1
|
Zuccarelli L, De Martino M, Filippi A, Knapton A, Thackray B, Baldassarre G, Šimunič B, Pišot R, Sirago G, Monti E, Narici M, Isola M, Murray A, Lippe G, Grassi B. Mitochondrial Sensitivity to Submaximal [ADP] Following Bed Rest: A Novel Two-Phase Approach Associated With Fibre Types. J Cachexia Sarcopenia Muscle 2025; 16:e13775. [PMID: 40285367 PMCID: PMC12031883 DOI: 10.1002/jcsm.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND We recently demonstrated that following a 10-day exposure to inactivity/simulated microgravity impairments of oxidative metabolism were located 'upstream' of mitochondrial function, as evaluated by maximal ADP-stimulated mitochondrial respiration (JO2max) determined ex vivo. The aim of this study was to evaluate mitochondrial sensitivity to submaximal [ADP] by an alternative approach aimed at identifying responses associated with fibre type composition. METHODS Isolated permeabilized vastus lateralis fibres were analysed by high-resolution respirometry in 9 young males before and after a 10-day horizontal bed rest. Eleven submaximal titrations of ADP (from 12.5 to 10 000 μM) were utilized to assess complex I + II-linked ADP sensitivity. We applied to JO2 versus [ADP] data a traditional Michaelis-Menten kinetics equation, with the calculation of the apparent Km and maximal respiration (Vmax), and two 'sequential' hyperbolic equations, yielding two Km and Vmax values. The two-hyperbolic equations were solved and the [ADP] value corresponding to 50% of JO2max was calculated. Isoform expression of myosin heavy chains (MyHC) 1, 2A and 2X was also determined. Control experiments were also carried out on rat skeletal muscle samples with different percentages of MyHC isoforms. RESULTS The two hyperbolic equations provided an alternative fitting of data and identified two distinct phases of the JO2 versus [ADP] response: a first phase characterized by low Vmax (Vmax1, 28 ± 10 pmol s-1 mg-1) and apparent Km (Km1, 62 ± 54 μM) and a second phase characterized by higher Vmax (Vmax2, 61 ± 16 pmol s-1 mg-1) and Km (Km2, 1784 ± 833 μM). Data were confirmed in control experiments carried out in rat muscle samples with different percentages of MyHC isoforms. Correlation and receiver operating characteristics analyses suggest that the two phases of the response were related to the % of MyHC isoforms. CONCLUSIONS A novel mathematical approach (two sequential hyperbolic functions) for the fitting of JO2 versus [ADP] data obtained by high-resolution respirometry on permeabilized skeletal muscle fibres, obtained in humans and rats, provided an alternative fitting of the experimental data compared to the traditional Michaelis-Menten kinetics equation. This alternative model allowed the identification of two distinct phases in the responses, which were related to fibre type composition. A first phase, characterized by low apparent Km and Vmax values, was correlated with the percentage of less oxidative (Type 2A + 2X) MyHC isoforms. A second phase, characterized by high apparent Km and Vmax, was related to more oxidative (Type 1) MyHC isoforms.
Collapse
Affiliation(s)
| | | | | | - Alice E. Knapton
- Department of Physiology, Neuroscience and DevelopmentUniversity of CambridgeCambridgeUK
| | - Benjamin D. Thackray
- Department of Physiology, Neuroscience and DevelopmentUniversity of CambridgeCambridgeUK
| | | | - Boštjan Šimunič
- Institute of Kinesiology ResearchScience and Research CentreKoperSlovenia
| | - Rado Pišot
- Institute of Kinesiology ResearchScience and Research CentreKoperSlovenia
| | - Giuseppe Sirago
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Elena Monti
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Marco Narici
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Miriam Isola
- Department of MedicineUniversity of UdineUdineItaly
| | - Andrew J. Murray
- Department of Physiology, Neuroscience and DevelopmentUniversity of CambridgeCambridgeUK
| | | | - Bruno Grassi
- Department of MedicineUniversity of UdineUdineItaly
| |
Collapse
|
2
|
Burtscher M, Álvarez-Herms J, Burtscher J, Strasser B, Kopp M, Pageaux B. Could the perception of effort help us unravel the potential of " living low-training high"? A perspective article. J Sports Sci 2025:1-12. [PMID: 40075272 DOI: 10.1080/02640414.2025.2474352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Living low-training high may promote favourable physiological adaptations and improvement of exercise performance in normoxia following training at altitudes above 1500 m. Whether and how physiological adaptations to training high interact with the perception of effort remains unknown. This perspective article aims to carve out potential contributory effects of the perception of effort on performance changes following living low-training high interventions. It is based on two unique case reports, findings on known physiological adaptations to living low-training high, and integration of current knowledge on the neurophysiology of effort perception. Considering the current state of knowledge on the effect of exercising in hypoxia on perceived effort, we propose that the hypoxia exposure associated with living low-training high protocols interact with the perception of effort and its rating, by inducing adaptations that i) slow the development of neuromuscular fatigue and associated compensatory increase in motor command, ii) alter the functioning of the anterior cingulate cortex and/or the motor areas, and iii) alter the interaction with other psychological responses to the exercise. In the proposed framework using a psychophysiological approach, changes in the participants' report of their perceived effort would reflect underlying neurophysiological and psychological adaptations to hypoxia exposure.
Collapse
Affiliation(s)
- Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Jesus Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Upv/ehu), Leioa, Spain
| | - Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria
- Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montreal, QC, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| |
Collapse
|
3
|
Wick C, Constam E, Schneider SR, Titz A, Furian M, Lichtblau M, Ulrich S, Müller J. Peak Eccentric Cycling Exercise and Cardiorespiratory Responses to Normobaric Hypoxia Versus Normobaric Normoxia in Healthy Adults: A Randomized, Controlled Crossover Trial. J Clin Med 2025; 14:1151. [PMID: 40004681 PMCID: PMC11856714 DOI: 10.3390/jcm14041151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Pulmonary rehabilitation clinics are traditionally located at higher altitudes (HAs), where lower PO2 reduces exercise capacity and blood oxygenation. Eccentric cycling exercise (ECC), with its lower cardiorespiratory demand compared to concentric cycling (CON), might therefore be a potential advantageous training modality at HAs, particularly for individuals with reduced exercise capacity. This study aimed to compare the cardiorespiratory responses of ECC while breathing normoxic versus hypoxic gas in healthy participants. Methods: This randomized, controlled crossover trial involved healthy participants performing CON in normoxia (FiO2 = 0.21), followed by two incremental ECC tests until 70-100% of peak exercise, one with normoxia and one with normobaric hypoxia (FiO2 = 0.15), in a randomized order. Oxygen uptake (V'O2) and additional outcomes were measured breath-by-breath. Endpoints were defined at rest, 50%, 70%, peak exercise, and isotime. The trial is registered on clinicaltrails.gov (NCT05185895). Results: Twelve healthy participants (age: 30 ± 11 years, six females) completed the study. During both interventions, V'O2 increased linearly with exercise intensity, with no significant differences between normoxic and hypoxic conditions. At peak exercise, SpO2 and peak work rate were significantly lowered by 5% (95%CI: 3 to 8%, p < 0.001) and by 22 W (95%CI: 8 to 36 W, p = 0.009) in hypoxia compared to normoxia. Other outcomes were unchanged. When comparing CON to ECC in normoxia, the mean differences in V'O2 increased with higher loads. Conclusions: This study demonstrated that V'O2 and other cardiopulmonary parameters remain unchanged when performing ECC in hypoxia compared to normoxia. Comparing CON to ECC in normoxia, participants achieved higher workloads and greater V'O2 consumption during CON compared to ECC at comparable watts, confirming the higher metabolic cost associated with CON. We identified that the optimal submaximal ECC intensities, with the highest difference in V'O2 between CON versus ECC, are around 40% of peak V'O2.
Collapse
Affiliation(s)
- Carmen Wick
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland; (C.W.); (M.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Esther Constam
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland; (C.W.); (M.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Simon R. Schneider
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland; (C.W.); (M.F.)
| | - Anna Titz
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland; (C.W.); (M.F.)
| | - Michael Furian
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland; (C.W.); (M.F.)
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland; (C.W.); (M.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Silvia Ulrich
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland; (C.W.); (M.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland; (C.W.); (M.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
4
|
Nomura S, Sumi D, Nagatsuka H, Suzuki T, Goto K. Effects of endurance exercise under hypoxic conditions on the gastric emptying rate and intestinal cell damage. Eur J Appl Physiol 2025; 125:25-35. [PMID: 39453456 PMCID: PMC11753315 DOI: 10.1007/s00421-024-05523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/22/2024] [Indexed: 10/26/2024]
Abstract
The present study examined the effects of gastric emptying rate and intestinal cell damage following a single session of endurance exercise under "hypoxic" or "normoxic" conditions at the same relative intensity. Eleven healthy males performed two trials on different days, consisting of a 60 min run on a treadmill at 70% maximal running velocity (vMax) while inspiring hypoxic (FiO2: 14.5%; HYP) or normoxic air (FiO2: 20.9%; NOR). The average running velocity was 11.4 ± 0.7 km/h in NOR and 10.8 ± 0.5 km/h in HYP, respectively. Venous blood samples were collected to evaluate plasma intestinal fatty acid binding protein (I-FABP) as an indicator of exercise-induced intestinal cell damage. The gastric emptying rate was determined by the 13C-sodium acetate breath test. Running velocities at 70% vMax and arterial oxygen saturation were significantly lower under HYP than NOR (p < 0.001). Peak heart rate and rating of perceived exertion during exercise did not differ significantly between the trials. Maximum 13C excretion time (an indication of the gastric emptying rate) was significantly delayed in the HYP (NOR: 38.5 ± 5.0 min, HYP: 45.5 ± 9.6 min; p = 0.010). Furthermore, the score of nausea increased slightly, but increased significantly after exercise only in the HYP (p = 0.04). However, exercise-induced changes in plasma I-FABP, adrenaline, and noradrenaline concentrations did not differ significantly between the two trials. These results suggest that endurance exercise under hypoxic conditions impairs digestive function in the stomach compared to exercise under normoxic conditions performed at the same relative intensity.
Collapse
Affiliation(s)
- Sayaka Nomura
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Daichi Sumi
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Haruna Nagatsuka
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tomotaka Suzuki
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
5
|
Feng X, Chen Y, Yan T, Lu H, Wang C, Zhao L. Effects of various living-low and training-high modes with distinct training prescriptions on sea-level performance: A network meta-analysis. PLoS One 2024; 19:e0297007. [PMID: 38635743 PMCID: PMC11025749 DOI: 10.1371/journal.pone.0297007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 04/20/2024] Open
Abstract
This study aimed to separately compare and rank the effect of various living-low and training-high (LLTH) modes on aerobic and anaerobic performances in athletes, focusing on training intensity, modality, and volume, through network meta-analysis. We systematically searched PubMed, Web of Science, Embase, EBSCO, and Cochrane from their inception date to June 30, 2023. Based on the hypoxic training modality and the intensity and duration of work intervals, LLTH was divided into intermittent hypoxic exposure, continuous hypoxic training, repeated sprint training in hypoxia (RSH; work interval: 5-10 s and rest interval: approximately 30 s), interval sprint training in hypoxia (ISH; work interval: 15-30 s), short-duration high-intensity interval training (s-IHT; short work interval: 1-2 min), long-duration high-intensity interval training (l-IHT; long work interval: > 5 min), and continuous and interval training under hypoxia. A meta-analysis was conducted to determine the standardized mean differences (SMDs) among the effects of various hypoxic interventions on aerobic and anaerobic performances. From 2,072 originally identified titles, 56 studies were included in the analysis. The pooled data from 53 studies showed that only l-IHT (SMDs: 0.78 [95% credible interval; CrI, 0.52-1.05]) and RSH (SMDs: 0.30 [95% CrI, 0.10-0.50]) compared with normoxic training effectively improved athletes' aerobic performance. Furthermore, the pooled data from 29 studies revealed that active intermittent hypoxic training compared with normoxic training can effectively improve anaerobic performance, with SMDs ranging from 0.97 (95% CrI, 0.12-1.81) for l-IHT to 0.32 (95% CrI, 0.05-0.59) for RSH. When adopting a program for LLTH, sufficient duration and work intensity intervals are key to achieving optimal improvements in athletes' overall performance, regardless of the potential improvement in aerobic or anaerobic performance. Nevertheless, it is essential to acknowledge that this study incorporated merely one study on the improvement of anaerobic performance by l-IHT, undermining the credibility of the results. Accordingly, more related studies are needed in the future to provide evidence-based support. It seems difficult to achieve beneficial adaptive changes in performance with intermittent passive hypoxic exposure and continuous low-intensity hypoxic training.
