1
|
Melo X, Lopes A, Coelho R, Simão B, Oliveira I, Marôco JL, Laranjo S, Fernhall B, Santa-Clara H. Acute effects of commercial group exercise classes on arterial stiffness and cardiovagal modulation in healthy young and middle-aged adults: A crossover randomized trial. PLoS One 2025; 20:e0319130. [PMID: 40080484 PMCID: PMC11906072 DOI: 10.1371/journal.pone.0319130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Arterial stiffness and cardiac autonomic function are crucial indicators of cardiovascular health. Acute exercise and age impact these parameters, but research often focuses on specific exercise activities, lacking ecological validity. METHODS We examined the acute effects of commercially available group fitness classes (indoor cycling, resistance training, combined exercise) on arterial stiffness and vagal-related heart rate variability (HRV) indices in twelve young and twelve middle-aged adults. Participants attended four sessions, including exercise and control conditions, with measurements taken at rest and during recovery. RESULTS Middle-aged, but not young adults, showed reductions in central and peripheral systolic blood pressure 20-min into recovery across all exercise modalities (range: -7 to -8 mmHg p < 0.05). However, arterial stiffness remained unchanged. Similarly, vagal-related HRV indices (range: -0.51 to -0.90 ms, p < 0.05) and BRS (-4.03, p < 0.05) were reduced immediately after exercise, with differences persisting 30 min into recovery only after indoor cycling. Resistance and combined exercise elicited similar cardiovagal modulation and delayed baroreflex sensitivity recovery to cycling exercise, despite higher energy expenditure during indoor cycling (+87 to +129 kcal, p < 0.05). CONCLUSION Acute group fitness classes induce age-dependent alterations in blood pressure, but not in arterial stiffness or cardiovagal modulation. While the overall cardiovascular effects were generally consistent, differences in autonomic recovery were observed between exercise modes, with prolonged effects seen after indoor cycling. This suggests that exercise prescription should consider both age and exercise modality, as well as recovery time. The findings also emphasize the importance of ecological validity in exercise interventions, highlighting that acute effects on cardiovascular health in real-world settings may differ from those observed in controlled laboratory environments (ID: NCT06616428).
Collapse
Affiliation(s)
- Xavier Melo
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, Caparica, Almada, Portugal
| | - Adma Lopes
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana – Universidade de Lisboa, Oeiras, Portugal
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisboa, Portugal
| | - Raquel Coelho
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana – Universidade de Lisboa, Oeiras, Portugal
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisboa, Portugal
| | - Bruno Simão
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana – Universidade de Lisboa, Oeiras, Portugal
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisboa, Portugal
| | - Isabel Oliveira
- Faculdade de Ciências da Saúde e do Desporto, Universidade Europeia, Lisboa, Portugal
| | - João L. Marôco
- Exercise and Health Sciences Department, University of Massachusetts Boston, Boston, Massachusetts, United States
| | - Sérgio Laranjo
- Department of Physiology, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Bo Fernhall
- Exercise and Health Sciences Department, University of Massachusetts Boston, Boston, Massachusetts, United States
| | - Helena Santa-Clara
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana – Universidade de Lisboa, Oeiras, Portugal
- Ginásio Clube Português, Research & Development Department, GCP Lab, Lisboa, Portugal
| |
Collapse
|
2
|
Khowailed IA, Volland L, Moustafa I, Peters-Brinkerhoff C, Alsubiheen AM, Lee H. Doppler Ultrasound Assessment of Blood Flow Indices in Childbearing Age Women Across the Menstrual Cycle. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:389. [PMID: 40142200 PMCID: PMC11943995 DOI: 10.3390/medicina61030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: This study investigates the effects of hormonal fluctuations during the menstrual cycle and oral contraceptive (OCP) cycles on peripheral vascular circulation in the lower limbs of healthy childbearing-age women across different phases of the menstrual cycle. Materials and Methods: Fourteen eumenorrheic non-oral contraceptive (non-OCP) users (mean age 28.9 ± 3.5 years; height 165.0 ± 5.8 cm; weight 66.8 ± 11.2 kg) were evaluated during the follicular and ovulatory phases. Fifteen monophasic oral contraceptive (OCP) users (mean age 26.4 ± 2.67 years; height 162.3 ± 8.1 cm; weight 62.0 ± 9.8 kg) were assessed during their placebo and active pill phases. Doppler recordings of the femoral and popliteal arteries were obtained, and standard Doppler indices (systolic/diastolic ratio, pulsatility index, and resistance index) were analyzed across the menstrual and OCP cycles. Results: There were no significant interactions in the standard Doppler indices for the popliteal and femoral arteries between the menstrual phases and user groups (p > 0.05). Additionally, no significant group effects were observed between non-OCP users and OCP users, nor were there significant phase effects in any of the Doppler index variables (p > 0.05). Conclusions: Peripheral vascular function remained stable across menstrual and OCP phases, suggesting minimal impact of hormonal fluctuations on blood flow characteristics in young, healthy females.
Collapse
Affiliation(s)
- Iman Akef Khowailed
- Physical Therapy Program, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Lena Volland
- National Beeding Disorders Foundation, New York, NY 10020, USA
| | - Ibrahim Moustafa
- Physical Therapy Program, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | | | - Abdulrahman M. Alsubiheen
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Haneul Lee
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
Burma JS, Bailey DM, Johnson NE, Griffiths JK, Burkart JJ, Soligon CA, Fletcher EKS, Javra RM, Debert CT, Schneider KJ, Dunn JF, Smirl JD. Physiological influences on neurovascular coupling: A systematic review of multimodal imaging approaches and recommendations for future study designs. Exp Physiol 2025; 110:23-41. [PMID: 39392865 DOI: 10.1113/ep092060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
In this review, we have amalgamated the literature, taking a multimodal neuroimaging approach to quantify the relationship between neuronal firing and haemodynamics during a task paradigm (i.e., neurovascular coupling response), while considering confounding physiological influences. Original research articles that used concurrent neuronal and haemodynamic quantification in humans (n ≥ 10) during a task paradigm were included from PubMed, Scopus, Web of Science, EMBASE and PsychINFO. Articles published before 31 July 2023 were considered for eligibility. Rapid screening was completed by the first author. Two authors completed the title/abstract and full-text screening. Article quality was assessed using a modified version of the National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. A total of 364 articles were included following title/abstract and full-text screening. The most common combination was EEG/functional MRI (68.7%), with cognitive (48.1%) and visual (27.5%) tasks being the most common. The majority of studies displayed an absence/minimal control of blood pressure, arterial gas concentrations and/or heart rate (92.9%), and only 1.3% monitored these factors. A minority of studies restricted or collected data pertaining to caffeine (7.4%), exercise (0.8%), food (0.5%), nicotine (2.7%), the menstrual cycle (0.3%) or cardiorespiratory fitness levels (0.5%). The cerebrovasculature is sensitive to numerous factors; thus, to understand the neurovascular coupling response fully, better control for confounding physiological influences of blood pressure and respiratory metrics is imperative during study-design formulation. Moreover, further work should continue to examine sex-based differences, the influence of sex steroid hormone concentrations and cardiorespiratory fitness.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - James K Griffiths
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Department of Biomedical Engineering, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Josh J Burkart
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Clara A Soligon
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Raelyn M Javra
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chantel T Debert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Alansare AB, Alotaibi RT, Albarrati AM, Stoner L, Gibbs BB. Effect of Prior Moderate Aerobic Exercise to Prolonged Sitting on Peripheral and Central Cardiovascular Measures in Young Women. J Cardiovasc Dev Dis 2024; 11:307. [PMID: 39452278 PMCID: PMC11508224 DOI: 10.3390/jcdd11100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Prolonged sitting is a risk factor for cardiovascular disease (CVD). We examined whether moderate aerobic exercise prior to prolonged sitting (EX + SIT) has protective effects on peripheral and central cardiovascular and autonomic measures. METHODS Young women (n = 26; 23.4 ± 4.3 years old; BMI = 23.1 ± 4.3) completed two sessions in random order: (1) EX + SIT, which consisted of 25 min of moderate aerobic exercise followed by a 3 h prolonged sitting bout, and (2) a 3 h prolonged sitting bout only (SIT-only). Seated peripheral and central blood pressure (BP), pulse wave velocity (PWV), and heart rate variability (HRV) were measured at baseline and after 1 h, 2 h, and 3 h of sitting. Generalized linear mixed models with random effects examined the effects of conditions (i.e., EX + SIT vs. SIT) on BP, PWV, and HRV while adjusting for baseline values. RESULTS Only peripheral and central diastolic BP (β = 2.18; p = 0.016 and β = 1.99; p = 0.034, respectively) were significantly lower in the EX + SIT condition compared to the SIT-only condition. No differences were detected in other BP, PWV, or HRV variables between the two conditions (p > 0.05 for all). CONCLUSIONS Performing moderate aerobic exercise in the morning before engaging in prolonged sitting bouts may reduce some of the prolonged-sitting-induced cardiovascular impairments in young women. Further research is needed to confirm these findings in males and middle-aged/older adults.
