1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Belbis MD, Yap Z, Hobart SE, Ferguson SK, Hirai DM. Effects of acute phosphodiesterase type 5 inhibition on skeletal muscle interstitial PO 2 during contractions and recovery. Nitric Oxide 2024; 142:16-25. [PMID: 37979932 DOI: 10.1016/j.niox.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
The oxygen partial pressure within the interstitial space (PO2is; mmHg) provides the driving force for oxygen diffusion into the myocyte thereby supporting oxidative phosphorylation. We tested the hypothesis that potentiation of the nitric oxide pathway with sildenafil (phosphodiesterase type 5 inhibitor) would enhance PO2is during muscle metabolic transitions, thereby slowing PO2is on- and accelerating PO2is off-kinetics. The rat spinotrapezius muscle (n = 17) was exposed for PO2is measurements via phosphorescence quenching under control (CON), low-dose sildenafil (1 mg/kg i.a., SIL1) and high-dose sildenafil (7 mg/kg i.a., SIL7). Data were collected at rest and during submaximal twitch contractions (1 Hz, 4-6 V, 3 min) and recovery (3 min). Mean arterial blood pressure (MAP; mmHg) was reduced with both SIL1 (pre:132 ± 5; post:99 ± 5) and SIL7 (pre:111 ± 6; post:99 ± 4) (p < 0.05). SIL7 elevated resting PO2is (18.4 ± 1.1) relative to both CON (15.7 ± 0.7) and SIL1 (15.2 ± 0.7) (p < 0.05). In addition, SIL7 increased end-recovery PO2is (17.7 ± 1.6) compared to CON (12.8 ± 0.9) and SIL1 (13.4 ± 0.8) (p < 0.05). The overall PO2is response during recovery (i.e., area under the PO2is curve) was greater in SIL7 (4107 ± 444) compared to CON (3493 ± 222) and SIL1 (3114 ± 205 mmHg s) (p < 0.05). Contrary to our hypothesis, there was no impact of acute SIL (1 or 7 mg/kg) on the speed of the PO2is response during contractions or recovery (p > 0.05). However, sildenafil lowered MAP and improved skeletal muscle interstitial oxygenation in healthy rats. Specifically, SIL7 enhanced PO2is at rest and during recovery from submaximal muscle contractions. Potentiation of the nitric oxide pathway with sildenafil enhances microvascular blood-myocyte O2 transport and is expected to improve repeated bouts of contractile activity.
Collapse
Affiliation(s)
- Michael D Belbis
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA; Department of Exercise Science, Aurora University, Aurora, IL, USA
| | - Zhen Yap
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Sara E Hobart
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Scott K Ferguson
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Hitosugi N, Hotta K, Taketa Y, Takamizawa R, Fujii Y, Ikegami R, Tamiya H, Inoue T, Tsubaki A. The effect of sepsis and reactive oxygen species on skeletal muscle interstitial oxygen pressure during contractions. Microcirculation 2024; 31:e12833. [PMID: 37800537 DOI: 10.1111/micc.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This study aims to examine the effect of sepsis on the dynamics of skeletal muscle partial oxygen pressure during muscle contractions as well as the effect of reactive oxygen species (ROS) scavenger (ascorbic acid, Asc). METHODS Twenty-seven male Sprague-Dawley rats (2-3 months old) were randomly assigned to three groups; sham, cecal ligation and puncture (CLP), or CLP plus ascorbic acid treatment group (CLP + Asc). Electrical stimuli-induced muscle contractions and partial oxygen pressure measurements were performed at 3 h after CLP. The interstitial oxygen pressure (PO2 is) in the spinotrapezius muscle was measured by the phosphorescence quenching method. RESULTS The PO2 is at rest was not different between the three groups. The PO2 is decreased from rest to contraction in all groups. Compared to the sham, the time to decrease PO2 is was significantly faster in CLP but not in CLP + Asc (p < .05). Compared to the sham, the PO2 is during muscle contractions was significantly lower in both CLP and CLP + Asc (p < .05, respectively). CONCLUSIONS Our results suggest that CLP-induced sepsis accelerated the decay of PO2 is at the onset of muscle contractions and maintained a low level of PO2 is during muscle contractions.
Collapse
Affiliation(s)
- Naoki Hitosugi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuki Hotta
- Department of Rehabilitation Sciences, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Yoshikazu Taketa
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Ren Takamizawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yutaka Fujii
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryo Ikegami
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hajime Tamiya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Tatsuro Inoue
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
4
|
A critique on the theory of homeostasis. Physiol Behav 2022; 247:113712. [DOI: 10.1016/j.physbeh.2022.113712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023]
|
5
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
6
|
Abstract
Two-photon Phosphorescence Lifetime Microscopy (2PLM) is an emerging nonlinear optical technique that has great potential to improve our understanding of the basic biology underlying human health and disease. Although analogous to 2-photon Fluorescence Lifetime Imaging Microscopy (2P-FLIM), the contrast in 2PLM is fundamentally different from various intensity-based forms of imaging since it is based on the lifetime of an excited state and can be regarded as a "functional imaging" technique. 2PLM signal originates from the deactivation of the excited triplet state (phosphorescence) [1, 2]. Typically, this triplet state is a much longer-lived excited state than the singlet excited state resulting in phosphorescence emission times of microseconds to milliseconds at room temperature as opposed to nanoseconds for fluorescence emission [3]. The long-lived nature of the triplet state makes it highly sensitive to quenching molecules in the surrounding environment such as biomolecular oxygen (O2). Therefore, 2PLM can provide not only information on the distribution pattern of the probe in the sample (via intensity) but also determine the local oxygen tension (via phosphorescence lifetime quenching) [1]. The ability to create three-dimensional optical sections in the plane of focus within a thick biological specimen while maintaining relatively low phototoxicity due to the use of near-infrared wavelengths for two-photon excitation gives 2PLM powerful advantages over other techniques for longitudinal imaging and monitoring of oxygen within living organisms [4]. In this chapter, we will provide background on the development of 2PLM, discuss the most common oxygen sensing measurement methods and concepts, and explain the general principles and optical configuration of a 2PLM system. We also discuss the key characteristics and strategies for improvement of the technique. Finally, we will present an overview of the current primary scientific literature of how 2PLM has been used for oxygen sensing in biological applications and how this technique is improving our understanding of the basic biology underlying several areas of human health.
Collapse
|
7
|
Gertsenshteyn I, Giurcanu M, Vaupel P, Halpern H. Biological validation of electron paramagnetic resonance (EPR) image oxygen thresholds in tissue. J Physiol 2021; 599:1759-1767. [PMID: 32506448 PMCID: PMC7719598 DOI: 10.1113/jp278816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Measuring molecular oxygen levels in vivo has been the cornerstone of understanding the effects of hypoxia in normal tissues and malignant tumors. Here we discuss the advances in a variety of partial pressure of oxygen ( P O 2 ) measurements and imaging techniques and relevant oxygen thresholds. A focus on electron paramagnetic resonance (EPR) imaging shows the validation of treating hypoxic tumours with a threshold of P O 2 ≤ 10 Torr, and demonstrates utility for in vivo oxygen imaging, as well as its current and future role in cancer studies.
Collapse
Affiliation(s)
- Inna Gertsenshteyn
- Department of Radiology, University of Chicago, IL, USA
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL, USA
| | - Mihai Giurcanu
- Department of Public Health Sciences, University of Chicago, IL, USA
| | - Peter Vaupel
- Department of Radiation Oncology, Medical Center, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Howard Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Cheng MHY, Mo Y, Zheng G. Nano versus Molecular: Optical Imaging Approaches to Detect and Monitor Tumor Hypoxia. Adv Healthc Mater 2021; 10:e2001549. [PMID: 33241672 DOI: 10.1002/adhm.202001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia is a ubiquitous feature of solid tumors, which plays a key role in tumor angiogenesis and resistance development. Conventional hypoxia detection methods lack continuous functional detection and are generally less suitable for dynamic hypoxia measurement. Optical sensors hereby provide a unique opportunity to noninvasively image hypoxia with high spatiotemporal resolution and enable real-time detection. Therefore, these approaches can provide a valuable tool for personalized treatment planning against this hallmark of aggressive cancers. Many small optical molecular probes can enable analyte triggered response and their photophysical properties can also be fine-tuned through structural modification. On the other hand, optical nanoprobes can acquire unique intrinsic optical properties through nanoconfinement as well as enable simultaneous multimodal imaging and drug delivery. Furthermore, nanoprobes provide biological advantages such as improving bioavailability and systemic delivery of the sensor to enhance bioavailability. This review provides a comprehensive overview of the physical, chemical, and biological analytes for cancer hypoxia detection and focuses on discussing the latest nano- and molecular developments in various optical imaging approaches (fluorescence, phosphorescence, and photoacoustic) in vivo. Finally, this review concludes with a perspective toward the potentials of these optical imaging approaches in hypoxia detection and the challenges with molecular and nanotechnology design strategies.