Collapse
Affiliation(s)
- Xinmiao Feng
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Yonghui Chen
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Teishuai Yan
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Hongyuan Lu
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Chuangang Wang
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Linin Zhao
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| |
Collapse
|
6
|
Peden DL, Rogers R, Mitchell EA, Taylor SM, Bailey SJ, Ferguson RA. Skeletal muscle mitochondrial correlates of critical power and W' in healthy active individuals. Exp Physiol 2024. [PMID: 38593224 DOI: 10.1113/ep091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The asymptote (critical power; CP) and curvature constant (W') of the hyperbolic power-duration relationship can predict performance within the severe-intensity exercise domain. However, the extent to which these parameters relate to skeletal muscle mitochondrial content and respiratory function is not known. Fifteen males (peak O2 uptake, 52.2 ± 8.7 mL kg-1 min-1; peak work rate, 366 ± 40 W; and gas exchange threshold, 162 ± 41 W) performed three to five constant-load tests to task failure for the determination of CP (246 ± 44 W) and W' (18.6 ± 4.1 kJ). Skeletal muscle biopsies were obtained from the vastus lateralis to determine citrate synthase (CS) activity, as a marker of mitochondrial content, and the ADP-stimulated respiration (P) and maximal electron transfer (E) through mitochondrial complexes (C) I-IV. The CP was positively correlated with CS activity (absolute CP, r = 0.881, P < 0.001; relative CP, r = 0.751, P = 0.001). The W' was not correlated with CS activity (P > 0.05). Relative CP was positively correlated with mass-corrected CI + IIE (r = 0.659, P = 0.038), with absolute CP being inversely correlated with CS activity-corrected CIVE (r = -0.701, P = 0.024). Relative W' was positively correlated with CS activity-corrected CI + IIP (r = 0.713, P = 0.021) and the phosphorylation control ratio (r = 0.661, P = 0.038). There were no further correlations between CP or W' and mitochondrial respiratory variables. These findings support the assertion that skeletal muscle mitochondrial oxidative capacity is positively associated with CP and that this relationship is strongly determined by mitochondrial content.
Collapse
Affiliation(s)
- Donald L Peden
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Robert Rogers
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma A Mitchell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Suzanne M Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
7
|
Ping X, Li Q, Ding M, Wang X, Tang C, Yu Z, Yi Q, He Y, Zheng L. Effects of hypoxic compound exercise to promote HIF-1α expression on cardiac pumping function, sleep activity behavior, and exercise capacity in Drosophila. FASEB J 2024; 38:e23499. [PMID: 38430222 DOI: 10.1096/fj.202302269r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Alteration of HIF-1α expression levels under hypoxic conditions affects the sequence of its downstream target genes thereby producing different effects. In order to investigate whether the effect of hypoxic compound exercise (HE) on HIF-1α expression alters cardiac pumping function, myocardial structure, and exercise capacity, we developed a suitable model of hypoxic exercise using Drosophila, a model organism, and additionally investigated the effect of hypoxic compound exercise on nocturnal sleep and activity behavior. The results showed that hypoxic compound exercise at 6% oxygen concentration for five consecutive days, lasting 1 h per day, significantly improved the cardiac stress resistance of Drosophila. The hypoxic complex exercise promoted the whole-body HIF-1α expression in Drosophila, and improved the jumping ability, climbing ability, moving speed, and moving distance. The expression of HIF-1α in the heart was increased after hypoxic exercise, which made a closer arrangement of myofilaments, an increase in the diameter of cardiac tubules, and an increase in the pumping function of the heart. The hypoxic compound exercise improved the sleep quality of Drosophila by increasing its nocturnal sleep time, the number of deep sleeps, and decreasing its nocturnal awakenings and activities. Therefore, we conclude that hypoxic compound exercise promoted the expression of HIF-1α to enhance the exercise capacity and heart pumping function of Drosophila, and improved the quality of sleep.
Collapse
Affiliation(s)
- Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qin Yi
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Yupeng He
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Yu Q, Kong Z, Zou L, Chapman R, Shi Q, Nie J. Comparative efficacy of various hypoxic training paradigms on maximal oxygen consumption: A systematic review and network meta-analysis. J Exerc Sci Fit 2023; 21:366-375. [PMID: 37854170 PMCID: PMC10580050 DOI: 10.1016/j.jesf.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
Background Enhancement in maximal oxygen consumption (VO2max) induced by hypoxic training is important for both athletes and non-athletes. However, the lack of comparison of multiple paradigms and the exploration of related modulating factors leads to the inability to recommend the optimal regimen in different situations. This study aimed to investigate the efficacy of seven common hypoxic training paradigms on VO2max and associated moderators. Methods Electronic (i.e., five databases) and manual searches were performed, and 42 studies involving 1246 healthy adults were included. Pairwise meta-analyses were conducted to compare different hypoxic training paradigms and hypoxic training and control conditions. The Bayesian network meta-analysis model was applied to calculate the standardised mean differences (SMDs) of pre-post VO2max alteration among hypoxic training paradigms in overall, athlete, and non-athlete populations, while meta-regression analyses were employed to explore the relationships between covariates and SMDs. Results All seven hypoxic training paradigms were effective to varying degrees, with SMDs ranging from 1.45 to 7.10. Intermittent hypoxia interval training (IHIT) had the highest probability of being the most efficient hypoxic training paradigm in the overall population and athlete subgroup (42%, 44%), whereas intermittent hypoxic training (IHT) was the most promising hypoxic training paradigm among non-athletes (66%). Meta-regression analysis revealed that saturation hours (coefficient, 0.004; P = 0.038; 95% CI [0.0002, 0.0085]) accounted for variations of VO2max improvement induced by IHT. Conclusion Efficient hypoxic training paradigms for VO2max gains differed between athletes and non-athletes, with IHIT ranking best for athletes and IHT for non-athletes. The practicability of saturation hours is confirmed with respect to dose-response issues in the future hypoxic training and associated scientific research. Registration This study was registered in the PROSPERO international prospective register of systematic reviews (CRD42022333548).
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - Liye Zou
- Exercise Psychophysiology Laboratory, Institute of KEEP Collaborative Innovation, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Robert Chapman
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| |
Collapse
|
9
|
Feng X, Zhao L, Chen Y, Wang Z, Lu H, Wang C. Optimal type and dose of hypoxic training for improving maximal aerobic capacity in athletes: a systematic review and Bayesian model-based network meta-analysis. Front Physiol 2023; 14:1223037. [PMID: 37745240 PMCID: PMC10513096 DOI: 10.3389/fphys.2023.1223037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Objective: This study aimed to compare and rank the effect of hypoxic practices on maximum oxygen consumption (VO2max) in athletes and determine the hypoxic dose-response correlation using network meta-analysis. Methods: The Web of Science, PubMed, EMBASE, and EBSCO databases were systematically search for randomized controlled trials on the effect of hypoxc interventions on the VO2max of athletes published from inception until 21 February 2023. Studies that used live-high train-high (LHTH), live-high train-low (LHTL), live-high, train-high/low (HHL), intermittent hypoxic training (IHT), and intermittent hypoxic exposure (IHE) interventions were primarily included. LHTL was further defined according to the type of hypoxic environment (natural and simulated) and the altitude of the training site (low altitude and sea level). A meta-analysis was conducted to determine the standardized mean difference between the effects of various hypoxic interventions on VO2max and dose-response correlation. Furthermore, the hypoxic dosage of the different interventions were coordinated using the "kilometer hour" model. Results: From 2,072 originally identified titles, 59 studies were finally included in this study. After data pooling, LHTL, LHTH, and IHT outperformed normoxic training in improving the VO2max of athletes. According to the P-scores, LHTL combined with low altitude training was the most effective intervention for improving VO2max (natural: 0.92 and simulated: 0.86) and was better than LHTL combined with sea level training (0.56). A reasonable hypoxic dose range for LHTH (470-1,130 kmh) and HL (500-1,415 kmh) was reported with an inverted U-shaped curve relationship. Conclusion: Different types of hypoxic training compared with normoxic training serve as significant approaches for improving aerobic capacity in athletes. Regardless of the type of hypoxic training and the residential condition, LHTL with low altitude training was the most effective intervention. The characteristics of the dose-effect correlation of LHTH and LHTL may be associated with the negative effects of chronic hypoxia.
Collapse
Affiliation(s)
- Xinmiao Feng
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Linlin Zhao
- Sports Coaching College, Beijing Sports University, Beijing, China
| | | | - Zihao Wang
- Capital Institute of Physical Education and Sports, Beijing, Beijing, China
| | - Hongyuan Lu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Chuangang Wang
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
10
|
Davie A, Beavers R, Hargitaiová K, Denham J. The Emerging Role of Hypoxic Training for the Equine Athlete. Animals (Basel) 2023; 13:2799. [PMID: 37685063 PMCID: PMC10486977 DOI: 10.3390/ani13172799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This paper provides a comprehensive discussion on the physiological impacts of hypoxic training, its benefits to endurance performance, and a rationale for utilizing it to improve performance in the equine athlete. All exercise-induced training adaptations are governed by genetics. Exercise prescriptions can be tailored to elicit the desired physiological adaptations. Although the application of hypoxic stimuli on its own is not ideal to promote favorable molecular responses, exercise training under hypoxic conditions provides an optimal environment for maximizing physiological adaptations to enhance endurance performance. The combination of exercise training and hypoxia increases the activity of the hypoxia-inducible factor (HIF) pathway compared to training under normoxic conditions. Hypoxia-inducible factor-1 alpha (HIF-1α) is known as a master regulator of the expression of genes since over 100 genes are responsive to HIF-1α. For instance, HIF-1-inducible genes include those critical to erythropoiesis, angiogenesis, glucose metabolism, mitochondrial biogenesis, and glucose transport, all of which are intergral in physiological adaptations for endurance performance. Further, hypoxic training could conceivably have a role in equine rehabilitation when high-impact training is contraindicated but a quality training stimulus is desired. This is achievable through purpose-built equine motorized treadmills inside commercial hypoxic chambers.
Collapse
Affiliation(s)
- Allan Davie
- Australian Equine Racing and Research Centre, Ballina, NSW 2478, Australia
| | - Rosalind Beavers
- Faculty of Health, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Kristýna Hargitaiová
- Department of Clinical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY 14850, USA;
| | - Joshua Denham
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, QLD 4305, Australia;
- Centre for Health Research, Toowoomba, QLD 4350, Australia
| |
Collapse
|
11
|
Westmacott A, Sanal-Hayes NEM, McLaughlin M, Mair JL, Hayes LD. High-Intensity Interval Training (HIIT) in Hypoxia Improves Maximal Aerobic Capacity More Than HIIT in Normoxia: A Systematic Review, Meta-Analysis, and Meta-Regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14261. [PMID: 36361141 PMCID: PMC9658399 DOI: 10.3390/ijerph192114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to determine the effect of high intensity interval training (HIIT) in hypoxia on maximal oxygen uptake (VO2max) compared with HIIT in normoxia with a Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-accordant meta-analysis and meta-regression. Studies which measured VO2max following a minimum of 2 weeks intervention featuring HIIT in hypoxia versus HIIT in normoxia were included. From 119 originally identified titles, nine studies were included (n = 194 participants). Meta-analysis was conducted on change in (∆) VO2max using standardised mean difference (SMD) and a random effects model. Meta-regression examined the relationship between the extent of environmental hypoxia (fractional inspired oxygen [FiO2]) and ∆VO2max and intervention duration and ∆VO2max. The overall SMD for ∆VO2max following HIIT in hypoxia was 1.14 (95% CI = 0.56-1.72; p < 0.001). Meta-regressions identified no significant relationship between FiO2 (coefficient estimate = 0.074, p = 0.852) or intervention duration (coefficient estimate = 0.071, p = 0.423) and ∆VO2max. In conclusion, HIIT in hypoxia improved VO2max compared to HIIT in normoxia. Neither extent of hypoxia, nor training duration modified this effect, however the range in FiO2 was small, which limits interpretation of this meta-regression. Moreover, training duration is not the only training variable known to influence ∆VO2max, and does not appropriately capture total training stress or load. This meta-analysis provides pooled evidence that HIIT in hypoxia may be more efficacious at improving VO2max than HIIT in normoxia. The application of these data suggest adding a hypoxic stimuli to a period of HIIT may be more effective at improving VO2max than HIIT alone. Therefore, coaches and athletes with access to altitude (either natural or simulated) should consider implementing HIIT in hypoxia, rather than HIIT in normoxia where possible, assuming no negative side effects.
Collapse
Affiliation(s)
- Ailsa Westmacott
- Sport and Physical Activity Research Institute, University of the West of Scotland, Glasgow G72 0LH, UK
| | - Nilihan E. M. Sanal-Hayes
- Sport and Physical Activity Research Institute, University of the West of Scotland, Glasgow G72 0LH, UK
| | - Marie McLaughlin
- Sport and Physical Activity Research Institute, University of the West of Scotland, Glasgow G72 0LH, UK
| | - Jacqueline L. Mair
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Lawrence D. Hayes
- Sport and Physical Activity Research Institute, University of the West of Scotland, Glasgow G72 0LH, UK
| |
Collapse
|
12
|
Luo B, Li Y, Zhu M, Cui J, Liu Y, Liu Y. Intermittent Hypoxia and Atherosclerosis: From Molecular Mechanisms to the Therapeutic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1438470. [PMID: 35965683 PMCID: PMC9365608 DOI: 10.1155/2022/1438470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Intermittent hypoxia (IH) has a dual nature. On the one hand, chronic IH (CIH) is an important pathologic feature of obstructive sleep apnea (OSA) syndrome (OSAS), and many studies have confirmed that OSA-related CIH (OSA-CIH) has atherogenic effects involving complex and interacting mechanisms. Limited preventive and treatment methods are currently available for this condition. On the other hand, non-OSA-related IH has beneficial or detrimental effects on the body, depending on the degree, duration, and cyclic cycle of hypoxia. It includes two main states: intermittent hypoxia in a simulated plateau environment and intermittent hypoxia in a normobaric environment. In this paper, we compare the two types of IH and summarizes the pathologic mechanisms and research advances in the treatment of OSA-CIH-induced atherosclerosis (AS), to provide evidence for the systematic prevention and treatment of OSAS-related AS.