Collapse
Affiliation(s)
- Abdullah Bandar Alansare
- Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, King Khalid Rd., Riyadh 80200, Saudi Arabia;
| | - Rawan Tuayes Alotaibi
- Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, King Khalid Rd., Riyadh 80200, Saudi Arabia;
| | - Ali Mufrih Albarrati
- Rehabilitation Sciences Department, College of Applied Medical Sciences, King Saud University, King Khalid Rd., Riyadh 80200, Saudi Arabia;
| | - Lee Stoner
- Department of Sport and Exercise, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Bethany Barone Gibbs
- Department of Epidemiology and Biostatistics, West Virginia University School of Public Health, Morgantown, WV 26506, USA;
| |
Collapse
|
5
|
Turner CG, DuPont JJ. The effect of hormonal cycles on vascular physiology in premenopausal females. Am J Physiol Heart Circ Physiol 2024; 327:H1016-H1018. [PMID: 39302708 DOI: 10.1152/ajpheart.00612.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Casey G Turner
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Williams JS, Cheng JL, Stone JC, Kamal MJ, Cherubini JM, Parise G, MacDonald MJ. Menstrual and oral contraceptive pill cycles minimally influence vascular function and associated cellular regulation in premenopausal females. Am J Physiol Heart Circ Physiol 2024; 327:H1019-H1036. [PMID: 39178026 DOI: 10.1152/ajpheart.00672.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Historical exclusion of females in research has been, in part, due to the perceived influence of natural menstrual (NAT) and oral contraceptive pill (OCP) cycles on vascular outcomes. NAT and OCP cycle phases may influence brachial artery (BA) endothelial function, however, findings are mixed. Minimal research has examined arterial stiffness, smooth muscle, and lower limb endothelial function. The purpose of this study was to investigate the influence of NAT and OCP cycles on cardiovascular outcomes and cellular regulation. Forty-nine premenopausal females (n = 17 NAT, n = 17 second generation OCP, n = 15 third generation OCP) participated in two randomized order visits in the low (LH, early follicular/placebo) and high (HH, midluteal/active) hormone cycle phases. BA and superficial femoral artery (SFA) endothelial function [flow-mediated dilation (FMD) test], smooth muscle function (nitroglycerine-mediated dilation test), and carotid and peripheral (pulse wave velocity) arterial stiffness were assessed. Cultured female human endothelial cells were exposed to participant serum for 24 h to examine endothelial nitric oxide synthase (eNOS) and estrogen receptor-α (ERα) protein content. BA FMD was elevated in the HH vs. LH phase, regardless of group (HH, 7.7 ± 3.5%; LH, 7.0 ± 3.3%; P = 0.02); however, allometric scaling for baseline diameter resulted in no phase effect (HH, 7.6 ± 2.6%; LH, 7.1 ± 2.6%; P = 0.052, d = 0.35). SFA FMD, BA, and SFA smooth muscle function, arterial stiffness, and eNOS and ERα protein content were unaffected. NAT and OCP phases examined have minimal influence on vascular outcomes and ERα-eNOS pathway, apart from a small effect on BA endothelial function partially explained by differences in baseline artery diameter. NEW & NOTEWORTHY Comprehensive evaluation of the cardiovascular system in naturally cycling and second and third generation OCP users indicates no major influence of hormonal phases examined on endothelial function and smooth muscle function in the arteries of the upper and lower limbs, arterial stiffness, or underlying cellular mechanisms. Study findings challenge the historical exclusion of female participants due to potentially confounding hormonal cycles; researchers are encouraged to consider the hormonal environment in future study design.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jem L Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jenna C Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael J Kamal
- Molecular Exercise Physiology & Muscle Aging Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua M Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Molecular Exercise Physiology & Muscle Aging Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Charoenwoodhipong P, Zuelch ML, Keen CL, Hackman RM, Holt RR. Strawberry (Fragaria x Ananassa) intake on human health and disease outcomes: a comprehensive literature review. Crit Rev Food Sci Nutr 2024:1-31. [PMID: 39262175 DOI: 10.1080/10408398.2024.2398634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Strawberries provide a number of potential health promoting phytonutrients to include phenolics, polyphenols, fiber, micronutrients and vitamins. The objective of this review is to provide a comprehensive summary of recent human studies pertaining to the intake of strawberry and strawberry phytonutrients on human health. A literature search conducted through PubMed and Cochrane databases consolidated studies focusing on the effects of strawberry intake on human health. Articles were reviewed considering pre-determined inclusion and exclusion criteria, including experimental or observational studies that focused on health outcomes, and utilized whole strawberries or freeze-dried strawberry powder (FDSP), published between 2000-2023. Of the 60 articles included in this review, 47 were clinical trials, while 13 were observational studies. A majority of these studies reported on the influence of strawberry intake on cardiometabolic outcomes. Study designs included those examining the influence of strawberry intake during the postprandial period, short-term trials randomized with a control, or a single arm intake period controlling with a low polyphenolic diet or no strawberry intake. A smaller proportion of studies included in this review examined the influence of strawberry intake on additional outcomes of aging including bone and brain health, and cancer risk. Data support that the inclusion of strawberries into the diet can have positive impacts during the postprandial period, with daily intake improving outcomes of lipid metabolism and inflammation in those at increased cardiovascular risk.
Collapse
Affiliation(s)
- Prae Charoenwoodhipong
- Department of Nutrition, University of California Davis, Davis, California, USA
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Michelle L Zuelch
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Carl L Keen
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Robert M Hackman
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Roberta R Holt
- Department of Nutrition, University of California Davis, Davis, California, USA
| |
Collapse
|
8
|
Rogers EM, Banks NF, Trachta ER, Wolf MS, Berry AC, Stanhewicz AE, Carr LJ, Gibbs BB, Jenkins NDM. Resistance exercise breaks during prolonged sitting augment the blood flow response to a subsequent oral glucose load in sedentary adults. Exp Physiol 2024. [PMID: 39093318 DOI: 10.1113/ep091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Sitting-induced impairments in postprandial blood flow are an important link between sedentary behaviour and cardiometabolic disease risk. The objective of this work was to examine the effects of resistance exercise breaks (REB) performed every 30 min during an otherwise sedentary 3-h period on the vasodilatory response to a subsequent oral glucose load in sedentary adults. Twenty-four sedentary adults (27 ± 7 years, 16 females) completed two conditions. Fasting blood glucose, insulin, popliteal artery blood flow (PABF) and gastrocnemius perfusion were measured immediately before standardized breakfast consumption. After breakfast, the 3-h REB or uninterrupted (SIT) intervention period commenced. Participants sat at a workstation, and popliteal artery shear rate (PASR) was measured 60 and 120 min into this period. In the REB condition, participants performed a 3-min REB (3 × [20 s squats, 20 s high knees, 20 s calf raises]) every 30 min. Following the intervention period, baseline measurements were repeated. Participants then consumed a 75 g glucose beverage, and PABF and perfusion were measured every 30-60 min for the following 120 min. Relative to SIT, REB increased PASR at 60 min (+31.4 ± 9.2/s, P = 0.037) and 120 min (+37.4 ± 10.2/s, P = 0.019) into the intervention period. Insulin and glucose increased (P < 0.001) in response to glucose consumption, with no differences between conditions (P ≥ 0.299). In response to the glucose load, perfusion (1.57 vs. 1.11 mL/100 mL/min, P = 0.023) and PABF (+45.3 ± 11.8 mL/min, P = 0.001) were greater after REB versus SIT. Performing 3-min REB every 30 min during an otherwise sedentary 3-h period augmented leg blood flow responses to an oral glucose load. HIGHLIGHTS: What is the central question of this study? Can 3-min resistance exercise breaks (REB) performed during an otherwise sedentary 3-h period augment the vasodilatory response to a subsequent oral glucose load in sedentary adults? What is the main finding and its importance? Performing 3-min REB, which included squats, high knees, and calf raises, every 30 min augmented lower limb blood flow responses to a subsequent oral glucose load compared to 3 h of uninterrupted sitting in sedentary adults. Sitting-induced impairment in postprandial vasodilatory function has been identified as a link between sedentary behaviour and cardiometabolic disease. Thus, the current study presents a potentially effective strategy to offset this risk.