Collapse
Affiliation(s)
- Miffy Hok Yan Cheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
9
|
Wilson DF, Matschinsky FM. Cerebrovascular Blood Flow Design and Regulation; Vulnerability in Aging Brain. Front Physiol 2020; 11:584891. [PMID: 33178048 PMCID: PMC7596697 DOI: 10.3389/fphys.2020.584891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Nutrient delivery to the brain presents a unique challenge because the tissue functions as a computer system with in the order of 200,000 neurons/mm3. Penetrating arterioles bud from surface arteries of the brain and penetrate downward through the cortex. Capillary networks spread from penetrating arterioles through the surrounding tissue. Each penetrating arteriole forms a vascular unit, with little sharing of flow among vascular units (collateral flow). Unlike cells in other tissues, neurons have to be operationally isolated, interacting with other neurons through specific electrical connections. Neuronal activation typically involves only a few of the cells within a vascular unit, but the local increase in nutrient consumption is substantial. The metabolic response to activation is transmitted to the feeding arteriole through the endothelium of neighboring capillaries and alters calcium permeability of smooth muscle in the wall resulting in modulation of flow through the entire vascular unit. Many age and trauma related brain pathologies can be traced to vascular malfunction. This includes: 1. Physical damage such as in traumatic injury with imposed shear stress as soft tissue moves relative to the skull. Lack of collateral flow among vascular units results in death of the cells in that vascular unit and loss of brain tissue. 2. Age dependent changes lead to progressive increase in vascular resistance and decrease in tissue levels of oxygen and glucose. Chronic hypoxia/hypoglycemia compromises tissue energy metabolism and related regulatory processes. This alters stem cell proliferation and differentiation, undermines vascular integrity, and suppresses critical repair mechanisms such as oligodendrocyte generation and maturation. Reduced structural integrity results in local regions of acute hypoxia and microbleeds, while failure of oligodendrocytes to fully mature leads to poor axonal myelination and defective neuronal function. Understanding and treating age related pathologies, particularly in brain, requires better knowledge of why and how vasculature changes with age. That knowledge will, hopefully, make possible drugs/methods for protecting vascular function, substantially alleviating the negative health and cognitive deficits associated with growing old.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Colburn TD, Hirai DM, Craig JC, Ferguson SK, Weber RE, Schulze KM, Behnke BJ, Musch TI, Poole DC. Transcapillary PO 2 gradients in contracting muscles across the fibre type and oxidative continuum. J Physiol 2020; 598:3187-3202. [PMID: 32445225 DOI: 10.1113/jp279608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Within skeletal muscle the greatest resistance to oxygen transport is thought to reside across the short distance at the red blood cell-myocyte interface. These structures generate a significant transmural oxygen pressure (PO2 ) gradient in mixed fibre-type muscle. Increasing O2 flux across the capillary wall during exercise depends on: (i) the transmural O2 pressure gradient, which is maintained in mixed-fibre muscle, and/or (ii) elevating diffusing properties between microvascular and interstitial compartments resulting, in part, from microvascular haemodynamics and red blood cell distribution. We evaluated the PO2 within the microvascular and interstitial spaces of muscles spanning the slow- to fast-twitch fibre and high- to low-oxidative capacity spectrums, at rest and during contractions, to assess the magnitude of transcapillary PO2 gradients in rats. Our findings demonstrate that, across the metabolic rest-contraction transition, the transcapillary pressure gradient for O2 flux is: (i) maintained in all muscle types, and (ii) the lowest in contracting highly oxidative fast-twitch muscle. ABSTRACT In mixed fibre-type skeletal muscle transcapillary PO2 gradients (PO2 mv-PO2 is; microvascular and interstitial, respectively) drive O2 flux across the blood-myocyte interface where the greatest resistance to that O2 flux resides. We assessed a broad spectrum of fibre-type and oxidative-capacity rat muscles across the rest-to-contraction (1 Hz, 120 s) transient to test the novel hypotheses that: (i) slow-twitch PO2 is would be greater than fast-twitch, (ii) muscles with greater oxidative capacity have greater PO2 is than glycolytic counterparts, and (iii) whether PO2 mv-PO2 is at rest is maintained during contractions across all muscle types. PO2 mv and PO2 is were determined via phosphorescence quenching in soleus (SOL; 91% type I+IIa fibres and CSa: ∼21 μmol min-1 g-1 ), peroneal (PER; 33% and ∼20 μmol min-1 g-1 ), mixed (MG; 9% and ∼26 μmol min-1 g-1 ) and white gastrocnemius (WG; 0% and ∼8 μmol min-1 g-1 ) across the rest-contraction transient. PO2 mv was higher than PO2 is in each muscle (∼6-13 mmHg; P < 0.05). SOL PO2 isarea was greater than in the fast-twitch muscles during contractions (P < 0.05). Oxidative muscles had greater PO2 isnadir (9.4 ± 0.8, 7.4 ± 0.9 and 6.4 ± 0.4; SOL, PER and MG, respectively) than WG (3.0 ± 0.3 mmHg, P < 0.05). The magnitude of PO2 mv-PO2 is at rest decreased during contractions in MG only (∼11 to 7 mmHg; time × (PO2 mv-PO2 is) interaction, P < 0.05). These data support the hypothesis that, since transcapillary PO2 gradients during contractions are maintained in all muscle types, increased O2 flux must occur via enhanced intracapillary diffusing conductance, which is most extreme in highly oxidative fast-twitch muscle.
Collapse
Affiliation(s)
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Scott K Ferguson
- Department of Kinesiology and Exercise Sciences, University of Hawaii, Hilo, HI
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University Manhattan, KS
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University Manhattan, KS
| | - Brad J Behnke
- Department of Kinesiology, Kansas State University Manhattan, KS
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University Manhattan, KS.,Department of Anatomy and Physiology, Kansas State University Manhattan, KS
| | - David C Poole
- Department of Kinesiology, Kansas State University Manhattan, KS.,Department of Anatomy and Physiology, Kansas State University Manhattan, KS
| |
Collapse
|
11
|
Wilson DF, Matschinsky FM. Hyperbaric oxygen toxicity in brain: A case of hyperoxia induced hypoglycemic brain syndrome. Med Hypotheses 2019; 132:109375. [PMID: 31454640 DOI: 10.1016/j.mehy.2019.109375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/25/2022]
Abstract
Hyperbaric oxygen exposure is a recent hazzard for higher animals that originated as humans began underwater construction, exploration, and sports. Exposure can lead to abnormal brain EEG, convulsions, and death, the time to onset of each stage of pathology decreasing with increase in oxygen pressure. We provide evidence that hyperoxia, through oxidative phosphorylation, increases the energy state ([ATP]/[ADP][Pi]) of cells critical to providing glucose to cells behind the blood brain barrier (BBB). Brain cells without an absolute dependence on glucose metabolism; i.e. those having sufficient ATP synthesis using lactate and glutamate as oxidizable substrates, are not themselves very adversely affected by hyperoxia. The increased energy state and decrease in free [AMP], however, suppress glucose transport through the blood brain barrier (BBB) and into cells behind the BBB. Glucose has to pass in sequence through three steps of transport by facilitated diffusion and transporter activity for each step is regulated in part by AMP dependent protein kinase. The physiological role of this regulation is to increase glucose transport in response to hypoxia and/or systemic hypoglycemia. Hyperoxia, however, through unphysiological decrease in free [AMP] suppresses 1) glucose transport through the BBB (endothelial GLUT1 transporters) into cerebrospinal fluid (CSF); 2) glucose transport from CSF into cells behind the BBB (GLUT3 transporters) and (GLUT4 transporters). Cumulative suppression of glucose transport results in local regions of hypoglycemia and induces hypoglycemic failure. It is suggested that failure is initiated at axons and synapses with insufficient mitochondria to meet their energy requirements.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Hirai DM, Craig JC, Colburn TD, Eshima H, Kano Y, Musch TI, Poole DC. Skeletal muscle interstitial Po 2 kinetics during recovery from contractions. J Appl Physiol (1985) 2019; 127:930-939. [PMID: 31369325 DOI: 10.1152/japplphysiol.00297.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The oxygen partial pressure in the interstitial space (Po2 is) drives O2 into the myocyte via diffusion, thus supporting oxidative phosphorylation. Although crucial for metabolic recovery and the capacity to perform repetitive tasks, the time course of skeletal muscle Po2 is during recovery from contractions remains unknown. We tested the hypothesis that Po2 is would recover to resting values and display considerable on-off asymmetry (fast on-, slow off-kinetics), reflective of asymmetric capillary hemodynamics. Microvascular Po2 (Po2 mv) was also evaluated to test the hypothesis that a significant transcapillary gradient (ΔPo2 = Po2 mv - Po2 is) would be sustained during recovery. Po2 mv and Po2 is (expressed in mmHg) were determined via phosphorescence quenching in the exposed rat spinotrapezius muscle during and after submaximal twitch contractions (n = 12). Po2 is rose exponentially (P < 0.05) from end-contraction (11.1 ± 5.1), such that the end-recovery value (17.9 ± 7.9) was not different from resting Po2 is (18.5 ± 8.1; P > 0.05). Po2 is off-kinetics were slower than on-kinetics (mean response time: 53.1 ± 38.3 versus 18.5 ± 7.3 s; P < 0.05). A significant transcapillary ΔPo2 observed at end-contraction (16.6 ± 7.4) was maintained throughout recovery (end-recovery: 18.8 ± 9.6; P > 0.05). Consistent with our hypotheses, muscle Po2 is recovered to resting values with slower off-kinetics compared with the on-transient in line with the on-off asymmetry for capillary hemodynamics. Maintenance of a substantial transcapillary ΔPo2 during recovery supports that the microvascular-interstitium interface provides considerable resistance to O2 transport. As dictated by Fick's law (V̇o2 = Do2 × ΔPo2), modulation of O2 flux (V̇o2) during recovery must be achieved via corresponding changes in effective diffusing capacity (Do2; mainly capillary red blood cell hemodynamics and distribution) in the face of unaltered ΔPo2.NEW & NOTEWORTHY Capillary blood-myocyte O2 flux (V̇o2) is determined by effective diffusing capacity (Do2; mainly erythrocyte hemodynamics and distribution) and microvascular-interstitial Po2 gradients (ΔPo2 = Po2 mv - Po2 is). We show that Po2 is demonstrates on-off asymmetry consistent with Po2 mv and erythrocyte kinetics during metabolic transitions. A substantial transcapillary ΔPo2 was preserved during recovery from contractions, indicative of considerable resistance to O2 diffusion at the microvascular-interstitium interface. This reveals that effective Do2 declines in step with V̇o2 during recovery, as per Fick's law.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana.,Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Hiroaki Eshima