Collapse
Affiliation(s)
- Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
13
|
Supriya R, Gao Y, Gu Y, Baker JS. Role of Exercise Intensity on Th1/Th2 Immune Modulations During the COVID-19 Pandemic. Front Immunol 2021; 12:761382. [PMID: 35003073 PMCID: PMC8727446 DOI: 10.3389/fimmu.2021.761382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has led to several pioneering scientific discoveries resulting in no effective solutions with the exception of vaccination. Moderate exercise is a significant non-pharmacological strategy, to reduce the infection-related burden of COVID-19, especially in patients who are obese, elderly, and with additional comorbidities. The imbalance of T helper type 1 (Th1) or T helper type 2 (Th2) cells has been well documented among populations who have suffered as a result of the COVID-19 pandemic, and who are at maximum risk of infection and mortality. Moderate and low intensity exercise can benefit persons at risk from the disease and survivors by favorable modulation in Th1/Th2 ratios. Moreover, in COVID-19 patients, mild to moderate intensity aerobic exercise also increases immune system function but high intensity aerobic exercise may have adverse effects on immune responses. In addition, sustained hypoxia in COVID-19 patients has been reported to cause organ failure and cell death. Hypoxic conditions have also been highlighted to be triggered in COVID-19-susceptible individuals and COVID-19 survivors. This suggests that hypoxia inducible factor (HIF 1α) might be an important focus for researchers investigating effective strategies to minimize the effects of the pandemic. Intermittent hypoxic preconditioning (IHP) is a method of exposing subjects to short bouts of moderate hypoxia interspersed with brief periods of normal oxygen concentrations (recovery). This methodology inhibits the production of pro-inflammatory factors, activates HIF-1α to activate target genes, and subsequently leads to a higher production of red blood cells and hemoglobin. This increases angiogenesis and increases oxygen transport capacity. These factors can help alleviate virus induced cardiopulmonary hemodynamic disorders and endothelial dysfunction. Therefore, during the COVID-19 pandemic we propose that populations should engage in low to moderate exercise individually designed, prescribed and specific, that utilizes IHP including pranayama (yoga), swimming and high-altitude hiking exercise. This would be beneficial in affecting HIF-1α to combat the disease and its severity. Therefore, the promotion of certain exercises should be considered by all sections of the population. However, exercise recommendations and prescription for COVID-19 patients should be structured to match individual levels of capability and adaptability.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Rashmi Supriya,
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
14
|
Tardo-Dino PE, Taverny C, Siracusa J, Bourdon S, Baugé S, Koulmann N, Malgoyre A. Effect of heat acclimation on metabolic adaptations induced by endurance training in soleus rat muscle. Physiol Rep 2021; 9:e14686. [PMID: 34405575 PMCID: PMC8371354 DOI: 10.14814/phy2.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022] Open
Abstract
Aerobic training leads to well‐known systemic metabolic and muscular alterations. Heat acclimation may also increase mitochondrial muscle mass. We studied the effects of heat acclimation combined with endurance training on metabolic adaptations of skeletal muscle. Thirty‐two rats were divided into four groups: control (C), trained (T), heat‐acclimated (H), and trained with heat acclimation (H+T) for 6 weeks. Soleus muscle metabolism was studied, notably by the in situ measurement of mitochondrial respiration with pyruvate (Pyr) or palmitoyl‐coenzyme A (PCoA), under phosphorylating conditions (V˙max) or not (V˙0). Aerobic performance increased, and retroperitoneal fat mass decreased with training, independently of heat exposure (p < 0.001 and p < 0.001, respectively). Citrate synthase and hydroxyl‐acyl‐dehydrogenase activity increased with endurance training (p < 0.001 and p < 0.01, respectively), without any effect of heat acclimation. Training induced an increase of the V˙0 and V˙max for PCoA (p < .001 and p < .01, respectively), without interference with heat acclimation. The training‐induced increase of V˙0 (p < 0.01) for pyruvate oxidation was limited when combined with heat acclimation (−23%, p < 0.01). Training and heat acclimation independently increased the V˙max for pyruvate (+60% p < 0.001 and +50% p = 0.01, respectively), without an additive effect of the combination. Heat acclimation doubled the training effect on muscle glycogen storage (p < 0.001). Heat acclimation did not improve mitochondrial adaptations induced by endurance training in the soleus muscle, possibly limiting the alteration of carbohydrate oxidation while not facilitating fatty‐acid utilization. Furthermore, the increase in glycogen storage observed after HA combined with endurance training, without the improvement of pyruvate oxidation, appears to be a hypoxic metabolic phenotype.
Collapse
Affiliation(s)
- Pierre-Emmanuel Tardo-Dino
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Cindy Taverny
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Julien Siracusa
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Stéphanie Bourdon
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Stéphane Baugé
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Nathalie Koulmann
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Alexandra Malgoyre
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| |
Collapse
|
15
|
Malgoyre A, Prola A, Meunier A, Chapot R, Serrurier B, Koulmann N, Bigard X, Sanchez H. Endurance Is Improved in Female Rats After Living High-Training High Despite Alterations in Skeletal Muscle. Front Sports Act Living 2021; 3:663857. [PMID: 34124658 PMCID: PMC8193088 DOI: 10.3389/fspor.2021.663857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Altitude camps are used during the preparation of endurance athletes to improve performance based on the stimulation of erythropoiesis by living at high altitude. In addition to such whole-body adaptations, studies have suggested that high-altitude training increases mitochondrial mass, but this has been challenged by later studies. Here, we hypothesized that living and training at high altitude (LHTH) improves mitochondrial efficiency and/or substrate utilization. Female rats were exposed and trained in hypoxia (simulated 3,200 m) for 5 weeks (LHTH) and compared to sedentary rats living in hypoxia (LH) or normoxia (LL) or those that trained in normoxia (LLTL). Maximal aerobic velocity (MAV) improved with training, independently of hypoxia, whereas the time to exhaustion, performed at 65% of MAV, increased both with training (P = 0.009) and hypoxia (P = 0.015), with an additive effect of the two conditions. The distance run was 7.98 ± 0.57 km in LHTH vs. 6.94 ± 0.51 in LLTL (+15%, ns). The hematocrit increased >20% with hypoxia (P < 0.001). The increases in mitochondrial mass and maximal oxidative capacity with endurance training were blunted by combination with hypoxia (−30% for citrate synthase, P < 0.01, and −23% for Vmax glut−succ, P < 0.001 between LHTH and LLTL). A similar reduction between the LHTH and LLTL groups was found for maximal respiration with pyruvate (−29%, P < 0.001), for acceptor-control ratio (−36%, hypoxia effect, P < 0.001), and for creatine kinase efficiency (−48%, P < 0.01). 3-hydroxyl acyl coenzyme A dehydrogenase was not altered by hypoxia, whereas maximal respiration with Palmitoyl-CoA specifically decreased. Overall, our results show that mitochondrial adaptations are not involved in the improvement of submaximal aerobic performance after LHTH, suggesting that the benefits of altitude camps in females relies essentially on other factors, such as the transitory elevation of hematocrit, and should be planned a few weeks before competition and not several months.
Collapse
Affiliation(s)
- Alexandra Malgoyre
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adelie Meunier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Rachel Chapot
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Bernard Serrurier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Nathalie Koulmann
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France.,Ecole du Val de Grâce, Paris, France
| | - Xavier Bigard
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Ecole du Val de Grâce, Paris, France
| | - Hervé Sanchez
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
16
|
Cai M, Chen X, Shan J, Yang R, Guo Q, Bi X, Xu P, Shi X, Chu L, Wang L. Intermittent Hypoxic Preconditioning: A Potential New Powerful Strategy for COVID-19 Rehabilitation. Front Pharmacol 2021; 12:643619. [PMID: 33995053 PMCID: PMC8120309 DOI: 10.3389/fphar.2021.643619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a highly infectious respiratory virus, which can proliferate by invading the ACE2 receptor of host cells. Clinical studies have found that the virus can cause dyspnea, pneumonia and other cardiopulmonary system damage. In severe cases, it can lead to respiratory failure and even death. Although there are currently no effective drugs or vaccines for the prevention and treatment of COVID-19, the patient’s prognosis recovery can be effectively improved by ameliorating the dysfunction of the respiratory system, cardiovascular systems, and immune function. Intermittent hypoxic preconditioning (IHP) as a new non-drug treatment has been applied in the clinical and rehabilitative practice for treating chronic obstructive pulmonary disease (COPD), diabetes, coronary heart disease, heart failure, hypertension, and other diseases. Many clinical studies have confirmed that IHP can improve the cardiopulmonary function of patients and increase the cardiorespiratory fitness and the tolerance of tissues and organs to ischemia. This article introduces the physiological and biochemical functions of IHP and proposes the potential application plan of IHP for the rehabilitation of patients with COVID-19, so as to provide a better prognosis for patients and speed up the recovery of the disease. The aim of this narrative review is to propose possible causes and pathophysiology of COVID-19 based on the mechanisms of the oxidative stress, inflammation, and immune response, and to provide a new, safe and efficacious strategy for the better rehabilitation from COVID-19.
Collapse
Affiliation(s)
- Ming Cai
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xuan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jieling Shan
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Guo
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ping Xu
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangrong Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Lixi Chu
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Sunshine Rehabilitation Center, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
17
|
Wang W, Mukai K, Takahashi K, Ohmura H, Takahashi T, Hatta H, Kitaoka Y. Short-term hypoxic training increases monocarboxylate transporter 4 and phosphofructokinase activity in Thoroughbreds. Physiol Rep 2020; 8:e14473. [PMID: 32512646 PMCID: PMC7279979 DOI: 10.14814/phy2.14473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate effects of short-term hypoxic training on lactate metabolism in the gluteus medius muscle of Thoroughbreds. Using crossover design (3 months washout), eight Thoroughbred horses were trained for 2 weeks in normoxia (FI O2 = 21%) and hypoxia (FI O2 = 18%) each. They ran at 95% maximal oxygen consumption (V̇O2max ) on a treadmill inclined at 6% for 2 min (3 days/week) measured under normoxia. Before and after each training period, all horses were subjected to an incremental exercise test (IET) under normoxia. Following the 2-week trainings, V̇O2max in IET increased significantly under both oxygen conditions. The exercise duration in IET increased significantly only after hypoxic training. The monocarboxylate transporter (MCT) 1 protein levels remained unchanged after training under both oxygen conditions, whereas MCT4 protein levels increased significantly after training in hypoxia but not after training in normoxia. Phosphofructokinase activity increased significantly only after hypoxic training, whereas cytochrome c oxidase activity increased significantly only after normoxic training. Our results suggest that hypoxic training efficiently enhances glycolytic capacity and levels of the lactate transporter protein MCT4, which facilitates lactate efflux from the skeletal muscle.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Human SciencesKanagawa UniversityKanagawaJapan
| | - Kazutaka Mukai
- Equine Research InstituteJapan Racing AssociationTochigiJapan
| | - Kenya Takahashi
- Department of Sports SciencesThe University of TokyoTokyoJapan
| | - Hajime Ohmura
- Equine Research InstituteJapan Racing AssociationTochigiJapan
| | | | - Hideo Hatta
- Department of Sports SciencesThe University of TokyoTokyoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityKanagawaJapan
| |
Collapse
|
18
|
Wang L, Yang S, Yan L, Wei H, Wang J, Yu S, Kong ANT, Zhang Y. Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2. J Appl Physiol (1985) 2019; 127:1267-1277. [DOI: 10.1152/japplphysiol.00347.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Elite endurance athletes are used to train under hypoxic/high-altitude conditions, which can elicit certain stress responses in skeletal muscle and helps to improve their physical performance. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates cellular redox homeostasis and metabolism in skeletal muscle, playing important roles in adaptation to various stresses. In this study, Nrf2 knockout (KO) and wild-type (WT) mice were preconditioned to 48 h of hypoxia exposure (11.2% oxygen), and the effects of hypoxia preconditioning (HP) on exercise capacity and exercise-induced changes of antioxidant status, energetic metabolism, and mitochondrial adaptation in skeletal muscle were evaluated. Nrf2 knockout (KO) and wild-type (WT) mice were exposed to normoxia or hypoxia for 48 h before taking incremental treadmill exercise to exhaustion under hypoxia. The skeletal muscles were collected immediately after the incremental treadmill exercise to evaluate the impacts of HP and Nrf2 on the exercise-induced changes. The results indicate the absence of Nrf2 did not affect exercise capacity, although the mRNA expression of certain muscular genes involved in antioxidant, glycogen and fatty acid catabolism was decreased in Nrf2 KO mice. However, 48-h HP enhanced exercise capacity in WT mice but not in Nrf2 KO mice, and the exercise capacity of WT mice was significantly higher than that of Nrf2 KO mice. These findings suggest HP promotes exercise capacity of mice with the participation of the Nrf2 signal in skeletal muscle. NEW & NOTEWORTHY Hypoxia preconditioning (HP) activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signal, which was involved in HP-elicited adaptation responses to hypoxia, oxidative, and metabolic stresses in skeletal muscle. On the other hand, Nrf2 deficiency abolished the enhanced exercise capacity after the 48-h HP. Our results indicate that Nrf2 plays an essential role in the exercise capacity-enhancing effect of HP, possibly by modulating muscular antioxidative responses, the mRNA expression of muscular genes involved in glycogen and fatty acid metabolism, as well as mitochondrial biogenesis, and through the cross talk with AMPK and hypoxia-inducible factor-1α signaling.
