1
|
Trybulsk R, Stanula A, Vovkanych A, Muracki J, Wang HK, Kużdżał A. Immediate effect of ice and dry massage during rest breaks on recovery in MMA fighters : a randomized crossover clinical trial study. Sci Rep 2025; 15:12323. [PMID: 40210733 PMCID: PMC11986066 DOI: 10.1038/s41598-025-97194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
The MMA fight consists of 5 rounds of 5 min with minimal breaks between the rounds. The exertion load is excessive for the fighters, and the 1-minute breaks give little time for any intervention. This study aimed to examine the acute effects of two methods of regenerative strategies, ice massage and dry massage, and analyze their impact on Reactive Strength Index (RSI - m s- 1), muscles' biomechanical properties: muscle tone (T-Hz), elasticity (E - arb- relative arbitrary unit), stiffness (S - N/m), pressure pain threshold, (PPT - N/cm²), and compare their influence with passive rest. The maximum number of jumps (J - n) treated as an indirect effective measure of the interventions that were conducted was also recorded for each participant in each regenerative strategy. Thirty male MMA fighters took part in the study. Three subgroups of 10 participants (Ice massage, n = 10; dry massage, n = 10; and control, n = 10) were enrolled in the cross-over randomized clinical trial study design. The groups were randomized, and each group underwent each procedure (30 tested in each procedure). Five sets of jumps on a 50 cm box to exhaustion were used as a fatigue protocol with 1-minute breaks. The recovery interventions were performed during the breaks. The statistically significant results revealed in the post-exercise tests: RSI and number of jumps - the lowest decrease was observed in the massage group (p < 0.001 and p < 0.0001 respectively), the minor increases in T, E and S were also observed in the massage group ((p < 0.0001 for all measurements); the post-exercise PPT was the highest (higher means better) in the Ice group (p < 0.001). In every other parameter, the ice massage group showed slightly worse results than the dry massage group. Responder analysis confirms that the number of jumps profoundly impacted biomechanical variables, leading to increased muscle stiffness and tension, decreased elasticity and force endurance, and heightened pain sensitivity. Obtained results confirm that both dry and ice massage can significantly affect acute recovery following rounds of combat sport-related exertions. The Ice and Massage interventions differed in effectiveness - Massage was the most effective in preventing increases in stiffness and tension and preserving muscle elasticity. At the same time, ice cooling had a lesser impact, particularly on muscle elasticity changes but higher for PPT.
Collapse
Affiliation(s)
- Robert Trybulsk
- Medical Department, Wojciech Korfanty Upper Silesian Academy, Katowice, 40-659, Poland.
- Department of Physical Therapy and Ergotherapy, Ivan Boberkyj Lviv State University of Physical Culture, Lviv, 79007, Ukraine.
| | - Arkadiusz Stanula
- Laboratory of Sport Performance Analysis, Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, 40-065, Poland
| | - Andriy Vovkanych
- Department of Physical Therapy and Ergotherapy, Ivan Boberkyj Lviv State University of Physical Culture, Lviv, 79007, Ukraine
| | - Jarosław Muracki
- Institute of Physical Culture Sciences, Department of Physical Culture and Health, University of Szczecin, Szczecin, 70-453, Poland.
- Provita Medical Center, Żory, 44-240, Poland.
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei, Taiwan
- Center of Physical Therapy, National Taiwan University, Taipei, Taiwan
| | - Adrian Kużdżał
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, 35-310, Poland
| |
Collapse
|
2
|
Meade RD, Akerman AP, Notley SR, McGarr GW, McCourt ER, Kirby NV, Costello JT, Cotter JD, Crandall CG, Zanobetti A, Kenny GP. Meta-analysis of heat-induced changes in cardiac function from over 400 laboratory-based heat exposure studies. Nat Commun 2025; 16:2543. [PMID: 40087302 PMCID: PMC11909281 DOI: 10.1038/s41467-025-57868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Heat waves are associated with increased fatalities from adverse cardiovascular events attributed to the negative effects of heat on cardiac function. However, scientific understanding of acute cardiac adjustments to heat has come primarily from laboratory experiments employing insulated and encapsulated heating modalities, most commonly water-perfused suits. We evaluated whether findings from those studies reflect cardiac responses during more natural exposures to hot ambient conditions simulated in climate-controlled chambers by synthesizing the findings from over 400 laboratory-based heat exposure studies (6858 participant-exposures) published between 1961-2024. Among all included studies, median (interquartile range) elevations in core temperature and heart rate from baseline to end-exposure were 0.9 (0.5-1.3)°C and 27 (15-40) beats/min. Multilevel mixed-effects meta-analyses revealed exacerbated elevations in heart rate, cardiac output, and rate pressure product (estimate of cardiac workload) and blunted falls in systolic pressure in participants heated via encapsulated modalities. Leveraging the large dataset, we also provide empirical estimates of body temperature and cardiovascular responses to a wide range of conditions experienced during heat waves. With rising global temperatures, ecologically-minded physiological research is needed to improve understanding of the effects of heat stress on cardiac responses and further the development of robust climate health models and evidence-based heat-health guidance.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Emma R McCourt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph T Costello
- School of Psychology, Sport & Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Ahokas EK, Hanstock HG, Kyröläinen H, Ihalainen JK. Effects of repeated use of post-exercise infrared sauna on neuromuscular performance and muscle hypertrophy. Front Sports Act Living 2025; 7:1462901. [PMID: 40104529 PMCID: PMC11913669 DOI: 10.3389/fspor.2025.1462901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose The aim of this study was to investigate whether regular use of infrared sauna (IRS) after training can promote neuromuscular performance and positive changes in body composition during a 6-week training period. Methods Forty female team sport athletes were pair-matched into two groups: IRS (n = 20) and control (CON; n = 20). Physical performance tests, body composition and hypertrophy measurements (dual-energy x-ray absorptiometry and ultrasound of m. vastus lateralis) were performed PRE and POST a 6-week strength and power training period, involving 2-3 sessions per week. Performance tests included a 20 m sprint, squat jump (SJ), countermovement jumps with body weight (CMJ) as well as with 15, 25, and 50% additional load (CMJ15%, CMJ25%, and CMJ50%), and a maximal isometric leg press (MVC). Participants in the IRS-group used IRS (10 min, 50℃) after training three times per week. Results Training improved neuromuscular performance and muscle hypertrophy in both groups (p < 0.05). Following the discovery of an interaction effect for CMJ15% height (p = 0.002) and peak power (p = 0.010), post hoc tests revealed higher jump height POST-IRS (p = 0.006) and PRE-CON (p = 0.023) compared to PRE-IRS, and higher peak power POST-IRS (p = 0.002) compared to PRE-IRS. Furthermore, an interaction effect was observed for 5 m split time of the 20 m sprint (p = 0.020), but no differences were found between groups and timepoints. There were no interactions for the hypertrophy measures. Conclusion Incorporating post-exercise IRS bathing does not significantly impact hypertrophy gains, but might boost long-term power production capabilities.
Collapse
Affiliation(s)
- Essi K Ahokas
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Helen G Hanstock
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna K Ihalainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| |
Collapse
|
4
|
Blankenship AE, Kemna R, Kueck PJ, John C, Vitztum M, Yoksh L, Mahnken JD, Vidoni ED, Morris JK, Geiger PC. Improving glycemic control via heat therapy in older adults at risk for Alzheimer's disease (FIGHT-AD): a pilot study. J Appl Physiol (1985) 2025; 138:720-730. [PMID: 39829076 DOI: 10.1152/japplphysiol.00396.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Impaired glycemic control increases the risk of type 2 diabetes (T2D) and Alzheimer's disease (AD). Heat therapy (HT), via hot water immersion (HWI), has shown promise in improving shared mechanisms implicated in both T2D and AD, like blood glucose regulation, insulin sensitivity, and inflammation. The potential for HT to improve brain health in individuals at risk for AD has not been examined. This pilot study aimed to assess the feasibility and adherence of using HT in cognitively healthy older individuals at risk for AD due to existing metabolic risk factors. Participants underwent 4 wk of HT (three sessions/week) via HWI, alongside cognitive screening, self-reported sleep characterization, glucose tolerance tests, and MRI scans pre- and postintervention. A total of 18 participants (9 males, 9 females; mean age: 71.1 ± 3.9 yr), demonstrating metabolic risk, completed the intervention. Participant adherence for the study was 96% (8 missed sessions out of 216 total sessions), with one study-related mild adverse event (mild dizziness/nausea). Overall, the research participants responded to a postintervention survey saying they enjoyed participating in the study and it was not a burden on their schedules. Secondary outcomes of the HT intervention demonstrated significant changes in mean arterial pressure, diastolic blood pressure, and cerebral blood flow (P < 0.05), with a trend toward improved body mass index (P = 0.06). Future studies, including longer durations and a thermoneutral control group, are needed to fully understand heat therapy's impact on glucose homeostasis and the potential to improve brain health.NEW & NOTEWORTHY Our pilot study demonstrated promising results for heat therapy (HT) via hot water immersion in older adults at risk for Alzheimer's disease due to metabolic factors. Despite a relatively short intervention, significant improvements in mean arterial pressure, diastolic blood pressure, and cerebral blood flow postintervention were observed. High participant adherence, overall satisfaction, and minimal adverse events suggest HT's feasibility. These findings highlight HT's potential as an effective alternative intervention for cardiometabolic dysfunction in at-risk populations.
Collapse
Affiliation(s)
- Anneka E Blankenship
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Riley Kemna
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Paul J Kueck
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Casey John
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michelle Vitztum
- KU Diabetes Institute, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Lauren Yoksh
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
- Frontiers Clinical and Translational Science Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Jill K Morris
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Paige C Geiger
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
5
|
Su Y, Martinkova A, O'Donnell E, Bailey SJ, Leicht CA. The acute effects of continuous and intermittent whole-body passive heating on cardiovascular disease risk indicators in healthy and young males and females. Eur J Appl Physiol 2025:10.1007/s00421-025-05718-0. [PMID: 39953332 DOI: 10.1007/s00421-025-05718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Heat therapy is recognised to promote cardiovascular health, and whilst most recent heat therapy investigations have focussed on continuous heat exposure, traditional sauna use often includes recovery periods. This study compared the acute effects of continuous versus intermittent whole-body heating on cardiovascular function markers in males and females. METHODS Twenty healthy participants (25 ± 3 years; 10 males, 10 females) were exposed to 2 passive heating regimens: continuous heating (CH) for 60 min and intermittent heating (IH) comprised of 3 × 20-min blocks interspersed by 15-min cooling breaks. Skin perfusion, blood pressure (BP), plasma nitrite, interleukins, body temperature, and thermal perceptual responses were assessed. RESULTS Greater increases in rectal temperature (Trec) (CH: 1.2 ± 0.1 °C; IH: 0.5 ± 0.1 °C), skin perfusion, systolic blood pressure (SBP), heart rate (HR), interleukin-6 (IL-6) and plasma nitrite were found in CH compared to IH (p ≤ 0.01), but the thermal perceptual response was more unfavourable during CH (p < 0.01). Females had higher skin perfusion and plasma nitrite concentrations (p ≤ 0.04), but lower brachial and central BP than males in both conditions (p ≤ 0.01). Furthermore, females reached a higher Trec and more unfavourable thermal perception in CH (p ≤ 0.02). CONCLUSION More pronounced cardiovascular responses were associated with higher Trec and discomfort. Females exhibited higher skin perfusion and plasma nitrite concentrations than males and reported less favourable thermal perception in CH, but not in IH.
Collapse
Affiliation(s)
- Yunuo Su
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Adela Martinkova
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Emma O'Donnell
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Christof A Leicht
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
6
|
Sanchez G, Prince D, Glasser S, Buono M, Kressler J, Moore JM. Feet-heating and calf-heating have opposing effects on glucose tolerance and heart rate variability: a randomized, controlled, crossover trial. Appl Physiol Nutr Metab 2025; 50:1-9. [PMID: 39366006 DOI: 10.1139/apnm-2024-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Heat exposure's effect on glucose tolerance depends on the amount of body exposed, likely relating to autonomic nervous system balance. We assessed how partial-body heat exposure at two different levels of the lower extremities affects glucose tolerance and autonomic nervous system balance, measured via heart rate variability. We hypothesized feet-heating would improve glucose tolerance without affecting heart rate variability, while calf-heating would worsen glucose tolerance and decrease heart rate variability compared to a thermoneutral control condition. In a randomized, controlled, crossover trial, healthy participants' (N = 31, 23(3) years, 45% male) glucose tolerance was measured in (A) thermoneutral; (B) feet-heating; and (C) calf-heating conditions. Every 30 min for 2 h, blood glucose, heart rate, heart rate variability, tympanic temperature, thermal comfort scores, and blood pressure were measured. There were significant interactions between condition and time for blood glucose (F (4.6,72.6) = 2.6, p = 0.036), heart rate (F (3.4, 54.5) = 3.5, p = 0.017), heart rate variability (F (4.3,63.2) = 7.5, p < .0001), tympanic temperature (F (8, 268) = 2.4, p = 0.014), and thermal comfort scores (F (8, 248) = 22.1, p < 0.0001). Calf-heating increased 90 min glucose (+12 (95% confidence interval, CI: 3-21) mg/dL, p = 0.013) and decreased heart rate variability throughout (mean decrease: 13%-22%, p < 0.007), while feet-heating lowered 90 min glucose (-7 (95% CI: -16 to +1) mg/dL, p = 0.090) without affecting heart rate variability (p = 0.14-0.99). Blood pressure and body temperature were similar between conditions, but heart rate and thermal comfort scores increased with heating. Calf-heating worsens, while feet-heating may improve, glucose tolerance. Changes in heart rate variability coincided with changes in glucose tolerance despite unchanged body temperature. Whether heart rate variability can be used to monitor autonomic nervous system balance during heating to optimize its acute effect on glycemic indices should be further explored.