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
13
|
Coronel MM, Liang JP, Li Y, Stabler CL. Oxygen generating biomaterial improves the function and efficacy of beta cells within a macroencapsulation device. Biomaterials 2019; 210:1-11. [PMID: 31029812 PMCID: PMC6527135 DOI: 10.1016/j.biomaterials.2019.04.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Tissue-engineered devices have the potential to significantly improve human health. A major impediment to the success of clinically scaled transplants, however, is insufficient oxygen transport, which leads to extensive cell death and dysfunction. To provide in situ supplementation of oxygen within a cellular implant, we developed a hydrolytically reactive oxygen generating material in the form of polydimethylsiloxane (PDMS) encapsulated solid calcium peroxide, termed OxySite. Herein, we demonstrate, for the first time, the successful implementation of this in situ oxygen-generating biomaterial to support elevated cellular function and efficacy of macroencapsulation devices for the treatment of type 1 diabetes. Under extreme hypoxic conditions, devices supplemented with OxySite exhibited substantially elevated beta cell and islet viability and function. Furthermore, the inclusion of OxySite within implanted macrodevices resulted in the significant improvement of graft efficacy and insulin production in a diabetic rodent model. Translating to human islets at elevated loading densities further validated the advantages of this material. This simple biomaterial-based approach for delivering a localized and controllable oxygen supply provides a broad and impactful platform for improving the therapeutic efficacy of cell-based approaches.
Collapse
Affiliation(s)
- M M Coronel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - J-P Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Y Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - C L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
14
|
Zhou C, Zhao WX, You FT, Geng ZX, Peng HS. Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation. ACS Sens 2019; 4:984-991. [PMID: 30859818 DOI: 10.1021/acssensors.9b00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal complex-based luminescent oxygen nanosensors have been intensively studied for biomedical applications. In terms of monitoring dynamics of intracellular oxygen, however, high-quality nanosensors are still badly needed, because of stringent requirements on stability, biocompatibility and luminescence intensity, aside from oxygen sensitivity. In this paper, we reported a type of highly luminescent and stable oxygen nanosensors prepared from metallopolymer. First, a novel ruthenium(II)-containing metallopolymer was synthesized by chelating the oxygen probe [Ru(bpy)3]2+ with a bipyridine-branched hydrophobic copolymer, which was then doped into polymeric nanoparticles (NPs) by a reprecipitation method, followed by further conjugation to selectively target mitochondria (Mito-NPs). The resultant Mtio-NPs possessed a small hydrodynamic size of ∼85 nm, good biocompatibility and high stability resulting from PEGylation and stable nature of Ru-complex. Because the complexed [Ru(bpy)3]2+ homogeneously resided on particle surface, Mito-NPs exhibited strong luminescence at 608 nm that was free of aggregation-caused-quenching, the utmost oxygen sensitivity of free [Ru(bpy)3]2+ probe ( Q = 75%), and linear Stern-Volmer oxygen luminescence quenching plots. Taking advantage of the mitochondria-specific nanosensors, intracellular oxygenation and deoxygenation processes were real-time monitored for 10 min by confocal luminescence imaging, visualized by the gradual weakening (by more than 90%) and enhancing (by 50%) of the red emission, respectively.
Collapse
Affiliation(s)
- Chao Zhou
- College of Science, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Wu-xing Zhao
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Fang-tian You
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhao-xin Geng
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Hong-shang Peng
- College of Science, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
15
|
Hirai DM, Colburn TD, Craig JC, Hotta K, Kano Y, Musch TI, Poole DC. Skeletal muscle interstitial O 2 pressures: bridging the gap between the capillary and myocyte. Microcirculation 2018; 26:e12497. [PMID: 30120845 DOI: 10.1111/micc.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/18/2023]
Abstract
The oxygen transport pathway from air to mitochondria involves a series of transfer steps within closely integrated systems (pulmonary, cardiovascular, and tissue metabolic). Small and finite O2 stores in most mammalian species require exquisitely controlled changes in O2 flux rates to support elevated ATP turnover. This is especially true for the contracting skeletal muscle where O2 requirements may increase two orders of magnitude above rest. This brief review focuses on the mechanistic bases for increased microvascular blood-myocyte O2 flux (V̇O2 ) from rest to contractions. Fick's law dictates that V̇O2 elevations driven by muscle contractions are produced by commensurate changes in driving force (ie, O2 pressure gradients; ΔPO2 ) and/or effective diffusing capacity (DO2 ). While previous evidence indicates that increased DO2 helps modulate contracting muscle O2 flux, up until recently the role of the dynamic ΔPO2 across the capillary wall was unknown. Recent phosphorescence quenching investigations of both microvascular and novel interstitial PO2 kinetics in health have resolved an important step in the O2 cascade between the capillary and myocyte. Specifically, the significant transmural ΔPO2 at rest was sustained (but not increased) during submaximal contractions. This supports the contention that the blood-myocyte interface provides a substantial effective resistance to O2 diffusion and underscores that modulations in erythrocyte hemodynamics and distribution (DO2 ) are crucial to preserve the driving force for O2 flux across the capillary wall (ΔPO2 ) during contractions. Investigation of the O2 transport pathway close to muscle mitochondria is key to identifying disease mechanisms and develop therapeutic approaches to ameliorate dysfunction and exercise intolerance.
Collapse
Affiliation(s)
- Daniel M Hirai
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Kazuki Hotta
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Timothy I Musch
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
16
|
Wilson DF, Matschinsky FM. Metabolic homeostasis: oxidative phosphorylation and the metabolic requirements of higher plants and animals. J Appl Physiol (1985) 2018; 125:1183-1192. [DOI: 10.1152/japplphysiol.00352.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A model of oxidative phosphorylation and its regulation is presented, which is consistent with the experimental data on metabolism in higher plants and animals. The variables that provide real-time control of metabolic status are: intramitochondrial [NAD+]/[NADH], energy state ([ATP]/[ADP][Pi]), and local oxygen concentration ([O2]). ATP consumption and respiratory chain enzyme content are tissue specific (liver vs. heart muscle), and the latter is modulated by chronic alterations in ATP consumption (i.e., endurance training etc.). ATP consumption affects the energy state, which increases or decreases as necessary to match synthesis with consumption. [NAD+]/[NADH], local [O2], and respiratory chain content determine the energy state at which match of synthesis and utilization is achieved. Tissues vary widely in their ranges of ATP consumption. Expressed as the turnover of cytochrome c, the rates may change little (7 to 12/s) (liver) or a lot (1 to >300/s) (flight muscle of birds, bats, and insects). Ancillary metabolic pathways, including creatine or arginine kinase, glycerol phosphate shuttle, fatty acid, and citric acid cycle dehydrogenases, are responsible for meeting tissue-specific differences in maximal rate and range in ATP utilization without displacing metabolic homeostasis. Intramitochondrial [NAD+]/[NADH], [ATP], and [Pi] are adjusted to keep [ADP] and [AMP] similar for all tissues despite large differences in ranges in ATP utilization. This is essential because [ADP] and [AMP], particularly the latter, have major roles in regulating the activity of many enzymes and signaling pathways (AMP deaminase, AMP dependent protein kinases, etc.) common to all higher plants and animals. NEW & NOTEWORTHY Oxidative phosphorylation has an intrinsic program that sets and stabilizes cellular energy state ([ATP]/[ADP][Pi]), and thereby metabolic homeostasis. A computational model consistent with regulation of oxidative phosphorylation in higher plants and animals is presented. Focus is on metabolism ancillary to oxidative phosphorylation by which it was integrated into preexisting metabolic regulation and adapted by evolution to develop cells and tissues with differing rates of ATP utilization: i.e., liver versus brain versus muscle.