Collapse
Affiliation(s)
- Linjia Wang
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Simin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Lu Yan
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Hao Wei
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jianxiong Wang
- Faculty of Health, Engineering, and Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Ah-Ng Tony Kong
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
| |
Collapse
|
19
|
Tardo-Dino PE, Touron J, Baugé S, Bourdon S, Koulmann N, Malgoyre A. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers. J Appl Physiol (1985) 2019; 127:312-319. [PMID: 31161881 DOI: 10.1152/japplphysiol.00652.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We investigated the effect of temperature increase on mitochondrial fatty acid (FA) and carbohydrate oxidation in the slow-oxidative skeletal muscles (soleus) of rats. We measured mitochondrial respiration at 35°C and 40°C with the physiological substrates pyruvate + 4 mM malate (Pyr) and palmitoyl-CoA (PCoA) + 0.5 mM malate + 2 mM carnitine in permeabilized myofibers under nonphosphorylating (V˙0) or phosphorylating (V˙max) conditions. Mitochondrial efficiency was calculated by the respiratory control ratio (RCR = V˙max/V˙0). We used guanosine triphosphate (GTP), an inhibitor of uncoupling protein (UCP), to study the mechanisms responsible for alterations of mitochondrial efficiency. We measured hydrogen peroxide (H2O2) production under nonphosphorylating and phosphorylating conditions at both temperatures and substrates. We studied citrate synthase (CS) and 3-hydroxyl acyl coenzyme A dehydrogenase (3-HAD) activities at both temperatures. Elevating the temperature from 35°C to 40°C increased PCoA-V˙0 and decreased PCoA-RCR, corresponding to the uncoupling of oxidative phosphorylation (OXPHOS). GTP blocked the heat-induced increase of PCoA-V˙0. Rising temperature moved toward a Pyr-V˙0 increase, without significance. Heat did not alter H2O2 production, resulting from either PCoA or Pyr oxidation. Heat induced an increase in 3-HAD but not in CS activities. In conclusion, heat induced OXPHOS uncoupling for PCoA oxidation, which was at least partially mediated by UCP and independent of oxidative stress. The classically described heat-induced glucose shift may actually be mostly due to a less efficient FA oxidation. These findings raise questions concerning the consequences of heat-induced alterations in mitochondrial efficiency of FA metabolism on thermoregulation.NEW & NOTEWORTHY Ex vivo exposure of skeletal myofibers to heat uncouples substrate oxidation from ADP phosphorylation, decreasing the efficiency of mitochondria to produce ATP. This heat effect alters fatty acids (FAs) more than carbohydrate oxidation. Alteration of FA oxidation involves uncoupling proteins without inducing oxidative stress. This alteration in lipid metabolism may underlie the preferential use of carbohydrates in the heat and could decrease aerobic endurance.
Collapse
Affiliation(s)
- Pierre-Emmanuel Tardo-Dino
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Julianne Touron
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Stéphane Baugé
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Stéphanie Bourdon
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Nathalie Koulmann
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Alexandra Malgoyre
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| |
Collapse
|
20
|
Park HY, Jung WS, Kim J, Hwang H, Lim K. Efficacy of intermittent hypoxic training on hemodynamic function and exercise performance in competitive swimmers. J Exerc Nutrition Biochem 2018; 22:32-38. [PMID: 30661329 PMCID: PMC6343766 DOI: 10.20463/jenb.2018.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Hemodynamic function is a parameter indicating oxygen delivery and utilization capacity and is an important determinant of exercise performance. The present study aimed to determine whether intermittent hypoxic training (IHT) ameliorates hemodynamic function and exercise performance in competitive swimmers. METHODS Twenty competitive swimmers (10 men, 10 women) volunteered to participate in the study. Participants were divided into the normoxic training (NT) group and the hypoxic training (HT) group and were subjected to training in a simulated altitude of 3000 m. We evaluated hemodynamic function profiles over 30 min of submaximal exercise on a bicycle and exercise performance before and after 6 weeks of training, which involved continuous exercise at 80% maximal heart rate (HRmax) for 30 min and interval exercise at 90% of HRmax measured before training for 30 min (ten rounds comprising 2 min of exercise followed by 1 min of rest each round). RESULTS Significant changes in oxygen consumption (decrease) and end-diastolic volume (increase) were observed only in the HT group. Heart rate (HR), cardiac output (CO), and ejection fraction (EF) were significantly reduced in both groups, but the reduction rates of HR and CO were greater in the HT group than in the NT group. Exercise performance measures, including maximal oxygen consumption and 400-m time trial, were significantly increased only in the HT group. CONCLUSION Our findings suggested that 6 weeks of IHT, which involved high-intensity continuous and interval exercise, can effectively improve exercise performance by enhancing hemodynamic function in competitive swimmers.
Collapse
|
21
|
Ji W, Wang L, He S, Yan L, Li T, Wang J, Kong ANT, Yu S, Zhang Y. Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle. PLoS One 2018; 13:e0208474. [PMID: 30513114 PMCID: PMC6279028 DOI: 10.1371/journal.pone.0208474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypoxia training enhances the endurance capacity of athletes. This response may in part be attributed to the hypoxia-induced increase in antioxidant capacity in skeletal muscles. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor which regulates the expression of genes via binding to the antioxidant-response element (ARE) of these genes, plays a crucial role in stimulating the body's defense system and potentially responds to hypoxia. Meanwhile, hypoxia-inducible factor-1α (HIF-1α) is an important player in protecting cells from hypoxic stress. The purpose of this study was to investigate the effects of acute hypoxia exposure with different durations on the activation of Nrf2-ARE pathway and a possible regulatory role of HIF-1α in these responses. METHODS C57BL/6J mice were allocated into the non-hypoxia 0-hour, 6-hour, 24-hour, and 48-hour hypoxic exposure (11.2% oxygen) groups. The quadriceps femoris was collected immediately after hypoxia. Further, to investigate the possible role of HIF-1α, C2C12 myoblasts with HIF-1α knockdown by small interfering RNA (siRNA) and the inducible HIF-1α transgenic mice were employed. RESULTS The results showed that 48-hour hypoxia exposure up-regulated protein expression of Nrf2, Nrf2/ARE binding activity and the transcription of antioxidative genes containing ARE (Sod1 and others) in mouse skeletal muscle. Moreover, HIF-1α siRNA group of C2C12 myoblasts showed a remarkable inhibition of Nrf2 protein expression and nuclear accumulation in hypoxia exposure for 72 hours compared with that in siRNA-Control group of the cells. In addition, HIF-1α transgenic mice gave higher Nrf2 protein expression, Nrf2/ARE binding activity and expressions of Nrf2-mediated antioxidative genes in their skeletal muscle, compared with those in the wild-type mice. CONCLUSIONS The findings suggested that the acute hypoxia exposure could trigger the activation of Nrf2-ARE pathway, with longer duration associated with higher responses, and HIF-1α expression might be involved in promoting the Nrf2-mediated antioxidant responses in skeletal muscle.
Collapse
Affiliation(s)
- Weixiu Ji
- School of Sport Science, Beijing Sport University, Beijing, China
- Tianjin University of Sport, Tianjin, China
| | - Linjia Wang
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Shiyi He
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lu Yan
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Tieying Li
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jianxiong Wang
- Faculty of Health, Engineering, and Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Ah-Ng Tony Kong
- Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Camden, New Jersey, United States of America
| | - Siwang Yu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Chacaroun S, Vega-Escamilla Y Gonzalez I, Flore P, Doutreleau S, Verges S. Physiological responses to hypoxic constant-load and high-intensity interval exercise sessions in healthy subjects. Eur J Appl Physiol 2018; 119:123-134. [PMID: 30315366 DOI: 10.1007/s00421-018-4006-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to assess the acute cardiorespiratory as well as muscle and cerebral tissue oxygenation responses to submaximal constant-load (CL) and high-intensity interval (HII) cycling exercise performed in normoxia and in hypoxia at similar intensity, reproducing whole-body endurance exercise training sessions as performed in sedentary and clinical populations. METHODS Healthy subjects performed two CL (30 min, 75% of maximal heart rate, n = 12) and two HII (15 times 1-min high-intensity exercise-1-min passive recovery, n = 12) cycling exercise sessions in normoxia and in hypoxia [mean arterial oxygen saturation 76 ± 1% (clamped) during CL and 77 ± 5% (inspiratory oxygen fraction 0.135) during HII]. Cardiorespiratory and near-infrared spectroscopy parameters as well as the rate of perceived exertion were continuously recorded. RESULTS Power output was 21 ± 11% and 15% (according to protocol design) lower in hypoxia compared to normoxia during CL and HII exercise sessions, respectively. Heart rate did not differ between normoxic and hypoxic exercise sessions, while minute ventilation was higher in hypoxia during HII exercise only (+ 13 ± 29%, p < 0.05). Quadriceps tissue saturation index did not differ significantly between normoxia and hypoxia (CL 60 ± 8% versus 59 ± 5%; HII 59 ± 10% versus 56 ± 9%; p > 0.05), while prefrontal cortex deoxygenation was significantly greater in hypoxia during both CL (66 ± 4% versus 56 ± 6%) and HII (58 ± 5% versus 55 ± 5%; p < 0.05) sessions. The rate of perceived exertion did not differ between normoxic and hypoxic CL (2.4 ± 1.7 versus 2.9 ± 1.8) and HII (6.9 ± 1.4 versus 7.5 ± 0.8) sessions (p > 0.05). CONCLUSION This study indicates that at identical heart rate, reducing arterial oxygen saturation near 75% does not accentuate muscle deoxygenation during both CL and HII exercise sessions compared to normoxia. Hence, within these conditions, larger muscle hypoxic stress should not be expected.
Collapse
Affiliation(s)
- S Chacaroun
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France
| | - I Vega-Escamilla Y Gonzalez
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France
| | - P Flore
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France
| | - S Doutreleau
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France.,Grenoble Alpes University Hospital, Grenoble, France
| | - Samuel Verges
- HP2 Laboratory, INSERM U1042, UM Sports Pathologies, Hôpital Sud, Univ. Grenoble Alpes, Avenue Kimberley, 38 434, Echirolles, France. .,Grenoble Alpes University Hospital, Grenoble, France.
| |
Collapse
|
23
|
van der Zwaard S, Brocherie F, Kom BLG, Millet GP, Deldicque L, van der Laarse WJ, Girard O, Jaspers RT. Adaptations in muscle oxidative capacity, fiber size, and oxygen supply capacity after repeated-sprint training in hypoxia combined with chronic hypoxic exposure. J Appl Physiol (1985) 2018; 124:1403-1412. [PMID: 29420150 DOI: 10.1152/japplphysiol.00946.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, we investigate adaptations in muscle oxidative capacity, fiber size and oxygen supply capacity in team-sport athletes after six repeated-sprint sessions in normobaric hypoxia or normoxia combined with 14 days of chronic normobaric hypoxic exposure. Lowland elite field hockey players resided at simulated altitude (≥14 h/day at 2,800-3,000 m) and performed regular training plus six repeated-sprint sessions in normobaric hypoxia (3,000 m; LHTLH; n = 6) or normoxia (0 m; LHTL; n = 6) or lived at sea level with regular training only (LLTL; n = 6). Muscle biopsies were obtained from the m. vastus lateralis before (pre), immediately after (post-1), and 3 wk after the intervention (post-2). Changes over time between groups were compared, including likelihood of the effect size (ES). Succinate dehydrogenase activity in LHTLH largely increased from pre to post-1 (~35%), likely more than LHTL and LLTL (ESs = large-very large), and remained elevated in LHTLH at post-2 (~12%) vs. LHTL (ESs = moderate-large). Fiber cross-sectional area remained fairly similar in LHTLH from pre to post-1 and post-2 but was increased at post-1 and post-2 in LHTL and LLTL (ES = moderate-large). A unique observation was that LHTLH and LHTL, but not LLTL, improved their combination of fiber size and oxidative capacity. Small-to-moderate differences in oxygen supply capacity (i.e., myoglobin and capillarization) were observed between groups. In conclusion, elite team-sport athletes substantially increased their skeletal muscle oxidative capacity, while maintaining fiber size, after only 14 days of chronic hypoxic residence combined with six repeated-sprint training sessions in hypoxia. NEW & NOTEWORTHY Our novel findings show that elite team-sport athletes were able to substantially increase the skeletal muscle oxidative capacity in type I and II fibers (+37 and +32%, respectively), while maintaining fiber size after only 14 days of chronic hypoxic residence combined with six repeated-sprint sessions in hypoxia. This increase in oxidative capacity was superior to groups performing chronic hypoxic residence with repeated sprints in normoxia and residence at sea level with regular training only.