Collapse
Affiliation(s)
- Gabriele Sanchez
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Dena Prince
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Shelby Glasser
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Michael Buono
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Jochen Kressler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Jeff M Moore
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology & Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
7
|
Menzies C, Clarke ND, Pugh CJA, Steward CJ, Thake CD, Cullen T. Passive heating in sport: context-specific benefits, detriments, and considerations. Appl Physiol Nutr Metab 2025; 50:1-15. [PMID: 39805100 DOI: 10.1139/apnm-2024-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Exercise and passive heating share some acute physiological responses. These include increases in body temperature, sweat rate, blood flow, heart rate, and redistribution of plasma and blood volume. These responses can vary depending on the heating modality or dose (e.g., temperature, duration, body coverage) and are beneficial to athletes in specific scenarios. These scenarios include being applied to increase muscle or force production, induce rapid weight loss, stimulate thermoregulatory or cardiovascular adaptation, or to accelerate recovery. The rationale being to tailor the specific passive heating protocol to target the desired physiological response. However, some acute responses to passive heating may also be detrimental to sporting outcomes, such as exercising in the heat, having unintended residual negative effects on performance or perceptions of fatigue, or even resulting in hospitalisation if implemented inappropriately. Accordingly, the effects of passive heating should be carefully considered prior to implementation by athletes, coaches, and support staff. Therefore, the purpose of this review is to evaluate the physiological responses to different modes and doses of passive heating and explore the various sport contexts where these effects may either benefit or hinder athletes. Understanding these responses can aid the implementation of passive heating in sport and identify potential recommended heating protocols in each given scenario.
Collapse
Affiliation(s)
- Campbell Menzies
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Neil D Clarke
- College of Life Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Charles J Steward
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - C Douglas Thake
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
| | - Tom Cullen
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
8
|
Fuchs CJ, Betz MW, Petrick HL, Weber J, Senden JM, Hendriks FK, Bels JLM, van Loon LJC, Snijders T. Repeated passive heat treatment increases muscle tissue capillarization, but does not affect postprandial muscle protein synthesis rates in healthy older adults. J Physiol 2025; 603:167-186. [PMID: 39373667 DOI: 10.1113/jp286986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Prolonged passive heat treatment (PHT) has been suggested to trigger skeletal muscle adaptations that may improve muscle maintenance in older individuals. To assess the effects of PHT on skeletal muscle tissue capillarization, perfusion capacity, protein synthesis rates, hypertrophy and leg strength, 14 older adults (9 males, 5 females; 73 ± 6 years) underwent 8 weeks of PHT (infrared sauna: 3× per week, 45 min at ∼60°C). Before and after PHT we collected muscle biopsies to assess skeletal muscle capillarization and fibre cross-sectional area (CSA). Basal and postprandial muscle tissue perfusion kinetics and protein synthesis rates were assessed using contrast-enhanced ultrasound and primed continuous l-[ring-13C6]phenylalanine infusions, respectively. One-repetition maximum (1RM) leg strength and vastus lateralis muscle CSA were assessed. Type I and type II muscle fibre capillarization strongly increased following PHT (capillary-to-fibre perimeter exchange index: +31 ± 18 and +33 ± 30%, respectively; P < 0.001). No changes were observed in basal (0.24 ± 0.27 vs. 0.18 ± 0.11 AU; P = 0.266) or postprandial (0.20 ± 0.12 vs. 0.18 ± 0.14 AU; P = 0.717) microvascular blood flow following PHT. Basal (0.048 ± 0.014 vs. 0.051 ± 0.019%/h; P = 0.630) and postprandial (0.041 ± 0.012 vs. 0.051 ± 0.024%/h; P = 0.199) muscle protein synthesis rates did not change in response to prolonged PHT. Furthermore, no changes in vastus lateralis muscle CSA (15.3 ± 4.6 vs. 15.2 ± 4.6 cm2; P = 0.768) or 1RM leg strength (46 ± 12 vs. 47 ± 12 kg; P = 0.087) were observed over time. In conclusion, prolonged PHT increases muscle tissue capillarization but this does not improve muscle microvascular blood flow or increase muscle protein synthesis rates in healthy, older adults. Prolonged PHT does not induce skeletal muscle hypertrophy or increase leg strength in healthy, older adults. KEY POINTS: Repeated exposure to heat has been suggested to trigger skeletal muscle adaptive responses. We investigated the effect of 8 weeks of whole-body passive heat treatment (PHT; infrared sauna: 3× per week for 45 min at ∼60°C) on skeletal muscle tissue capillarization, perfusion capacity, basal, and postprandial muscle protein synthesis rates, muscle (fibre) hypertrophy, and leg strength in healthy, older adults. Prolonged PHT increases muscle tissue capillarization, but this does not improve muscle microvascular blood flow or increase muscle protein synthesis rates. Despite increases in muscle tissue capillarization, prolonged PHT does not suffice to induce skeletal muscle hypertrophy or increase leg strength in healthy, older adults.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Milan W Betz
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Heather L Petrick
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jil Weber
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joan M Senden
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Floris K Hendriks
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Julia L M Bels
- Department of Intensive Care, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Tim Snijders
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
9
|
James TJ, Corbett J, Cummings M, Allard S, Bailey SJ, Eglin C, Belcher H, Piccolo DD, Tipton M, Perissiou M, Saynor ZL, Shepherd AI. The effect of repeated hot water immersion on vascular function, blood pressure and central haemodynamics in individuals with type 2 diabetes mellitus. J Therm Biol 2024; 126:104017. [PMID: 39642665 DOI: 10.1016/j.jtherbio.2024.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by endothelial dysfunction, leading to increased risk of cardiovascular disease. Emerging evidence suggest that HWI may favourably improve vascular function but data are limited in individual with T2DM. The aim was to investigate whether repeated hot water immersion (HWI) improved macrovascular, microvascular and central haemodynamic function in individuals with T2DM. Fourteen individuals completed a pre-post experimental study where participants were assessed pre- and post-8-10 × 1 h HWI sessions (40 °C water) undertaken within a 14-day period. During HWIs, body position was adjusted to clamp rectal temperature at 38.5-39.0 °C for the duration of the immersion. Stroke volume index (SVi), cardiac index (Q˙ i), resting heart rate (HR), systolic blood pressure (SBP), diastolic BP (DBP), brachial flow-mediated dilation (FMD) and cutaneous microvascular endothelial function (via transdermal iontophoresis) and plasma [nitrate] and [nitrite] (NOX; via ozone chemiluminescence) were assessed pre- and post HWI. Neither brachial FMD measures of macrovascular endothelial function (p = 0.43) or forearm microvascular function (ACh max, p = 0.63; ACh area under curve (AUC), p = 0.63; insulin max, p = 0.51; insulin AUC, p = 0.86) or NOX (p = 0.38) were changed. Q˙ i (p < 0.01), SVi (p < 0.02) and resting HR (p < 0.01) were all significantly reduced following the 10-days HWI intervention. SBP was reduced (p = 0.03), whereas DBP was unchanged (p = 0.56). HWI may represent an appropriate intervention to improve Q˙ I, SVi and BP in individuals with T2DM, but not macrovascular endothelial or cutaneous microvascular function.
Collapse
Affiliation(s)
- Thomas J James
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Jo Corbett
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Sharon Allard
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Clare Eglin
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Harvey Belcher
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Daniel D Piccolo
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Michael Tipton
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Maria Perissiou
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Zoe L Saynor
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK; School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, UK
| | - Anthony I Shepherd
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK; Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK.
| |
Collapse
|
10
|
Schenaarts L, Hendriks FK, Fuchs CJ, Sluijsmans WEM, Snijders T, van Loon LJC. A Single Sauna Session Does Not Improve Postprandial Blood Glucose Handling in Individuals with Type 2 Diabetes Mellitus: A Cross-Over, Randomized, Controlled Trial. Exp Clin Endocrinol Diabetes 2024; 132:622-630. [PMID: 39209309 PMCID: PMC11560331 DOI: 10.1055/a-2406-4491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Passive heat treatment has been suggested to improve glycemic control in individuals with type 2 diabetes mellitus (T2DM). Previous studies have focused predominantly on hot water immersion and traditional sauna bathing, as opposed to the more novel method of infrared-based sauna bathing. Here, the impact of a single infrared sauna session on post-prandial glycemic control was assessed in older individuals with T2DM. METHODS In this randomized controlled crossover trial, 12 participants with T2DM (male/female: 10/2, age: 69±7 y, BMI: 27.5±2.9 kg/m2) rested in an infrared sauna twice: once in a heated (60°C) and once in a thermoneutral (21°C) condition for 40 min, immediately followed by a 2-h oral glucose tolerance test (OGTT). Venous blood samples were obtained to assess plasma glucose and insulin concentrations and to determine the whole-body composite insulin sensitivity index. RESULTS Body core and leg skin temperature were higher following the heated condition compared to the thermoneutral condition (38.0±0.3 vs. 36.6±0.2°C and 39.4±0.8 vs. 31.3±0.8°C, respectively; P<0.001 for both). The incremental area under the curve (iAUC) of plasma glucose concentrations during the OGTT was higher after the heated condition compared to the thermoneutral condition (17.7±3.1 vs. 14.8±2.8 mmol/L/120 min; P<0.001). No differences were observed in plasma insulin concentrations (heated: 380±194 vs. thermoneutral: 376±210 pmol/L/120 min; P=0.93) or whole-body composite insulin sensitivity indexes (4.5±2.8 vs. 4.5±2.1; P=0.67). CONCLUSIONS A single infrared sauna session does not improve postprandial blood glucose handling in individuals with T2DM. Future studies should assess the effect of more prolonged application of infrared sauna bathing on daily glycemic control.
Collapse
Affiliation(s)
- Laura Schenaarts
- Department of Human Biology, Maastricht University
School of Nutrition and Translational Research in Metabolism, Maastricht,
Netherlands
| | - Floris K Hendriks
- Department of Human Biology, Maastricht University
School of Nutrition and Translational Research in Metabolism, Maastricht,
Netherlands
| | - Cas J Fuchs
- Department of Human Biology, Maastricht University
School of Nutrition and Translational Research in Metabolism, Maastricht,
Netherlands
| | - Wendy EM Sluijsmans
- Department of Human Biology, Maastricht University
School of Nutrition and Translational Research in Metabolism, Maastricht,
Netherlands
| | - Tim Snijders
- Department of Human Biology, Maastricht University
School of Nutrition and Translational Research in Metabolism, Maastricht,
Netherlands
| | - Luc JC van Loon
- Department of Human Biology, Maastricht University
School of Nutrition and Translational Research in Metabolism, Maastricht,
Netherlands
| |
Collapse
|
11
|
Awaya T, Hara H, Moroi M. Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP Vaccination: Mechanisms and Therapeutic Approaches. Diseases 2024; 12:231. [PMID: 39452475 PMCID: PMC11507195 DOI: 10.3390/diseases12100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Acute adverse reactions to COVID-19 mRNA vaccines are a major concern, as autopsy reports indicate that deaths most commonly occur on the same day of or one day following vaccination. These acute reactions may be due to cytokine storms triggered by lipid nanoparticles (LNPs) and anaphylaxis induced by polyethene glycol (PEG), both of which are vital constituents of the mRNA-LNP vaccines. Kounis syndrome, in which anaphylaxis triggers acute coronary syndrome (ACS), may also be responsible for these cardiovascular events. Furthermore, COVID-19 mRNA-LNP vaccines encompass adjuvants, such as LNPs, which trigger inflammatory cytokines, including interleukin (IL)-1β and IL-6. These vaccines also produce spike proteins which facilitate the release of inflammatory cytokines. Apart from this, histamine released from mast cells during allergic reactions plays a critical role in IL-6 secretion, which intensifies inflammatory responses. In light of these events, early reduction of IL-1β and IL-6 is imperative for managing post-vaccine cytokine storms, ACS, and myocarditis. Corticosteroids can restrict inflammatory cytokines and mitigate allergic responses, while colchicine, known for its IL-1β-reducing capabilities, could also prove effective. The anti-IL-6 antibody tocilizumab also displays promising treatment of cytokine release syndrome. Aside from its significance for treating anaphylaxis, epinephrine can induce coronary artery spasms and myocardial ischemia in Kounis syndrome, making accurate diagnosis essential. The upcoming self-amplifying COVID-19 mRNA-LNP vaccines also contain LNPs. Given that these vaccines can cause a cytokine storm and allergic reactions post vaccination, it is crucial to consider corticosteroids and measure IL-6 levels for effective management.