Collapse
Affiliation(s)
- David F. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Hirai DM, Craig JC, Colburn TD, Eshima H, Kano Y, Sexton WL, Musch TI, Poole DC. Skeletal muscle microvascular and interstitial PO2 from rest to contractions. J Physiol 2018; 596:869-883. [PMID: 29288568 DOI: 10.1113/jp275170] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/01/2017] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Oxygen pressure gradients across the microvascular walls are essential for oxygen diffusion from blood to tissue cells. At any given flux, the magnitude of these transmural gradients is proportional to the local resistance. The greatest resistance to oxygen transport into skeletal muscle is considered to reside in the short distance between red blood cells and myocytes. Although crucial to oxygen transport, little is known about transmural pressure gradients within skeletal muscle during contractions. We evaluated oxygen pressures within both the skeletal muscle microvascular and interstitial spaces to determine transmural gradients during the rest-contraction transient in anaesthetized rats. The significant transmural gradient observed at rest was sustained during submaximal muscle contractions. Our findings support that the blood-myocyte interface provides substantial resistance to oxygen diffusion at rest and during contractions and suggest that modulations in microvascular haemodynamics and red blood cell distribution constitute primary mechanisms driving increased transmural oxygen flux with contractions. ABSTRACT Oxygen pressure (PO2) gradients across the blood-myocyte interface are required for diffusive O2 transport, thereby supporting oxidative metabolism. The greatest resistance to O2 flux into skeletal muscle is considered to reside between the erythrocyte surface and adjacent sarcolemma, although this has not been measured during contractions. We tested the hypothesis that O2 gradients between skeletal muscle microvascular (PO2 mv ) and interstitial (PO2 is ) spaces would be present at rest and maintained or increased during contractions. PO2 mv and PO2 is were determined via phosphorescence quenching (Oxyphor probes G2 and G4, respectively) in the exposed rat spinotrapezius during the rest-contraction transient (1 Hz, 6 V; n = 8). PO2 mv was higher than PO2 is in all instances from rest (34.9 ± 6.0 versus 15.7 ± 6.4) to contractions (28.4 ± 5.3 versus 10.6 ± 5.2 mmHg, respectively) such that the mean PO2 gradient throughout the transient was 16.9 ± 6.6 mmHg (P < 0.05 for all). No differences in the amplitude of PO2 fall with contractions were observed between the microvasculature and interstitium (10.9 ± 2.3 versus 9.0 ± 3.5 mmHg, respectively; P > 0.05). However, the speed of the PO2 is fall during contractions was slower than that of PO2 mv (time constant: 12.8 ± 4.7 versus 9.0 ± 5.1 s, respectively; P < 0.05). Consistent with our hypothesis, a significant transmural gradient was sustained (but not increased) from rest to contractions. This supports that the blood-myocyte interface is the site of a substantial PO2 gradient driving O2 diffusion during metabolic transients. Based on Fick's law, elevated O2 flux with contractions must thus rely primarily on modulations in effective diffusing capacity (mainly erythrocyte haemodynamics and distribution) as the PO2 gradient is not increased.
Collapse
Affiliation(s)
- Daniel M Hirai
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Jesse C Craig
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Hiroaki Eshima
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - William L Sexton
- Department of Physiology, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Timothy I Musch
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| | - David C Poole
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
18
|
Wilson DF. Oxidative phosphorylation: regulation and role in cellular and tissue metabolism. J Physiol 2017; 595:7023-7038. [PMID: 29023737 PMCID: PMC5709332 DOI: 10.1113/jp273839] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative phosphorylation provides most of the ATP that higher animals and plants use to support life and is responsible for setting and maintaining metabolic homeostasis. The pathway incorporates three consecutive near equilibrium steps for moving reducing equivalents between the intramitochondrial [NAD+ ]/[NADH] pool to molecular oxygen, with irreversible reduction of oxygen to bound peroxide at cytochrome c oxidase determining the net flux. Net flux (oxygen consumption rate) is determined by demand for ATP, with feedback by the energy state ([ATP]/[ADP][Pi ]) regulating the pathway. This feedback affects the reversible steps equally and independently, resulting in the rate being coupled to ([ATP]/[ADP][Pi ])3 . With increasing energy state, oxygen consumption decreases rapidly until a threshold is reached, above which there is little further decrease. In most cells, [ATP] and [Pi ] are much higher than [ADP] and change in [ADP] is primarily responsible for the change in energy state. As a result, the rate of ATP synthesis, plotted against [ADP], remains low until [ADP] reaches about 30 μm and then increases rapidly with further increase in [ADP]. The dependencies on energy state and [ADP] near the threshold can be fitted by the Hill equation with a Hill coefficients of about -2.6 and 4.2, respectively. The homeostatic set point for metabolism is determined by the threshold, which can be modulated by the PO2 and intramitochondrial [NAD+ ]/[NADH]. The ability of oxidative phosphorylation to precisely set and maintain metabolic homeostasis is consistent with it being permissive of, and essential to, development of higher plants and animals.
Collapse
Affiliation(s)
- David F. Wilson
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
19
|
Oxygen imaging of living cells and tissues using luminescent molecular probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Pannala VR, Camara AKS, Dash RK. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition. J Appl Physiol (1985) 2016; 121:1196-1207. [PMID: 27633738 DOI: 10.1152/japplphysiol.00524.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/11/2016] [Indexed: 01/03/2023] Open
Abstract
Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O2 to H2O by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O2 reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O2 in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent Km of O2 varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; .,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
21
|
Thacker J, Zhang JL, Franklin T, Prasad P. BOLD quantified renal pO2 is sensitive to pharmacological challenges in rats. Magn Reson Med 2016; 78:297-302. [PMID: 27501515 DOI: 10.1002/mrm.26367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/22/2016] [Accepted: 07/12/2016] [Indexed: 11/06/2022]
Abstract
PURPOSE Blood oxygen level-dependent (BOLD) MRI has been effectively used to monitor changes in renal oxygenation. However, R2* (or T2*) is not specific to blood oxygenation and is dependent on other factors. This study investigates the use of a statistical model that takes these factors into account and maps BOLD MRI measurements to blood pO2. METHODS Spin echo and gradient echo images were obtained in six Sprague-Dawley rats and R2 and R2* maps were computed. Measurements were made at baseline, post-nitric oxide synthase inhibitor (L-NAME), and post-furosemide administration. A simulation of each region was performed to map R2' (computed as R2*-R2) to blood pO2. RESULTS At baseline, blood pO2 in the outer medulla was 30.5 ± 1.2 mmHg and 51.9 ± 5.2 mmHg in the cortex, in agreement with previous invasive studies. Blood pO2 was found to decrease within the outer medulla following L-NAME (P < 0.05) and increase after furosemide (P < 0.05). Blood pO2 in the cortex increased following furosemide (P < 0.05). CONCLUSIONS Model-derived blood pO2 is sensitive to pharmacological challenges, and baseline pO2 is comparable to literature values. Reporting pO2 instead of R2* could lead to a greater clinical impact of renal BOLD MRI and facilitate the identification of hypoxic regions. Magn Reson Med 78:297-302, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jon Thacker
- Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jeff L Zhang
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Tammy Franklin
- Department of Radiology/Center for Advanced Imaging, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Pottumarthi Prasad
- Department of Radiology/Center for Advanced Imaging, NorthShore University HealthSystem, Evanston, Illinois, USA.,Department of Radiology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Mullah SH, Abutarboush R, Moon-Massat PF, Saha BK, Haque A, Walker PB, Auker CR, Arnaud FG, McCarron RM, Scultetus AH. Sanguinate's effect on pial arterioles in healthy rats and cerebral oxygen tension after controlled cortical impact. Microvasc Res 2016; 107:83-90. [PMID: 27287870 DOI: 10.1016/j.mvr.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 01/18/2023]
Abstract
Sanguinate, a polyethylene glycol-conjugated carboxyhemoglobin, was investigated for cerebral vasoactivity in healthy male Sprague-Dawley rats (Study 1) and for its ability to increase brain tissue oxygen pressure (PbtO2) after controlled cortical impact (CCI) - traumatic brain injury (TBI) (Study 2). In both studies ketamine-acepromazine anesthetized rats were ventilated with 40% O2. In Study 1, a cranial window was used to measure the diameters of medium - (50-100μm) and small-sized (<50μm) pial arterioles before and after four serial infusions of Sanguinate (8mL/kg/h, cumulative 16mL/kg IV), volume-matched Hextend, or normal saline. In Study 2, PbtO2 was measured using a phosphorescence quenching method before TBI, 15min after TBI (T15) and then every 10min thereafter for 155min. At T15, rats received either 8mL/kg IV Sanguinate (40mL/kg/h) or no treatment (saline, 4mL/kg/h). Results showed: 1) in healthy rats, percentage changes in pial arteriole diameter were the same among the groups, 2) in TBI rats, PbtO2 decreased from 36.5±3.9mmHg to 19.8±3.0mmHg at T15 in both groups after TBI and did not recover in either group for the rest of the study, and 3) MAP increased 16±4mmHg and 36±5mmHg after Sanguinate in healthy and TBI rats, respectively, while MAP was unchanged in control groups. In conclusion, Sanguinate did not cause vasoconstriction in the cerebral pial arterioles of healthy rats but it also did not acutely increase PbtO2 when administered after TBI. Sanguinate was associated with an increase in MAP in both studies.