Collapse
Affiliation(s)
- S van der Zwaard
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam , The Netherlands
| | - F Brocherie
- Institute of Sports Sciences (ISSUL), University of Lausanne , Lausanne , Switzerland.,Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP) , Paris , France
| | - B L G Kom
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam , The Netherlands
| | - G P Millet
- Institute of Sports Sciences (ISSUL), University of Lausanne , Lausanne , Switzerland
| | - L Deldicque
- Institute of Neuroscience, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
| | - W J van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center , Amsterdam , The Netherlands
| | - O Girard
- Aspetar, Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre , Doha , Qatar.,School of Psychology and Exercise Science, Murdoch University , Perth , Australia
| | - R T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam , The Netherlands
| |
Collapse
|
24
|
Meinild Lundby AK, Jacobs RA, Gehrig S, de Leur J, Hauser M, Bonne TC, Flück D, Dandanell S, Kirk N, Kaech A, Ziegler U, Larsen S, Lundby C. Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta Physiol (Oxf) 2018; 222. [PMID: 28580772 DOI: 10.1111/apha.12905] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/01/2016] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Abstract
AIMS (i) To determine whether exercise-induced increases in muscle mitochondrial volume density (MitoVD ) are related to enlargement of existing mitochondria or de novo biogenesis and (ii) to establish whether measures of mitochondrial-specific enzymatic activities are valid biomarkers for exercise-induced increases in MitoVD . METHOD Skeletal muscle samples were collected from 21 healthy males prior to and following 6 weeks of endurance training. Transmission electron microscopy was used for the estimation of mitochondrial densities and profiles. Biochemical assays, western blotting and high-resolution respirometry were applied to detect changes in specific mitochondrial functions. RESULT MitoVD increased with 55 ± 9% (P < 0.001), whereas the number of mitochondrial profiles per area of skeletal muscle remained unchanged following training. Citrate synthase activity (CS) increased (44 ± 12%, P < 0.001); however, there were no functional changes in oxidative phosphorylation capacity (OXPHOS, CI+IIP ) or cytochrome c oxidase (COX) activity. Correlations were found between MitoVD and CS (P = 0.01; r = 0.58), OXPHOS, CI+CIIP (P = 0.01; R = 0.58) and COX (P = 0.02; R = 0.52) before training; after training, a correlation was found between MitoVD and CS activity only (P = 0.04; R = 0.49). Intrinsic respiratory capacities decreased (P < 0.05) with training when respiration was normalized to MitoVD. This was not the case when normalized to CS activity although the percentage change was comparable. CONCLUSIONS: MitoVD was increased by inducing mitochondrial enlargement rather than de novo biogenesis. CS activity may be appropriate to track training-induced changes in MitoVD.
Collapse
Affiliation(s)
- A.-K. Meinild Lundby
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
| | - R. A. Jacobs
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
- Department of Biology; University of Colorado; Denver CO USA
| | - S. Gehrig
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
| | - J. de Leur
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
| | - M. Hauser
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
| | - T. C. Bonne
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
| | - D. Flück
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
| | - S. Dandanell
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - N. Kirk
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
| | - A. Kaech
- Center for Microscopy and Image Analysis; University of Zürich; Zürich Switzerland
| | - U. Ziegler
- Center for Microscopy and Image Analysis; University of Zürich; Zürich Switzerland
| | - S. Larsen
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - C. Lundby
- Zürich Center for Integrative Human Physiology; Institute of Physiology; University of Zürich; Zürich Switzerland
| |
Collapse
|
25
|
Intermittent hypoxic training for 6 weeks in 3000 m hypobaric hypoxia conditions enhances exercise economy and aerobic exercise performance in moderately trained swimmers. Biol Sport 2017; 35:49-56. [PMID: 30237661 PMCID: PMC6135977 DOI: 10.5114/biolsport.2018.70751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/22/2017] [Accepted: 06/17/2017] [Indexed: 12/18/2022] Open
Abstract
Athletic endurance performance at sea level can be improved via intermittent hypoxic training (IHT). However, the efficacy of IHT for enhancement of aerobic exercise performance at sea level is controversial because of methodological differences. Therefore, the aim of the study was to determine whether the IHT regimen ameliorates exercise economy and aerobic exercise performance in moderately trained swimmers. A total of 20 moderately trained swimmers were equally assigned to the control group (n=10) training in normoxic conditions and the IHT group (n=10) training at a simulated altitude of 3000 m. They were evaluated for metabolic parameters and skeletal muscle oxygenation during 30 min submaximal exercise on a bicycle, and aerobic exercise performance before and after 6 weeks of training composed of aerobic continuous exercise set at 80% maximal heart rate (HRmax) during 30 min and anaerobic interval exercise set at the exercise load with 90% HRmax measured in pre-test during 30 min (10 times 2 min exercise and 1 min rest). According to the results, the IHT group demonstrated greater improvement in exercise economy due to decreases in VO2 (p=.016) and HHb (p=.002) and increases in O2Hb (p<.001) and TOI (p=.006). VCO2 was decreased in the IHT group (p=.010) and blood lactate level was decreased in the control (p=.005) and IHT groups (p=.001). All aerobic exercise performance including VO2max (p=.001) and the 400 m time trial (p<.001) were increased in the IHT group. The present findings indicate that the 6 week IHT regime composed of high-intensity aerobic continuous exercise and anaerobic interval exercise can be considered an effective altitude/hypoxic training method for improvement of exercise economy and aerobic exercise performance in moderately trained swimmers.
Collapse
|
26
|
Konopka AR, Castor WM, Wolff CA, Musci RV, Reid JJ, Laurin JL, Valenti ZJ, Hamilton KL, Miller BF. Skeletal muscle mitochondrial protein synthesis and respiration in response to the energetic stress of an ultra-endurance race. J Appl Physiol (1985) 2017; 123:1516-1524. [PMID: 28883046 DOI: 10.1152/japplphysiol.00457.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 2016 Colorado Trail Race (CTR) was an ultra-endurance mountain bike race in which competitors cycled for up to 24 h/day between altitudes of 1,675 and 4,025 m to complete 800 km and 21,000 m of elevation gain. In one athlete, we had the unique opportunity to characterize skeletal muscle protein synthesis and mitochondrial respiration in response to a normal activity control period (CON) and the CTR. We hypothesized that mitochondrial protein synthesis would be elevated and mitochondrial respiration would be maintained during the extreme stresses of the CTR. Titrated and bolus doses of ADP were provided to determine substrate-specific oxidative phosphorylation (OXPHOS) and electron transport system (ETS) capacities in permeabilized muscle fibers via high-resolution respirometry. Protein synthetic rates were determined by daily oral consumption of deuterium oxide (2H2O). The endurance athlete had OXPHOS (226 pmol·s-1·mg tissue-1) and ETS (231 pmol·s-1·mg tissue-1) capacities that rank among the highest published to date in humans. Mitochondrial (3.2-fold), cytoplasmic (2.3-fold), and myofibrillar (1.5-fold) protein synthesis rates were greater during CTR compared with CON. With titrated ADP doses, the apparent Km of ADP, OXPHOS, and ETS increased after the CTR. With provision of ADP boluses after the CTR, the addition of fatty acids (-12 and -14%) mitigated the decline in OXPHOS and ETS capacity during carbohydrate-supported respiration (-26 and -31%). In the face of extreme stresses during the CTR, elevated rates of mitochondrial protein synthesis may contribute to rapid adaptations in mitochondrial bioenergetics. NEW & NOTEWORTHY The mechanisms that maintain skeletal muscle function during extreme stresses remain incompletely understood. In the current study, greater rates of mitochondrial protein synthesis during the energetic demands of ultra-endurance exercise may contribute to rapid adaptations in mitochondrial bioenergetics. The endurance athlete herein achieved mitochondrial respiratory capacities among the highest published for humans. Greater mitochondrial protein synthesis during ultra-endurance exercise may contribute to improved mitochondrial respiration and serve as a mechanism to resist cellular energetic stresses.
Collapse
Affiliation(s)
- Adam R Konopka
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado.,Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - William M Castor
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| | - Christopher A Wolff
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| | - Justin J Reid
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| | - Jaime L Laurin
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| | - Zackary J Valenti
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| |
Collapse
|
27
|
Davie AJ, Wen L, Cust ARE, Beavers R, Fyfe T, Zhou S. The effects of moderate intensity training in a hypoxic environment on transcriptional responses in Thoroughbred horses. Biol Open 2017; 6:1035-1040. [PMID: 28583927 PMCID: PMC5550905 DOI: 10.1242/bio.020388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study investigated the effects of six weeks of normobaric hypoxic training on transcriptional expression of the genes associated with mitochondrial and glycolytic activities in Thoroughbred horses. Eight horses were divided into two groups of four. They completed an identical incremental, moderate intensity training program, except that one group trained in a hypoxic chamber with 15% oxygen for 30 min on alternate days except Sundays (HT), while the other group trained in normal air (NC). Prior to and post training, heart rate and blood lactate were measured during an incremental treadmill test. Muscle biopsy samples were taken prior to and 24 h post the training period for qPCR analysis of mRNA changes in VEGF, PPARγ, HIF-1α, PGC-1α, COX4, AK3, LDH, PFK, PKm and SOD-2. No significant differences between the HT and NC were detected by independent-samples t-test with Bonferroni correction for multiple comparisons (P>0.05) in relative changes of mRNA abundance. There were no significant differences between groups for heart rate and blood lactate during the treadmill test. The outcomes indicated that this hypoxia training program did not cause a significant variation in basal level expression of the selected mRNAs in Thoroughbreds as compared with normoxic training.
Collapse
Affiliation(s)
- Allan J Davie
- Southern Cross University, School of Health and Human Sciences, Lismore, NSW 2480, Australia
| | - Li Wen
- Tianjin University of Sports, Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin 300381, China
| | | | - Rosalind Beavers
- Southern Cross University, School of Health and Human Sciences, Lismore, NSW 2480, Australia
| | - Tom Fyfe
- Pulford Air and Gas, Sydney, NSW 2141, Australia
| | - Shi Zhou
- Southern Cross University, School of Health and Human Sciences, Lismore, NSW 2480, Australia
| |
Collapse
|
28
|
Park HY, Nam SS. Application of "living high-training low" enhances cardiac function and skeletal muscle oxygenation during submaximal exercises in athletes. J Exerc Nutrition Biochem 2017; 21:13-20. [PMID: 28712261 PMCID: PMC5508055 DOI: 10.20463/jenb.2017.0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/28/2017] [Accepted: 03/17/2017] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The aim of this study was to determine the efficiency of the application of living high-training low (LHTL) on cardiac function and skeletal muscle oxygenation during submaximal exercises compared with that of living low-training low (LLTL) in athletes. METHODS Male middle- and long-distance runners (n = 20) were randomly assigned into the LLTL group (n = 10, living at 1000-m altitude and training at 700-1330-m altitude) and the LHTL group (n = 10, living at simulated 3000-m altitude and training at 700-1330-m altitude). Their cardiac function and skeletal muscle oxygenation during submaximal exercises at sea level before and after training at each environmental condition were evaluated. RESULTS There was a significant interaction only in the stroke volume (SV); however, the heart rate (HR), end-diastolic volume (EDV), and end-systolic volume (ESV) showed significant main effects within time; HR and SV significantly increased during training in the LHTL group compared with those in the LLTL group. EDV also significantly increased during training in both groups; however, the LHTL group had a higher increase than the LLTL group. ESV significantly increased during training in the LLTL group. There was no significant difference in the ejection fraction and cardiac output. The skeletal muscle oxygen profiles had no significant differences but improved in the LHTL group compared with those in the LLTL group. CONCLUSION LHTL can yield favorable effects on cardiac function by improving the HR, SV, EDV, and ESV during submaximal exercises compared with LLTL in athletes.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
- Department of Sports Medicine, Kyung Hee University, YonginRepublic of Korea
| | - Sang-Seok Nam
- Department of Sports Medicine, Kyung Hee University, YonginRepublic of Korea
| |
Collapse
|
29
|
Zubieta-Calleja G, Zubieta-DeUrioste N. Extended longevity at high altitude: Benefits of exposure to chronic hypoxia. BLDE UNIVERSITY JOURNAL OF HEALTH SCIENCES 2017. [DOI: 10.4103/bjhs.bjhs_7_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Nakamoto FP, Ivamoto RK, Andrade MDS, de Lira CAB, Silva BM, da Silva AC. Effect of Intermittent Hypoxic Training Followed by Intermittent Hypoxic Exposure on Aerobic Capacity of Long Distance Runners. J Strength Cond Res 2016; 30:1708-20. [PMID: 26562716 DOI: 10.1519/jsc.0000000000001258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Effects of intermittent hypoxic training (IHT) are still controversial and detraining effects remain uninvestigated. Therefore, we investigated (a) whether IHT improves aerobic capacity; (b) whether aerobic detraining occurs post-IHT; and (c) whether intermittent hypoxic exposure (IHE) at rest reduces a possible aerobic detraining post-IHT. Twenty eight runners (21 men/7 women; 36 ± 2 years; maximal oxygen uptake [V[Combining Dot Above]O2max] 55.4 ± 1.3 ml·kg·min) participated in a single-blinded placebo-controlled trial. Twice a week, 1 group performed 6 weeks of IHT (n = 11), followed by 4 weeks of IHE (n = 11) at rest (IHT+IHE group). Another group performed 6 weeks of IHT (n = 10), followed by 4 weeks of normoxic exposure (NE, n = 9) at rest (IHT+NE group). A control group performed 6 weeks of normoxic training (NT, n = 7), followed by 4 weeks of NE (n = 6) at rest (NT+NE group). Hematological and submaximal/maximal aerobic measurements were conducted in normoxia at pretraining, posttraining, and postexposure. Hemoglobin concentration did not change, but lactate threshold and running economy improved in all groups at posttraining (p ≤ 0.05 vs. pretraining). Ventilatory threshold, respiratory compensation point, and V[Combining Dot Above]O2max increased after IHT (IHT+IHE group: 7.3, 5.4, and 9.2%, respectively; IHT+NE group: 10.7, 7.5, and 4.8%; p ≤ 0.05 vs. pretraining), but not after NT (-1.1, -1.0, and -3.8%; p > 0.05 vs. pretraining). Such IHT-induced adaptations were maintained at postexposure (p > 0.05 vs. postexposure). In conclusion, IHT induced further aerobic improvements than NT. These additional IHT adaptations were maintained for 4 weeks post-IHT, regardless of IHE.