Collapse
Affiliation(s)
- Emily M Rogers
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
- Department of Kinesiology, The University of Wisconsin, Madison, Wisconsin, USA
| | - Nile F Banks
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
- Department of Kinesiology, The University of Wisconsin, Madison, Wisconsin, USA
| | - Emma R Trachta
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Morgan S Wolf
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Alexander C Berry
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Lucas J Carr
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, USA
| | - Bethany Barone Gibbs
- Department of Epidemiology and Biostatistics, West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
- Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, USA
| |
Collapse
|
9
|
D'Souza AW, Moore JP, Manabe K, Lawley JS, Washio T, Hissen SL, Sanchez B, Fu Q. The interactive effects of posture and biological sex on the control of muscle sympathetic nerve activity during rhythmic handgrip exercise. Am J Physiol Regul Integr Comp Physiol 2024; 327:R133-R144. [PMID: 38766771 DOI: 10.1152/ajpregu.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions, and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise, remain unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared with supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] yr; means [SD]) individuals (9 males, 11 females) underwent 6 min of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography), and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (P < 0.001), amplitude (P = 0.009), and total MSNA (P < 0.001) were higher during upright compared with supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: P = 0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (P = 0.006) and was not impacted by posture (P = 0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (P = 0.002) and total MSNA (P = 0.001) compared with females, which coincided with greater reductions in sympathetic baroreflex gain among males (P = 0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.NEW & NOTEWORTHY The impact of posture and sex on cardiovascular control during rhythmic handgrip (RHG) exercise is unknown. We show that increases in muscle sympathetic nerve activity (MSNA) during RHG are partly mediated by a reduction in sympathetic baroreflex gain. In addition, males demonstrate larger increases in total MSNA during upright RHG than females. These data indicate that the baroreflex partly mediates increases in MSNA during RHG and that males have a greater sympathetic vasoconstrictor reserve than females.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Divison of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Jonathan P Moore
- Department of Sports and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Kazumasa Manabe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Justin S Lawley
- Division of Performance Physiology and Prevention, Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Belinda Sanchez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
10
|
Turner CG, Hayat MJ, Otis JS, Quyyumi AA, Wong BJ. The effect of endothelin a receptor inhibition and biological sex on cutaneous microvascular function in non-Hispanic Black and White young adults. Physiol Rep 2024; 12:e16149. [PMID: 39016164 PMCID: PMC11252828 DOI: 10.14814/phy2.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The purpose of this study was to investigate whether endothelin-A receptor (ETAR) inhibition in non-Hispanic Black (NHB) and White (NHW) young adults depends on biological sex. We recruited females during low hormone (n = 22) and high hormone (n = 22) phases, and males (n = 22). Participants self-identified as NHB (n = 33) or NHW (n = 33). Participants were instrumented with two microdialysis fibers: (1) lactated Ringer's (control) and (2) 500 nM BQ-123 (ETAR antagonist). Local heating was used to elicit cutaneous vasodilation, and an infusion of 20 mM L-NAME to quantify NO-dependent vasodilation. At control sites, NO-dependent vasodilation was lowest in NHB males (46 ± 13 %NO) and NHB females during low hormone phases (47 ± 12 %NO) compared to all NHW groups. Inhibition of ETAR increased NO-dependent vasodilation in NHB males (66 ± 13 %NO), in both groups of females during low hormone phases (NHW, control: 64 ± 12 %NO, BQ-123: 85 ± 11 %NO; NHB, BQ-123: 68 ± 13 %NO), and in NHB females during high hormone phases (control: 61 ± 11 %NO, BQ-123: 83 ± 9 %NO). There was no effect for ETAR inhibition in NHW males or females during high hormone phases. These data suggest the effect of ETAR inhibition on NO-dependent vasodilation is influenced by biological sex and racial identity.
Collapse
Affiliation(s)
- Casey G. Turner
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Brett J. Wong
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
11
|
Berbrier DE, Adler TE, Leone CA, Paidas MJ, Stachenfeld NS, Usselman CW. Blood pressure responses to handgrip exercise but not apnea or mental stress are enhanced in women with a recent history of preeclampsia. Am J Physiol Heart Circ Physiol 2024; 327:H140-H154. [PMID: 38700469 PMCID: PMC11932533 DOI: 10.1152/ajpheart.00020.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Preeclampsia is a risk factor for future cardiovascular diseases. However, the mechanisms underlying this association remain unclear, limiting effective prevention strategies. Blood pressure responses to acute stimuli may reveal cardiovascular dysfunction not apparent at rest, identifying individuals at elevated cardiovascular risk. Therefore, we compared blood pressure responsiveness with acute stimuli between previously preeclamptic (PPE) women (34 ± 5 yr old, 13 ± 6 mo postpartum) and women following healthy pregnancies (Ctrl; 29 ± 3 yr old, 15 ± 4 mo postpartum). Blood pressure (finger photoplethysmography calibrated to manual sphygmomanometry-derived values; PPE: n = 12, Ctrl: n = 12) was assessed during end-expiratory apnea, mental stress, and isometric handgrip exercise protocols. Integrated muscle sympathetic nerve activity (MSNA) was assessed in a subset of participants (peroneal nerve microneurography; PPE: n = 6, Ctrl: n = 8). Across all protocols, systolic blood pressure (SBP) was higher in PPE than Ctrl (main effects of group all P < 0.05). Peak changes in SBP were stressor specific: peak increases in SBP were not different between PPE and Ctrl during apnea (8 ± 6 vs. 6 ± 5 mmHg, P = 0.32) or mental stress (9 ± 5 vs. 4 ± 7 mmHg, P = 0.06). However, peak exercise-induced increases in SBP were greater in PPE than Ctrl (11 ± 5 vs. 7 ± 7 mmHg, P = 0.04). MSNA was higher in PPE than Ctrl across all protocols (main effects of group all P < 0.05), and increases in peak MSNA were greater in PPE than Ctrl during apnea (44 ± 6 vs. 27 ± 14 burst/100 hb, P = 0.04) and exercise (25 ± 8 vs. 13 ± 11 burst/100 hb, P = 0.01) but not different between groups during mental stress (2 ± 3 vs. 0 ± 5 burst/100 hb, P = 0.41). Exaggerated pressor and sympathetic responses to certain stimuli may contribute to the elevated long-term risk for cardiovascular disease in PPE.NEW & NOTEWORTHY Women with recent histories of preeclampsia demonstrated higher systolic blood pressures across sympathoexcitatory stressors relative to controls. Peak systolic blood pressure reactivity was exacerbated in previously preeclamptic women during small muscle-mass exercises, although not during apneic or mental stress stimuli. These findings underscore the importance of assessing blood pressure control during a variety of experimental conditions in previously preeclamptic women to elucidate mechanisms that may contribute to their elevated cardiovascular disease risk.
Collapse
Affiliation(s)
- Danielle E Berbrier
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Tessa E Adler
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
| | - Cheryl A Leone
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
12
|
Carvalho F, Magalhaes C, Fernandez-Llimos F, Mendes J, Gonçalves J. Effect of T2-T4 sympathicotomy in skin temperature of pediatric patients with hyperhidrosis: a thermographic follow-up. Clin Auton Res 2024; 34:379-382. [PMID: 38913299 DOI: 10.1007/s10286-024-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Fátima Carvalho
- Department of Pediatric Surgery, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Carolina Magalhaes
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- LABIOMEP, UISPA-LAETA-INEGI, Porto, Portugal
| | - Fernando Fernandez-Llimos
- UCIBIO-Applied Molecular Biosciences Unit, i4HB-Institute for Health and Bioeconomy, Laboratory of Pharmacology, Faculty of Pharmacy, Universidade of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Joaquim Mendes
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- LABIOMEP, UISPA-LAETA-INEGI, Porto, Portugal
| | - Jorge Gonçalves
- UCIBIO-Applied Molecular Biosciences Unit, i4HB-Institute for Health and Bioeconomy, Laboratory of Pharmacology, Faculty of Pharmacy, Universidade of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
13
|
Thompson SL, Brade CJ, Henley-Martin SR, Naylor LH, Spence AL. Vascular adaptation to exercise: a systematic review and audit of female representation. Am J Physiol Heart Circ Physiol 2024; 326:H971-H985. [PMID: 38391316 DOI: 10.1152/ajpheart.00788.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Biological sex is a salient factor in exercise-induced vascular adaptation. Although a male bias is apparent in the literature, the methodological quality of available studies in females is not yet known. This systematic review with narrative synthesis aimed to assess available evidence of exercise interventions on endothelial function, measured using flow-mediated dilation, in otherwise healthy individuals and athletes. A standardized audit framework was applied to quantify the representation of female participants. Using a tiered grading system, studies that met best-practice recommendations for conducting physiological research in females were identified. A total of 210 studies in 5,997 participants were included, with 18% classified as athletes. The primary exercise mode and duration were aerobic (49%) and acute (61%), respectively. Despite 53% of studies (n = 111) including at least one female, female participants accounted for only 39% of the total study population but 49% of the athlete population. Majority (49%) of studies in females were conducted in premenopausal participants. No studies in naturally menstruating, hormonal contraceptive-users or in participants experiencing menstrual irregularities met all best-practice recommendations. Very few studies (∼5%) achieved best-practice methodological guidelines for studying females and those that did were limited to menopause and pregnant cohorts. In addition to the underrepresentation of female participants in exercise-induced vascular adaptation research, there remains insufficient high-quality evidence with acceptable methodological control of ovarian hormones. To improve the overall methodological quality of evidence, adequate detail regarding menstrual status should be prioritized when including females in vascular and exercise research contexts.
Collapse
Affiliation(s)
- Sarah L Thompson
- Exercise Science, Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Carly J Brade
- Exercise Science, Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Sarah R Henley-Martin
- Exercise Science, Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Louise H Naylor
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia, Australia
| | - Angela L Spence
- Exercise Science, Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Landers-Ramos RQ, Dondero K, Imery I, Reveille N, Zabriskie HA, Dobrosielski DA. Influence of cardiorespiratory fitness and body composition on resting and post-exercise indices of vascular health in young adults. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:54-62. [PMID: 38463670 PMCID: PMC10918352 DOI: 10.1016/j.smhs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 03/12/2024] Open
Abstract
Poor cardiorespiratory fitness may mediate vascular impairments at rest and following an acute bout of exercise in young healthy individuals. This study aimed to compare flow mediated dilation (FMD) and vascular augmentation index (AIx75) between young adults with low, moderate, and high levels of cardiorespiratory fitness before and after an acute bout of aerobic exercise. Forty-three participants (22 men; 21 women) between 18 and 29 years of age completed the study. Participants were classified into low, moderate, and high health-related cardiorespiratory fitness groups according to age- and sex-based relative maximal oxygen consumption (V ˙ O2 max) percentile rankings. FMD was performed using Doppler ultrasound and AIx75 was performed using pulse wave analysis at baseline and 60-min after a 30-min bout of treadmill running at 70% V ˙ O2 max. A significant interaction (p = 0.047; ηp2 = 0.142) was observed, with the moderate fitness group exhibiting a higher FMD post-exercise compared with baseline ([6.7% ± 3.1%] vs. [8.5% ± 2.8%], p = 0.028; d = 0.598). We found a significant main effect of group for AIx75 (p = 0.023; ηp2 = 0.168), with the high fitness group exhibiting lower AIx75 compared to low fitness group ([-10% ± 10%] vs. [2% ± 10%], respectively, p = 0.019; g = 1.07). This was eliminated after covarying for body fat percentage (p = 0.489). Our findings suggest that resting FMD and AIx75 responses are not significantly influenced by cardiorespiratory fitness, but FMD recovery responses to exercise may be enhanced in individuals with moderate cardiorespiratory fitness levels.