Collapse
Affiliation(s)
- Toru Awaya
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Hidehiko Hara
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
- Department of Internal Medicine, Misato Central General Hospital, Saitama 341-8526, Japan
| |
Collapse
|
12
|
Trybulski R, Kużdżał A, Stanula A, Muracki J, Kawczyński A, Kuczmik W, Wang HK. Acute effects of cold, heat and contrast pressure therapy on forearm muscles regeneration in combat sports athletes: a randomized clinical trial. Sci Rep 2024; 14:22410. [PMID: 39333728 PMCID: PMC11437117 DOI: 10.1038/s41598-024-72412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Due to the specific loads that occur in combat sports athletes' forearm muscles, we decided to compare the immediate effect of monotherapy with the use of compressive heat (HT), cold (CT), and alternating therapy (HCT) in terms of eliminating muscle tension, improving muscle elasticity and tissue perfusion and forearm muscle strength. This is a single-blind, randomized, experimental clinical trial. Group allocation was performed using simple 1:1 sequence randomization using the website randomizer.org. The study involved 40 40 combat sports athletes divided into four groups and four therapeutic sessions lasting 20 min. (1) Heat compression therapy session (HT, n = 10) (2) (CT, n = 10), (3) alternating (HCT, n = 10), and sham, control (ShT, n = 10). All participants had measurements of tissue perfusion (PU, [non-reference units]), muscle tension (T-[Hz]), elasticity (E-[arb- relative arbitrary unit]), and maximum isometric force (Fmax [kgf]) of the dominant hand at rest (Rest) after the muscle fatigue protocol (PostFat.5 min), after therapy (PostTh.5 min) and 24 h after therapy (PostTh.24 h). A two-way ANOVA with repeated measures: Group (ColdT, HeatT, ContrstT, ControlT) × Time (Rest, PostFat.5 min, PostTh.5 min, Post.24 h) was used to examine the changes in examined variables. Post-hoc tests with Bonferroni correction and ± 95% confidence intervals (CI) for absolute differences (△) were used to analyze the pairwise comparisons when a significant main effect or interaction was found. The ANOVA for PU, T, E, and Fmax revealed statistically significant interactions of Group by Time factors (p < 0.0001), as well as main effects for the Group factors (p < 0.0001; except for Fmax). In the PostTh.5 min. Period, significantly (p < 0.001) higher PU values were recorded in the HT (19.45 ± 0.91) and HCT (18.71 ± 0.67) groups compared to the ShT (9.79 ± 0.35) group (△ = 9.66 [8.75; 10.57 CI] > MDC(0.73), and △ = 8.92 [8.01; 9.83 CI] > MDC(0.73), respectively). Also, significantly (p < 0.001) lower values were recorded in the CT (3.69 ± 0.93) compared to the ShT (9.79 ± 0.35) group △ = 6.1 [5.19; 7.01 CI] > MDC(0.73). For muscle tone in the PostTh.5 m period significantly (p < 0.001) higher values were observed in the CT (20.08 ± 0.19 Hz) group compared to the HT (18.61 ± 0.21 Hz), HCT (18.95 ± 0.41 Hz) and ShT (19.28 ± 0.33 Hz) groups (respectively: △ = 1.47 [1.11; 1.83 CI] > MDC(0.845); △ = 1.13 [0.77; 1.49 CI] > MDC(0.845), and △ = 0.8 [0.44; 1.16 CI], < MDC(0.845)). The highest elasticity value in the PostTh.5 m period were observed in the CT (1.14 ± 0.07) group, and it was significantly higher than the values observed in the HT (0.97 ± 0.03, △ = 0.18 [0.11; 0.24 CI] > MDC(0.094), p < 0.001), HCT (0.90 ± 0.04, △ = 0.24 [0.17; 0.31 CI] > MDC(0.094), p < 0.001) and ShT (1.05 ± 0.07, △ = 0.094 [0.03; 0.16 CI] = MDC(0.094), p = 0.003) groups. For Fmax, there were no statistically significant differences between groups at any level of measurement. The results of the influence of the forearm of all three therapy forms on the muscles' biomechanical parameters confirmed their effectiveness. However, the effect size of alternating contrast therapy cannot be confirmed, especially in the PostTh24h period. Statistically significant changes were observed in favor of this therapy in PU and E measurements immediately after therapy (PostTh.5 min). Further research on contrast therapy is necessary.
Collapse
Affiliation(s)
- Robert Trybulski
- Provita Żory Medical Center, Żory, Poland.
- Department of Medical Sciences, The Wojciech Korfanty Upper Silesian Academy, Katowice, Poland.
| | - Adrian Kużdżał
- College of Medical Sciences, Institute of Health Sciences, University of Rzeszów, Rzeszów, Poland
| | - Arkadiusz Stanula
- Laboratory of Sport Performance Analysis, Institute of Sport Sciences, Academy of Physical Education in Katowice, Katowice, Poland
| | - Jarosław Muracki
- Institute of Physical Culture Sciences, Department of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Adam Kawczyński
- Department of Paralympic Sport, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Wacław Kuczmik
- Department and Clinic of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei, Taiwan
- Center of Physical Therapy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Su Y, O’Donnell E, Hoekstra SP, Leicht CA. Facial cooling improves thermal perceptions and maintains the interleukin-6 response during passive heating: A sex comparison. Temperature (Austin) 2024; 12:40-54. [PMID: 40041158 PMCID: PMC11875509 DOI: 10.1080/23328940.2024.2406730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 03/06/2025] Open
Abstract
Passively elevating body temperature can trigger a potentially beneficial acute inflammatory response. However, heat therapy often causes discomfort and negative thermal perceptions, particularly in females who generally have lower heat tolerance than males. This study aimed to evaluate the impact of facial cooling on thermal comfort and interleukin-6 concentration in response to 60 minutes of dry heat exposure, and to investigate sex differences in physiological responses and perceptions. 22 healthy young adults (10 females, 12 males; age: 24.4 ± 3.3 years) completed three trials in randomized order using a dry sauna device: 1) Hyperthermia (71.1 ± 1.9°C; HEAT), 2) Hyperthermia with facial cooling via fans (71.1 ± 3.0°C; FAN), and 3) Normothermia (27.0 ± 0.9°C; CON). Blood samples to determine interleukin-6 (IL-6) plasma concentration were collected before and after exposure; basic affect and thermal comfort, rectal and skin temperature were assessed throughout the intervention. Rectal temperature following HEAT (38.0 ± 0.3°C) and FAN (37.8 ± 0.3°C) did not differ between males and females (p = 0.57). Females had higher forehead skin temperatures than males (p ≤ 0.019). Thermal comfort remained more positive in FAN compared to HEAT (p ≤ 0.002). Females felt more thermal discomfort than males in HEAT (p ≤ 0.03), but not in FAN (p = 0.28). The increase in IL-6 plasma concentration was similar between HEAT and FAN (p = 1.00), and higher than CON (p ≤ 0.02); there was no difference between males and females (p = 0.69). This study showed that facial cooling alleviated the thermal discomfort during heat exposure, particularly benefitted females, and did not impede the acute IL-6 response.
Collapse
Affiliation(s)
- Yunuo Su
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma O’Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Sven. P. Hoekstra
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Christof A. Leicht
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
14
|
Horgan BG, West NP, Tee N, Halson SL, Drinkwater EJ, Chapman DW, Haff GG. Effect of repeated post-resistance exercise cold or hot water immersion on in-season inflammatory responses in academy rugby players: a randomised controlled cross-over design. Eur J Appl Physiol 2024; 124:2615-2628. [PMID: 38613679 PMCID: PMC11365841 DOI: 10.1007/s00421-024-05424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/25/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Uncertainty exists if post-resistance exercise hydrotherapy attenuates chronic inflammatory and hormone responses. The effects of repeated post-resistance exercise water immersion on inflammatory and hormone responses in athletes were investigated. METHODS Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week programme divided into 3 × 4-week blocks of post-resistance exercise water immersion (either, no immersion control [CON]; cold [CWI]; or hot [HWI] water immersion), utilising a randomised cross-over pre-post design. Fasted, morning blood measures were collected prior to commencement of first intervention block, and every fourth week thereafter. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects. RESULTS Repeated CWI (p = 0.025, g = 0.05) and HWI (p < 0.001, g = 0.62) reduced creatine kinase (CK), compared to CON. HWI decreased (p = 0.013, g = 0.59) interleukin (IL)-1ra, compared to CON. HWI increased (p < 0.001-0.026, g = 0.06-0.17) growth factors (PDGF-BB, IGF-1), compared to CON and CWI. CWI increased (p = 0.004, g = 0.46) heat shock protein-72 (HSP-72), compared to HWI. CONCLUSION Post-resistance exercise CWI or HWI resulted in trivial and moderate reductions in CK, respectively, which may be partly due to hydrostatic effects of water immersion. Post-resistance exercise HWI moderately decreased IL-1ra, which may be associated with post-resistance exercise skeletal muscle inflammation influencing chronic resistance exercise adaptive responses. Following post-resistance exercise water immersion, CWI increased HSP-72 suggesting a thermoregulatory response indicating improved adaptive inflammatory responses to temperature changes, while HWI increased growth factors (PDGF-BB, IGF-1) indicating different systematic signalling pathway activation. Our data supports the continued use of post-resistance exercise water immersion recovery strategies of any temperature during in-season competition phases for improved inflammatory adaptive responses in athletes.
Collapse
Affiliation(s)
- Barry G Horgan
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia.
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia.
- Brumbies Rugby, Bruce, ACT, Australia.
| | - Nicholas P West
- School of Medical Science, Menzies Health Institute QLD, Griffith University, Gold coast, Queensland, Australia
| | - Nicolin Tee
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Shona L Halson
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Queensland, Australia
| | - Eric J Drinkwater
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Centre for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dale W Chapman
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Curtin University, Bentley, WA, 6102, Australia
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Directorate of Psychology and Sport, University of Salford, Greater Manchester, Salford, UK
| |
Collapse
|
15
|
Bernhardt JM, Amiri A. Application of the socioecological model to mitigate risks of heat illness. Nurs Outlook 2024; 72:102150. [PMID: 38442464 PMCID: PMC11389656 DOI: 10.1016/j.outlook.2024.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The socio-ecological model (SEM) is a widely used framework that can be applied to heat-related illness (HRI) in the context of multiple influencing factors that exist in society. Leaders and policymakers must intervene to mitigate the deleterious effects of climate change on those at risk. PURPOSE The purpose is to introduce the SEM as a framework to address the complex factors contributing to the impact of excess heat. METHODS Conceived through the SEM, the compounding and cumulative impact of excess heat resulting in HRI is operationalized. DISCUSSION The SEM provides a structure for understanding the complex nature of climate change and HRI and proposed interventions. The prevention of HRI is dependent on actions, related to practice, education, research, and advocacy across multiple levels of the SEM. The SEM has the potential to target HRI at all levels of society to reduce the harm of excess heat.
Collapse
Affiliation(s)
- Jean M Bernhardt
- School of Nursing, MGH Institute of Health Professions, Charlestown, MA.
| | - Azita Amiri
- College of Nursing, The University of Alabama Huntsville, Huntsville, AL
| |
Collapse
|
16
|
Cullen T, Steward CJ, Menzies C, Pugh CJA, Douglas Thake C. The effect of underwater massage during hot water immersion on acute cardiovascular and mood responses. J Therm Biol 2024; 121:103858. [PMID: 38692130 DOI: 10.1016/j.jtherbio.2024.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE There is emerging evidence that demonstrates the health benefits of hot water immersion including improvements to cardiovascular health and reductions in stress and anxiety. Many commercially available hot tubs offer underwater massage systems which purport to enhance many benefits of hot water immersion, however, these claims have yet to be studied. METHODS Twenty participants (4 females) completed three, 30-min sessions of hot-water immersion (beginning at 39 °C) in a crossover randomized design: with air massage (Air Jet), water massage (Hydro Jet) or no massage (Control). Cardiovascular responses comprising; heart rate, blood pressure and superficial femoral artery blood flow and shear rate were measured. State trait anxiety, basic affect, and salivary cortisol were recorded before and after each trial. Data were analysed using a mixed effects model. RESULTS Post immersion, heart rate increased (Δ31bpm, P < 0.001, d = 1.38), mean arterial blood pressure decreased (Δ16 mmHg, P < 0.001, d = -0.66), with no difference between conditions. Blood flow and mean shear rate increased following immersion (P < 0.001, Δ362 ml/min, d = 1.20 and Δ108 s-1, d = 1.00), but these increases were blunted in the Air Jet condition (P < 0.001,Δ171 ml/min, d = 0.43 and Δ52 s-1, d = 0.52). Anxiety and salivary cortisol were reduced (P = 0.003, d = -0.20, P = 0.014, d = -0.11), but did not vary between conditions. Enjoyment did not vary between conditions. CONCLUSION These data demonstrate positive acute responses to hot water immersion on markers of cardiovascular function, anxiety, and stress. There was no additional benefit of water-based massage, while air-based massage blunted some positive vascular responses due to lower heat conservation of the water.
Collapse
Affiliation(s)
- Tom Cullen
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University. Priory St, Coventry CV1 5FB, UK.
| | - Charles J Steward
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University. Priory St, Coventry CV1 5FB, UK
| | - Campbell Menzies
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University. Priory St, Coventry CV1 5FB, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; Centre for Health, Activity and Wellbeing Research, Cardiff Metropolitan University, Cardiff, UK
| | - C Douglas Thake
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University. Priory St, Coventry CV1 5FB, UK
| |
Collapse
|
17
|
Pallubinsky H, Blondin DP, Jay O. A double-edged sword: risks and benefits of heat for human health. Trends Endocrinol Metab 2024; 35:277-279. [PMID: 38593784 DOI: 10.1016/j.tem.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024]
Abstract
Extreme heat events will become more frequent and intense across the globe. In this science and society article we summarize how heat affects our body and discuss the associated health threats, but also the potential health benefits of heat exposure. Moreover, we provide practical suggestions for sustainable and health-oriented strategies to cope with heat.