Collapse
Affiliation(s)
- Fernanda P Nakamoto
- 1Graduate Program in Pharmacology, Federal University of São Paulo, São Paulo, Brazil; 2Olympic Center of Training and Research, São Paulo City Hall, São Paulo, Brazil; 3Department of Physiology, Federal University of São Paulo, São Paulo, Brazil; and 4Section of Human and Exercise Physiology, Faculty of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Kilding AE, Dobson BP, Ikeda E. Effects of Acutely Intermittent Hypoxic Exposure on Running Economy and Physical Performance in Basketball Players. J Strength Cond Res 2016; 30:2033-42. [PMID: 26677826 DOI: 10.1519/jsc.0000000000001301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kilding, AE, Dobson, BP, and Ikeda, E. Effects of acutely intermittent hypoxic exposure on running economy and physical performance in basketball players. J Strength Cond Res 30(7): 2033-2042, 2016-The aim of this study was to determine the effect of short duration intermittent hypoxic exposure (IHE) on physical performance in basketball players. Using a single-blind placebo-controlled group design, 14 trained basketball players were subjected to 15 days of passive short duration IHE (n = 7), or normoxic control (CON, n = 7), using a biofeedback nitrogen dilution device. A range of physiological, performance, and hematological variables were measured at baseline, and 10 days after IHE. After intervention, the IHE group, relative to the CON group, exhibited improvements in the Yo-Yo intermittent recovery level 1 (+4.8 ± 1.6%; effect size [ES]: 1.0 ± 0.4) and repeated high-intensity exercise test performance (-3.5 ± 1.6%; ES: -0.4 ± 0.2). Changes in hematological parameters were minimal, although soluble transferrin receptor increased after IHE (+9.2 ± 10.1%; ES: 0.3 ± 0.3). Running economy at 11 km·h (-9.0 ± 9.7%; ES: -0.7 ± 0.7) and 13 km·h was improved (-8.2 ± 6.9%; ES: -0.7 ± 0.5), but changes to V[Combining Dot Above]O2peak, HRpeak, and lactate were unclear. In summary, acutely IHE resulted in worthwhile changes in physical performance tests among competitive basketball players. However, physiological measures explaining the performance enhancement were in most part unclear.
Collapse
Affiliation(s)
- Andrew E Kilding
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| | | | | |
Collapse
|
32
|
Michalczyk M, Czuba M, Zydek G, Zając A, Langfort J. Dietary Recommendations for Cyclists during Altitude Training. Nutrients 2016; 8:E377. [PMID: 27322318 PMCID: PMC4924218 DOI: 10.3390/nu8060377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/30/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.
Collapse
Affiliation(s)
- Małgorzata Michalczyk
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Miłosz Czuba
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Grzegorz Zydek
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Adam Zając
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Józef Langfort
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| |
Collapse
|
33
|
Stavrou V, Toubekis AG, Karetsi E. Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding. J Hum Kinet 2015; 49:89-98. [PMID: 26839609 PMCID: PMC4723185 DOI: 10.1515/hukin-2015-0111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to examine the effects of training with intermittent breath holding (IBH) on respiratory parameters, arterial oxygen saturation (SpO2) and performance. Twenty-eight fin-swimming athletes were randomly divided into two groups and followed the same training for 16 weeks. About 40% of the distance of each session was performed with self-selected breathing frequency (SBF group) or IBH (IBH group). Performance time of 50 and 400 m at maximum intensity was recorded and forced expired volume in 1 s (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and SpO2 were measured before and after the 50 m test at baseline and post-training. Post-training, the respiratory parameters were increased in the IBH but remained unchanged in the SBF group (FEV1: 17 ±15% vs. -1 ±11%; FVC: 22 ±13% vs. 1 ±10%; PEF: 9 ±14% vs. -4 ±15%; p<0.05). Pre compared to post-training SpO2 was unchanged at baseline and decreased post-training following the 50 m test in both groups (p<0.05). The reduction was higher in the IBH compared to the SBF group (p<0.05). Performance in the 50 and 400 m tests improved in both groups, however, the improvement was greater in the IBH compared to the SBF group in both 50 and 400 m tests (p<0.05). The use of IBH is likely to enhance the load on the respiratory muscles, thus, contributing to improvement of the respiratory parameters. Decreased SpO2 after IBH is likely due to adaptation to hypoventilation. IBH favours performance improvement at 50 and 400 m fin-swimming.
Collapse
Affiliation(s)
- Vasileios Stavrou
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece; Medical School, Department of Cardio-Pulmonary Testing, Pulmonary Clinic, University of Thessaly, Larissa, Greece
| | - Argyris G Toubekis
- Faculty of Physical Education and Sport Science, Department of Aquatic Sports, University of Athens, Athens, Greece
| | - Eleni Karetsi
- Medical School, Department of Cardio-Pulmonary Testing, Pulmonary Clinic, University of Thessaly, Larissa, Greece
| |
Collapse
|
34
|
van Ginkel S, Ruoss S, Valdivieso P, Degens H, Waldron S, de Haan A, Flück M. ACE inhibition modifies exercise-induced pro-angiogenic and mitochondrial gene transcript expression. Scand J Med Sci Sports 2015; 26:1180-7. [PMID: 26407530 DOI: 10.1111/sms.12572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 01/02/2023]
Abstract
Skeletal muscle responds to endurance exercise with an improvement of biochemical pathways that support substrate supply and oxygen-dependent metabolism. This is reflected by enhanced expression of associated factors after exercise and is specifically modulated by tissue perfusion and oxygenation. We hypothesized that transcript expression of pro-angiogenic factors (VEGF, tenascin-C, Angpt1, Angpt1R) and oxygen metabolism (COX4I1, COX4I2, HIF-1α) in human muscle after an endurance stimulus depends on vasoconstriction, and would be modulated through angiotensin-converting enzyme inhibition by intake of lisinopril. Fourteen non-specifically trained, male Caucasians subjects, carried out a single bout of standardized one-legged bicycle exercise. Seven of the participants consumed lisinopril in the 3 days before exercise. Biopsies were collected pre- and 3 h post-exercise from the m. vastus lateralis. COX4I1 (P = 0.03), COX4I2 (P = 0.04) mRNA and HIF-1α (P = 0.05) mRNA and protein levels (P = 0.01) showed an exercise-induced increase in the group not consuming the ACE inhibitor. Conversely, there was a specific exercise-induced increase in VEGF transcript (P = 0.04) and protein levels (P = 0.03) and a trend for increased tenascin-c transcript levels (P = 0.09) for subjects consuming lisinopril. The observations indicate that exercise-induced expression of transcripts involved in angiogenesis and mitochondrial energy metabolism are to some extent regulated via a hypoxia-related ACE-dependent mechanism.
Collapse
Affiliation(s)
- S van Ginkel
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.,MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - S Ruoss
- University Hospital Balgrist, Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland
| | - P Valdivieso
- University Hospital Balgrist, Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland
| | - H Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - S Waldron
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - A de Haan
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.,MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - M Flück
- University Hospital Balgrist, Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
McLean BD, Gore CJ, Kemp J. Application of 'live low-train high' for enhancing normoxic exercise performance in team sport athletes. Sports Med 2015; 44:1275-87. [PMID: 24849544 DOI: 10.1007/s40279-014-0204-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Hypoxic training techniques are increasingly used by athletes in an attempt to improve performance in normoxic environments. The 'live low-train high (LLTH)' model of hypoxic training may be of particular interest to athletes because LLTH protocols generally involve shorter hypoxic exposures (approximately two to five sessions per week of <3 h) than other traditional hypoxic training techniques (e.g., live high-train high or live high-train low). However, the methods employed in LLTH studies to date vary greatly with respect to exposure times, training intensities, training modalities, degrees of hypoxia and performance outcomes assessed. Whilst recent reviews provide some insight into how LLTH may be applied to enhance performance, little attention has been given to how training intensity/modality may specifically influence subsequent performance in normoxia. Therefore, this systematic review aims to evaluate the normoxic performance outcomes of the available LLTH literature, with a particular focus on training intensity and modality. DATA SOURCES AND STUDY SELECTION A systematic search was conducted to capture all LLTH studies with a matched normoxic (control) training group and the assessment of performance under normoxic conditions. Studies were excluded if no training was completed during the hypoxic exposures, or if these exposures exceeded 3 h per day. Four electronic databases were searched (PubMed, SPORTDiscus, EMBASE and Web of Science) during August 2013, and these searches were supplemented by additional manual searches until December 2013. RESULTS After the electronic and manual searches, 40 papers were deemed to meet the inclusion criteria, representing 31 separate studies. Within these 31 studies, four types of LLTH were identified: (1) continuous low-intensity training in hypoxia (CHT, n = 16), (2) interval hypoxic training (IHT, n = 4), (3) repeated sprint training in hypoxia (RSH, n = 3) and (4) resistance training in hypoxia (RTH, n = 4). Four studies also used a combination of CHT and IHT. The majority of studies reported no difference in normoxic performance between the hypoxic and normoxic training groups (n = 19), while nine reported greater improvements in the hypoxic group and three reported poorer outcomes compared with the control group. Selection of training intensity (including matching relative or absolute intensity between normoxic and hypoxic groups) was identified as a key factor in mediating the subsequent normoxic performance outcomes. Five studies included some form of normoxic training for the hypoxic group and 14 studies assessed performance outcomes not specific to the training intensity/modality completed during the training intervention. CONCLUSION Four modes of LLTH are identified in the current literature (CHT, IHT, RSH and RTH), with training mode and intensity appearing to be key factors in mediating subsequent performance responses in normoxia. Improvements in normoxic performance appear most likely following high-intensity, short-term and intermittent training (e.g., IHT, RSH). LLTH programmes should carefully apply the principles of training and testing specificity and include some high-intensity training in normoxia. For RTH, it is unclear whether the associated adaptations are greater than those of traditional (maximal) resistance training programmes.
Collapse
Affiliation(s)
- Blake D McLean
- Sport Science Department, Collingwood Football Club, Melbourne, Australia,
| | | | | |
Collapse
|
36
|
Montero D, Cathomen A, Jacobs RA, Flück D, de Leur J, Keiser S, Bonne T, Kirk N, Lundby AK, Lundby C. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. J Physiol 2015; 593:4677-88. [PMID: 26282186 DOI: 10.1113/jp270250] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022] Open
Abstract
It remains unclear whether improvements in peak oxygen uptake (V̇(O2peak)) following endurance training (ET) are primarily determined by central and/or peripheral adaptations. Herein, we tested the hypothesis that the improvement in V̇(O2peak) following 6 weeks of ET is mainly determined by haematological rather than skeletal muscle adaptations. Sixteen untrained healthy male volunteers (age = 25 ± 4 years, V̇(O2peak) = 3.5 ± 0.5 l min(-1)) underwent supervised ET (6 weeks, 3-4 sessions per week). V̇(O2peak), peak cardiac output (Q̇(peak)), haemoglobin mass (Hb(mass)) and blood volumes were assessed prior to and following ET. Skeletal muscle biopsies were analysed for mitochondrial volume density (Mito(VD)), capillarity, fibre types and respiratory capacity (OXPHOS). After the post-ET assessment, red blood cell volume (RBCV) was re-established at the pre-ET level by phlebotomy and V̇(O2peak) and Q̇(peak) were measured again. We speculated that the contribution of skeletal muscle adaptations to the ET-induced increase in V̇(O2peak) would be revealed when controlling for haematological adaptations. V̇(O2peak) and Q̇(peak) were increased (P < 0.05) following ET (9 ± 8 and 7 ± 6%, respectively) and decreased (P < 0.05) after phlebotomy (-7 ± 7 and -10 ± 7%). RBCV, plasma volume and Hb(mass) all increased (P < 0.05) after ET (8 ± 4, 4 ± 6 and 6 ± 5%). As for skeletal muscle adaptations, capillary-to-fibre ratio and total Mito(VD) increased (P < 0.05) following ET (18 ± 16 and 43 ± 30%), but OXPHOS remained unaltered. Through stepwise multiple regression analysis, Q̇(peak), RBCV and Hb(mass) were found to be independent predictors of V̇(O2peak). In conclusion, the improvement in V̇(O2peak) following 6 weeks of ET is primarily attributed to increases in Q̇(peak) and oxygen-carrying capacity of blood in untrained healthy young subjects.