Collapse
Affiliation(s)
| | - Kathleen Dondero
- Towson University, Department of Kinesiology, Towson, MD, USA
- University of Maryland School of Medicine, Department of Physical Therapy and Rehabilitation Sciences, Baltimore, MD, USA
| | - Ian Imery
- Johns Hopkins University, Department of Cell Biology, Baltimore, MD, USA
- University of Florida, Department of Applied Physiology and Kinesiology, Gainesville, FL, USA
| | | | | | | |
Collapse
|
15
|
Kirby NV, Meade RD, Richards BJ, Notley SR, Kenny GP. Hormonal intrauterine devices and heat exchange during exercise. J Physiol 2024; 602:875-890. [PMID: 38367251 DOI: 10.1113/jp285977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024] Open
Abstract
Synthetic progestins in oral contraceptives are thought to blunt heat dissipation by reducing skin blood flow and sweating. However, whether progestin-releasing intrauterine devices (IUDs) modulate heat loss during exercise-heat stress is unknown. We used direct calorimetry to measure whole-body total (dry + evaporative) heat loss in young, physically active women (mean (SD); aged 24 (4) years,V ̇ O 2 peak ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{peak}}}}$ 39.3 (5.3) ml/kg/min) with (IUD; n = 19) and without (Control; n = 17) IUDs in the follicular and luteal phases of the menstrual cycle during light- and moderate-intensity exercise at fixed rates of heat production (∼175 and ∼275 W/m2 ) in 30°C, ∼21% relative humidity. Between-group and -phase differences were evaluated using traditional hypothesis testing and statistical equivalence testing within pre-determined bounds (±11 W/m2 ; difference required to elicit a ±0.3°C difference in core temperature over 1 h) in each exercise bout. Whole-body total heat loss was statistically equivalent between groups within ±11 W m-2 (IUD-Control [90% CIs]; Light: -2 [-8, 5] W/m2 , P = 0.007; Moderate: 0 [-6, 6] W/m2 , P = 0.002), as were dry and evaporative heat loss (P ≤ 0.023), except for evaporative heat loss during moderate-intensity exercise (equivalence: P = 0.063, difference: P = 0.647). Whole-body total and evaporative heat loss were not different between phases (P ≥ 0.267), but dry heat loss was 3 [95% CIs: 1, 5] W/m2 greater in the luteal phase (P ≤ 0.022). Despite this, all whole-body heat loss outcomes were equivalent between phases (P ≤ 0.003). These findings expand our understanding of the factors that modulate heat exchange in women and provide valuable mechanistic insight of the role of endogenous and exogenous female sex hormones in thermoregulation. KEY POINTS: Progestin released by hormonal intrauterine devices (IUDs) may negatively impact heat dissipation during exercise by blunting skin blood flow and sweating. However, the influence of IUDs on thermoregulation has not previously been assessed. We used direct calorimetry to show that IUD users and non-users display statistically equivalent whole-body dry and evaporative heat loss, body heat storage and oesophageal temperature during moderate- and high-intensity exercise in a warm, dry environment, indicating that IUDs do not appear to compromise exercise thermoregulation. However, within IUD users and non-users, dry heat loss was increased and body heat storage and oesophageal temperature were reduced in the luteal compared to the follicular phase of the menstrual cycle, though these effects were small and unlikely to be practically meaningful. Together, these findings expand our understanding of the factors that modulate heat exchange in women and have important practical implications for the design of future studies of exercise thermoregulation.
Collapse
Affiliation(s)
- Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Brodie J Richards
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Usselman CW, Lindsey ML, Robinson AT, Habecker BA, Taylor CE, Merryman WD, Kimmerly D, Bender JR, Regensteiner JG, Moreau KL, Pilote L, Wenner MM, O'Brien M, Yarovinsky TO, Stachenfeld NS, Charkoudian N, Denfeld QE, Moreira-Bouchard JD, Pyle WG, DeLeon-Pennell KY. Guidelines on the use of sex and gender in cardiovascular research. Am J Physiol Heart Circ Physiol 2024; 326:H238-H255. [PMID: 37999647 PMCID: PMC11219057 DOI: 10.1152/ajpheart.00535.2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
In cardiovascular research, sex and gender have not typically been considered in research design and reporting until recently. This has resulted in clinical research findings from which not only all women, but also gender-diverse individuals have been excluded. The resulting dearth of data has led to a lack of sex- and gender-specific clinical guidelines and raises serious questions about evidence-based care. Basic research has also excluded considerations of sex. Including sex and/or gender as research variables not only has the potential to improve the health of society overall now, but it also provides a foundation of knowledge on which to build future advances. The goal of this guidelines article is to provide advice on best practices to include sex and gender considerations in study design, as well as data collection, analysis, and interpretation to optimally establish rigor and reproducibility needed to inform clinical decision-making and improve outcomes. In cardiovascular physiology, incorporating sex and gender is a necessary component when optimally designing and executing research plans. The guidelines serve as the first guidance on how to include sex and gender in cardiovascular research. We provide here a beginning path toward achieving this goal and improve the ability of the research community to interpret results through a sex and gender lens to enable comparison across studies and laboratories, resulting in better health for all.
Collapse
Affiliation(s)
- Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Derek Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey R Bender
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Judith G Regensteiner
- Divisions of General Internal Medicine and Cardiology, Department of Medicine, Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, Colorado, United States
| | - Louise Pilote
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Myles O'Brien
- School of Physiotherapy and Department of Medicine, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timur O Yarovinsky
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Quin E Denfeld
- School of Nursing and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Jesse D Moreira-Bouchard
- Q.U.E.E.R. Lab, Programs in Human Physiology, Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston, Massachusetts, United States
| | - W Glen Pyle
- IMPART Team Canada Network, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kristine Y DeLeon-Pennell
- School of Medicine, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
17
|
Lee JB, Thompson KMA, Teixeira AL, Burr JF, Millar PJ. Cardiovascular responses to combined mechanoreflex and metaboreflex activation in healthy adults: effects of sex and low- versus high-hormone phases in females. J Appl Physiol (1985) 2023; 135:1102-1114. [PMID: 37795529 DOI: 10.1152/japplphysiol.00775.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Females generally have smaller blood pressure (BP) responses to isolated muscle mechanoreflex and metaboreflex activation compared with males, which may explain sex differences in BP responses to voluntary exercise. The mechanoreflex may be sensitized during exercise, but whether mechanoreflex-metaboreflex interactions differ by sex or variations in sex hormones remains unknown. Thirty-one young healthy subjects (females, n = 16) performed unilateral passive cycling (mechanoreflex), active cycling (40% peak Watts), postexercise circulatory occlusion (PECO; metaboreflex), and passive cycling combined with PECO (combined mechanoreflex and metaboreflex activation). Beat-to-beat BP, heart rate, inactive leg vascular conductance, and active leg muscle oxygenation were measured. Ten females underwent exploratory testing during low- and high-hormone phases of their self-reported menstrual cycle or oral contraceptive use. Systolic BP and heart rate responses did not differ between sexes during active cycling [Δ30 ± 9 vs. 29 ± 11 mmHg (males vs. females), P = 0.9; Δ33 ± 8 vs. 35 ± 6 beats/min, P = 0.4] or passive cycling with PECO (Δ26 ± 11 vs. 21 ± 10 mmHg, P = 0.3; Δ14 ± 7 vs. 18 ± 15 beats/min, P = 0.3). Passive cycling with PECO revealed additive, not synergistic, effects for systolic BP [males: Δ23 ± 14 vs. 26 ± 11 mmHg (sum of isolated passive cycling and PECO vs. combined activation); females: Δ26 ± 11 vs. 21 ± 12 mmHg, interaction P = 0.05]. Results were consistent in subset analyses with sex differences in active cycling BP (P > 0.1) and exploratory analyses of hormone phase (P > 0.4). Despite a lack of statistical equivalence, no differences in cardiovascular responses were found during combined mechanoreflex-metaboreflex activation between sexes or hormone levels. These results provide preliminary data regarding the involvement of muscle mechanoreflex-metaboreflex interactions in mediating sex differences in voluntary exercise BP responses.NEW & NOTEWORTHY The muscle mechanoreflex may be sensitized by metabolites during exercise. We show that cardiovascular responses to combined mechanoreflex (passive cycling) and metaboreflex (postexercise circulatory occlusion) activation are primarily additive and do not differ between males and females, or across variations in sex hormones in females. Our findings provide new insight into the contributions of muscle mechanoreflex-metaboreflex interactions as a cause for prior reports that females have smaller blood pressure responses to voluntary exercise.
