial-derived peptides) are encoded in the mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c (mitochondrial ORF of the 12S rRNA type-c), SHLPs 1-6 (small humanin-like peptides 1 to 6), SHMOOSE (Small Human Mitochondrial ORF Over SErine tRNA), and Gau (gene antisense ubiquitous in mtDNAs) have been identified to date. Some of those microproteins have crucial roles in human biology by regulating mitochondrial function, and those, including those to be discovered in the future, could contribute to a better understanding of human biology. This review describes a basic concept of mitochondrial microproteins and discusses recent findings about the potential roles of mitochondrial microproteins in athletic performance as well as age-related diseases.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya-ku, Tokyo 158-8508, Japan
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
25
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Nashine S, Cohen P, Wan J, Kenney C. Effect of Humanin G (HNG) on inflammation in age-related macular degeneration (AMD). Aging (Albany NY) 2022; 14:4247-4269. [PMID: 35576057 PMCID: PMC9186758 DOI: 10.18632/aging.204074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Inflammation plays a crucial role in the etiology and pathogenesis of AMD (Age-related Macular Degeneration). Humanin G (HNG) is a Mitochondrial Derived Peptide (MDP) that is cytoprotective in AMD and can protect against mitochondrial and cellular stress induced by damaged AMD mitochondria. The goal of this study was to test our hypothesis that inflammation-associated marker protein levels are increased in AMD and treatment with HNG leads to reduction in their protein levels. Humanin protein levels were measured in the plasma of AMD patients and normal subjects using ELISA assay. Humanin G was added to AMD and normal (control) cybrids which had identical nuclei from mitochondria-deficient ARPE-19 cells but differed in mitochondrial DNA (mtDNA) content derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal cybrids, and the Luminex XMAP multiplex assay was used to measure the levels of inflammatory proteins. AMD plasma showed reduced Humanin protein levels, but higher protein levels of inflammation markers compared to control plasma samples. In AMD RPE cybrid cells, Humanin G reduced the CD62E/ E-Selectin, CD62P/ P-Selectin, ICAM-1, TNF-α, MIP-1α, IFN–γ, IL-1β, IL-13, and IL-17A protein levels, thereby suggesting that Humanin G may rescue from mtDNA-mediated inflammation in AMD cybrids. In conclusion, we present novel findings that: A) show reduced Humanin protein levels in AMD plasma vs. normal plasma; B) suggest the role of inflammatory markers in AMD pathogenesis, and C) highlight the positive effects of Humanin G in reducing inflammation in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Pinchas Cohen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Junxiang Wan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Yoon TK, Lee CH, Kwon O, Kim MS. Exercise, Mitohormesis, and Mitochondrial ORF of the 12S rRNA Type-C (MOTS-c). Diabetes Metab J 2022; 46:402-413. [PMID: 35656563 PMCID: PMC9171157 DOI: 10.4093/dmj.2022.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Low levels of mitochondrial stress are beneficial for organismal health and survival through a process known as mitohormesis. Mitohormetic responses occur during or after exercise and may mediate some salutary effects of exercise on metabolism. Exercise-related mitohormesis involves reactive oxygen species production, mitochondrial unfolded protein response (UPRmt), and release of mitochondria-derived peptides (MDPs). MDPs are a group of small peptides encoded by mitochondrial DNA with beneficial metabolic effects. Among MDPs, mitochondrial ORF of the 12S rRNA type-c (MOTS-c) is the most associated with exercise. MOTS-c expression levels increase in skeletal muscles, systemic circulation, and the hypothalamus upon exercise. Systemic MOTS-c administration increases exercise performance by boosting skeletal muscle stress responses and by enhancing metabolic adaptation to exercise. Exogenous MOTS-c also stimulates thermogenesis in subcutaneous white adipose tissues, thereby enhancing energy expenditure and contributing to the anti-obesity effects of exercise training. This review briefly summarizes the mitohormetic mechanisms of exercise with an emphasis on MOTS-c.