Collapse
Affiliation(s)
- Saad H Mullah
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Rania Abutarboush
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Paula F Moon-Massat
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Biswajit K Saha
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Ashraful Haque
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Peter B Walker
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Charles R Auker
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Francoise G Arnaud
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| | - Richard M McCarron
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| | - Anke H Scultetus
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| |
Collapse
|
23
|
Golub AS, Pittman RN. Barometric calibration of a luminescent oxygen probe. J Appl Physiol (1985) 2016; 120:809-16. [PMID: 26846556 DOI: 10.1152/japplphysiol.01007.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/28/2016] [Indexed: 01/09/2023] Open
Abstract
The invention of the phosphorescence quenching method for the measurement of oxygen concentration in blood and tissue revolutionized physiological studies of oxygen transport in living organisms. Since the pioneering publication by Vanderkooi and Wilson in 1987, many researchers have contributed to the measurement of oxygen in the microcirculation, to oxygen imaging in tissues and microvessels, and to the development of new extracellular and intracellular phosphorescent probes. However, there is a problem of congruency in data from different laboratories, because of interlaboratory variability of the calibration coefficients in the Stern-Volmer equation. Published calibrations for a common oxygen probe, Pd-porphyrin + bovine serum albumin (BSA), vary because of differences in the techniques used. These methods are used for the formation of oxygen standards: chemical titration, calibrated gas mixtures, and an oxygen electrode. Each method in turn also needs calibration. We have designed a barometric method for the calibration of oxygen probes by using a regulated vacuum to set multiple PO2 standards. The method is fast and accurate and can be applied to biological fluids obtained during or after an experiment. Calibration over the full physiological PO2 range (1-120 mmHg) takes ∼15 min and requires 1-2 mg of probe.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Roland N Pittman
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
24
|
Perfluorocarbon NVX-108 increased cerebral oxygen tension after traumatic brain injury in rats. Brain Res 2016; 1634:132-139. [PMID: 26794250 DOI: 10.1016/j.brainres.2016.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hypoxia is a critical secondary injury mechanism in traumatic brain injury (TBI), and early intervention to alleviate post-TBI hypoxia may be beneficial. NVX-108, a dodecafluoropentane perfluorocarbon, was screened for its ability to increase brain tissue oxygen tension (PbtO2) when administered soon after TBI. METHODS Ketamine-acepromazine anesthetized rats ventilated with 40% oxygen underwent moderate controlled cortical impact (CCI)-TBI at time 0 (T0). Rats received either no treatment (NON, n=8) or 0.5 ml/kg intravenous (IV) NVX-108 (NVX, n=9) at T15 (15 min after TBI) and T75. RESULTS Baseline cortical PbtO2 was 28±3 mm Hg and CCI-TBI resulted in a 46±6% reduction in PbtO2 at T15 (P<0.001). Significant differences in time-group interactions (P=0.013) were found when comparing either absolute or percentage change of PbtO2 to post-injury (mixed-model ANOVA) suggesting that administration of NVX-108 increased PbtO2 above injury levels while it remained depressed in the NON group. Specifically in the NVX group, PbtO2 increased to a peak 143% of T15 (P=0.02) 60 min after completion of NVX-108 injection (T135). Systemic blood pressure was not different between the groups. CONCLUSION NVX-108 caused an increase in PbtO2 following CCI-TBI in rats and should be evaluated further as a possible immediate treatment for TBI.
Collapse
|
25
|
Filatov MA, Baluschev S, Landfester K. Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chem Soc Rev 2016; 45:4668-89. [DOI: 10.1039/c6cs00092d] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different approaches towards protection of triplet excited states against deactivation by molecular oxygen are summarized and reviewed.
Collapse
Affiliation(s)
- Mikhail A. Filatov
- Trinity Biomedical Science Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Stanislav Baluschev
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
- Optics and Spectroscopy Department
- Faculty of Physics
| | - Katharina Landfester
- Optics and Spectroscopy Department
- Faculty of Physics
- Sofia University “St. Kliment Ochridski”
- 1164 Sofia
- Bulgaria
| |
Collapse
|
26
|
Abstract
Trauma mortality may be increased in the presence of preexisting diseases such as chronic hypertension. We hypothesized that systemic and microvascular alterations accompanying chronic hypertension would increase the vulnerability to hemorrhage relative to normotensive controls in a rat model of hemorrhagic shock. We present a novel comparative hemorrhage model of shock vulnerability, quantified by "vulnerability curves" expressing physiological response to hemorrhage as a function of three matched shock metrics: cumulative blood volume, mean arterial pressure (MAP), and oxygen delivery (Do2). Responses were central hemodynamics and respiratory and muscle oxygenation obtained for one hypertensive (spontaneously hypertensive [SHR]) and two normotensive (Sprague-Dawley, Wistar-Kyoto) rat strains. Hemorrhagic shock was induced by incremental (0.5 mL) hemorrhage to cardiovascular collapse in anesthetized and mechanically ventilated animals. Shock vulnerability of SHR rats was primarily pressure-driven; in general, SHR exhibited the expected patterns of more rapid deterioration in MAP and Vo2 over smaller ranges of blood loss and Do2. Sternotomy-related depression of CO and thus Do2 in SHR meant that we could not test hypotheses related to the role of Do2 and contribution to perfusion differences between normotensive and hypertensive subjects. Insensitivity of lactate to strain effects suggests that lactate may be a reliable biomarker of shock status. Unexpected similarities between Wistar-Kyoto and SHR suggest strain-related effects other than those related to hypertension per se contribute to hemorrhage response; body size effects and genetic relationships could not be ruled out. Future studies should incorporate phylogenetically based methods to examine the role of hypertension and physiological response to hemorrhage across multiple strains.
Collapse
|
27
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Sauerstoffmessung in der Biomedizin - von der Makro- zur Mikroebene. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Oxygen-Sensing Methods in Biomedicine from the Macroscale to the Microscale. Angew Chem Int Ed Engl 2015; 54:8340-62. [DOI: 10.1002/anie.201410646] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/05/2015] [Indexed: 12/15/2022]
|
29
|
Abstract
Evidence is presented that the rate and equilibrium constants in mitochondrial oxidative phosphorylation set and maintain metabolic homeostasis in eukaryotic cells. These internal constants determine the energy state ([ATP]/[ADP][Pi]), and the energy state maintains homeostasis through a bidirectional sensory/signaling control network that reaches every aspect of cellular metabolism. The energy state is maintained with high precision (to ∼1 part in 10(10)), and the control system can respond to transient changes in energy demand (ATP utilization) of more than 100 times the resting rate. Epigenetic and environmental factors are able to "fine-tune" the programmed set point over a narrow range to meet the special needs associated with cell differentiation and chronic changes in metabolic requirements. The result is robust across-platform control of metabolism, which is essential to cellular differentiation and the evolution of complex organisms. A model of oxidative phosphorylation is presented, for which the steady-state rate expression has been derived and computer programmed. The behavior of oxidative phosphorylation predicted by the model is shown to fit the experimental data available for isolated mitochondria as well as for cells and tissues. This includes measurements from several different mammalian tissues as well as from insect flight muscle and plants. The respiratory chain and oxidative phosphorylation is remarkably similar for all higher plants and animals. This is consistent with the efficient synthesis of ATP and precise control of metabolic homeostasis provided by oxidative phosphorylation being a key to cellular differentiation and the evolution of structures with specialized function.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Filatov MA, Heinrich E, Busko D, Ilieva IZ, Landfester K, Baluschev S. Reversible oxygen addition on a triplet sensitizer molecule: protection from excited state depopulation. Phys Chem Chem Phys 2015; 17:6501-10. [DOI: 10.1039/c4cp05025h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular “chaff-flares” strategy for the protection of the triplet excited state from quenching by oxygen.