Collapse
Affiliation(s)
- Jordan B Lee
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle M A Thompson
- Human Performance and Health Research Lab, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamie F Burr
- Human Performance and Health Research Lab, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
18
|
Martin ZT, Al-Daas IO, Cardenas N, Kolade JO, Merlau ER, Vu JK, Brown KK, Brothers RM. Peripheral and Cerebral Vasodilation in Black and White Women: Examining the Impact of Psychosocial Stress Exposure Versus Internalization and Coping. Hypertension 2023; 80:2122-2134. [PMID: 37534492 PMCID: PMC10530116 DOI: 10.1161/hypertensionaha.123.21230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Black women have among the highest rates of cardiovascular and cerebrovascular disease prevalence and mortality in part due to blunted vascular function. Psychosocial stress likely also contributes but its relationship to vascular function remains incompletely understood. Recent studies suggest that stress internalization and coping strategies are more important than stress exposures alone. We hypothesized that Black women would have blunted peripheral and cerebral vasodilation and that, among Black women, this would be inversely related with psychosocial stress internalization/coping but not stress exposures. METHODS Healthy Black (n=21; 20±2 years) and White (n=16; 25±7 years) women underwent testing for forearm reactive hyperemia, brachial artery flow-mediated dilation (FMD), and cerebrovascular reactivity. Psychosocial stress exposures (adverse childhood experiences; past week discrimination) and internalization/coping techniques (John Henryism Active Coping Scale; Giscombe Superwoman Schema Questionnaire) were assessed. RESULTS Reactive hyperemia and cerebrovascular reactivity were not different between groups (P>0.05), whereas FMD was lower in Black women (P=0.007). Neither adverse childhood experiences nor past week discrimination were associated with FMD in either group (P>0.05 for all). John Henryism Active Coping Scale scores were negatively associated with FMD in Black women (P=0.014) but positively associated with FMD in White women (P=0.042). Superwoman Schema-Succeed was negatively associated (P=0.044) and Superwoman Schema-Vulnerable tended to be negatively associated (P=0.057) with FMD in Black women. CONCLUSIONS These findings indicate that blunted FMD in Black women may be due more to stress internalization and maladaptive coping than stress exposures alone.
Collapse
Affiliation(s)
- Zachary T Martin
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Iman O Al-Daas
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Natalia Cardenas
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - John O Kolade
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Emily R Merlau
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Joshua K Vu
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Kyrah K Brown
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| |
Collapse
|
19
|
Williams JS, Stone JC, Masood Z, Bostad W, Gibala MJ, MacDonald MJ. The impact of natural menstrual cycle and oral contraceptive pill phase on substrate oxidation during rest and acute submaximal aerobic exercise. J Appl Physiol (1985) 2023; 135:642-654. [PMID: 37498292 DOI: 10.1152/japplphysiol.00111.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Previous research has identified sex differences in substrate oxidation during submaximal aerobic exercise including a lower respiratory exchange ratio (RER) in females compared with males. These differences may be related to differences in sex hormones. Our purpose was to examine the impact of the natural menstrual cycle (NAT) and second- and third-generation oral contraceptive pill (OCP2 and OCP3) cycle phases on substrate oxidation during rest and submaximal aerobic exercise. Fifty female participants (18 NAT, 17 OCP2, and 15 OCP3) performed two experimental trials that coincided with the low (i.e., nonactive pill/early follicular) and the high hormone (i.e., active pill/midluteal) phase of their cycle. RER and carbohydrate and lipid oxidation rates were determined from gas exchange measurements performed during 10 min of supine rest, 5 min of seated rest, and two 8-min bouts of submaximal cycling exercise at ∼40% and ∼65% of peak oxygen uptake (V̇o2peak). For all groups, there were no differences in RER between the low and high hormone phases during supine rest (0.73 ± 0.05 vs. 0.74 ± 0.05), seated rest (0.72 ± 0.04 vs. 0.72 ± 0.04), exercise at 40% (0.77 ± 0.04 vs. 0.78 ± 0.04), and 65% V̇o2peak (0.85 ± 0.04 vs. 0.86 ± 0.03; P > 0.19 for all). Similarly, carbohydrate and lipid oxidation rates remained largely unchanged across phases during both rest and exercise, apart from higher carbohydrate oxidation in NAT vs. OCP2 at 40% V̇o2peak (P = 0.019) and 65% V̇o2peak (P = 0.001). NAT and OCPs do not appear to largely influence substrate oxidation at rest and during acute submaximal aerobic exercise.NEW & NOTEWORTHY This study was the first to examine the influence of NAT and two generations of OCPs on substrate oxidation during rest and acute submaximal aerobic exercise. We reported no differences across cycle phases or groups on RER, and minimal impact on carbohydrate or lipid oxidation apart from an increase in carbohydrate oxidation in NAT compared with OCP2 during exercise. Based on these findings, NAT/OCP phase controls may not be necessary in studies investigating substrate oxidation.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jenna C Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Zaryan Masood
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - William Bostad
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Zuelch ML, Radtke MD, Holt RR, Basu A, Burton-Freeman B, Ferruzzi MG, Li Z, Shay NF, Shukitt-Hale B, Keen CL, Steinberg FM, Hackman RM. Perspective: Challenges and Future Directions in Clinical Research with Nuts and Berries. Adv Nutr 2023; 14:1005-1028. [PMID: 37536565 PMCID: PMC10509432 DOI: 10.1016/j.advnut.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Consumption of nuts and berries are considered part of a healthy eating pattern. Nuts and berries contain a complex nutrient profile consisting of essential vitamins and minerals, fiber, polyunsaturated fatty acids, and phenolics in quantities that improve physiological outcomes. The spectrum of health outcomes that may be impacted by the consumptions of nuts and berries includes cardiovascular, gut microbiome, and cognitive, among others. Recently, new insights regarding the bioactive compounds found in both nuts and berries have reinforced their role for use in precision nutrition efforts. However, challenges exist that can affect the generalizability of outcomes from clinical studies, including inconsistency in study designs, homogeneity of test populations, variability in test products and control foods, and assessing realistic portion sizes. Future research centered on precision nutrition and multi-omics technologies will yield new insights. These and other topics such as funding streams and perceived risk-of-bias were explored at an international nutrition conference focused on the role of nuts and berries in clinical nutrition. Successes, challenges, and future directions with these foods are presented here.
Collapse
Affiliation(s)
- Michelle L Zuelch
- Department of Nutrition, University of California, Davis, CA, United States
| | - Marcela D Radtke
- Department of Nutrition, University of California, Davis, CA, United States
| | - Roberta R Holt
- Department of Nutrition, University of California, Davis, CA, United States
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, United States
| | - Britt Burton-Freeman
- Department of Food Science and Nutrition, Illinois Institute of Technology, Chicago, IL, United States
| | - Mario G Ferruzzi
- Department of Pediatrics, Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Zhaoping Li
- UCLA Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Neil F Shay
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Barbara Shukitt-Hale
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, CA, United States; Department of Internal Medicine, University of California, Davis, CA, United States
| | | | - Robert M Hackman
- Department of Nutrition, University of California, Davis, CA, United States.
| |
Collapse
|
21
|
Laginestra FG, Favaretto T, Giuriato G, Martignon C, Barbi C, Pedrinolla A, Cavicchia A, Venturelli M. Concurrent metaboreflex activation increases chronotropic and ventilatory responses to passive leg movement without sex-related differences. Eur J Appl Physiol 2023; 123:1751-1762. [PMID: 37014452 PMCID: PMC10363078 DOI: 10.1007/s00421-023-05186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Previous studies in animal models showed that exercise-induced metabolites accumulation may sensitize the mechanoreflex-induced response. The aim of this study was to assess whether the magnitude of the central hemodynamic and ventilatory adjustments evoked by isolated stimulation of the mechanoreceptors in humans are influenced by the prior accumulation of metabolic byproducts in the muscle. 10 males and 10 females performed two exercise bouts consisting of 5-min of intermittent isometric knee-extensions performed 10% above the previously determined critical force. Post-exercise, the subjects recovered for 5 min either with a suprasystolic circulatory occlusion applied to the exercised quadriceps (PECO) or under freely-perfused conditions (CON). Afterwards, 1-min of continuous passive leg movement was performed. Central hemodynamics, pulmonary data, and electromyography from exercising/passively-moved leg were recorded throughout the trial. Root mean square of successive differences (RMSSD, index of vagal tone) was also calculated. Δpeak responses of heart rate (ΔHR) and ventilation ([Formula: see text]) to passive leg movement were higher in PECO compared to CON (ΔHR: 6 ± 5 vs 2 ± 4 bpm, p = 0.01; 3.9 ± 3.4 vs 1.9 ± 1.7 L min-1, p = 0.02). Δpeak of mean arterial pressure (ΔMAP) was significantly different between conditions (5 ± 3 vs - 3 ± 3 mmHg, p < 0.01). Changes in RMSSD with passive leg movement were different between PECO and CON (p < 0.01), with a decrease only in the former (39 ± 18 to 32 ± 15 ms, p = 0.04). No difference was found in all the other measured variables between conditions (p > 0.05). These findings suggest that mechanoreflex-mediated increases in HR and [Formula: see text] are sensitized by metabolites accumulation. These responses were not influenced by biological sex.
Collapse
Affiliation(s)
- Fabio Giuseppe Laginestra
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy.