Collapse
Affiliation(s)
- Hannah Pallubinsky
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211KL Maastricht, The Netherlands; Healthy Living Spaces Laboratory, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Medicine, Division of Neurology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Heat and Health Research Incubator, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Su Y, Hoekstra SP, Leicht CA. Hot water immersion is associated with higher thermal comfort than dry passive heating for a similar rise in rectal temperature and plasma interleukin-6 concentration. Eur J Appl Physiol 2024; 124:1109-1119. [PMID: 37870668 PMCID: PMC10954860 DOI: 10.1007/s00421-023-05336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE To compare the perceptual responses and interleukin-6 (IL-6) concentration following rectal temperature-matched dry heat exposure (DH) and hot water immersion (HWI). METHODS Twelve healthy young adults (BMI 23.5 ± 3.6 kg/m2; age: 25.8 ± 5.7 years) underwent 3 trials in randomised order: DH (air temperature 68.9 °C), HWI (water temperature 37.5 °C), and thermoneutral dry exposure (CON, air temperature 27.3 °C). Blood samples to determine IL-6 plasma concentration were collected; basic affect and thermal comfort, rectal and skin temperature (Tskin) were assessed throughout the intervention. RESULTS Rectal temperature (Trec) did not differ between DH (end temperature 38.0 ± 0.4 °C) and HWI (37.9 ± 0.2 °C, P = 0.16), but was higher compared with CON (37.0 ± 0.3 °C; P ≤ 0.004). Plasma IL-6 concentration was similar after DH (pre to post: 0.8 ± 0.5 to 1.4 ± 1.5 pg·ml-1) and HWI (0.5 ± 0.2 to 0.9 ± 0.6 pg·ml-1; P = 0.46), but higher compared with CON (0.6 ± 0.5 to 0.6 ± 0.4 pg·ml-1; P = 0.01). At the end of the intervention, basic affect and thermal comfort were most unfavourable during DH (Basic affect; DH: - 0.7 ± 2.9, HWI: 0.8 ± 1.9, CON 1.9 ± 1.9, P ≤ 0.004; Thermal comfort; 2.6 ± 0.8, HWI: 1.4 ± 0.9 and CON: 0.2 ± 0.4; P ≤ 0.004). Mean Tskin was highest for DH, followed by HWI, and lowest for CON (DH: 38.5 ± 1.3 °C, HWI: 36.2 ± 0.5 °C, CON: 31.6 ± 0.7 °C, P < 0.001). CONCLUSION The IL-6 response did not differ between DH and HWI when matched for the elevation in Trec. However, thermal comfort was lower during DH compared to HWI, which may be related to the higher Tskin during DH.
Collapse
Affiliation(s)
- Yunuo Su
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Sven P Hoekstra
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
- Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Christof A Leicht
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
19
|
Steward CJ, Hill M, Menzies C, Bailey SJ, Rahman M, Thake CD, Pugh CJA, Cullen T. Post exercise hot water immersion and hot water immersion in isolation enhance vascular, blood marker, and perceptual responses when compared to exercise alone. Scand J Med Sci Sports 2024; 34:e14600. [PMID: 38470997 DOI: 10.1111/sms.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Exercise and passive heating induce some similar vascular hemodynamic, circulating blood marker, and perceptual responses. However, it remains unknown whether post exercise hot water immersion can synergise exercise derived responses and if they differ from hot water immersion alone. This study investigated the acute responses to post moderate-intensity exercise hot water immersion (EX+HWI) when compared to exercise (EX+REST) and hot water immersion (HWI+HWI) alone. Sixteen physically inactive middle-aged adults (nine males and seven females) completed a randomized cross-over counterbalanced design. Each condition consisted of two 30-min bouts separated by 10 min of rest. Cycling was set at a power output equivalent to 50% V̇o2 peak . Water temperature was controlled at 40°C up to the mid sternum with arms not submerged. Venous blood samples and artery ultrasound scans were assessed at 0 (baseline), 30 (immediately post stressor one), 70 (immediately post stressor two), and 100 min (recovery). Additional physiological and perceptual measures were assessed at 10-min intervals. Brachial and superficial femoral artery shear rates were higher after EX+HWI and HWI+HWI when compared with EX+REST (p < 0.001). Plasma nitrite was higher immediately following EX+HWI and HWI+HWI than EX+REST (p < 0.01). Serum interleukin-6 was higher immediately after EX+HWI compared to EX+REST (p = 0.046). Serum cortisol was lower at 30 min in the HWI+HWI condition in contrast to EX+REST (p = 0.026). EX+HWI and HWI+HWI were more enjoyable than EX+REST (p < 0.05). Irrespective of whether hot water immersion proceeded exercise or heating, hot water immersion enhanced vascular and blood marker responses, while also being more enjoyable than exercise alone.
Collapse
Affiliation(s)
- Charles J Steward
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| | - Mathew Hill
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| | - Campbell Menzies
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mushidur Rahman
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - C Douglas Thake
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- Centre for Health, Activity and Wellbeing Research, Cardiff Metropolitan University, Cardiff, UK
| | - Tom Cullen
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
20
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
21
|
Ely BR, Clayton ZS, Minson CT. The effect of hot water immersion on glucose tolerance: Differences between acute and chronic exposure. Temperature (Austin) 2023; 10:402-403. [PMID: 38130662 PMCID: PMC10732686 DOI: 10.1080/23328940.2023.2190727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Brett R. Ely
- Department of Sport & Movement Science, Salem State University, Salem, MA, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
22
|
James TJ, Corbett J, Cummings M, Allard S, Shute JK, Belcher H, Mayes H, Gould AAM, Piccolo DD, Tipton M, Perissiou M, Saynor ZL, Shepherd AI. The effect of repeated hot water immersion on insulin sensitivity, heat shock protein 70, and inflammation in individuals with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 325:E755-E763. [PMID: 37938179 DOI: 10.1152/ajpendo.00222.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
Repeated hot water immersion (HWI) can improve glycemic control in healthy individuals but data are limited for individuals with type 2 diabetes mellitus (T2DM). The present study investigated whether repeated HWI improves insulin sensitivity and inflammatory status and reduces plasma ([extracellular heat shock protein 70]) [eHSP70] and resting metabolic rate (RMR). Fourteen individuals with T2DM participated in this pre- versus postintervention study, with outcome measures assessed in fasted (≥12 h) and postprandial (2-h post-75 g glucose ingestion) states. HWI consisted of 1 h in 40°C water (target rectal temperature 38.5°C-39°C) repeated 8-10 times within a 14-day period. Outcome measures included insulin sensitivity, plasma [glucose], [insulin], [eHSP70], inflammatory markers, RMR, and substrate utilization. The HWI intervention increased fasted insulin sensitivity (QUICKI; P = 0.03) and lowered fasted plasma [insulin] (P = 0.04), but fasting plasma [glucose] (P = 0.83), [eHSP70] (P = 0.08), [IL-6] (P = 0.55), [IL-10] (P = 0.59), postprandial insulin sensitivity (P = 0.19), plasma [glucose] (P = 0.40), and [insulin] (P = 0.47) were not different. RMR was reduced by 6.63% (P < 0.05), although carbohydrate (P = 0.43) and fat oxidation (P = 0.99) rates were unchanged. This study shows that 8-10 HWIs within a 14-day period improved fasting insulin sensitivity and plasma [insulin] in individuals with T2DM, but not when glucose tolerance is challenged. HWI also improves metabolic efficiency (i.e., reduced RMR). Together these results could be clinically important and have implications for metabolic health outcomes and well-being in individuals with T2DM.NEW & NOTEWORTHY This is the first study to investigate repeated HWI to raise deep body temperature on insulin sensitivity, inflammation, eHSP70, and substrate utilization in individuals with T2DM. The principal novel findings were improvements in fasting insulin sensitivity and fasting plasma [insulin] but no change in fasting plasma [glucose], postprandial insulin sensitivity, plasma [insulin], or [glucose]. There was also no change in eHSP70, inflammatory status, or substrate utilization but there were reductions in RMR and oxygen consumption.
Collapse
Affiliation(s)
- Thomas J James
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jo Corbett
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Sharon Allard
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Janis K Shute
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Harvey Belcher
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Harry Mayes
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Alex A M Gould
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Daniel D Piccolo
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Michael Tipton
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Maria Perissiou
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Zoe L Saynor
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony I Shepherd
- Faculty of Science and Health, Physical Activity, Health and Rehabilitation Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Science and Health, Extreme Environments Theme, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
23
|
Esmaeilzadeh A, Mohammadi V, Elahi R, Rezakhani N. The role of heat shock proteins (HSPs) in type 2 diabetes mellitus pathophysiology. J Diabetes Complications 2023; 37:108564. [PMID: 37852076 DOI: 10.1016/j.jdiacomp.2023.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 10/20/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by sustained hyperglycemia caused by impaired insulin signaling and secretion. Metabolic stress, caused by an inappropriate diet, is one of the major hallmarks provoking inflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Heat shock proteins (HSPs) are a group of highly conserved proteins that have a crucial role in chaperoning damaged and misfolded proteins to avoid disruption of cellular homeostasis under stress conditions. To do this, HSPs interact with diverse intra-and extracellular pathways among which are the insulin signaling, insulin secretion, and apoptosis pathways. Therefore, HSP dysfunction, e.g. HSP70, may lead to disruption of the pathways responsible for insulin secretion and uptake. Consistently, the altered expression of other HSPs and genetic polymorphisms in HSP-producing genes in diabetic subjects has made HSPs hot research in T2DM. This paper provides a comprehensive overview of the role of different HSPs in T2DM pathogenesis, affected cellular pathways, and the potential therapeutic strategies targeting HSPs in T2DM.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Rezakhani
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
24
|
Roxburgh BH, Campbell HA, Cotter JD, Reymann U, Williams MJA, Gwynne‐Jones D, Thomas KN. Acute and adaptive cardiovascular and metabolic effects of passive heat therapy or high-intensity interval training in patients with severe lower-limb osteoarthritis. Physiol Rep 2023; 11:e15699. [PMID: 37300374 PMCID: PMC10257080 DOI: 10.14814/phy2.15699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise is painful and difficult to perform for patients with severe lower-limb osteoarthritis; consequently, reduced physical activity contributes to increased cardiometabolic disease risk. The aim of this study was to characterize the acute and adaptive cardiovascular and metabolic effects of two low or no impact therapies in patients with severe lower-limb osteoarthritis: passive heat therapy (Heat) and high-intensity interval training (HIIT) utilizing primarily the unaffected limbs, compared to a control intervention of home-based exercise (Home). Participants completed up to 12 weeks of either Heat (20-30 min immersed in 40°C water followed by ~15-min light resistance exercise), HIIT (6-8 × 60-s intervals on a cross-trainer or arm ergometer at ~90-100% peakV ̇ $$ \dot{V} $$ O2 ) or Home (~15-min light resistance exercise); all 3 sessions/week. Reductions in systolic (12 & 10 mm Hg), diastolic (7 & 4 mm Hg), and mean arterial (8 & 6 mm Hg) blood pressure (BP) were observed following one bout of Heat or HIIT exposure, lasting for the duration of the 20-min monitoring period. Across the interventions (i.e., 12 weeks), resting systolic BP and diastolic BP decreased with Heat (-9 & -4 mm Hg; p < 0.001) and HIIT (-7 & -3 mm Hg; p ≤ 0.011), but not Home (0 & 0 mm Hg; p ≥ 0.785). The systolic and diastolic BP responses to an acute exposure of Heat or HIIT in the first intervention session were moderately correlated with adaptive responses across the intervention (r ≥ 0.54, p ≤ 0.005). Neither intervention improved indices of glycemic control (p = 0.310). In summary, both Heat and HIIT induced potent immediate and adaptive hypotensive effects, and the acute response was moderately predictive of the long-term response.
Collapse
Affiliation(s)
- Brendon H. Roxburgh
- Department of Surgical SciencesDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
- School of Physical EducationSport and Exercise SciencesUniversity of OtagoDunedinNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - Holly A. Campbell
- Department of Surgical SciencesDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - James D. Cotter
- School of Physical EducationSport and Exercise SciencesUniversity of OtagoDunedinNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - Ulla Reymann
- Department of Surgical SciencesDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Michael J. A. Williams
- HeartOtagoUniversity of OtagoDunedinNew Zealand
- Department of MedicineDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - David Gwynne‐Jones
- Department of Surgical SciencesDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
- Department of Orthopaedic SurgeryDunedin HospitalSouthern District Health BoardDunedinNew Zealand
| | - Kate N. Thomas
- Department of Surgical SciencesDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
25
|
Steward CJ, Menzies C, Clarke ND, Harwood AE, Hill M, Pugh CJA, Thake CD, Cullen T. The effect of age and mitigation strategies during hot water immersion on orthostatic intolerance and thermal stress. Exp Physiol 2023; 108:554-567. [PMID: 36999598 PMCID: PMC10103862 DOI: 10.1113/ep090993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to characterize adverse responses to whole-body hot water immersion and to investigate practical strategies to mitigate these effects. What is the main finding and its importance? Whole-body hot water immersion induced transient orthostatic hypotension and impaired postural control, which recovered to baseline within 10 min. Hot water immersion was well tolerated by middle-aged adults, but younger adults suffered from a greater frequency and severity of dizziness. Cooling the face with a fan or not immersing the arms can mitigate some of these adverse responses in younger adults. ABSTRACT Hot water immersion improves cardiovascular health and sporting performance, yet its adverse responses are understudied. Thirteen young and 17 middle-aged adults (n = 30) were exposed to 2 × 30 min bouts of whole-body 39°C water immersion. Young adults also completed cooling mitigation strategies in a randomized cross-over design. Orthostatic intolerance and selected physiological, perceptual, postural and cognitive responses were assessed. Orthostatic hypotension occurred in 94% of middle-aged adults and 77% of young adults. Young adults exhibited greater dizziness upon standing (young subjects, 3 out of 10 arbitrary units (AU) vs. middle-aged subjects, 2 out of 10 AU), with four terminating the protocol early owing to dizziness or discomfort. Despite middle-aged adults being largely asymptomatic, both age groups had transient impairments in postural sway after immersion (P < 0.05), but no change in cognitive function (P = 0.58). Middle-aged adults reported lower thermal sensation, higher thermal comfort, and higher basic affect than young adults (all P < 0.01). Cooling mitigation trials had 100% completion rates, with improvements in sit-to-stand dizziness (P < 0.01, arms in, 3 out of 10 AU vs. arms out, 2 out of 10 AU vs. fan, 4 out 10 AU), lower thermal sensation (P = 0.04), higher thermal comfort (P < 0.01) and higher basic affect (P = 0.02). Middle-aged adults were predominantly asymptomatic, and cooling strategies prevented severe dizziness and thermal intolerance in younger adults.