Collapse
Affiliation(s)
- Tae Kwan Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, H+ Yangji Hospital, Seoul, Korea
| | - Chan Hee Lee
- Department of of Biomedical Science & Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Alser M, Ramanjaneya M, Rizwana Anwardeen N, Donati F, Botrè F, Jerobin J, Bettahi I, Mohamed NA, Abou-Samra AB, Elrayess MA. The Effect of Chronic Endurance Exercise on Serum Levels of MOTS-c and Humanin in Professional Athletes. Rev Cardiovasc Med 2022; 23:181. [PMID: 39077591 PMCID: PMC11273660 DOI: 10.31083/j.rcm2305181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 07/31/2024] Open
Abstract
Background Humanin and the mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are mitochondrial encoded peptides involved in energy metabolism, cytoprotection, longevity, insulin sensitivity and their expression decrease with age. Levels of these molecules have been shown to respond to acute exercise, however little is known about their modulation under different chronic exercise conditions. In this study, we aim to compare levels of Humanin and MOTS-c in non-athletes vs professional (moderate and high endurance) athletes. Methods Serum samples were collected from 30 non-athlete controls and 75 professional athletes (47 low/moderate endurance and 28 high endurance athletes). Levels of Humanin and MOTS-c were measured by the enzyme linked immunosorbent aaasy (ELISA) and linear models were generated to compare the effect of different levels of endurance exercise on these factors in different age groups. Spearman correlation was used to assess the correlation between these factors in athletes and non-athletes. Results We showed that professional athletes had lower levels of MOTS-c and higher levels of Humanin than sedentary controls. Within the athletic groups, high endurance athletes had lower levels of Humanin than low/moderate endurance athletes of the same gender/age groups, whereas MOTS-c levels did not change between the subgroups. Humanin and MOTS-c levels were highly correlated in athletes, but not in sedentary controls. Conclusions This pilot data suggests that serum levels of the mitochondrial proteins MOTS-c and Humanin change in response to chronic exercise with implications on energy metabolism and performance.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, 3050 Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, 3050 Doha, Qatar
| | | | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, 00197 Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, 00197 Rome, Italy
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Hamad Medical Corporation, 3050 Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Ilham Bettahi
- Qatar Metabolic Institute, Hamad Medical Corporation, 3050 Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, 3050 Doha, Qatar
| | | | | | - Mohamed A Elrayess
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
- QU Health, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
29
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
30
|
Emerging Therapeutic Potential of Short Mitochondrial-produced Peptides for Anabolic Osteogenesis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Kim SJ, Devgan A, Miller B, Lee SM, Kumagai H, Wilson KA, Wassef G, Wong R, Mehta HH, Cohen P, Yen K. Humanin-induced autophagy plays important roles in skeletal muscle function and lifespan extension. Biochim Biophys Acta Gen Subj 2022; 1866:130017. [PMID: 34624450 PMCID: PMC8595716 DOI: 10.1016/j.bbagen.2021.130017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Autophagy, a highly conserved homeostatic mechanism, is essential for cell survival. The decline of autophagy function has been implicated in various diseases as well as aging. Although mitochondria play a key role in the autophagy process, whether mitochondrial-derived peptides are involved in this process has not been explored. METHODS We developed a high through put screening method to identify potential autophagy inducers among mitochondrial-derived peptides. We used three different cell lines, mice, c.elegans, and a human cohort to validate the observation. RESULTS Humanin, a mitochondrial-derived peptide, increases autophagy and maintains autophagy flux in several cell types. Humanin administration increases the expression of autophagy-related genes and lowers accumulation of harmful misfolded proteins in mice skeletal muscle, suggesting that humanin-induced autophagy potentially contributes to the improved skeletal function. Moreover, autophagy is a critical role in humanin-induced lifespan extension in C. elegans. CONCLUSIONS Humanin is an autophagy inducer. GENERAL SIGNIFICANCE This paper presents a significant, novel discovery regarding the role of the mitochondrial derived peptide humanin in autophagy regulation and as a possible therapeutic target for autophagy in various age-related diseases.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anjali Devgan
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sam Mool Lee
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | - Gabriella Wassef