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, UT, 84148, USA.
| | - Thomas Favaretto
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Gaia Giuriato
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Camilla Martignon
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Alessandro Cavicchia
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
- Respiratory Rehabilitation of the Institute of Lumezzane, Istituti Clinici Scientifici Maugeri IRCCS, Lumezzane, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, UT, 84148, USA
| |
Collapse
|
22
|
Jacob DW, Morgenthaler LD, Harper JL, Limberg JK. The forearm vascular response to sympathetic activation is attenuated in female, but not male, participants following acute intermittent hypoxia. J Appl Physiol (1985) 2023; 135:352-361. [PMID: 37410902 PMCID: PMC10396222 DOI: 10.1152/japplphysiol.00760.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Acute exposure to hypoxia promotes both an increase in sympathetic nervous system activity (SNA) and local vasodilation. In rodents, intermittent hypoxia (IH)-mediated increases in SNA are associated with an increase in blood pressure in males but not females; notably, the protective effect of female sex is lost following ovariectomy. These data suggest the vascular response to hypoxia and/or SNA following IH may be sex- and/or hormone specific-although mechanisms are unclear. We hypothesized that hypoxia-mediated vasodilation and SNA-mediated vasoconstriction would be unchanged following acute IH in male adults. We further hypothesized that hypoxic vasodilation would be augmented and SNA-mediated vasoconstriction would be attenuated in female adults following acute IH, with the greatest effect when endogenous estradiol was high. Twelve male (25 ± 1 yr) and 10 female (25 ± 1 yr) participants underwent 30 min of IH. Females were studied in a low (early follicular) and high (late follicular) estradiol state. Preceding and following IH, participants completed two trials [steady-state hypoxia and cold pressor test (CPT)], where forearm blood flow and blood pressure were measured and used to determine forearm vascular conductance (FVC). The FVC response to hypoxia (P = 0.67) and sympathetic activation (P = 0.73) were unchanged following IH in males. There was no effect of IH on hypoxic vasodilation in females, regardless of estradiol state (P = 0.75). In contrast, the vascular response to sympathetic activation was attenuated in females following IH (P = 0.02), independent of estradiol state (P = 0.65). Present data highlight sex-related differences in neurovascular responsiveness following acute IH.NEW & NOTEWORTHY We examined the effects of acute intermittent hypoxia (AIH) on the vascular response to sympathetic activation and acute hypoxia. Present findings show, despite no effect of AIH on the vascular response to hypoxia, the forearm vasoconstrictor response to acute sympathetic activation is attenuated in females following AIH, independent of estradiol state. These data provide mechanistic understanding of potential benefits of AIH, as well as the impact of biological sex.
Collapse
Affiliation(s)
- Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Leandra D Morgenthaler
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
23
|
Turner CG, Walker DC, Wong BJ. Contribution of sensory nerves to cutaneous reactive hyperaemia in non-Hispanic Black and White young adults. Exp Physiol 2023; 108:802-809. [PMID: 37029658 PMCID: PMC10363287 DOI: 10.1113/ep091178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 04/09/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does cutaneous sensory nerve-mediated vasodilatation differ between non-Hispanic Black and White young adults? What is the main finding and its importance? The magnitude of cutaneous reactive hyperaemia is lower in non-Hispanic Black relative to non-Hispanic White young adults, but the overall sensory nerve contribution is the same, suggesting that sensory nerve function is similar in both non-Hispanic Black and White young adults. ABSTRACT The aim of this study was to assess cutaneous sensory nerve function, independent of nitric oxide, in non-Hispanic Black and White young adults. We tested the hypothesis that cutaneous reactive hyperaemia and sensory nerve-mediated vasodilatation would be lower in non-Hispanic Black young adults relative to non-Hispanic White young adults. Twenty-four participants who self-identified as non-Hispanic Black (n = 12) or non-Hispanic White (n = 12) were recruited. All participants underwent three bouts of reactive hyperaemia. An index of skin blood flow was measured continuously using laser-Doppler flowmetry at a control site and at a site treated with topical 4% lignocaine to inhibit sensory nerve function. Peak reactive hyperaemia was lower in non-Hispanic Black relative to non-Hispanic White participants (P < 0.001). Total reactive hyperaemia was lower in non-Hispanic Black [mean (SD); control, 4085 (955)%CVCmax s; lignocaine, 2127 (639) percent maximal cutaneous vascular conductance * seconds, %CVCmax s] relative to non-Hispanic White [control: 6820 (1179)%CVCmax s; lignocaine, 3573 (712)%CVCmax s] participants (P < 0.001 for both sites). There was no difference between groups for the calculated contribution of sensory nerves to either the peak [non-Hispanic Black, 25 (14)%; non-Hispanic White, 19 (13)%] or total reactive hyperaemic response [non-Hispanic Black, 48 (10)%; non-Hispanic White, 47 (10)%]. These data suggest that cutaneous reactive hyperaemia is lower in non-Hispanic Black young adults, but the sensory nerve contribution is similar in non-Hispanic Black and White young adults.
Collapse
Affiliation(s)
- Casey G. Turner
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Demetria C. Walker
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Brett J. Wong
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
24
|
Weggen JB, Hogwood AC, Decker KP, Darling AM, Chiu A, Richardson J, Garten RS. Vascular Responses to Passive and Active Movement in Premenopausal Females: Comparisons across Sex and Menstrual Cycle Phase. Med Sci Sports Exerc 2023; 55:900-910. [PMID: 36728956 DOI: 10.1249/mss.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Adequate, robust vascular responses to passive and active movement represent two distinct components linked to normal, healthy cardiovascular function. Currently, limited research exists determining if these vascular responses are altered in premenopausal females (PMF) when compared across sex or menstrual cycle phase. METHODS Vascular responses to passive leg movement (PLM) and handgrip (HG) exercise were assessed in PMF ( n = 21) and age-matched men ( n = 21). A subset of PMF subjects ( n = 11) completed both assessments during the early and late follicular phase of their menstrual cycle. Microvascular function was assessed during PLM via changes in leg blood flow, and during HG exercise, via steady-state arm vascular conductance. Macrovascular (brachial artery [BA]) function was assessed during HG exercise via BA dilation responses as well as BA shear rate-dilation slopes. RESULTS Leg microvascular function, determined by PLM, was not different between sexes or across menstrual cycle phase. However, arm microvascular function, demonstrated by arm vascular conductance, was lower in PMF compared with men at rest and during HG exercise. Macrovascular function was not different between sexes or across menstrual cycle phase. CONCLUSIONS This study identified similar vascular function across sex and menstrual cycle phase seen in microvasculature of the leg and macrovascular (BA) of the arm. Although arm microvascular function was unaltered by menstrual cycle phase in PMF, it was revealed to be significantly lower when compared with age-matched men highlighting a sex difference in vascular/blood flow regulation during small muscle mass exercise.
Collapse
Affiliation(s)
- Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, VA
| | - Kevin P Decker
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE
| | - Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Alex Chiu
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Jacob Richardson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
25
|
D’Agata MN, Matias AA, Witman MA. We like to move it, move it: A perspective on performing passive leg movement as a non-invasive assessment of vascular function in pediatric populations. Front Physiol 2023; 14:1165800. [PMID: 37179828 PMCID: PMC10169695 DOI: 10.3389/fphys.2023.1165800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
The passive leg movement (PLM) technique is a non-invasive assessment of lower-limb vascular function. PLM is methodologically simple to perform and utilizes Doppler ultrasound to determine leg blood flow (LBF) through the common femoral artery at rest and in response to passive movement of the lower leg. LBF responses to PLM have been reported to be mostly nitric oxide (NO)-mediated when performed in young adults. Moreover, PLM-induced LBF responses, as well as the NO contribution to PLM-induced LBF responses, are reduced with age and in various diseased populations, demonstrating the clinical utility of this non-invasive test. However, no PLM studies to date have included children or adolescents. Since its conception in 2015, our laboratory has performed PLM on hundreds of individuals including a large cohort of children and adolescents. Thus, the purpose of this perspective article is threefold: 1) to uniquely discuss the feasibility of performing PLM in children and adolescents, 2) to report PLM-induced LBF values from our laboratory in 7-17-year-olds, and 3) to discuss considerations for making comparisons among pediatric populations. Based on our experiences performing PLM in children and adolescents (among various other age groups), it is our perspective that PLM can feasibly be performed in this population. Further, data from our laboratory may be used to provide context for typical PLM-induced LBF values that could be observed in children and adolescents, as well as across the lifespan.
Collapse
Affiliation(s)
| | | | - Melissa A. Witman
- Vascular Function in Chronic Disease Research Laboratory, Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
26
|
McClean ZJ, Young A, Pohl AJ, Fine NM, Burr JF, MacInnis M, Aboodarda SJ. Blood flow restriction during high-intensity interval cycling exacerbates psychophysiological responses to a greater extent in females than males. J Appl Physiol (1985) 2023; 134:596-609. [PMID: 36701480 DOI: 10.1152/japplphysiol.00567.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study aimed to characterize neuromuscular, perceptual, and cardiorespiratory responses to high-intensity interval training (HIIT) with superimposed blood flow restriction in males and females. Twenty-four, healthy individuals (n = 12 females) completed two cycling HIIT protocols to task failure (1-min work phases at 90% of peak power output interspersed by 1-min rest phases). The blood flow restriction (BFR) and control (CON) protocols were identical except for the presence and absence of BFR during rest phases, respectively. The interpolated twitch technique, including maximal voluntary isometric knee extension (MVC) and femoral nerve electrical stimuli, was performed at baseline, every six intervals, and task failure. Perceptual and cardiorespiratory responses were recorded every three intervals and continuously during exercise, respectively. Bayesian inference was used to obtain the joint posterior distribution for all parameters and evidence of an effect was determined via the marginal posterior probability (PP). The BFR shortened task duration by 57.3% compared with CON (PP > 0.99), without a sex difference. The application of BFR exacerbated the rate of decline in neuromuscular measures (MVC and twitch force output), increase of perceptual responses (perceived effort, pain, dyspnea, fatigue), and development of cardiorespiratory parameters (minute ventilation and heart rate), compared with CON (PP > 0.95). In addition, BFR exacerbated the neuromuscular, perceptual, and cardiorespiratory responses to a greater extent in females than males (PP > 0.99). Our results suggest that superimposition of blood flow restriction exacerbates psychophysiological responses to a HIIT protocol to a greater extent in females than males.NEW & NOTEWORTHY To our knowledge, no study has explored sex differences in the neuromuscular, perceptual, and cardiorespiratory indices characterizing exercise tolerance during high-intensity interval training (HIIT) with blood flow restriction (BFR) applied only during rest periods. Our results suggest that BFR elicited a decline in exercise performance that could be attributed to integration of psychophysiological responses. However, this integration was sex-dependent where females demonstrated an exacerbated rate of change in these responses compared with males.