Collapse
Affiliation(s)
- Charles J. Steward
- Centre for Sport Exercise and Life SciencesCoventry UniversityCoventryUK
| | - Campbell Menzies
- Centre for Sport Exercise and Life SciencesCoventry UniversityCoventryUK
| | - Neil D. Clarke
- Centre for Sport Exercise and Life SciencesCoventry UniversityCoventryUK
| | - Amy E. Harwood
- Centre for Sport Exercise and Life SciencesCoventry UniversityCoventryUK
| | - Mathew Hill
- Centre for Sport Exercise and Life SciencesCoventry UniversityCoventryUK
| | | | - C. Douglas Thake
- Centre for Sport Exercise and Life SciencesCoventry UniversityCoventryUK
| | - Tom Cullen
- Centre for Sport Exercise and Life SciencesCoventry UniversityCoventryUK
| |
Collapse
|
26
|
Ravanelli N, Barry H, Bain AR, Vachon L, Martel C, Gagnon D. Impact of passive heat stress and passive heat acclimation on circulating extracellular vesicles: An exploratory analysis. Exp Physiol 2023; 108:344-352. [PMID: 36621798 PMCID: PMC10103847 DOI: 10.1113/ep090823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? How does passive heat stress and subsequent heat acclimation affect the circulating concentration of extracellular vesicles? What is the main finding and its importance? Passive heat stress increased the circulating concentration of total and platelet extracellular vesicles. Seven days of hot water immersion did not modify the change in circulating concentrations of extracellular vesicles during passive heat stress. ABSTRACT This retrospective exploratory analysis aimed to improve our understanding of the effect of passive heat stress and subsequent heat acclimation on the circulating concentration of extracellular vesicles (EVs). Healthy young adults (four females and six males, 25 ± 4 years of age, 1.72 ± 0.08 m in height and weighing 71.6 ± 9.0 kg) were heated with a water-perfused suit before and after seven consecutive days of hot water immersion. Pre-acclimation, participants were heated until oesophageal temperature increased to ∼1.4°C above baseline values. Post-acclimation, participants were heated until oesophageal temperature reached the same absolute value as the pre-acclimation visit (∼38.2°C). Venous blood samples were obtained before and at the end of passive heating to quantify plasma concentrations of EVs from all cell types (CSFE+ ), all cell types except erythrocytes (CSFE+ MHCI+ ), platelets (CSFE+ MHCI+ CD41+ ), endothelial cells (CSFE+ MHCI+ CD62e+ ), red blood cells (CSFE+ CD235a+ ) and leucocytes (CSFE+ MHCI+ CD45+ ) via flow cytometry. Passive heat stress increased the concentration of CFSE+ EVs (46,150,000/ml [3,620,784, 88,679,216], P = 0.036), CFSE+ MHCI+ EVs (28,787,500/ml [9,851,127, 47,723,873], P = 0.021) and CSFE+ MHCI+ CD41+ EVs (28,343,500/ml [9,637,432, 47,049,568], P = 0.008). The concentration of CSFE+ MHCI+ CD62e+ EVs (94,230/ml [-55,099, 243,559], P = 0.187), CSFE+ CD235a+ EVs (-1,414/ml [-15,709, 12,882], P = 0.403) or CSFE+ MHCI+ CD45+ EVs (-192,915/ml [-690,166, 304,336], P = 0.828) did not differ during heat stress. The change in circulating EVs during passive heat stress did not differ after heat acclimation (thermal state × acclimation interactions, all P ≥ 0.180). These results demonstrate that passive heat stress increases the circulating concentration of total and platelet EVs and that passive heat acclimation does not alter this increase.
Collapse
Affiliation(s)
| | - Hadiatou Barry
- Montreal Heart InstituteMontrealQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontrealQuebecCanada
| | - Anthony R. Bain
- Department of KinesiologyUniversity of WindsorWindsorOntarioCanada
| | - Laurent Vachon
- Montreal Heart InstituteMontrealQuebecCanada
- Department of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Catherine Martel
- Montreal Heart InstituteMontrealQuebecCanada
- Department of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontrealQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontrealQuebecCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
27
|
Pilch W, Szarek M, Olga CL, Anna P, Żychowska M, Ewa SK, Andraščíková Š, Pałka T. The effects of a single and a series of Finnish sauna sessions on the immune response and HSP-70 levels in trained and untrained men. Int J Hyperthermia 2023; 40:2179672. [PMID: 36813265 DOI: 10.1080/02656736.2023.2179672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The aim of the study was to investigate the effect of a Finnish sauna on the immune status parameters. The hypothesis was that hyperthermia would improve immune system's functioning by changing the proportion of lymphocyte subpopulations and would activate heat shock proteins. We assumed that the responses of trained and untrained subjects would be different. MATERIAL AND METHODS Healthy men (20-25 years old) were divided into groups: the trained (T; n = 10), and the untrained group (U; n = 10). All participants were subjected to 10 baths (each one consisted of: 3 × 15-minute exposure with cooled down for 2 min. Body composition, anthropometric measurements, VO2 peak were measured before 1st sauna bath. Blood was collected before the 1st and 10th sauna bath, and 10 min after their completion to asses an acute and a chronic effect. Body mass, rectal temperature and heart rate (HR) were assessed in the same time points. The serum levels of cortisol, Il-6, HSP70 were measured with use of ELISA method, IgA, IgG and IgM by turbidimetry. White blood cells (WBC), leukocyte populations counts: neutrophils, lymphocytes, eosinophils, monocytes, and basophils were determined with use of flow cytometry as well as T-cell subpopulations. RESULTS No differences were found in the increase in rectal temperature, cortisol and immunoglobulins between groups. In response to the 1st sauna bath, a greater increase in HR was observed in the U group. After the last one, the HR value was lower in the T group. The impact of sauna baths on WBC, CD56+, CD3+, CD8+, IgA, IgG and IgM was different in trained and untrained subjects' responses. A positive correlation between the increase in cortisol concentrations and increase in internal temperatures after the 1st sauna was found in the T (r = 0.72) and U group (r = 0.77), between the increase in IL-6 and cortisol concentrations in the T group after the 1st treatment (r = 0.64), between the increase in IL-10 concentration and internal temperature (r = 0.75) and between the increase in IL-6 and IL-10 (r = 0.69) concentrations, also. CONCLUSIONS Sauna bathing can be a way to improve the immune response, but only when it is undertaken as a series of treatments.
Collapse
Affiliation(s)
- Wanda Pilch
- Institute for Basics Sciences, University of Physical Education, Krakow, Poland
| | - Marta Szarek
- Hospital of the Ministry of Affairs Interior and Administration, Diagnostyka Limited Liability Company, Krakow, Poland
| | | | - Piotrowska Anna
- Institute for Basics Sciences, University of Physical Education, Krakow, Poland
| | | | - Sadowska-Krepa Ewa
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | | | - Tomasz Pałka
- Institute for Biomedical Sciences, University of Physical Education, Krakow, Poland
| |
Collapse
|
28
|
Cocksedge SP, Causer AJ, Winyard PG, Jones AM, Bailey SJ. Oral Temperature and pH Influence Dietary Nitrate Metabolism in Healthy Adults. Nutrients 2023; 15:nu15030784. [PMID: 36771490 PMCID: PMC9919366 DOI: 10.3390/nu15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
This study tested the hypothesis that the increases in salivary and plasma [NO2-] after dietary NO3- supplementation would be greater when oral temperature and pH were independently elevated, and increased further when oral temperature and pH were elevated concurrently. Seven healthy males (mean ± SD, age 23 ± 4 years) ingested 70 mL of beetroot juice concentrate (BR, which provided ~6.2 mmol NO3-) during six separate laboratory visits. In a randomised crossover experimental design, salivary and plasma [NO3-] and [NO2-] were assessed at a neutral oral pH with a low (TLo-pHNorm), intermediate (TMid-pHNorm), and high (THi-pHNorm) oral temperature, and when the oral pH was increased at a low (TLo-pHHi), intermediate (TMid-pHHi), and high (THi-pHHi) oral temperature. Compared with the TMid-pHNorm condition (976 ± 388 µM), the mean salivary [NO2-] 1-3 h post BR ingestion was higher in the TMid-pHHi (1855 ± 423 µM), THi-pHNorm (1371 ± 653 µM), THi-pHHi (1792 ± 741 µM), TLo-pHNorm (1495 ± 502 µM), and TLo-pHHi (2013 ± 662 µM) conditions, with salivary [NO2-] also higher at a given oral temperature when the oral pH was increased (p < 0.05). Plasma [NO2-] was higher 3 h post BR ingestion in the TMid-pHHi, THi-pHHi, and TLo-pHHi conditions, but not the TLo-pHNorm and THi-pHNorm conditions, compared with TMid-pHNorm (p < 0.05). Therefore, despite ingesting the same NO3- dose, the increases in salivary [NO2-] varied depending on the temperature and pH of the oral cavity, while the plasma [NO2-] increased independently of oral temperature, but to a greater extent at a higher oral pH.
Collapse
Affiliation(s)
- Stuart P. Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Adam J. Causer
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Paul G. Winyard
- Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence:
| |
Collapse
|
29
|
Gibson OR, Astin R, Puthucheary Z, Yadav S, Preston S, Gavins FNE, González-Alonso J. Skeletal muscle angiogenic, regulatory, and heat shock protein responses to prolonged passive hyperthermia of the human lower limb. Am J Physiol Regul Integr Comp Physiol 2023; 324:R1-R14. [PMID: 36409025 DOI: 10.1152/ajpregu.00320.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Passive hyperthermia induces a range of physiological responses including augmenting skeletal muscle mRNA expression. This experiment aimed to examine gene and protein responses to prolonged passive leg hyperthermia. Seven young participants underwent 3 h of resting unilateral leg heating (HEAT) followed by a further 3 h of rest, with the contralateral leg serving as an unheated control (CONT). Muscle biopsies were taken at baseline (0 h), and at 1.5, 3, 4, and 6 h in HEAT and 0 and 6 h in CONT to assess changes in selected mRNA expression via qRT-PCR, and HSP72 and VEGFα concentration via ELISA. Muscle temperature (Tm) increased in HEAT plateauing from 1.5 to 3 h (+3.5 ± 1.5°C from 34.2 ± 1.2°C baseline value; P < 0.001), returning to baseline at 6 h. No change occurred in CONT. Endothelial nitric oxide synthase (eNOS), Forkhead box O1 (FOXO-1), Hsp72, and VEGFα mRNA increased in HEAT (P < 0.05); however, post hoc analysis identified that only Hsp72 mRNA statistically increased (at 4 h vs. baseline). When peak change during HEAT was calculated angiopoietin 2 (ANGPT-2) decreased (-0.4 ± 0.2-fold), and C-C motif chemokine ligand 2 (CCL2) (+2.9 ± 1.6-fold), FOXO-1 (+6.2 ± 4.4-fold), Hsp27 (+2.9 ± 1.7-fold), Hsp72 (+8.5 ± 3.5-fold), Hsp90α (+4.6 ± 3.7-fold), and VEGFα (+5.9 ± 3.1-fold) increased from baseline (all P < 0.05). At 6 h Tm were not different between limbs (P = 0.582; CONT = 32.5 ± 1.6°C, HEAT = 34.3 ± 1.2°C), and only ANGPT-2 (P = 0.031; -1.3 ± 1.4-fold) and VEGFα (P = 0.030; 1.1 ± 1.2-fold) differed between HEAT and CONT. No change in VEGFα or HSP72 protein concentration were observed over time; however, peak change in VEGFα did increase (P < 0.05) in HEAT (+140 ± 184 pg·mL-1) versus CONT (+7 ± 86 pg·mL-1). Passive hyperthermia transiently augmented ANGPT-2, CCL2, eNOS, FOXO-1, Hsp27, Hsp72, Hsp90α and VEGFα mRNA, and VEGFα protein.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Centre for Physical Activity in Health and Disease, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rónan Astin
- Department of Medicine, Centre for Human Health and Performance, University College London, London, United Kingdom
| | - Zudin Puthucheary
- Adult Critical Care Unit, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Shreya Yadav
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Sophie Preston
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Felicity N E Gavins
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
30
|
Chaseling GK, Morris NB, Ravanelli N. Extreme Heat and Adverse Cardiovascular Outcomes in Australia and New Zealand: What Do We Know? Heart Lung Circ 2023; 32:43-51. [PMID: 36424263 DOI: 10.1016/j.hlc.2022.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
Extreme heat events are a leading natural hazard risk to human health. Under all future climate change models, extreme heat events will continue to increase in frequency, duration, and intensity. Evidence from previous extreme heat events across the globe demonstrates that adverse cardiovascular events are the leading cause of morbidity and mortality, particularly amongst the elderly and those with pre-existing cardiovascular disease. However, less is understood about the adverse effects of extreme heat amongst specific cardiovascular diseases (i.e., heart failure, dysrhythmias) and demographics (sex, ethnicity, age) within Australia and New Zealand. Furthermore, although Australia has implemented regional and state heat warning systems, most personal heat-health protective advice available in public health policy documents is either insufficient, not grounded in scientific evidence, and/or does not consider clinical factors such as age or co-morbidities. Dissemination of evidence-based recommendations and enhancing community resilience to extreme heat disasters within Australia and New Zealand should be an area of critical focus to reduce the burden and negative health effects associated with extreme heat. This narrative review will focus on five key areas in relation to extreme heat events within Australia and New Zealand: 1) the potential physiological mechanisms that cause adverse cardiovascular outcomes during extreme heat events; 2) how big is the problem within Australia and New Zealand?; 3) what the heat-health response plans are; 4) research knowledge and translation; and, 5) knowledge gaps and areas for future research.