Collapse
Affiliation(s)
- Mikhail A. Filatov
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
- Institute of Polymers
- Bulgarian Academy of Sciences
| | | | - Dmitry Busko
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| | - Iliyana Z. Ilieva
- Optics and Spectroscopy Department
- Faculty of Physics
- Sofia University “St. Kliment Ochridski”
- 1164 Sofia
- Bulgaria
| | | | - Stanislav Baluschev
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
- Optics and Spectroscopy Department
- Faculty of Physics
| |
Collapse
|
31
|
Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, Thom SR, Bushman FD, Vinogradov SA, Wu GD. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014; 147:1055-63.e8. [PMID: 25046162 PMCID: PMC4252572 DOI: 10.1053/j.gastro.2014.07.020] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The gut microbiota is a complex and densely populated community in a dynamic environment determined by host physiology. We investigated how intestinal oxygen levels affect the composition of the fecal and mucosally adherent microbiota. METHODS We used the phosphorescence quenching method and a specially designed intraluminal oxygen probe to dynamically quantify gut luminal oxygen levels in mice. 16S ribosomal RNA gene sequencing was used to characterize the microbiota in intestines of mice exposed to hyperbaric oxygen, human rectal biopsy and mucosal swab samples, and paired human stool samples. RESULTS Average Po2 values in the lumen of the cecum were extremely low (<1 mm Hg). In altering oxygenation of mouse intestines, we observed that oxygen diffused from intestinal tissue and established a radial gradient that extended from the tissue interface into the lumen. Increasing tissue oxygenation with hyperbaric oxygen altered the composition of the gut microbiota in mice. In human beings, 16S ribosomal RNA gene analyses showed an increased proportion of oxygen-tolerant organisms of the Proteobacteria and Actinobacteria phyla associated with rectal mucosa, compared with feces. A consortium of asaccharolytic bacteria of the Firmicute and Bacteroidetes phyla, which primarily metabolize peptones and amino acids, was associated primarily with mucus. This could be owing to the presence of proteinaceous substrates provided by mucus and the shedding of the intestinal epithelium. CONCLUSIONS In an analysis of intestinal microbiota of mice and human beings, we observed a radial gradient of microbes linked to the distribution of oxygen and nutrients provided by host tissue.
Collapse
Affiliation(s)
- Lindsey Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Colleen P Judge
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kyle Bittinger
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jun Chen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alice Laughlin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie Grunberg
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert N Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - James D Lewis
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
32
|
Varchola J, Huntosova V, Jancura D, Wagnières G, Miskovsky P, Bánó G. Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation. Photochem Photobiol Sci 2014; 13:1781-7. [PMID: 25350815 DOI: 10.1039/c4pp00202d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assessment of partial pressure of oxygen (pO2) by luminescence lifetime measurements of ruthenium coordination complexes has been studied intensively during the last few decades. RuPhen (dichlorotris(1,10-phenanthroline) ruthenium(ii) hydrate) is a water soluble molecule that has been tested previously for in vivo pO2 detection. In this work we intended to shed light on the production of singlet oxygen by RuPhen. The quantum yield of singlet oxygen production by RuPhen dissolved in 0.9% aqueous NaCl solution (pH = 6) was measured at physiological temperatures (285-310 K) and various concentrations of molecular oxygen. In order to minimize the bleaching of RuPhen, the samples were excited with low power (<2 mW) laser pulses (20 μs long), created by pulsing a cw laser beam with an acousto-optical modulator. We show that, whereas the RuPhen phosphorescence lifetime decreases rapidly with an increase of temperature (keeping the oxygenation level constant), the quantum yield of singlet oxygen production by RuPhen is almost identical in the temperature range of 285-310 K. For air-saturated conditions at 310 K the measured quantum yield is about 0.25. The depopulation rate constants of the RuPhen (3)MLCT (metal-to-ligand charge-transfer) state are determined in the absence and in the presence of oxygen. We determined that the excitation energy for the RuPhen (3)MLCT→d-d transition is 49 kJ mol(-1) in the 0.9% NaCl solution (pH = 6).
Collapse
Affiliation(s)
- Jaroslav Varchola
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5., Košice 041 54, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
33
|
Wilson DF, Vinogradov SA. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation. J Appl Physiol (1985) 2014; 117:1431-9. [PMID: 25324518 DOI: 10.1152/japplphysiol.00737.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial oxidative phosphorylation has a central role in eukaryotic metabolism, providing the energy (ATP) required for survival. Regulation of this important pathway is, however, still not understood, largely due to limitations in the ability to measure the essential metabolites, including oxygen (pO2, oxygen pressure), ADP, and AMP. In addition, neither the mechanism of oxygen reduction by mitochondrial cytochrome c oxidase nor how its rate is controlled is understood, although this enzyme determines the rate of oxygen consumption and thereby the rate of ATP synthesis. Cytochrome c oxidase is responsible for reduction of molecular oxygen to water using reducing equivalents donated by cytochrome c and for site 3 energy coupling in oxidative phosphorylation. A mechanism-based model of the cytochrome c oxidase reaction is presented in which transfer of reducing equivalents from the lower- to the higher-potential region of the coupling site occurs against an opposing energy barrier, Q. The steady-state rate equation is fitted to data for the dependence of mitochondrial respiratory rate on cytochrome c reduction, oxygen pressure (pO2), and [ATP]/[ADP][Pi] at pH 6.5 to 8.35 (where Pi is inorganic phosphate). The fit of the rate expression to the experimental data is very good for all experimental conditions. Levels of the intermediates in oxygen reduction in the oxidase reaction site have been calculated. An intermediate in the reaction, tentatively identified as peroxide, bridged between the iron and copper atoms of the reaction site has a central role in coupling mitochondrial respiration to the [ATP]/[ADP][Pi].
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Wilson DF, Harrison DK, Vinogradov A. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria. J Appl Physiol (1985) 2014; 117:1424-30. [PMID: 25324517 DOI: 10.1152/japplphysiol.00736.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytochrome c oxidase is the enzyme responsible for oxygen consumption by mitochondrial oxidative phosphorylation and coupling site 3 of oxidative phosphorylation. In this role it determines the cellular rate of ATP synthesis by oxidative phosphorylation and is the key to understanding how energy metabolism is regulated. Four electrons are required for the reduction of oxygen to water, and these are provided by the one-electron donor, cytochrome c. The rate of oxygen consumption (ATP synthesis) is dependent on the fraction of cytochrome c reduced (fred), oxygen pressure (pO2), energy state ([ATP]/[ADP][Pi]), and pH. In coupled mitochondria (high energy state) and pO2 >60 torr, the rate increases in an exponential-like fashion with increasing fred. When the dependence on fred is fitted to the equation rate = A: (fred)(b), A: decreased from 100 to near 20, and B: increased from 1.3 to 4 as the pH of the medium increased from 6.5 to 8.3. During oxygen depletion from the medium fred progressively increases and the rate of respiration decreases. The respiratory rate falls to ½ (P50) by about 1.5 torr, at which point fred is substantially increased. The metabolically relevant dependence on pO2 is obtained by correcting for the increase in fred, in which case the P50 is 12 torr. Adding an uncoupler of oxidative phosphorylation eliminates the dependence of the cytochrome c oxidase activity on pH and energy state. The respiratory rate becomes proportional to fred and the P50 decreases to less than 1 torr.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | | | | |
Collapse
|
35
|
Holt RW, Zhang R, Esipova TV, Vinogradov SA, Glaser AK, Gladstone DJ, Pogue BW. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies. Phys Med Biol 2014; 59:5317-5328. [PMID: 25146556 DOI: 10.1088/0031-9155/59/18/5317] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.