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Richard Wong
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Woodhead JST, Merry TL. Mitochondrial-derived peptides and exercise. Biochim Biophys Acta Gen Subj 2021; 1865:130011. [PMID: 34520826 DOI: 10.1016/j.bbagen.2021.130011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
Acute exercise, and in particular aerobic exercise, increases skeletal muscle energy demand causing mitochondrial stress, and mitochondrial-related adaptations which are a hallmark of exercise training. Given that mitochondria are central players in the exercise response, it is imperative that they have networks that can communicate their status both intra- and inter-cellularly. Peptides encoded by short open-reading frames within mitochondrial DNA, mitochondrial-derived peptides (MDPs), have been suggested to form a newly recognised branch of this retrograde signalling cascade that contribute to coordinating the adaptive response to regular exercise. Here we summarise the recent evidence that acute high intensity exercise in humans can increase concentrations of the MDPs humanin and MOTS-c in skeletal muscle and plasma, and speculate on the mechanisms controlling MDP responses to exercise stress. Evidence that exercise training results in chronic changes in MDP expression within tissues and the circulation is conflicting and may depend on the mode, duration, intensity of training plan and participant characteristics. Further research is required to define the effect of these variables on MDPs and to determine whether MDPs other than MOTS-c have exercise mimetic properties. MOTS-c treatment of young and aged mice improves exercise capacity/performance and leads to adaptions that are similar to that of being physically active (weight loss, increased antioxidant capacity and improved insulin sensitivity), however, studies utilising a MOTS-c inactivating genetic variant or combination of exercise + MOTS-c treatment in mice suggest that there are distinct and overlapping pathways through which exercise and MOTS-c evoke metabolic benefits. Overall, MOTS-c, and potentially other MDPs, may be exercise-sensitive myokines and further work is required to define inter- and intra-tissue targets in an exercise context.
Collapse
Affiliation(s)
- Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
33
|
Zhang X, Gao F. Exercise improves vascular health: Role of mitochondria. Free Radic Biol Med 2021; 177:347-359. [PMID: 34748911 DOI: 10.1016/j.freeradbiomed.2021.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Vascular mitochondria constantly integrate signals from environment and respond accordingly to match vascular function to metabolic requirements of the organ tissues, while mitochondrial dysfunction contributes to vascular aging and pathologies such as atherosclerosis, stenosis, and hypertension. As an effective lifestyle intervention, exercise induces extensive mitochondrial adaptations through vascular mechanical stress and the increased production and release of reactive oxygen species and nitric oxide that activate multiple intracellular signaling pathways, among which peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays a critical role. PGC-1α coordinates mitochondrial quality control mechanisms to maintain a healthy mitochondrial pool and promote endothelial nitric oxide synthase activity in vasculature. The mitochondrial adaptations to exercise improve bioenergetics, balance redox status, protect endothelial cells against detrimental insults, increase vascular plasticity, and ameliorate aging-related vascular dysfunction, thus benefiting vascular health. This review highlights recent findings of mitochondria as a central hub integrating exercise-afforded vascular benefits and its underlying mechanisms. A better understanding of the mitochondrial adaptations to exercise will not only shed light on the mechanisms of exercise-induced cardiovascular protection, but may also provide new clues to mitochondria-oriented precise exercise prescriptions for cardiovascular health.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
34
|
Zanini G, De Gaetano A, Selleri V, Savino G, Cossarizza A, Pinti M, Mattioli AV, Nasi M. Mitochondrial DNA and Exercise: Implications for Health and Injuries in Sports. Cells 2021; 10:cells10102575. [PMID: 34685555 PMCID: PMC8533813 DOI: 10.3390/cells10102575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, several studies have highlighted the tight connection between mitochondria and physical activity. Mitochondrial functions are important in high-demanding metabolic activities, such as endurance sports. Moreover, regular training positively affects metabolic health by increasing mitochondrial oxidative capacity and regulating glucose metabolism. Exercise could have multiple effects, also on the mitochondrial DNA (mtDNA) and vice versa; some studies have investigated how mtDNA polymorphisms can affect the performance of general athletes and mtDNA haplogroups seem to be related to the performance of elite endurance athletes. Along with several stimuli, including pathogens, stress, trauma, and reactive oxygen species, acute and intense exercise also seem to be responsible for mtDNA release into the cytoplasm and extracellular space, leading to the activation of the innate immune response. In addition, several sports are characterized by a higher frequency of injuries, including cranial trauma, associated with neurological consequences. However, with regular exercise, circulating cell-free mtDNA levels are kept low, perhaps promoting cf-mtDNA removal, acting as a protective factor against inflammation.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Gustavo Savino
- Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, 41121 Modena, Italy;
| | - Andrea Cossarizza
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-205-5422
| |
Collapse
|
35
|
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Front Physiol 2021; 12:709807. [PMID: 34456749 PMCID: PMC8387622 DOI: 10.3389/fphys.2021.709807] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Collapse
|
36
|
von Walden F, Fernandez-Gonzalo R, Norrbom JM, Emanuelsson EB, Figueiredo VC, Gidlund EK, Norrbrand L, Liu C, Sandström P, Hansson B, Wan J, Cohen P, Alkner B. Acute endurance exercise stimulates circulating levels of mitochondrial derived peptides in humans. J Appl Physiol (1985) 2021; 131:1035-1042. [PMID: 34351816 DOI: 10.1152/japplphysiol.00706.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown. Following familiarization, subjects were randomized to EE (n=10, 45 min cycling at 70% of estimated VO2max), RE (n=10, 4 sets x 7RM, leg press and knee extension), or control (CON, n=10). Skeletal muscle biopsies and blood samples were collected before and at 30 minutes and 3 hours following exercise. Plasma concentration of HN and MOTS-c, skeletal muscle MOTS-c as well as gene expression of exercise related genes were analyzed. Acute EE and RE promoted changes in skeletal muscle gene expression typically seen in response to each exercise modality (c-Myc, 45S pre-rRNA, PGC-1α-total and PGC-1α-ex1b). At rest, circulating levels of HN were positively correlated to MOTS-c levels and age. Plasma levels of MDPs were not correlated to fitness outcomes (VO2max, leg strength or muscle mitochondrial (mt) DNA copy number). Circulating levels of HN were significantly elevated by acute EE but not RE. MOTS-C levels showed a trend to increase after EE. These results indicate that plasma MDP levels are not related to fitness status but that acute EE increases circulating levels of MDPs, in particular HN.
Collapse
Affiliation(s)
- Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Vandre C Figueiredo
- College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Eva-Karin Gidlund
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Norrbrand
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chang Liu
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Philip Sandström
- Department of Orthopaedics Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Björn Hansson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Björn Alkner
- Department of Orthopaedics Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
37
|
Burtscher J, Millet GP, Place N, Kayser B, Zanou N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int J Mol Sci 2021; 22:6479. [PMID: 34204228 PMCID: PMC8235687 DOI: 10.3390/ijms22126479] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer's disease, or the most common neurodegenerative motor disorder, Parkinson's disease. While there is evidence that exercise induces signalling from skeletal muscle to the brain, the mechanistic understanding of the crosstalk along the muscle-brain axis is incompletely understood. Mitochondria in both organs, however, seem to be central players. Here, we provide an overview on the central role of mitochondria in exercise-induced communication routes from muscle to the brain. These routes include circulating factors, such as myokines, the release of which often depends on mitochondria, and possibly direct mitochondrial transfer. On this basis, we examine the reported effects of different modes of exercise on mitochondrial features and highlight their expected benefits with regard to neurodegeneration prevention or mitigation. In addition, knowledge gaps in our current understanding related to the muscle-brain axis in neurodegenerative diseases are outlined.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
38
|
Kim SJ, Miller B, Kumagai H, Silverstein AR, Flores M, Yen K. Mitochondrial-derived peptides in aging and age-related diseases. GeroScience 2021; 43:1113-1121. [PMID: 32910336 PMCID: PMC8190245 DOI: 10.1007/s11357-020-00262-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