Collapse
Affiliation(s)
- Georgia K Chaseling
- Engagement and Co-design Research Hub, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; SOLVE-CHD NHMRC Synergy Grant, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Nathan B Morris
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, USA
| | | |
Collapse
|
31
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
32
|
Pawłowska M, Mila-Kierzenkowska C, Boraczyński T, Boraczyński M, Szewczyk-Golec K, Sutkowy P, Wesołowski R, Budek M, Woźniak A. The Influence of Ambient Temperature Changes on the Indicators of Inflammation and Oxidative Damage in Blood after Submaximal Exercise. Antioxidants (Basel) 2022; 11:2445. [PMID: 36552653 PMCID: PMC9774713 DOI: 10.3390/antiox11122445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Physical activity has a positive effect on human health and well-being, but intense exercise can cause adverse changes in the organism, leading to the development of oxidative stress and inflammation. The aim of the study was to determine the effect of short-term cold water immersion (CWI) and a sauna bath as methods of postexercise regeneration on the indicators of inflammation and oxidative damage in the blood of healthy recreational athletes. Forty-five male volunteers divided into two groups: 'winter swimmers' who regularly use winter baths (n = 22, average age 43.2 ± 5.9 years) and 'novices' who had not used winter baths regularly before (n = 23, mean age 25 ± 4.8 years) participated in the study. The research was divided into two experiments, differing in the method of postexercise regeneration used, CWI (Experiment I) and a sauna bath (Experiment II). During Experiment I, the volunteers were subjected to a 30-min aerobic exercise, combined with a 20-min rest at room temperature (RT-REST) or a 20-min rest at room temperature with an initial 3-min 8 °C water bath (CWI-REST). During the Experiment II, the volunteers were subjected to the same aerobic exercise, followed by a RT-REST or a sauna bath (SAUNA-REST). The blood samples were taken before physical exercise (control), immediately after exercise and 20 min after completion of regeneration. The concentrations of selected indicators of inflammation, including interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 8 (IL-8), interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and tumor necrosis factor α (TNF-α), as well as the activity of indicators of oxidative damage: α1-antitrypsin (AAT) and lysosomal enzymes, including arylsulfatase A (ASA), acid phosphatase (AcP) and cathepsin D (CTS D), were determined. CWI seems to be a more effective post-exercise regeneration method to reduce the inflammatory response compared to a sauna bath. A single sauna bath is associated with the risk of proteolytic tissue damage, but disturbances of cellular homeostasis are less pronounced in people who regularly use cold water baths than in those who are not adapted to thermal stress.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Tomasz Boraczyński
- Department of Health Sciences, Olsztyn University College, 10-283 Olsztyn, Poland
| | - Michał Boraczyński
- Department of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Roland Wesołowski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Marlena Budek
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
33
|
Horgan BG, West NP, Tee N, Drinkwater EJ, Halson SL, Vider J, Fonda CJ, Haff GG, Chapman DW. Acute Inflammatory, Anthropometric, and Perceptual (Muscle Soreness) Effects of Postresistance Exercise Water Immersion in Junior International and Subelite Male Volleyball Athletes. J Strength Cond Res 2022; 36:3473-3484. [PMID: 34537801 DOI: 10.1519/jsc.0000000000004122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Horgan, BG, West, NP, Tee, N, Drinkwater, EJ, Halson, SL, Vider, J, Fonda, CJ, Haff, GG, and Chapman, DW. Acute inflammatory, anthropometric, and perceptual (muscle soreness) effects of postresistance exercise water immersion in junior international and subelite male volleyball athletes. J Strength Cond Res 36(12): 3473-3484, 2022-Athletes use water immersion strategies to recover from training and competition. This study investigated the acute effects of postexercise water immersion after resistance exercise. Eighteen elite and subelite male volleyball athletes participated in an intervention using a randomized cross-over design. On separate occasions after resistance exercise, subjects completed 1 of 4 15-minute interventions: control (CON), cold water immersion (CWI), contrast water therapy (CWT), or hot water immersion (HWI). Significance was accepted at p ≤ 0.05. Resistance exercise induced significant temporal changes (time effect) for inflammatory, anthropometric, perceptual, and performance measures. Serum creatine kinase was reduced ( g = 0.02-0.30) after CWI ( p = 0.007), CWT ( p = 0.006), or HWI ( p < 0.001) vs. CON, whereas it increased significantly ( g = 0.50) after CWI vs. HWI. Contrast water therapy resulted in significantly higher ( g = 0.56) interleukin-6 concentrations vs. HWI. Thigh girth increased ( g = 0.06-0.16) after CWI vs. CON ( p = 0.013) and HWI ( p < 0.001) and between CWT vs. HWI ( p = 0.050). Similarly, calf girth increased ( g = 0.01-0.12) after CWI vs. CON ( p = 0.039) and CWT ( p = 0.018), and HWI vs. CON ( p = 0.041) and CWT ( p = 0.018). Subject belief in a postexercise intervention strategy was associated with HSP72 ("believer">"nonbeliever," p = 0.026), muscle soreness ("believer">"nonbeliever," p = 0.002), and interleukin-4 ("nonbeliever">"believer," p = 0.002). There were no significant treatment × time (interaction effect) pairwise comparisons. Choice of postexercise water immersion strategy (i.e., cold, contrast, or hot) combined with a belief in the efficacy of that strategy to enhance recovery or performance improves biological and perceptual markers of muscle damage and soreness. On same or subsequent days where resistance exercise bouts are performed, practitioners should consider athlete beliefs when prescribing postexercise water immersion, to reduce muscle soreness.
Collapse
Affiliation(s)
- Barry G Horgan
- Australian Institute of Sport, Bruce, ACT, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Brumbies Rugby, Bruce, ACT, Australia
| | - Nicholas P West
- School of Medical Science and Menzies Health Institute QLD, Griffith University, Queensland, Australia
| | - Nicolin Tee
- Australian Institute of Sport, Bruce, ACT, Australia
| | - Eric J Drinkwater
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Center for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Shona L Halson
- Australian Institute of Sport, Bruce, ACT, Australia.,Australian Catholic University, McAuley at Banyo, Brisbane, Queensland, Australia
| | - Jelena Vider
- School of Medical Science and Menzies Health Institute QLD, Griffith University, Queensland, Australia
| | | | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Directorate of Psychology and Sport, University of Salford, Salford, Greater Manchester, United Kingdom; and
| | - Dale W Chapman
- Australian Institute of Sport, Bruce, ACT, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,New South Wales Institute of Sport, Sydney Olympic Park, New South Wales, Australia
| |
Collapse
|
34
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022; 122:2493-2514. [PMID: 36149520 PMCID: PMC9613570 DOI: 10.1007/s00421-022-05041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
35
|
Seibert P, Anklam CFV, Costa-Beber LC, Sulzbacher LM, Sulzbacher MM, Sangiovo AMB, dos Santos FK, Goettems-Fiorin PB, Heck TG, Frizzo MN, Ludwig MS. Increased eHSP70-to-iHSP70 ratio in prediabetic and diabetic postmenopausal women: a biomarker of cardiometabolic risk. Cell Stress Chaperones 2022; 27:523-534. [PMID: 35767179 PMCID: PMC9485348 DOI: 10.1007/s12192-022-01288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Decreased estrogen levels in menopause are associated with anthropometric, metabolic, and inflammatory impairments, predisposing women to cardiometabolic risk factors such as diabetes. Menopause and type two diabetes (DM2) are marked by altered heat shock response (HSR), shown by decreased expression of the 70-kDa heat shock protein in the intracellular milieu (iHSP70). While iHSP70 plays an anti-inflammatory role, extracellular HSP70 (eHSP70) may mediate pro-inflammatory pathways and has been associated with insulin resistance in DM2. Considering the roles of these proteins according to localization, the eHSP70-to-iHSP70 ratio (H-index) has been proposed as a biomarker for HSR. We, therefore, evaluated whether this biomarker is associated with glycemic and inflammatory status in postmenopausal women. In this transversal study, 36 postmenopausal women were grouped according to fasting glycemia status as either the control group (normoglycemic, ≤ 99 mg/dL) or DM2 (prediabetic and diabetic, glycemia ≥ 100 mg/dL). DM2 group showed higher triglyceride/glucose (TyG) index and plasma atherogenic index (PAI), both of which are indicators of cardiometabolic risk. In addition, we found that the eHSP70-to-iHSP70 ratio (plasma/peripheral blood mononuclear cells-PBMC ratio) was higher in the DM2 group, compared with the control group. Furthermore, blood leukocyte and glycemia levels were positively correlated with the eHSP70-to-iHSP70 ratio in women that presented H-index values above 1.0 (a.u.). Taken together, our results highlight the eHSP70-to-iHSP70 ratio as a biomarker of altered HSR in DM2 postmenopausal women.
Collapse
Affiliation(s)
- Priscila Seibert
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Carolain Felipin Vincensi Anklam
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Maicon Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Angela Maria Blanke Sangiovo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Fernanda Knopp dos Santos
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Mathematical and Computational Modeling (PPGMMC-UNIJUI), Ijuí, RS Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| |
Collapse
|
36
|
Sebők J, Édel Z, Dembrovszky F, Farkas N, Török Z, Balogh G, Péter M, Papp I, Balogi Z, Nusser N, Péter I, Hooper P, Geiger P, Erőss B, Wittmann I, Váncsa S, Vigh L, Hegyi P. Effect of HEAT therapy in patiEnts with type 2 Diabetes mellitus (HEATED): protocol for a randomised controlled trial. BMJ Open 2022; 12:e062122. [PMID: 35820741 PMCID: PMC9277369 DOI: 10.1136/bmjopen-2022-062122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION The burden of type 2 diabetes mellitus (T2DM) is increasing worldwide. Heat therapy has been found effective in improving glycaemic control. However, to date, there is a lack of randomised controlled studies investigating the efficacy of heat therapy in T2DM. Therefore, we aim to investigate whether heat therapy with natural thermal mineral water can improve glycaemic control in patients with T2DM. METHODS AND ANALYSIS The HEAT therapy in patiEnts with type 2 Diabetes mellitus (HEATED) Study is a single-centre, two-arm randomised controlled trial being conducted at Harkány Thermal Rehabilitation Centre in Hungary. Patients with T2DM will be randomly assigned to group A (bath sessions in 38°C natural thermal mineral water) and group B (baths in thermoneutral water (30°C-32°C)). Both groups will complete a maximum of 5 weekly visits, averaging 50-60 visits over the 12-week study. Each session will last 30 min, with a physical check-up before the bath. At baseline, patients' T2DM status will be investigated thoroughly. Possible microvascular and macrovascular complications of T2DM will be assessed with physical and laboratory examinations. The short form-36 questionnaire will assess the quality of life. Patients will also be evaluated at weeks 4, 8 and 12. The primary endpoint will be the change of glycated haemoglobin from baseline to week 12. An estimated 65 patients will be enrolled per group, with a sample size re-estimation at the enrolment of 50% of the calculated sample size. ETHICS AND DISSEMINATION The study has been approved by the Scientific and Research Ethics Committee of the Hungarian Medical Research Council (818-2/2022/EÜIG). Written informed consent is required from all participants. We will disseminate our results to the medical community and will publish our results in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT05237219.