Collapse
Affiliation(s)
- Robert W Holt
- Department of Physics & Astronomy, Dartmouth College Hanover NH 03755
| | - Rongxiao Zhang
- Department of Physics & Astronomy, Dartmouth College Hanover NH 03755
| | - Tatiana V Esipova
- Department of Biophysics & Biochemistry, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Sergei A Vinogradov
- Department of Biophysics & Biochemistry, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Adam K Glaser
- Thayer School of Engineering, Dartmouth College Hanover NH 03755
| | - David J Gladstone
- Department of Medicine, Geisel School of Medicine, Lebanon NH 03756.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Brian W Pogue
- Department of Physics & Astronomy, Dartmouth College Hanover NH 03755.,Thayer School of Engineering, Dartmouth College Hanover NH 03755
| |
Collapse
|
36
|
Wang XD, Wolfbeis OS. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 2014; 43:3666-761. [PMID: 24638858 DOI: 10.1039/c4cs00039k] [Citation(s) in RCA: 580] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review the current state of optical methods for sensing oxygen. These have become powerful alternatives to electrochemical detection and in the process of replacing the Clark electrode in many fields. The article (with 694 references) is divided into main sections on direct spectroscopic sensing of oxygen, on absorptiometric and luminescent probes, on polymeric matrices and supports, on additives and related materials, on spectroscopic schemes for read-out and imaging, and on sensing formats (such as waveguide sensing, sensor arrays, multiple sensors and nanosensors). We finally discuss future trends and applications and summarize the properties of the most often used indicator probes and polymers. The ESI† (with 385 references) gives a selection of specific applications of such sensors in medicine, biology, marine and geosciences, intracellular sensing, aerodynamics, industry and biotechnology, among others.
Collapse
Affiliation(s)
- Xu-dong Wang
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany.
| | | |
Collapse
|
37
|
Effects of perfluorocarbon emulsions on microvascular blood flow and oxygen transport in a model of severe arterial gas embolism. J Surg Res 2014; 187:324-33. [DOI: 10.1016/j.jss.2013.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022]
|
38
|
Hirai DM, Copp SW, Holdsworth CT, Ferguson SK, McCullough DJ, Behnke BJ, Musch TI, Poole DC. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function. Am J Physiol Heart Circ Physiol 2014; 306:H690-8. [PMID: 24414070 DOI: 10.1152/ajpheart.00901.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min; -14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wilson DF. Regulation of cellular metabolism: programming and maintaining metabolic homeostasis. J Appl Physiol (1985) 2013; 115:1583-8. [PMID: 24114701 DOI: 10.1152/japplphysiol.00894.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial oxidative phosphorylation is programmed to set and maintain metabolic homeostasis. This is accomplished through an intrinsic program that determines the metabolic [ATP]/[ADP]/[Pi], where [Pi] is the concentration of inorganic phosphate (energy state) and maintains it through a bidirectional sensory/signaling control network that reaches every aspect of cellular metabolism. The program sets the energy state with high precision (to better than one part in 10(9)) and can respond to transient changes in energy demand (ATP use) to more than 100 times the resting rate. Epigenetic and environmental factors are able to "fine tune" the programmed set point over a narrow range to meet the special needs associated with cell differentiation and chronic changes in metabolic requirements. The result is robust, across platform control of metabolism, essential to cellular differentiation and the evolution of complex organisms.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Ekbal NJ, Dyson A, Black C, Singer M. Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. Chest 2013; 143:1799-1808. [PMID: 23732592 DOI: 10.1378/chest.12-1849] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alterations in oxygen transport and use are integral to the development of multiple organ failure; therefore, the ultimate goal of resuscitation is to restore effective tissue oxygenation and cellular metabolism. Hemodynamic monitoring is the cornerstone of management to promptly identify and appropriately manage (impending) organ dysfunction. Prospective randomized trials have confirmed outcome benefit when preemptive or early treatment is directed toward maintaining or restoring adequate tissue perfusion. However, treatment end points remain controversial, in large part because of current difficulties in determining what constitutes "optimal." Information gained from global whole-body monitoring may not detect regional organ perfusion abnormalities until they are well advanced. Conversely, the ideal "canary" organ that is readily accessible for monitoring, yet offers an early and sensitive indicator of tissue "unwellness," remains to be firmly identified. This review describes techniques available for real-time monitoring of tissue perfusion and metabolism and highlights novel developments that may complement or even supersede current tools.
Collapse
Affiliation(s)
- Nasirul J Ekbal
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, England
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, England
| | - Claire Black
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, England
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, England.
| |
Collapse
|
41
|
Wang XD, Stolwijk JA, Sperber M, Meier RJ, Wegener J, Wolfbeis OS. Ultra-small, highly stable, and membrane-impermeable fluorescent nanosensors for oxygen. Methods Appl Fluoresc 2013; 1:035002. [DOI: 10.1088/2050-6120/1/3/035002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Carvalho CMB, Brocksom TJ, de Oliveira KT. Tetrabenzoporphyrins: synthetic developments and applications. Chem Soc Rev 2013; 42:3302-17. [DOI: 10.1039/c3cs35500d] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Filatov MA, Baluschev S, Ilieva IZ, Enkelmann V, Miteva T, Landfester K, Aleshchenkov SE, Cheprakov AV. Tetraaryltetraanthra[2,3]porphyrins: synthesis, structure, and optical properties. J Org Chem 2012. [PMID: 23205621 DOI: 10.1021/jo302135q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A synthetic route to symmetrical tetraaryltetraanthra[2,3]porphyrins (Ar(4)TAPs) was developed. Ar(4)TAPs bearing various substituents in meso-phenyls and anthracene residues were prepared from the corresponding pyrrolic precursors. The synthesized porphyrins possess high solubility and exhibit remarkably strong absorption bands in the near-infrared region (790-950 nm). The scope of the method, selection of the peripheral substituents, choice of the metal, and their influence on the optical properties are discussed together with the first X-ray crystallographic data for anthraporphyrin.
Collapse
Affiliation(s)
- Mikhail A Filatov
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wilson DF, Harrison DK, Vinogradov SA. Oxygen, pH, and mitochondrial oxidative phosphorylation. J Appl Physiol (1985) 2012; 113:1838-45. [PMID: 23104697 DOI: 10.1152/japplphysiol.01160.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The oxygen dependence of mitochondrial oxidative phosphorylation was measured in suspensions of isolated rat liver mitochondria using recently developed methods for measuring oxygen and cytochrome c reduction. Cytochrome-c oxidase (energy conservation site 3) activity of the mitochondrial respiratory chain was measured using an artificial electron donor (N,N,N',N'-tetramethyl-p-phenylenediamine) and ascorbate to directly reduce the cytochrome c, bypassing sites 1 and 2. For mitochondrial suspensions with added ATP, metabolic conditions approximating those in intact cells and decreasing oxygen pressure both increased reduction of cytochrome c and decreased respiratory rate. The kinetic parameters [K(M) and maximal rate (V(M))] for oxygen were determined from the respiratory rates calculated for 100% reduction of cytochrome c. At 22°C, the K(M) for oxygen is near 3 Torr (5 μM), 12 Torr (22 μM), and 18 Torr (32 μM) at pH 6.9, 7.4, and 7.9, respectively, and V(M) corresponds to a turnover number for cytochrome c at 100% reduction of near 80/s and is independent of pH. Uncoupling oxidative phosphorylation increased the respiratory rate at saturating oxygen pressures by twofold and decreased the K(M) for oxygen to <2 Torr at all tested pH values. Mitochondrial oxidative phosphorylation is an important oxygen sensor for regulation of metabolism, nutrient delivery to tissues, and cardiopulmonary function. The decrease in K(M) for oxygen with acidification of the cellular environment impacts many tissue functions and may give transformed cells a significant survival advantage over normal cells at low-pH, oxygen-limited environment in growing tumors.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
45
|
Zhang R, Glaser A, Esipova TV, Kanick SC, Davis SC, Vinogradov S, Gladstone D, Pogue BW. Čerenkov radiation emission and excited luminescence (CREL) sensitivity during external beam radiation therapy: Monte Carlo and tissue oxygenation phantom studies. BIOMEDICAL OPTICS EXPRESS 2012; 3:2381-2394. [PMID: 23082280 PMCID: PMC3470003 DOI: 10.1364/boe.3.002381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 05/29/2023]
Abstract
Radiotherapy generates Čerenkov radiation emission in tissue, and spectral absorption features appearing in the emission spectrum can be used to quantify blood oxygen saturation (S(t)O(2)) from the known absorptions of hemoglobin. Additionally, the Čerenkov light can be used to excite oxygen-sensitive phosphorescence of probe PtG4, whose emission lifetime directly reports on tissue oxygen partial pressure (pO(2)). Thus, it is feasible to probe both hemoglobin S(t)O(2) and pO(2) using external radiation therapy beam to create as an internal light source in tumor tissue. In this study, the sensitivity and spatial origins of these two signals were examined. Emission was detected using a fiber-optic coupled intensifier-gated CCD camera interfaced to a spectrometer. The phosphorescence lifetimes were quantified and compared with S(t)O(2) changes previously measured. Monte Carlo simulations of the linear accelerator beam were used together with tracking of the optical signals, to predict the spatial distribution and zone sensitivity within the phantom. As the fiber-to-beam distance (FBD) varied from 0 to 30 mm, i.e. the distance from the fiber tip to the nearest side of the radiotherapy beam, the effective sampling depth for CR emission changed from 4 to 29 mm for the wavelengths in the range of 600-1000 nm. For the secondary emission (phosphorescence) the effective sampling depth was determined to be in the range of 9 to 19 mm. These results indicate that sampling of S(t)O(2) and pO(2) in tissue should be feasible during radiation therapy, and that the radiation beam and fiber sampling geometry can be set up to acquire signals that originate as deep as a few centimeters in the tissue.