Collapse
Affiliation(s)
- David Montero
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Adrian Cathomen
- Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - Robert A Jacobs
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland.,Health and Physical Education, School of Teaching and Learning, Western Carolina University, Cullowhee, NC, USA
| | - Daniela Flück
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Jeroen de Leur
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Stefanie Keiser
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Thomas Bonne
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Niels Kirk
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Anne-Kristine Lundby
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Carsten Lundby
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| |
Collapse
|
37
|
Effects of normoxic and hypoxic exercise regimens on monocyte-mediated thrombin generation in sedentary men. Clin Sci (Lond) 2015; 129:363-74. [PMID: 25826125 DOI: 10.1042/cs20150128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exercise and hypoxia paradoxically modulate vascular thrombotic risks. The shedding of procoagulant-rich microparticles from monocytes may accelerate the pathogenesis of atherothrombosis. The present study explores the manner in which normoxic and hypoxic exercise regimens affect procoagulant monocyte-derived microparticle (MDMP) formation and monocyte-promoted thrombin generation (TG). Forty sedentary healthy males were randomized to perform either normoxic (NET; 21% O2, n=20) or hypoxic (HET; 15% O2, n=20) exercise training (60% VO(2max)) for 30 min/day, 5 days/week for 5 weeks. At rest and immediately after HET (100 W under 12% O2 for 30 min), the MDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. The results demonstrated that acute 12% O2 exercise (i) increased the release of coagulant factor V (FV)/FVIII-rich, phosphatidylserine (PS)-exposed and tissue factor (TF)-expressed microparticles from monocytes, (ii) enhanced the peak height and rate of TG in monocyte-rich plasma (MRP) and (iii) elevated concentrations of norepinephrine/epinephrine, myeloperoxidase (MPO) and interleukin-6 (IL-6) in plasma. Following the 5-week intervention, HET exhibited higher enhancements of peak work-rate and cardiopulmonary fitness than NET did. Moreover, both NET and HET decreased the FV/FVIII-rich, PS-exposed and TF-expressed MDMP counts and the peak height and rate of TG in MRP following the HET. However, HET elicited more suppression for the HE (hypoxic exercise)-enhanced procoagulant MDMP formation and dynamic TG in MPR and catecholamine/peroxide/pro-inflammatory cytokine levels in plasma than NET. Hence, we conclude that HET is superior to NET for enhancing aerobic capacity. Furthermore, HET effectively suppresses procoagulant MDMP formation and monocyte-mediated TG under severe hypoxic stress, compared with NET.
Collapse
|
38
|
Robach P, Bonne T, Flück D, Bürgi S, Toigo M, Jacobs RA, Lundby C. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. Med Sci Sports Exerc 2015; 46:1936-45. [PMID: 24674976 DOI: 10.1249/mss.0000000000000321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE The effects of hypoxic training on exercise performance remain controversial. Here, we tested the hypotheses that i) hypoxic training possesses ergogenic effects at sea level and altitude and ii) the benefits are primarily mediated by improved mitochondrial function of the skeletal muscle. METHODS We determined aerobic performance (incremental test to exhaustion and time trial for a set amount of work) in moderately trained subjects undergoing 6 wk of endurance training (3-4 times per week, 60 min per session) in normoxia (placebo, n = 8) or normobaric hypoxia (FIO2 = 0.15, n = 9) using a double-blind and randomized design. Exercise tests were performed in normoxia and acute hypoxia (FIO2 = 0.15). Skeletal muscle mitochondrial respiratory capacities and electron coupling efficiencies were measured via high-resolution respirometry. Total hemoglobin mass was assessed by carbon monoxide rebreathing. RESULTS Skeletal muscle respiratory capacity was not altered by training or hypoxia; however, electron coupling control respective to fat oxidation slightly diminished with hypoxic training. Hypoxic training did increase total hemoglobin mass more than the placebo (8.4% vs 3.3%, P = 0.02). In normoxia, hypoxic training had no additive effect on maximal measures of oxygen uptake or time trial performance. In acute hypoxia, hypoxic training conferred no advantage on maximal oxygen uptake but tended to enhance time trial performance more than normoxic training (52% vs 32%, P = 0.09). CONCLUSIONS Our data suggest that, in moderately trained subjects, 6 wk of hypoxic training possesses no ergogenic effect at sea level. It is not excluded that hypoxic training might facilitate endurance capacity at moderate altitude; however, this issue is still open and needs to be further examined.
Collapse
Affiliation(s)
- Paul Robach
- 1Ecole Nationale des Sports de Montagne, site de l'Ecole Nationale de Ski et d'Alpinisme, Chamonix, FRANCE; 2Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, DENMARK; 3Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, SWITZERLAND; 4Institute of Physiology, University of Zürich, Zürich, SWITZERLAND; and 5Exercise Physiology, Institute of Human Movement Sciences, Eidgenössische Technische Hochschule Zürich, Zürich, SWITZERLAND
| | | | | | | | | | | | | |
Collapse
|
39
|
Li G, Wang J, Ye J, Zhang Y, Zhang Y. PPARα Protein Expression Was Increased by Four Weeks of Intermittent Hypoxic Training via AMPKα2-Dependent Manner in Mouse Skeletal Muscle. PLoS One 2015; 10:e0122593. [PMID: 25923694 PMCID: PMC4414596 DOI: 10.1371/journal.pone.0122593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/11/2015] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is critical for muscle endurance due to its role in the regulation of fatty acid oxidation. The 5'-AMP-activated protein kinase (AMPK) is an energy sensor in cells, but its role in PPARα regulation in vivo remains unknown. In this study, we examined PPARα expression in the skeletal muscle of AMPKα2 overexpression (OE), knockout (KO) and wild-type (WT) mice after four weeks of exercise under intermittent hypoxia. WT, OE and KO mice were used at 40 mice/strain and randomly subdivided into four subgroups: control (C), running (R), hypoxia (H), and running plus hypoxia (R+H) at 10 mice/group. The treadmill running was performed at the speed of 12 m/min, 60 min/day with a slope of 0 degree for four weeks. The hypoxia treatment was performed in daytime with normobaric hypoxia (11.20% oxygen, 8 hours/day). In the R+H group, the treadmill running was conducted in the hypoxic condition. AMPKα2, phosphor-AMPKα (p-AMPKα) (Thr172), nuclear PPARα proteins were measured by Western blot and the medium chain acyl coenzyme A dehydrogenase (MCAD) mRNA, the key enzyme for fatty acid oxidation and one of the PPARα target genes, was also measured in skeletal muscles after the interventions. The results showed that nuclear PPARα protein was significantly increased by R+H in WT muscles, the increase was enhanced by 41% (p<0.01) in OE mice, but was reduced by 33% (p<0.01) in KO mice. The MCAD mRNA expression was increased after four weeks of R+H intervention. The change in MCAD mRNA followed a similar trend as that of PPARα protein in OE and KO mice. Our data suggest that the increase in nuclear PPARα protein by four-week exercise training under the intermittent hypoxia was dependent on AMPK activation.
Collapse
Affiliation(s)
- Ge Li
- Division of Exercise Biochemistry, Institute of Sports Science, Beijing Sport University, China
| | - Jianxiong Wang
- School of Health and Wellbeing, Faculty of Health, Engineering, and Sciences, University of Southern Queensland, Australia
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University, Louisiana, United States of America
| | - Yimin Zhang
- Key Laboratory of Exercise and Physical Fitness (Beijing Sport University), Ministry of Education of the People’s Republic of China
| | - Ying Zhang
- Division of Exercise Biochemistry, Institute of Sports Science, Beijing Sport University, China
- * E-mail:
| |
Collapse
|
40
|
Holliss BA, Burden RJ, Jones AM, Pedlar CR. Eight weeks of intermittent hypoxic training improves submaximal physiological variables in highly trained runners. J Strength Cond Res 2015; 28:2195-203. [PMID: 24513622 DOI: 10.1519/jsc.0000000000000406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is unclear whether intermittent hypoxic training (IHT) results in improvements in physiological variables associated with endurance running. Twelve highly trained runners (VO2peak 70.0 ± 3.5 ml·kg-1·min-1) performed incremental treadmill tests to exhaustion in normobaric normoxia and hypoxia (16.0% FIO2) to assess submaximal and maximal physiological variables and the limit of tolerance (T-Lim). Participants then completed 8 weeks of moderate to heavy intensity normoxic training (control [CONT]) or IHT (twice weekly 40 minutes runs, in combination with habitual training), in a single blinded manner, before repeating the treadmill tests. Submaximal heart rate decreased significantly more after IHT (-5 ± 5 b·min-1; p = 0.001) than after CONT ( -1 ± 5 b·min-1; p = 0.021). Changes in submaximal V[Combining Dot Above]O2 were significantly different between groups (p ≤ 0.05); decreasing in the IHT group in hypoxia (-2.6 ± 1.7 ml·kg-1·min-1; p = 0.001) and increasing in the CONT group in normoxia (+1.1 ± 2.1 ml·kg-1·min-1; p = 0.012). There were no VO2peak changes within either group, and while T-Lim improved post-IHT in hypoxia (p = 0.031), there were no significant differences between groups. Intermittent hypoxic training resulted in a degree of enhanced cardiovascular fitness that was evident during submaximal, but not maximal intensity exercise. These results suggest that moderate to heavy intensity IHT provides a mean of improving the capacity for submaximal exercise and may be useful for pre-acclimatization for subsequent exercise in hypoxia, but additional research is required to establish its efficacy for athletic performance at sea level.
Collapse
Affiliation(s)
- Ben A Holliss
- 1College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom; 2British Swimming National Centre, Sports Training Village, University of Bath, Bath, United Kingdom; and 3Centre for Health, Applied Sport and Exercise Science, St. Mary's University College, Twickenham, United Kingdom
| | | | | | | |
Collapse
|
41
|
Scott GR, Elogio TS, Lui MA, Storz JF, Cheviron ZA. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation. Mol Biol Evol 2015; 32:1962-76. [PMID: 25851956 DOI: 10.1093/molbev/msv076] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
At high-altitude, small mammals are faced with the energetic challenge of sustaining thermogenesis and aerobic exercise in spite of the reduced O2 availability. Under conditions of hypoxic cold stress, metabolic demands of shivering thermogenesis and locomotion may require enhancements in the oxidative capacity and O2 diffusion capacity of skeletal muscle to compensate for the diminished tissue O2 supply. We used common-garden experiments involving highland and lowland deer mice (Peromyscus maniculatus) to investigate the transcriptional underpinnings of genetically based population differences and plasticity in muscle phenotype. We tested highland and lowland mice that were sampled in their native environments as well as lab-raised F1 progeny of wild-caught mice. Experiments revealed that highland natives had consistently greater oxidative fiber density and capillarity in the gastrocnemius muscle. RNA sequencing analyses revealed population differences in transcript abundance for 68 genes that clustered into two discrete transcriptional modules, and a large suite of transcripts (589 genes) with plastic expression patterns that clustered into five modules. The expression of two transcriptional modules was correlated with the oxidative phenotype and capillarity of the muscle, and these phenotype-associated modules were enriched for genes involved in energy metabolism, muscle plasticity, vascular development, and cell stress response. Although most of the individual transcripts that were differentially expressed between populations were negatively correlated with muscle phenotype, several genes involved in energy metabolism (e.g., Ckmt1, Ehhadh, Acaa1a) and angiogenesis (Notch4) were more highly expressed in highlanders, and the regulators of mitochondrial biogenesis, PGC-1α (Ppargc1a) and mitochondrial transcription factor A (Tfam), were positively correlated with muscle oxidative phenotype. These results suggest that evolved population differences in the oxidative capacity and capillarity of skeletal muscle involved expression changes in a small suite of coregulated genes.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Todd S Elogio
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Mikaela A Lui
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| | | |
Collapse
|
42
|
Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med 2014; 47 Suppl 1:i45-50. [PMID: 24282207 PMCID: PMC3903143 DOI: 10.1136/bjsports-2013-092741] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.
Collapse
Affiliation(s)
- Raphaël Faiss
- Department of Physiology, Faculty of Biology and Medicine, Institute of Sports Sciences, University of Lausanne, , Lausanne, Switzerland
| | | | | |
Collapse
|
43
|
Laker RC, Xu P, Ryall KA, Sujkowski A, Kenwood BM, Chain KH, Zhang M, Royal MA, Hoehn KL, Driscoll M, Adler PN, Wessells RJ, Saucerman JJ, Yan Z. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 2014; 289:12005-12015. [PMID: 24644293 DOI: 10.1074/jbc.m113.530527] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction plays important roles in many diseases, but there is no satisfactory method to assess mitochondrial health in vivo. Here, we engineered a MitoTimer reporter gene from the existing Timer reporter gene. MitoTimer encodes a mitochondria-targeted green fluorescent protein when newly synthesized, which shifts irreversibly to red fluorescence when oxidized. Confocal microscopy confirmed targeting of the MitoTimer protein to mitochondria in cultured cells, Caenorhabditis elegans touch receptor neurons, Drosophila melanogaster heart and indirect flight muscle, and mouse skeletal muscle. A ratiometric algorithm revealed that conditions that cause mitochondrial stress led to a significant shift toward red fluorescence as well as accumulation of pure red fluorescent puncta of damaged mitochondria targeted for mitophagy. Long term voluntary exercise resulted in a significant fluorescence shift toward green, in mice and D. melanogaster, as well as significantly improved structure and increased content in mouse FDB muscle. In contrast, high-fat feeding in mice resulted in a significant shift toward red fluorescence and accumulation of pure red puncta in skeletal muscle, which were completely ameliorated by voluntary wheel running. Hence, MitoTimer allows for robust analysis of multiple parameters of mitochondrial health under both physiological and pathological conditions and will be highly useful for future research of mitochondrial health in multiple disciplines in vivo.