A decline in mitochondrial quality and activity has been associated with normal aging and correlated with the development of a wide range of age-related diseases. Here, we review the evidence that a decline in the levels of mitochondrial-derived peptides contributes to aging and age-related diseases. In particular, we discuss how mitochondrial-derived peptides, humanin and MOTS-c, contribute to specific aspects of the aging process, including cellular senescence, chronic inflammation, and cognitive decline. Genetic variations in the coding region of humanin and MOTS-c that are associated with age-related diseases are also reviewed, with particular emphasis placed on how mitochondrial variants might, in turn, regulate MDP expression and age-related phenotypes. Taken together, these observations suggest that mitochondrial-derived peptides influence or regulate a number of key aspects of aging and that strategies directed at increasing mitochondrial-derived peptide levels might have broad beneficial effects.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai, Chiba, Japan
| | - Ana R Silverstein
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Melanie Flores
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| |
Collapse
|
39
|
Kim J, Choi JW, Namkung J. Expression Profile of Mouse Gm20594, Nuclear-Encoded Humanin-Like Gene. J Lifestyle Med 2021; 11:13-22. [PMID: 33763338 PMCID: PMC7957044 DOI: 10.15280/jlm.2021.11.1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mitochondrial-derived peptides (MDPs) such as MOTS-c and humanin have been studied for their cytoprotective functions. In mice, humanin-encoding Mtrnr2 is a mitochondrial pseudogene, and the humanin-like peptide is encoded by the nuclear Gm20594 gene. However, endogenous tissue-specific expression profiles of Gm20594 have not yet been identified. Methods Mtrnr1 and Gm20594 expression was profiled via reverse transcription using only oligo(dT) primers from tissues of C57BL6/J mice. To analyze altered expression upon mitochondrial biogenesis, C2C12 myocytes and brown adipocytes were differentiated. Mitochondrial DNA copy numbers were quantified for normalization. Results Both Mtrnr1 and Gm20594 were highly expressed in brown adipose tissue. When normalized against mitochondrial content, Mtrnr1 was identified as being highly expressed in the duodenum, followed by the jejunum. In models of mitochondrial biogenesis, both Mtrnr1 and Gm20594 were upregulated during myocyte and brown adipocyte differentiation. Increased Mtrnr1 expression during brown adipocyte differentiation remained significant after normalization against mitochondrial DNA copy number, whereas myocyte differentiation exhibited biphasic upregulation and downregulation in early and late phases, respectively. Conclusion Nuclear-encoded Gm20594 showed similar expression patterns of mitochondrial-encoded Mtrnr1. Brown adipose tissue presented the highest basal expression levels of Gm20594 and Mtrnr1. When normalized against mitochondrial DNA copy number, gut tissues exhibited the highest expression of Mtrnr1. Upregulation of Mtrnr1 during mitochondrial biogenesis is independent of mitochondrial content.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong-Whan Choi
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
40
|
Merry TL, Chan A, Woodhead JST, Reynolds JC, Kumagai H, Kim SJ, Lee C. Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab 2020; 319:E659-E666. [PMID: 32776825 PMCID: PMC7750512 DOI: 10.1152/ajpendo.00249.2020] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by short open-reading frames (sORF) in mitochondrial DNA that do not necessarily have traditional hallmarks of protein-coding genes. To date, eight MDPs have been identified, all of which have been shown to have various cyto- or metaboloprotective properties. The 12S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas the other seven MDPs [humanin and small humanin-like peptides (SHLP) 1-6] are encoded by the 16S ribosomal RNA gene. Here, we review the evidence that endogenous MDPs are sensitive to changes in metabolism, showing that metabolic conditions like obesity, diabetes, and aging are associated with lower circulating MDPs, whereas in humans muscle MDP expression is upregulated in response to stress that perturbs the mitochondria like exercise, some mtDNA mutation-associated diseases, and healthy aging, which potentially suggests a tissue-specific response aimed at restoring cellular or mitochondrial homeostasis. Consistent with this, treatment of rodents with humanin, MOTS-c, and SHLP2 can enhance insulin sensitivity and offer protection against a range of age-associated metabolic disorders. Furthermore, assessing how mtDNA variants alter the functions of MDPs is beginning to provide evidence that MDPs are metabolic signal transducers in humans. Taken together, MDPs appear to form an important aspect of a retrograde signaling network that communicates mitochondrial status with the wider cell and to distal tissues to modulate adaptative responses to metabolic stress. It remains to be fully determined whether the metaboloprotective properties of MDPs can be harnessed into therapies for metabolic disease.
Collapse
Affiliation(s)
- Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Alex Chan
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- Japan Society for the Promotion of Science, Tokyo, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Biomedical Science, Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|