Collapse
Affiliation(s)
- Rongxiao Zhang
- Department of Physics & Astronomy, Dartmouth College, Hanover NH 03755, USA
| | - Adam Glaser
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Tatiana V. Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Stephen C. Kanick
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Sergei Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - David Gladstone
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03755, USA
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon NH 03755, USA
| | - Brian W. Pogue
- Department of Physics & Astronomy, Dartmouth College, Hanover NH 03755, USA
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03755, USA
| |
Collapse
|
46
|
Ray A, Rajian JR, Lee YEK, Wang X, Kopelman R. Lifetime-based photoacoustic oxygen sensing in vivo. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:057004. [PMID: 22612143 PMCID: PMC3381016 DOI: 10.1117/1.jbo.17.5.057004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/16/2012] [Accepted: 03/29/2012] [Indexed: 05/18/2023]
Abstract
The determination of oxygen levels in blood and other tissues in vivo is critical for ensuring proper body functioning, for monitoring the status of many diseases, such as cancer, and for predicting the efficacy of therapy. Here we demonstrate, for the first time, a lifetime-based photoacoustic technique for the measurement of oxygen in vivo, using an oxygen sensitive dye, enabling real time quantification of blood oxygenation. The results from the main artery in the rat tail indicated that the lifetime of the dye, quantified by the photoacoustic technique, showed a linear relationship with the blood oxygenation levels in the targeted artery.
Collapse
Affiliation(s)
- Aniruddha Ray
- University of Michigan, Biophysics, Ann Arbor, Michigan 48109
| | | | - Yong-Eun Koo Lee
- University of Michigan, Department of Chemistry, Ann Arbor, Michigan 48109
| | - Xueding Wang
- University of Michigan, Department of Radiology, Ann Arbor, Michigan 48109
- Address all correspondence to: Xueding Wang, University of Michigan, Department of Radiology, Ann Arbor, Michigan 48109. E-mail: ; Raoul Kopelman, University of Michigan, Biophysics, Ann Arbor, Michigan 48109. Tel: +1 734 764 7541; Fax: +1 734 936 2778; E-mail:
| | - Raoul Kopelman
- University of Michigan, Biophysics, Ann Arbor, Michigan 48109
- University of Michigan, Department of Chemistry, Ann Arbor, Michigan 48109
- Address all correspondence to: Xueding Wang, University of Michigan, Department of Radiology, Ann Arbor, Michigan 48109. E-mail: ; Raoul Kopelman, University of Michigan, Biophysics, Ann Arbor, Michigan 48109. Tel: +1 734 764 7541; Fax: +1 734 936 2778; E-mail:
| |
Collapse
|
47
|
Golub AS, Pittman RN. Oxygen dependence of respiration in rat spinotrapezius muscle in situ. Am J Physiol Heart Circ Physiol 2012; 303:H47-56. [PMID: 22523254 DOI: 10.1152/ajpheart.00131.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po(2) [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po(2) dependence of oxygen consumption, Vo(2), proportional to the rate of Po(2) decrease. Fitting equations obtained from a model of heterogeneous intracellular Po(2) were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of Vo(2) on Po(2). This curve consists of two regions connected by the point for critical Po(2) of the cell (i.e., Po(2) at the sarcolemma when the center of the cell becomes anoxic). The critical Po(2) was below the Po(2) for half-maximal respiratory rate (P(50)) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O(2)/cm(3)·s and mitochondrial P(50) was k = 10.5 ± 0.8 mmHg. The range of Po(2) values inside the muscle fibers was found to be 4-5 mmHg at the critical Po(2). The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po(2) was substantially lower than the interstitial Po(2) of 53 ± 2 mmHg, a finding that indicates that Vo(2) under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, 23298-0551, USA.
| | | |
Collapse
|
48
|
Bodmer SIA, Balestra GM, Harms FA, Johannes T, Raat NJH, Stolker RJ, Mik EG. Microvascular and mitochondrial PO(2) simultaneously measured by oxygen-dependent delayed luminescence. JOURNAL OF BIOPHOTONICS 2012; 5:140-151. [PMID: 22114031 DOI: 10.1002/jbio.201100082] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 05/31/2023]
Abstract
Measurement of tissue oxygenation is a complex task and various techniques have led to a wide range of tissue PO(2) values and contradictory results. Tissue is compartmentalized in microcirculation, interstitium and intracellular space and current techniques are biased towards a certain compartment. Simultaneous oxygen measurements in various compartments might be of great benefit for our understanding of determinants of tissue oxygenation. Here we report simultaneous measurement of microvascular PO(2) (μPO(2) ) and mitochondrial PO(2) (mitoPO(2) ) in rats. The μPO(2) measurements are based on oxygen-dependent quenching of phosphorescence of the near-infrared phosphor Oxyphor G2. The mitoPO(2) measurements are based on oxygen-dependent quenching of delayed fluorescence of protoporphyrin IX (PpIX). Favorable spectral properties of these porphyrins allow simultaneous measurement of the delayed luminescence lifetimes. A dedicated fiber-based time-domain setup consisting of a tunable pulsed laser, 2 red-sensitive gated photomultiplier tubes and a simultaneous sampling data-acquisition system is described in detail. The absence of cross talk between the channels is shown and the feasibility of simultaneous μPO(2) and mitoPO(2) measurements is demonstrated in rat liver in vivo. It is anticipated that this novel approach will greatly contribute to our understanding of tissue oxygenation in physiological and pathological circumstances.
Collapse
Affiliation(s)
- Sander I A Bodmer
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC - University Medical Center Rotterdam, s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Cheprakov AV, Filatov MA. The dihydroisoindole approach to linearly annelated π-extended porphyrins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424609000383] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dihydroisoindole strategy for the synthesis of linearly annelated π-extended porphyrins is a common approach to tetrabenzo-, tetranaphtho-, and tetraanthraporphyrins with variable functionality and substitution patterns. This method implies the use of a common type of precursors involving the 4,7-dihydroisoindole moiety, which are the closest possible stable relatives of the unstable isoindole, benzoisoindole and naphthoisoindole. A key feature of this strategy is the unprecedented mildness of the final oxidative aromatization step, which accounts for synthetic versatility, better functional group tolerance and high purity of the products. Many new linearly annelated π-extended porphyrins of the tetrabenzo-, tetranaphtho-, and tetraanthraporphyrin families were produced and characterized for the first time, including soluble planar and highly emissive 5,15-diaryl derivatives. The double bond of the dihydroisoindole fragment can also be useful for further modification of the porphyrin by means of addition of cycloaddition reactions, leading to new, previously inaccessible porphyins bearing multiple halide, hydroxy, or acetoxy groups at the periphery.
Collapse
|
50
|
Chumakov D, Moiseeva A, Anisimov A, Uzhinov B, Khoroshutin A. Regioselective bromination of palladium tetraphenyltetrabenzoporphyrin to benzo-rings: Synthesis of mono- and octabromotetrabenzoporphyrins and their properties. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424610002653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bromination of palladium meso-tetraphenyl tetrabenzoporphyrin ( Pd Ph4TBP, 1) by Me4NBr3 or Me4NBr/Br2 was shown to proceed regioselectively to the benzo-rings annelated to main porphyrin macrocycle. Conditions for preferential mono- and octa-bromination have been established. The respective mono- and octa-bromide ( Pd Ph4TBP( Br ), 2 and Pd Ph4TBP( Br )8, 3) have been isolated and characterized by UV-vis, NMR and LDI-TOF spectroscopy. Changes of electrochemical properties of tetrabenzoporphyrins induced by Br atoms were found to follow the same trends as the changes in analogous non-extended porphyrins. Room temperature phosphorescence is not substantially influenced by the substitution.
Collapse
Affiliation(s)
- Denis Chumakov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anna Moiseeva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Anisimov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Boris Uzhinov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Khoroshutin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|