Collapse
Affiliation(s)
- Rhianna C Laker
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Peng Xu
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Karen A Ryall
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| | - Alyson Sujkowski
- Department of Geriatric Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brandon M Kenwood
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Kristopher H Chain
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908; Departments of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Mei Zhang
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Mary A Royal
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Kyle L Hoehn
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Paul N Adler
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Robert J Wessells
- Department of Geriatric Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jeffrey J Saucerman
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| | - Zhen Yan
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908; Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908; Departments of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
44
|
Desplanches D, Amami M, Dupré-Aucouturier S, Valdivieso P, Schmutz S, Mueller M, Hoppeler H, Kreis R, Flück M. Hypoxia refines plasticity of mitochondrial respiration to repeated muscle work. Eur J Appl Physiol 2013; 114:405-17. [PMID: 24327174 PMCID: PMC3895187 DOI: 10.1007/s00421-013-2783-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Purpose We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle. Methods Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65 % of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy. Biopsies from vastus lateralis muscle, collected pre and post a single exercise bout, and training, were assessed for levels of transcripts and proteins being associated with mitochondrial metabolism. Results Hypoxia specifically lowered the training-induced expression of markers of respiratory complex II and IV (i.e. SDHA and isoform 1 of COX-4; COX4I1) and preserved fibre cross-sectional area. Concomitantly, trends (p < 0.10) were found for a hypoxia-specific reduction in the basal oxygen consumption rate, and improvements in oxygen repletion, and aerobic performance in hypoxia. Repeated exercise in hypoxia promoted the biogenesis of subsarcolemmal mitochondria and this was co-related to expression of isoform 2 of COX-4 with higher oxygen affinity after single exercise, de-oxygenation time and myoglobin content (r ≥ 0.75). Conversely, expression in COX4I1 with training correlated negatively with changes of subsarcolemmal mitochondria (r < −0.82). Conclusion Hypoxia-modulated adjustments of aerobic performance with repeated muscle work are reflected by expressional adaptations within the respiratory chain and modified muscle oxygen metabolism.
Collapse
Affiliation(s)
- Dominique Desplanches
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang JS, Lee MY, Lien HY, Weng TP. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men. Int J Cardiol 2013; 170:315-23. [PMID: 24286591 DOI: 10.1016/j.ijcard.2013.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 06/23/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Circulating progenitor cells (CPCs) improve cardiovascular function and organ perfusion by enhancing the capacities of endothelial repair and neovasculogenesis. This study investigates whether exercise regimens with/without hypoxia affect cardiac and muscular hemodynamics by modulating CPCs and angiogenic factors. METHODS Forty sedentary males were randomly divided into hypoxic (HT, n=20) and normoxic (NT, n=20) training groups. The subjects were trained on a bicycle ergometer at 60%VO(2max) under 15% (HT) or 21% (NT) O2 conditions for 30 min daily, five days weekly for five weeks. RESULTS After the five-week interventions, the HT group exhibited a larger improvement in aerobic capacity than the NT group. Furthermore, the HT regimen (i) enhanced cardiac output (Q(H)) and perfusion (Q(M))/oxygenation of vastus lateralis during exercise; (ii) increased levels of CD34(+)/KDR(+)/CD117(+), CD34(+)/KDR(+)/CD133(+), and CD34(+)/KDR(+)/CD31(+) cells in blood; (iii) promoted the proliferative capacity of these CPC subsets, and (iv) elevated plasma nitrite/nitrate, stromal cell-derived factor-1 (SDF-1), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A) concentrations. Despite the lack of changes in Q(H) and the number or proliferative capacity of CD34(+)/KDR(+)/CD117(+) or CD34(+)/KDR(+)/CD31(+) cells, the NT regimen elevated both Q(M) and plasma nitrite/nitrate levels and suppressed the shedding of endothelial cells (CD34(-)/KDR(+)/phosphatidylserine(+) cells). CONCLUSIONS The HT regimen improves cardiac and muscular hemodynamic adaptations, possibly by promoting the mobilization/function of CPCs and the production of angiogenic factors.
Collapse
Affiliation(s)
- Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan; Heart Failure Center, Chang Gung Memorial Hospital, Keeling, Taiwan.
| | - Mei-Yi Lee
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Hen-Yu Lien
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Tzu-Pin Weng
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
46
|
Holliss BA, Fulford J, Vanhatalo A, Pedlar CR, Jones AM. Influence of intermittent hypoxic training on muscle energetics and exercise tolerance. J Appl Physiol (1985) 2013; 114:611-9. [DOI: 10.1152/japplphysiol.01331.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intermittent hypoxic training (IHT) is sometimes used by athletes to enhance nonhematological physiological adaptations to simulated altitude. We investigated whether IHT would result in greater improvements in muscle energetics and exercise tolerance compared with work-matched intermittent normoxic training (INT). Nine physically active men completed 3 wk of intensive, single-leg knee-extensor exercise training. Each training session consisted of 25 min of IHT (FiO2 14.5 ± 0.1%) with the experimental leg and 25 min of INT with the alternate leg, which served as a control. Before and after the training intervention, subjects completed a test protocol consisting of a bout of submaximal constant-work-rate exercise, a 24-s high-intensity exercise bout to quantify the phosphocreatine recovery time constant ([PCr]-τ), and an incremental test to the limit of tolerance. The tests were completed in normoxia and hypoxia in both INT and IHT legs. Muscle metabolism was assessed noninvasively using 31P-magnetic resonance spectroscopy. Improvements in the time-to-exhaustion during incremental exercise were not significantly different between training conditions either in normoxia (INT, 28 ± 20% vs. IHT, 25 ± 9%; P = 0.86) or hypoxia (INT, 21 ± 10% vs. IHT, 15 ± 11%; P = 0.29). In hypoxia, [PCr]-τ was speeded slightly but significantly more post-IHT compared with post-INT (−7.3 ± 2.9 s vs. −3.7 ± 1.7 s; P < 0.01), but changes in muscle metabolite concentrations during exercise were essentially not different between IHT and INT. Under the conditions of this investigation, IHT does not appreciably alter muscle metabolic responses or incremental exercise performance compared with INT.
Collapse
Affiliation(s)
- Ben A. Holliss
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- British Swimming, University of Bath, Bath, United Kingdom
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Charles R. Pedlar
- School of Sport, Health and Applied Science, St. Mary's University College, Twickenham, United Kingdom
| | - Andrew M. Jones
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
47
|
Saxena S, Shukla D, Bansal A. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride. Toxicol Appl Pharmacol 2012; 264:324-34. [PMID: 22982409 DOI: 10.1016/j.taap.2012.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/08/2012] [Accepted: 08/30/2012] [Indexed: 11/19/2022]
Abstract
High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl₂), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl₂ supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl₂ supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl₂ supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning.
Collapse
Affiliation(s)
- Saurabh Saxena
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | | | | |
Collapse
|
48
|
Guzun R, Aguilaniu B, Wuyam B, Mezin P, Koechlin-Ramonatxo C, Auffray C, Saks V, Pison C. Effects of training at mild exercise intensities on quadriceps muscle energy metabolism in patients with chronic obstructive pulmonary disease. Acta Physiol (Oxf) 2012; 205:236-46. [PMID: 22118364 DOI: 10.1111/j.1748-1716.2011.02388.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To study the effects of physical training at mild intensities on skeletal muscle energy metabolism in eight patients with chronic obstructive pulmonary disease (COPD) and eight paired healthy sedentary subjects. METHODS Energy metabolism of patients and controls vastus lateralis muscle was studied before and after 3 months of cycling training at mild exercises intensities. RESULTS The total amount of work accomplished was about 4059 ± 336 kJ in patients with COPD and 7531 ± 1693 kJ in control subjects. This work corresponds to a mechanical power set at 65.2 ± 7.5% of the maximum power for patients with COPD and 52 ± 3.3% of the maximum power in control group. Despite this low level of exercise intensities, we observed an improvement in mitochondrial oxidative phosphorylation through the creatine kinase system revealed by the increased apparent K(m) for ADP (from 105.5 ± 16.1 to 176.9 ± 26.5 μm, P < 0.05 in the COPD group and from 126.9 ± 16.8 to 177.7 ± 17.0, P > 0.05 in the control group). Meanwhile, maximal mechanical and metabolic power increased significantly from 83.1 ± 7.1 to 91.3 ± 7.4 Watts (P < 0.05) and from 16 ± 0.8 to 18.7 ± 0.98 mL O(2) kg(-1) min(-1) (P < 0.05) only in the COPD group. CONCLUSION This study shows that physical training at mild intensity is able to induce comparable changes in skeletal muscles oxidative energy metabolism in patients with COPD and sedentary healthy subjects, but different changes of maximal mechanical and metabolic power.
Collapse
Affiliation(s)
- R Guzun
- Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Urdampilleta A, González-Muniesa P, Portillo MP, Martínez JA. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J Physiol Biochem 2011; 68:289-304. [PMID: 22045452 DOI: 10.1007/s13105-011-0115-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/01/2011] [Indexed: 12/19/2022]
Abstract
Obesity is an important public health problem worldwide and is a major risk factor for a number of chronic diseases such as type II diabetes, adverse cardiovascular events and metabolic syndrome-related features. Different treatments have been applied to tackle body fat accumulation and its associated clinical manifestations. Often, relevant weight loss is achieved during the first 6 months under different dietary treatments. From this point, a plateau is reached, and a gradual recovery of the lost weight may occur. Therefore, new research approaches are being investigated to assure weight maintenance. Pioneering investigations have reported that oxygen variations in organic systems may produce changes in body composition. Possible applications of intermittent hypoxia to promote health and in various pathophysiological states have been reported. The hypoxic stimulus in addition to diet and exercise can be an interesting approach to lose weight, by inducing higher basal noradrenalin levels and other metabolic changes whose mechanisms are still unclear. Indeed, hypoxic situations increase the diameter of arterioles, produce peripheral vasodilatation and decrease arterial blood pressure. Furthermore, hypoxic training increases the activity of glycolytic enzymes, enhancing the number of mitochondria and glucose transporter GLUT-4 levels as well as improving insulin sensitivity. Moreover, hypoxia increases blood serotonin and decreases leptin levels while appetite is suppressed. These observations allow consideration of the hypothesis that intermittent hypoxia induces fat loss and may ameliorate cardiovascular health, which might be of interest for the treatment of obesity. This new strategy may be useful and practical for clinical applications in obese patients.
Collapse
Affiliation(s)
- Aritz Urdampilleta
- Department of Pharmacy and Food Sciences, University of Basque Country, Vitoria-Gasteiz, Spain
| | | | | | | |
Collapse
|
50
|
Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1078-87. [DOI: 10.1152/ajpregu.00285.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endurance and strength training are established as distinct exercise modalities, increasing either mitochondrial density or myofibrillar units. Recent research, however, suggests that mitochondrial biogenesis is stimulated by both training modalities. To test the training “specificity” hypothesis, mitochondrial respiration was studied in permeabilized muscle fibers from 25 sedentary adults after endurance (ET) or strength training (ST) in normoxia or hypoxia [fraction of inspired oxygen (FiO2) = 21% or 13.5%]. Biopsies were taken from the musculus vastus lateralis, and cycle-ergometric incremental maximum oxygen uptake (V̇o2max) exercise tests were performed under normoxia, before and after the 10-wk training program. The main finding was a significant increase ( P < 0.05) of fatty acid oxidation capacity per muscle mass, after endurance and strength training under normoxia [2.6- and 2.4-fold for endurance training normoxia group (ETN) and strength training normoxia group (STN); n = 8 and 3] and hypoxia [2.0-fold for the endurance training hypoxia group (ETH) and strength training hypoxia group (STH); n = 7 and 7], and higher coupling control of oxidative phosphorylation. The enhanced lipid oxidative phosphorylation (OXPHOS) capacity was mainly (87%) due to qualitative mitochondrial changes increasing the relative capacity for fatty acid oxidation ( P < 0.01). Mitochondrial tissue-density contributed to a smaller extent (13%), reflected by the gain in muscle mass-specific respiratory capacity with a physiological substrate cocktail (glutamate, malate, succinate, and octanoylcarnitine). No significant increase was observed in mitochondrial DNA (mtDNA) content. Physiological OXPHOS capacity increased significantly in ETN ( P < 0.01), with the same trend in ETH and STH ( P < 0.1). The limitation of flux by the phosphorylation system was diminished after training. Importantly, key mitochondrial adaptations were similar after endurance and strength training, regardless of normoxic or hypoxic exercise. The transition from a sedentary to an active lifestyle induced muscular changes of mitochondrial quality representative of mitochondrial health.
Collapse
Affiliation(s)
- Dominik Pesta
- Division of Diagnostic Radiology I, Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
- D. Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Hoppel
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Christian Macek
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Hubert Messner
- Division of Diagnostic Radiology I, Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Faulhaber
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Conrad Kobel
- Department of Medical Statistics, Informatics and Health Economics, Innsbruck Medical University, Innsbruck, Austria; and
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Michael Schocke
- Division of Diagnostic Radiology I, Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Erich Gnaiger
- D. Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|