Collapse
Affiliation(s)
- Judit Sebők
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Zsófia Édel
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Institute of Bioanalysis, University of Pecs Medical School, Pécs, Hungary
| | | | | | | | | | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pécs, Hungary
| | - Nóra Nusser
- Harkány Thermal Rehabilitation Centre, Harkány, Hungary
| | - Iván Péter
- Harkány Thermal Rehabilitation Centre, Harkány, Hungary
| | - Philip Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paige Geiger
- Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - István Wittmann
- 2nd Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, University of Pecs Medical School, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
37
|
Liddle L, Monaghan C, Burleigh MC, Baczynska KA, Muggeridge DJ, Easton C. Reduced nitric oxide synthesis in winter: A potential contributing factor to increased cardiovascular risk. Nitric Oxide 2022; 127:1-9. [PMID: 35792235 DOI: 10.1016/j.niox.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Nitric oxide is a key signalling molecule that elicits a range of biological functions to maintain vascular homeostasis. A reduced availability of nitric oxide is implicated in the progression of cardiovascular diseases and increases the risk of pathogenic events. AIMS To compare the concentration of nitric oxide metabolites in healthy adults between winter and summer months. DESIGN An observational study of healthy adults (age 32 ± 9 years) living in central Scotland. METHODS Thirty-four healthy adults (13 females) were monitored for 7 days in summer and winter to record sunlight exposure (ultraviolet-A (UV-A) radiation), diet, and physical activity. At the end of each phase, blood pressure was measured, and samples of blood and saliva collected. The samples were analysed to determine the concentrations of plasma and salivary nitrate and nitrite and serum 25-hydroxyvitamin D (25(OH)D). RESULTS The participants maintained similar diets in each measurement phase but were exposed to more UV-A radiation (550%) and undertook more moderate-vigorous physical activity (23%) in the summer than in winter. Plasma nitrite (46%) and serum 25(OH)D (59%) were higher and blood pressure was lower in the summer compared to winter months. Plasma nitrite concentration was negatively associated with systolic, diastolic, and mean arterial blood pressure. CONCLUSIONS Plasma nitrite, an established marker of nitric oxide synthesis, is higher in healthy adults during the summer than in winter. This may be mediated by a greater exposure to UV-A which stimulates the release of nitric oxide metabolites from skin stores. While it is possible that seasonal variation in nitric oxide availability may contribute to an increased blood pressure in the winter months, the overall impact on cardiovascular health remains to be determined.
Collapse
Affiliation(s)
- Luke Liddle
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK; School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Christopher Monaghan
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK
| | - Mia C Burleigh
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK
| | - Katarzyna A Baczynska
- Laser and Optical Radiation Dosimetry Group, Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, UK
| | | | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK.
| |
Collapse
|
38
|
Awaya T, Moroi M, Enomoto Y, Kunimasa T, Nakamura M. What Should We Do after the COVID-19 Vaccination? Vaccine-Associated Diseases and Precautionary Measures against Adverse Reactions. Vaccines (Basel) 2022; 10:vaccines10060866. [PMID: 35746474 PMCID: PMC9228524 DOI: 10.3390/vaccines10060866] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
COVID-19 vaccines have been used to counteract the global COVID-19 pandemic. While these are effective, adverse reactions have been reported, such as injection-site pain, muscle ache, fever, palpitation, and chest discomfort. The release of inflammatory cytokines, such as interleukin (IL)-6 and IL-1β, is a potential mechanism for post-vaccine side-effects. Chest discomfort after the vaccination, including myocarditis and acute coronary syndrome, is a particularly serious adverse reaction. It is important to be familiar with the differential diagnoses of chest discomfort and organ-specific diseases associated with COVID-19 vaccines as the preparation for booster shots and vaccinations among children aged 5–11 years begins. High-intensity exercise, alcohol, tobacco smoking, and baths promote inflammatory cytokines, such as IL-6, which may exacerbate the adverse reactions after vaccination. Japanese data show that deaths during baths are the most common for several days after mRNA vaccination. Additionally, alcohol and tobacco smoking were identified as predictive factors of lower antibody titers after vaccination. In this review, we aimed to provide a few recommendations to prevent vaccine-associated disease.
Collapse
|
39
|
Pettit-Mee RJ, Power G, Cabral-Amador FJ, Ramirez-Perez FI, Nogueira Soares R, Sharma N, Liu Y, Christou DD, Kanaley JA, Martinez-Lemus LA, Manrique-Acevedo CM, Padilla J. Endothelial HSP72 is not reduced in type 2 diabetes nor is it a key determinant of endothelial insulin sensitivity. Am J Physiol Regul Integr Comp Physiol 2022; 323:R43-R58. [PMID: 35470695 DOI: 10.1152/ajpregu.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired endothelial insulin signaling and consequent blunting of insulin-induced vasodilation is a feature of type 2 diabetes (T2D) that contributes to vascular disease and glycemic dysregulation. However, the molecular mechanisms underlying endothelial insulin resistance remain poorly known. Herein, we tested the hypothesis that endothelial insulin resistance in T2D is attributed to reduced expression of heat shock protein 72(HSP72). HSP72 is a cytoprotective chaperone protein that can be upregulated with heating and is reported to promote insulin sensitivity in metabolically active tissues, in part via inhibition of JNK activity. Accordingly, we further hypothesized that, in T2D individuals, seven days of passive heat treatment via hot water immersion to waist-level would improve leg blood flow responses to an oral glucose load (i.e., endogenous insulin stimulation) via induction of endothelial HSP72. In contrast, we found that: 1) endothelial insulin resistance in T2D mice and humans was not associated with reduced HSP72 in aortas and venous endothelial cells, respectively; 2) after passive heat treatment, improved leg blood flow responses to an oral glucose load did not parallel with increased endothelial HSP72; 3) downregulation of HSP72 (via small-interfering RNA) or upregulation of HSP72 (via heating) in cultured endothelial cells did not impair or enhance insulin signaling, respectively, nor was JNK activity altered. Collectively, these findings do not support the hypothesis that reduced HSP72 is a key driver of endothelial insulin resistance in T2D but provide novel evidence that lower-body heating may be an effective strategy for improving leg blood flow responses to glucose ingestion-induced hyperinsulinemia.
Collapse
Affiliation(s)
- Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | | | | | | | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Ying Liu
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Luis A Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO, United States.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila M Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine University of Missouri, Columbia, MO, United States.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
40
|
Behzadi P, Ravanelli N, Gravel H, Barry H, Debray A, Chaseling GK, Jacquemet V, Neagoe PE, Nigam A, Carpentier AC, Sirois MG, Gagnon D. Acute effect of passive heat exposure on markers of cardiometabolic function in adults with type 2 diabetes mellitus. J Appl Physiol (1985) 2022; 132:1154-1166. [PMID: 35323077 DOI: 10.1152/japplphysiol.00800.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AIM Heat therapy is a promising strategy to improve cardiometabolic health. This study evaluated the acute physiological responses to hot water immersion in adults with type 2 diabetes mellitus (T2DM). METHODS On separate days in randomized order, 13 adults with T2DM (8 males/5 females, 62 ± 12 yrs, BMI: 30.1 ± 4.6 kg/m2) were immersed in thermoneutral (34°C, 90 minutes) or hot (41°C, core temperature ≥38.5°C for 60 minutes) water. Insulin sensitivity was quantified via the minimal oral model during an oral glucose tolerance test (OGTT) performed 60 minutes after immersion. Brachial artery flow-mediated dilation (FMD) and reactive hyperemia were evaluated before and 40 minutes after immersion. Blood samples were drawn to quantify protein concentrations and mRNA levels of HSP70 and 90, and circulating concentrations of cytokines. RESULTS Relative to thermoneutral water immersion, hot water immersion increased core temperature (+1.66°C [+1.47, +1.87], P<0.01), heart rate (+34 bpm [+24, +44], P<0.01), antegrade shear rate (+96 s-1 [+57, +134], P<0.01), and IL-6 (+1.38 pg/mL [+0.31, +2.45], P=0.01). Hot water immersion did not exert an acute change in insulin sensitivity (-0.3 dl/kg/min/μU/ml [-0.9, +0.2], P=0.18), FMD (-1.0% [-3.6, +1.6], P=0.56), peak (+0.36 mL/min/mmHg [-0.71, +1.43], P=0.64) and total (+0.11 mL/min/mmHg x min [-0.46, +0.68], P=0.87) reactive hyperemia. There was also no change in eHSP70 (P=0.64), iHSP70 (P=0.06), eHSP90 (P=0.80), iHSP90 (P=0.51), IL1-RA (P=0.11), GLP-1 (P=0.59) and NFkB (P=0.56) after hot water immersion. CONCLUSION The physiological responses elicited by hot water immersion do not acutely improve markers of cardiometabolic function in adults with T2DM.
Collapse
Affiliation(s)
- Parya Behzadi
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | | | - Hugo Gravel
- Montreal Heart Institute, Montreal, Canada.,School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Canada
| | - Hadiatou Barry
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Amelie Debray
- Montreal Heart Institute, Montreal, Canada.,Department of Medicine, Université de Montréal, Montréal, Canada
| | - Georgia K Chaseling
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Vincent Jacquemet
- Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | | | - Anil Nigam
- Montreal Heart Institute, Montreal, Canada.,Department of Medicine, Université de Montréal, Montréal, Canada
| | - André C Carpentier
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Martin G Sirois
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Daniel Gagnon
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada.,School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Canada
| |
Collapse
|
41
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
42
|
Odabasi E, Turan M. The importance of body core temperature evaluation in balneotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:25-33. [PMID: 34623501 DOI: 10.1007/s00484-021-02201-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is not wrong to say that there are no application standards or best practices in balneotherapy considering traditional applications. There is not enough information about how changes in body temperature, duration, and frequency of exposure to heat affect therapeutic outcomes of balneotherapeutic applications. Body core temperature (BCT) is probably the best parameter for expressing the heat load of the body and can be used to describe the causal relationship between heat exposure and its effects. There are several reasons to take BCT changes into account; for example, it can be used for individualized treatment planning, defining the consequences of thermal effects, developing disease-specific approaches, avoiding adverse effects, and designing clinical trials. The reasons why BCT changes should be considered instead of conventional measures will be discussed while explaining the effects of balneotherapy in this article, along with a discussion of BCT measurement in balneotherapy practice.
Collapse
Affiliation(s)
- Ersin Odabasi
- Department of Medical Ecology and Hydroclimatology, Gulhane Faculty of Medicine, University of Health Science, Gulhane EAH, 06018, Etlik, Ankara, Turkey.
| | - Mustafa Turan
- Department of Medical Education and Informatics, TOBB Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
43
|
Infrared sauna as exercise-mimetic? Physiological responses to infrared sauna vs exercise in healthy women: A randomized controlled crossover trial. Complement Ther Med 2021; 64:102798. [PMID: 34954348 DOI: 10.1016/j.ctim.2021.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Passive heat therapies have been reported to have similar effects on the cardiovascular system as exercise. Studies supporting these findings in healthy populations have predominantly been done with men using warm water immersions or traditional saunas, rather than newer infrared-based saunas. OBJECTIVE To explore short-term thermal and cardiovascular responses in women using an infrared sauna as compared to moderate-intensity exercise. STUDY DESIGN Randomized controlled crossover trial with balanced allocations. SETTING Brisbane, Australia (August 2019 - March 2020) PARTICIPANTS: Ten healthy women (36 ± 9 years) INTERVENTIONS: 45 min of resting, infrared sauna or indoor bicycling PRIMARY OUTCOME MEASURES: tympanic/skin temperatures; respiratory rate; blood pressure; arterial stiffness; heart rate variability RESULTS: Tympanic temperatures were elevated during infrared sauna as compared to both control (mean diff = +1.05 oC ± SEM 0.12 oC, 95% C.I.: 0.73 - 1.36, p < 0.0005) and exercise (mean diff = +0.79 oC ± SEM 0.12 oC, 95% C.I.: 0.49 - 1.08, p < 0.0005). Respiratory rates were higher during exercise as compared to both control (mean diff = +7.66 ± SEM 1.37, 95% C.I.: 4.09 - 11.23, p < 0.0005) and infrared sauna (mean diff = +6.66 ± SEM 1.33, 95% C.I.: 3.20 - 10.11, p < 0.0005). No significant differences in non-invasive measures of blood pressure, arterial stiffness or heart rate variability were detected between any of the interventions. CONCLUSIONS These findings suggest the physiological effects of infrared sauna bathing are underpinned by thermoregulatory-induced responses, more so than exercise-mimetic cardiorespiratory or cardiovascular activations.
Collapse
|
44
|
Russell BM, Chang CR, Hill T, Cotter JD, Francois ME. Post-exercise Warm or Cold Water Immersion to Augment the Cardiometabolic Benefits of Exercise Training: A Proof of Concept Trial. Front Physiol 2021; 12:759240. [PMID: 34803740 PMCID: PMC8595200 DOI: 10.3389/fphys.2021.759240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
We investigated whether substituting the final half within 60-min bouts of exercise with passive warm or cold water immersion would provide similar or greater benefits for cardiometabolic health. Thirty healthy participants were randomized to two of three short-term training interventions in a partial crossover (12 sessions over 14–16 days, 4 week washout): (i) EXS: 60 min cycling 70% maximum heart rate (HRmax), (ii) WWI: 30 min cycling then 30 min warm water (38–40°C) immersion, and/or (iii) CWI: 30 min cycling then 30 min cold water (10–12°C) immersion. Before and after, participants completed a 20 min cycle work trial, V.O2max test, and an Oral Glucose Tolerance Test during which indirect calorimetry was used to measure substrate oxidation and metabolic flexibility (slope of fasting to post-prandial carbohydrate oxidation). Data from twenty two participants (25 ± 5 year, BMI 23 ± 3 kg/m2, Female = 11) were analyzed using a fixed-effects linear mixed model. V.O2max increased more in EXS (interaction p = 0.004) than CWI (95% CI: 1.1, 5.3 mL/kg/min, Cohen’s d = 1.35), but not WWI (CI: −0.4, 3.9 mL/kg/min, d = 0.72). Work trial distance and power increased 383 ± 223 m and 20 ± 6 W, respectively, without differences between interventions (interaction both p > 0.68). WWI lowered post-prandial glucose ∼9% (CI −1.9, −0.5 mmol/L; d = 0.63), with no difference between interventions (interaction p = 0.469). Substituting the second half of exercise with WWI provides similar cardiometabolic health benefits to time matched exercise, however, substituting with CWI does not.