Collapse
Affiliation(s)
- Zachary J McClean
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Abbey Young
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Pohl
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nowell M Fine
- Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jamie F Burr
- College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Martin MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Saied J Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
James JJ, Leach OK, Young AM, Newman AN, Mpongo KL, Quirante JM, Wardell DB, Ahmadi M, Gifford JR. The exercise power-duration relationship is equally reproducible in eumenorrheic female and male humans. J Appl Physiol (1985) 2023; 134:230-241. [PMID: 36548510 DOI: 10.1152/japplphysiol.00416.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the effect of the menstrual cycle (MC) on exercise performance across the power-duration relationship (PDR). We hypothesized females would exhibit greater variability in the PDR across the MC than males across a similar timespan, with critical power (CP) and work-prime (W') being lower during the early follicular phase than the late follicular and midluteal phases. Seven eumenorrheic, endurance-trained female adults performed multiple constant-load-to-task-failure and maximum-power tests at three timepoints across the MC (early follicular, late follicular, and midluteal phases). Ten endurance-trained male adults performed the same tests approximately 10 days apart. No differences across the PDR were observed between MC phases (CP: 186.74 ± 31.00 W, P = 0.955, CV = 0.81 ± 0.65%) (W': 7,961.81 ± 2,537.68 J, P = 0.476, CV = 10.48 ± 3.06%). CP was similar for male and female subjects (11.82 ± 1.42 W·kg-1 vs. 11.56 ± 1.51 W·kg-1, respectively) when controlling for leg lean mass. However, W' was larger (P = 0.047) for male subjects (617.28 ± 130.10 J·kg-1) than female subjects (490.03 ± 136.70 J·kg-1) when controlling for leg lean mass. MC phase does not need to be controlled when conducting aerobic endurance performance research on eumenorrheic female subjects without menstrual dysfunction. Nevertheless, several sex differences in the power-duration relationship exist, even after normalizing for body composition. Therefore, previous studies describing the physiology of exercise performance in male subjects may not perfectly describe that of female subjects.NEW & NOTEWORTHY Females are often excluded from exercise performance research due to experimental challenges in controlling for the menstrual cycle (MC), causing uncertainty regarding how the MC impacts female performance. The present study examined the influences that biological sex and the MC have on the power-duration relationship (PDR) by comparing critical power (CP), Work-prime (W'), and maximum power output (PMAX) in males and females. Our data provide evidence that the MC does not influence the PDR and that females exhibit similar reproducibility as males. Thus, when conducting aerobic endurance exercise research on eumenorrheic females without menstrual dysfunction, the phase of the MC does not need to be controlled. Although differences in body composition account for some differences between the sexes, sex differences in W' and PMAX persisted even after normalizing for different metrics of body composition. These data highlight the necessity and feasibility of examining sex differences in performance, as previously generated male-only data within the literature may not apply to female subjects.
Collapse
Affiliation(s)
- Jessica J James
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Olivia K Leach
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Arianna M Young
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Audrey N Newman
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Kiese L Mpongo
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jaron M Quirante
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Devon B Wardell
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Mohadeseh Ahmadi
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jayson R Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, Utah.,Program of Gerontology, Brigham Young University, Provo, Utah
| |
Collapse
|
28
|
Rogers EM, Banks NF, Jenkins NDM. Metabolic and microvascular function assessed using near-infrared spectroscopy with vascular occlusion in women: age differences and reliability. Exp Physiol 2023; 108:123-134. [PMID: 36420592 PMCID: PMC10103776 DOI: 10.1113/ep090540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can the near-infrared spectroscopy with vascular occlusion test (NIRS-VOT) reliably measure skeletal muscle metabolic and microvascular function in women? What is the main finding and its importance? The NIRS-VOT can be used as a reliable technique for the assessment of skeletal muscle metabolism and microvascular function in women, with reliability being generally greater in younger women. These findings have important implications for the planning and development of future studies employing the NIRS-VOT in women, and provide insights into the effects of age on these parameters in women specifically. ABSTRACT We investigated the test-retest reliability of, and age-related differences in, markers of skeletal muscle metabolism and microvascular function derived from the near-infrared spectroscopy with vascular occlusion test (NIRS-VOT) in younger women (YW) and middle-aged and older women (MAOW). Seventeen YW (age 23 ± 4 years) and 17 MAOW (age 59 ± 8 years) completed this study. Participants completed identical experimental visits separated by ∼4 weeks during which the NIRS-VOT was used to quantify the occlusion slope, minimum and maximum tissue saturation, ischaemic index, reperfusion magnitude, the reperfusion and 10-s reperfusion slopes (slope 2 and slope 210-s ), time to max tissue saturation, and area under the reperfusion curve using the local tissue oxygen saturation signal. Except for slope 210-s (intraclass correlation coefficient (ICC) = 0.37; coefficient of variation (CV) = 31%), time to max tissue saturation (ICC = 0.21), and ischaemic index (ICC = 0.37) for MAOW, all of the NIRS variables demonstrated good to excellent relative reliability for the YW (ICCs = 0.74-0.86) and the MAOW (ICCs = 0.51-0.87), with CVs of 2-21% and 2-22%, respectively. The occlusion slope was significantly lower, indicating accelerated deoxygenation, while maximum tissue saturation, reperfusion magnitude, and ischaemic index were significantly higher in YW versus MAOW. No other group differences were found. In conclusion, our data support the use of the NIRS-VOT as a simple, reliable, non-invasive technique for the assessment of peripheral skeletal muscle metabolism and microvascular function in women, with the reliability being generally greater in YW versus MAOW. Further, our data suggest that ageing is associated with lower skeletal muscle metabolism and microvascular hyperaemic responsiveness in women.
Collapse
Affiliation(s)
- Emily M. Rogers
- Integrative Laboratory of Applied Physiology and Lifestyle MedicineUniversity of IowaIowa CityIAUSA
| | - Nile F. Banks
- Integrative Laboratory of Applied Physiology and Lifestyle MedicineUniversity of IowaIowa CityIAUSA
| | - Nathaniel D. M. Jenkins
- Integrative Laboratory of Applied Physiology and Lifestyle MedicineUniversity of IowaIowa CityIAUSA
- Abboud Cardiovascular Research CenterUniversity of IowaIowa CityIAUSA
| |
Collapse
|
29
|
Jack J, Woodgates A, Smail O, Brown F, Lynam K, Lester A, Williams G, Bond B. Cerebral blood flow regulation is not acutely altered after a typical number of headers in women footballers. Front Neurol 2022; 13:1021536. [PMID: 36479047 PMCID: PMC9719992 DOI: 10.3389/fneur.2022.1021536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The repeated act of heading has been implicated in the link between football participation and risk of neurodegenerative disease, and acutely alters cerebrovascular outcomes in men. This study assessed whether exposure to a realistic number of headers acutely influences indices of cerebral blood flow regulation in female footballers. METHODS Nineteen female players completed a heading trial and seated control trial on two separate days. The heading trial involved six headers in 1 h (one every 10 min), with the ball traveling at 40 ± 5 km/h. Cerebrovascular reactivity to hypercapnia and hypocapnia was determined using serial breath holding and hyperventilation attempts. Dynamic cerebral autoregulation (dCA) was assessed by scrutinizing the relationship between cerebral blood flow and mean arterial blood pressure during 5 min of squat stand maneuvers at 0.05 Hz. Neurovascular coupling (NVC) was quantified as the posterior cerebral artery blood velocity response to a visual search task. These outcomes were assessed before and 1 h after the heading or control trial. RESULTS No significant time by trial interaction was present for the hypercapnic (P = 0.48,η p 2 = 0.05) and hypocapnic (P = 0.47,η p 2 = 0.06) challenge. Similarly, no significant interaction effect was present for any metric of dCA (P > 0.12,η p 2 < 0.16 for all) or NVC (P > 0.14,η p 2 < 0.15 for all). CONCLUSION The cerebral blood flow response to changes in carbon dioxide, blood pressure and a visual search task were not altered following six headers in female footballers. Further study is needed to observe whether changes are apparent after more prolonged exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bert Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) Research Group, Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
30
|
Carvalho F, Magalhaes C, Fernandez-Llimos F, Mendes J, Gonçalves J. Skin temperature response to thermal stimulus in patients with hyperhidrosis: A comparative study. J Therm Biol 2022; 109:103322. [DOI: 10.1016/j.jtherbio.2022.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
|
31
|
D'Agata MN, Hoopes EK, Witman MA. Associations between noninvasive upper- and lower-limb vascular function assessments: extending the evidence to young women. J Appl Physiol (1985) 2022; 133:886-892. [PMID: 36007894 PMCID: PMC9529273 DOI: 10.1152/japplphysiol.00177.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Brachial artery (BA) flow-mediated dilation (FMD) is a well-established measure of peripheral vascular function prognostic of future cardiovascular events. The vasodilatory response to FMD (FMD%) reflects upper-limb conduit artery function, whereas reactive hyperemia (RH) following cuff-occlusion release reflects upper-limb resistance artery function. Comparatively, passive leg movement (PLM) is a newer, increasingly utilized assessment of lower-limb resistance artery function. To increase its clinical utility, PLM-induced leg blood flow (LBF) responses have been compared with hemodynamic responses to FMD, but only in men. Therefore, the purpose of this study was to retrospectively compare LBF responses to FMD% and RH responses in women. We hypothesized that LBF responses would be positively associated with both FMD% and RH, but to a greater extent with RH. FMD and PLM were performed on 72 women (23 ± 4 yr). Arterial diameter and blood velocity were assessed using Doppler ultrasound. Pearson correlation coefficients were used to evaluate associations. Measures of resistance artery function were weakly positively associated: change in BA blood flow ΔBABF and ΔLBF (r = 0.33, P < 0.01), BABF area under the curve (BABF AUC) and LBF AUC (r = 0.33, P < 0.01), and BABFpeak and LBFpeak (r = 0.37, P < 0.01). However, FMD% was not associated with any index of PLM (all P > 0.30). In women, indices of resistance artery function in the upper- and lower limbs were positively associated. However, contrary to the previous work in men, upper-limb conduit artery function was not associated with lower-limb resistance artery function suggesting these assessments capture different aspects of vascular function and should not be used interchangeably in women.NEW & NOTEWORTHY Upper- and lower-limb indices of resistance artery function are positively associated in young women when assessed by reactive hyperemia following brachial artery flow-mediated dilation (FMD) cuff-occlusion release and leg blood flow responses to passive leg movement (PLM), respectively. However, despite previous data demonstrating a positive association between upper-limb conduit artery function assessed by FMD and lower-limb resistance artery function assessed by PLM in young men, these measures do not appear to be related in young women.