Collapse
Affiliation(s)
- Brooke M Russell
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Courtney R Chang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Terry Hill
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Monique E Francois
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
45
|
Extreme Heat and Cardiovascular Health: What a Cardiovascular Health Professional Should Know. Can J Cardiol 2021; 37:1828-1836. [PMID: 34802857 DOI: 10.1016/j.cjca.2021.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023] Open
Abstract
As global temperatures continue to rise, extreme heat events are becoming more frequent and intense. Extreme heat affects cardiovascular health as it is associated with a greater risk of adverse cardiovascular events, especially for adults with preexisting cardiovascular diseases. Nonetheless, the pathophysiology underlying the association between extreme heat and cardiovascular risk remains understudied. Furthermore, specific recommendations to mitigate the effects of extreme heat on cardiovascular health remain limited to guide clinical practice within the context of a warming climate. The overall objective of this review article is to raise awareness that extreme heat poses a risk for cardiovascular health. Specifically, the review discusses why cardiovascular healthcare professionals should care about extreme heat, how extreme heat affects cardiovascular health, and recommendations to minimise the cardiovascular consequences of extreme heat. Future research directions are also provided to further our understating of the cardiovascular health consequences of extreme heat. A better awareness and understanding of the cardiovascular consequences of extreme heat will help cardiovascular health professionals assess the risk and optimise the care of their patients exposed to an increasingly warm climate.
Collapse
|
46
|
Sebők J, Édel Z, Váncsa S, Farkas N, Kiss S, Erőss B, Török Z, Balogh G, Balogi Z, Nagy R, Hooper PL, Geiger PC, Wittmann I, Vigh L, Dembrovszky F, Hegyi P. Heat therapy shows benefit in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Int J Hyperthermia 2021; 38:1650-1659. [PMID: 34808071 DOI: 10.1080/02656736.2021.2003445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS Type-2 diabetes mellitus (T2DM) is a common health condition which prevalence increases with age. Besides lifestyle modifications, passive heating could be a promising intervention to improve glycemic control. This study aimed to assess the efficacy of passive heat therapy on glycemic and cardiovascular parameters, and body weight among patients with T2DM. METHODS A systematic review and meta-analysis were reported according to PRISMA Statement. We conducted a systematic search in three databases (MEDLINE, Embase, CENTRAL) from inception to 19 August 2021. We included interventional studies reporting on T2DM patients treated with heat therapy. The main outcomes were the changes in pre-and post-treatment cardiometabolic parameters (fasting plasma glucose, glycated plasma hemoglobin, and triglyceride). For these continuous variables, weighted mean differences (WMD) with 95% confidence intervals (CIs) were calculated. Study protocol number: CRD42020221500. RESULTS Five studies were included in the qualitative and quantitative synthesis, respectively. The results showed a not significant difference in the hemoglobin A1c [WMD -0.549%, 95% CI (-1.262, 0.164), p = 0.131], fasting glucose [WMD -0.290 mmol/l, 95% CI (-0.903, 0.324), p = 0.355]. Triglyceride [WMD 0.035 mmol/l, 95% CI (-0.130, 0.200), p = 0.677] levels were comparable regarding the pre-, and post intervention values. CONCLUSION Passive heating can be beneficial for patients with T2DM since the slight improvement in certain cardiometabolic parameters support that. However, further randomized controlled trials with longer intervention and follow-up periods are needed to confirm the beneficial effect of passive heat therapy.
Collapse
Affiliation(s)
- Judit Sebők
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - Zsófia Édel
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs Kiss
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Török
- LipidArt Ltd., Szeged, Hungary.,Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Gábor Balogh
- LipidArt Ltd., Szeged, Hungary.,Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zsolt Balogi
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Rita Nagy
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.,Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Philip L Hooper
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paige C Geiger
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - István Wittmann
- 2nd Department of Medicine and Nephrology-Diabetes Center, Medical School, University of Pécs, Pécs, Hungary
| | - László Vigh
- LipidArt Ltd., Szeged, Hungary.,Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.,Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
47
|
Thorpe RT. Post-exercise Recovery: Cooling and Heating, a Periodized Approach. Front Sports Act Living 2021; 3:707503. [PMID: 34541521 PMCID: PMC8440788 DOI: 10.3389/fspor.2021.707503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Affiliation(s)
- Robin T Thorpe
- Football Exchange, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
48
|
Cheng JL, Williams JS, Hoekstra SP, MacDonald MJ. Improvements in vascular function in response to acute lower limb heating in young healthy males and females. J Appl Physiol (1985) 2021; 131:277-289. [PMID: 34013754 DOI: 10.1152/japplphysiol.00630.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Regular exposure to passive heat stress improves vascular function, but the optimal heating prescription remains undefined. Local limb heating is more feasible than whole body heating, but the evidence demonstrating its efficacy is lacking. The purpose of this study was to determine whether acute improvements in vascular function can be achieved with lower limb heating in 16 young healthy individuals (8 female, 8 male). In separate visits, participants underwent 45 min of ankle- and knee-level hot water immersion (45°C). A subset of seven participants also participated in a time-control visit. Endothelial function was assessed through simultaneous brachial and superficial femoral artery flow-mediated dilation (FMD) tests. Macrovascular function was quantified by %FMD, whereas microvascular function was quantified by vascular conductance during reactive hyperemia. Arterial stiffness was assessed through carotid-femoral and femoral-foot pulse wave velocity (PWV). Plasma concentrations of interleukin-6 and extracellular heat shock protein-72 (eHSP72) were used as indicators of inflammation. Our findings showed that 45 min of lower limb heating-regardless of condition-acutely improved upper limb macrovascular endothelial function (i.e., brachial %FMD; Pre: 4.6 ± 1.7 vs. Post: 5.4 ± 2.0%; P = 0.004) and lower limb arterial stiffness (i.e., femoral-foot PWV; Pre: 8.4 ± 1.2 vs. Post: 7.7 ± 1.1 m/s; P = 0.011). However, only knee-level heating increased upper limb microvascular function (i.e., brachial peak vascular conductance; Pre: 6.3 ± 2.7 vs. Post: 7.8 ± 3.5 mL/min ⋅ mmHg; P ≤ 0.050) and plasma eHSP72 concentration (Pre: 12.4 ± 9.4 vs. Post: 14.8 ± 9.8 ng/mL; P ≤ 0.050). These findings show that local lower limb heating acutely improves vascular function in younger individuals, with knee-level heating improving more outcome measures.NEW & NOTEWORTHY This study demonstrates that lower limb hot water immersion is an effective strategy for acutely improving vascular function in young, healthy males and females, thereby encouraging the development of accessible modes of heat therapy for vascular health.
Collapse
Affiliation(s)
- Jem L Cheng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sven P Hoekstra
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | | |
Collapse
|
49
|
Pizzey FK, Smith EC, Ruediger SL, Keating SE, Askew CD, Coombes JS, Bailey TG. The effect of heat therapy on blood pressure and peripheral vascular function: A systematic review and meta-analysis. Exp Physiol 2021; 106:1317-1334. [PMID: 33866630 DOI: 10.1113/ep089424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
NEW FINDINGS What is the topic of this review? We have conducted a systematic review and meta-analysis on the current evidence for the effect of heat therapy on blood pressure and vascular function. What advances does it highlight? We found that heat therapy reduced mean arterial, systolic and diastolic blood pressure. We also observed that heat therapy improved vascular function, as assessed via brachial artery flow-mediated dilatation. Our results suggest that heat therapy is a promising therapeutic tool that should be optimized further, via mode and dose, for the prevention and treatment of cardiovascular disease risk factors. ABSTRACT Lifelong sauna exposure is associated with reduced cardiovascular disease risk. Recent studies have investigated the effect of heat therapy on markers of cardiovascular health. We aimed to conduct a systematic review with meta-analysis to determine the effects of heat therapy on blood pressure and indices of vascular function in healthy and clinical populations. Four databases were searched up to September 2020 for studies investigating heat therapy on outcomes including blood pressure and vascular function. Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to assess the certainty of evidence. A total of 4522 titles were screened, and 15 studies were included. Healthy and clinical populations were included. Heat exposure was for 30-90 min, over 10-36 sessions. Compared with control conditions, heat therapy reduced mean arterial pressure [n = 4 studies; mean difference (MD): -5.86 mmHg, 95% confidence interval (CI): -8.63, -3.10; P < 0.0001], systolic blood pressure (n = 10; MD: -3.94 mmHg, 95% CI: -7.22, -0.67; P = 0.02) and diastolic blood pressure (n = 9; MD: -3.88 mmHg, 95% CI: -6.13, -1.63; P = 0.0007) and improved flow-mediated dilatation (n = 5; MD: 1.95%, 95% CI: 0.14, 3.76; P = 0.03). Resting heart rate was unchanged (n = 10; MD: -1.25 beats/min; 95% CI: -3.20, 0.70; P = 0.21). Early evidence also suggests benefits for arterial stiffness and cutaneous microvascular function. The certainty of evidence was moderate for the effect of heat therapy on systolic and diastolic blood pressure and heart rate and low for the effect of heat therapy on mean arterial pressure and flow-mediated dilatation. Heat therapy is an effective therapeutic tool to reduce blood pressure and improve macrovascular function. Future research should aim to optimize heat therapy, including the mode and dose, for the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- Faith K Pizzey
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily C Smith
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Stefanie L Ruediger
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Shelley E Keating
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia.,School of Nursing Midwifery and Social Work, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
50
|
James TJ, Corbett J, Cummings M, Allard S, Young JS, Towse J, Carey-Jones K, Eglin C, Hopkins B, Morgan C, Tipton M, Saynor ZL, Shepherd AI. Timing of acute passive heating on glucose tolerance and blood pressure in people with type 2 diabetes: a randomized, balanced crossover, control trial. J Appl Physiol (1985) 2021; 130:1093-1105. [PMID: 33411640 DOI: 10.1152/japplphysiol.00747.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by chronic hyperglycemia and progressive insulin resistance, leading to macro and microvascular dysfunction. Passive heating has potential to improve glucose homeostasis and act as an exercise mimetic. We assessed the effect of acute passive heating before or during an oral glucose tolerance test (OGTT) in people with T2DM. Twelve people with T2DM were randomly assigned to the following three conditions: 1) 3-h OGTT (control), 2) 1-h passive heating (40°C water) 30 min before an OGTT (HOT-OGTT), and 3) 1-h passive heating (40°C water) 30 min after commencing an OGTT (OGTT-HOT). Blood glucose concentration, insulin sensitivity, extracellular heat shock protein 70 (eHSP70), total energy expenditure (TEE), heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were recorded. Passive heating did not alter blood glucose concentration [control: 1,677 (386) arbitrary units (AU), HOT-OGTT: 1,797 (340) AU, and OGTT-HOT: 1,662 (364) AU, P = 0.28], insulin sensitivity (P = 0.15), or SBP (P = 0.18) but did increase eHSP70 concentration in both heating conditions [control: 203.48 (110.81) pg·mL-1; HOT-OGTT: 402.47 (79.02) pg·mL-1; and OGTT-HOT: 310.00 (60.53) pg·mL-1, P < 0.001], increased TEE (via fat oxidation) in the OGTT-HOT condition [control: 263 (33) kcal, HOT-OGTT: 278 (40) kcal, and OGTT-HOT: 304 (38) kcal, P = 0.001], increased HR in both heating conditions (P < 0.001), and reduced DBP in the OGTT-HOT condition (P < 0.01). Passive heating in close proximity to a glucose challenge does not alter glucose tolerance but does increase eHSP70 concentration and TEE and reduce blood pressure in people with T2DM.NEW & NOTEWORTHY This is the first study to investigate the timing of acute passive heating on glucose tolerance and extracellular heat shock protein 70 concentration ([eHSP70]) in people with type 2 diabetes. The principal novel findings from this study were that both passive heating conditions: 1) did not reduce the area under the curve or peak blood glucose concentration, 2) elevated heart rate, and 3) increased [eHSP70], which was blunted by glucose ingestion, while passive heating following glucose ingestion, 4) increased total energy expenditure, and 5) reduced diastolic blood pressure.
Collapse
Affiliation(s)
- Thomas J James
- School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, United Kingdom.,Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Jo Corbett
- School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, United Kingdom
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Sharon Allard
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - John S Young
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, United Kingdom
| | - Jonathan Towse
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, United Kingdom
| | - Kathryn Carey-Jones
- School of Biological Sciences, Faculty of Science and Health, University of Portsmouth, United Kingdom.,Oaks Healthcare, Cowplain Family Practice, Waterlooville, United Kingdom
| | - Clare Eglin
- School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, United Kingdom
| | - Billy Hopkins
- School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, United Kingdom
| | - Connor Morgan
- School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, United Kingdom
| | - Michael Tipton
- School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, United Kingdom
| | - Zoe L Saynor
- School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, United Kingdom.,Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - Anthony I Shepherd
- School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, United Kingdom.,Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| |
Collapse
|