Collapse
Affiliation(s)
- Michele N D'Agata
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Elissa K Hoopes
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Melissa A Witman
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
32
|
San SY, Wan JM, Louie JCY. Effect of plant-based functional foods for the protection against salt-induced endothelial dysfunction. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Weston ME, Koep JL, Lester AB, Barker AR, Bond B. The acute effect of exercise intensity on peripheral and cerebral vascular function in healthy adults. J Appl Physiol (1985) 2022; 133:461-470. [PMID: 35796612 PMCID: PMC9377787 DOI: 10.1152/japplphysiol.00772.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The acute effect of exercise intensity on cerebrovascular reactivity and whether this mirrors changes in peripheral vascular function have not been investigated. The aim of this study was to explore the acute effect of exercise intensity on cerebrovascular reactivity (CVR) and peripheral vascular function in healthy young adults (n = 10, 6 females, 22.7 ± 3.5 yr). Participants completed four experimental conditions on separate days: high-intensity interval exercise (HIIE) with intervals performed at 75% maximal oxygen uptake (V̇o2max; HIIE1), HIIE with intervals performed at 90% V̇o2max (HIIE2), continuous moderate-intensity exercise (MIE) at 60% V̇o2max and a sedentary control condition (CON). All exercise conditions were completed on a cycle ergometer and matched for time (30 min) and average intensity (60% V̇o2max). Brachial artery flow-mediated dilation (FMD) and CVR of the middle cerebral artery were measured before exercise, and 1- and 3-h after exercise. CVR was assessed using transcranial Doppler ultrasonography to both hypercapnia (6% carbon dioxide breathing) and hypocapnia (hyperventilation). FMD was significantly elevated above baseline 1 and 3 h following both HIIE conditions (P < 0.05), but FMD was unchanged following the MIE and CON trials (P > 0.33). CVR to both hypercapnia and hypocapnia, and when expressed across the end-tidal CO2 range, was unchanged in all conditions, at all time points (all P > 0.14). In conclusion, these novel findings show that the acute increases in peripheral vascular function following HIIE, compared with MIE, were not mirrored by changes in cerebrovascular reactivity, which was unaltered following all exercise conditions in healthy young adults. NEW & NOTEWORTHY This is the first study to identify that acute improvements in peripheral vascular function following high-intensity interval exercise are not mirrored by improvements in cerebrovascular reactivity in healthy young adults. High-intensity interval exercise completed at both 75% and 90% V̇o2max increased brachial artery flow-mediated dilation 1 and 3 h following exercise, compared with continuous moderate-intensity exercise and a sedentary control condition. By contrast, cerebrovascular reactivity was unchanged following all four conditions.
Collapse
Affiliation(s)
- Max Edwin Weston
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Jodie L Koep
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Alice B Lester
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
34
|
Landers-Ramos R, Lawal I, Imery I, Siok D, Addison O, Zabriskie HA, Dondero K, Dobrosielski D. High-intensity functional exercise does not cause persistent elevations in augmentation index in young men and women. Appl Physiol Nutr Metab 2022; 47:963-972. [PMID: 35790116 DOI: 10.1139/apnm-2022-0081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevations in central augmentation index (AIx) are predictive of cardiovascular disease. Our objective was to examine AIx immediately and 24-hrs following an acute bout of high-intensity functional training (HIFT) in apparently healthy young adults. A second aim compared the exercise induced AIx recovery response between men and women. Thirty-two recreationally active younger adults (n=16 men) were tested. Baseline central hemodynamic measures were assessed, followed by a single bout of bodyweight HIFT. The HIFT included four rounds of burpees, jump squats, split squats, and walking lunges. Assessments were repeated 5-, 10-, 15- and 24-hrs post exercise. AIx was normalized to a heart rate of 75 bpm (AIx75). There was a significant main effect of time on AIx75 across all groups (p<0.001) with AIx75 increasing at all acute timepoints compared with baseline and returning to resting values 24-hrs post-exercise. When examining sex differences after covarying for height and body fat percentage, we found no time*sex interaction (p=0.62), or main effect for sex (p=0.41), but the significant main effect of time remained (p<0.001). The AIx75 response to HIFT follows a similar recovery pattern as previously studied modes of exercise with no residual effects 24 hrs later and no differences between men and women indicating no persistent cardiovascular strain in younger adults participating in this mode of exercise.
Collapse
Affiliation(s)
| | | | - Ian Imery
- Johns Hopkins University, 1466, Baltimore, United States;
| | - Dakota Siok
- Towson University, 1492, Towson, United States;
| | - Odessa Addison
- University of Maryland School of Medicine, 12264, Department of Physical Therapy and Rehabilitation Sciences, Baltimore, United States.,Geriatric Research and Clinical Center, Baltimore, United States;
| | | | - Kathleen Dondero
- Towson University, 1492, Department of Kinesiology, Towson, United States.,University of Maryland School of Medicine, 12264, Department of Physical Therapy and Rehabilitation Sciences, Baltimore, United States;
| | | |
Collapse
|
35
|
Weston ME, Barker AR, Tomlinson OW, Coombes JS, Bailey TG, Bond B. The effect of exercise intensity and cardiorespiratory fitness on the kinetic response of middle cerebral artery blood velocity during exercise in healthy adults. J Appl Physiol (1985) 2022; 133:214-222. [PMID: 35708705 PMCID: PMC9291408 DOI: 10.1152/japplphysiol.00862.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to compare the kinetic response of middle cerebral artery blood velocity (MCAv) to moderate- and heavy-intensity cycling in adults, and explore the relationship between maximal oxygen uptake (V̇o2max) and MCAv kinetics. Seventeen healthy adults (23.8 ± 2.4 yr, 9 females) completed a ramp incremental test to exhaustion on a cycle ergometer to determine V̇o2max and the gas exchange threshold (GET). Across six separate visits, participants completed three 6-min transitions at a moderate intensity (90% GET) and three at a heavy intensity (40% of the difference between GET and V̇o2max). Bilateral MCAv was measured using transcranial Doppler (TCD) ultrasonography and analyzed using a monoexponential model with a time delay. The time constant (τ) of the MCAv response was not different between moderate- and heavy-intensity cycling (25 ± 10 vs. 26 ± 8 s, P = 0.82), as was the time delay (29 ± 11 vs. 29 ± 10 s, P = 0.95). The amplitude of the exponential increase in MCAv from baseline was greater during heavy-intensity cycling (23.9 ± 10.0 cm·s-1, 34.1 ± 14.4%) compared with moderate-intensity cycling (12.7 ± 4.4 cm·s-1, 18.7 ± 7.5%; P < 0.01). Following the exponential increase, a greater fall in MCAv was observed during heavy-intensity exercise compared with moderate-intensity exercise (9.5 ± 6.9 vs. 2.8 ± 3.8 cm·s-1, P < 0.01). MCAv after 6 min of exercise remained elevated during heavy-intensity exercise compared with moderate-intensity exercise (85.2 ± 9.6 vs. 79.3 ± 7.7 cm·s-1, P ≤ 0.01). V̇o2max was not correlated with MCAv τ or amplitude (r = 0.11-0.26, P > 0.05). These data suggest that the intensity of constant-work rate exercise influences the amplitude, but not time-based, response parameters of MCAv in healthy adults, and found no relationship between cardiorespiratory fitness and MCAv kinetics.NEW & NOTEWORTHY This is the first study to model the MCAv kinetic response to moderate- and heavy-intensity cycling in healthy adults. This study found that the amplitude of the exponential rise in MCAv at exercise onset was greater during heavy-intensity exercise (∼34%) compared with moderate-intensity exercise (∼19%), but the time-based characteristics of the responses were similar between intensities. Higher cardiorespiratory fitness was not associated with a greater or faster MCAv response to moderate- or heavy-intensity exercise.
Collapse
Affiliation(s)
- Max E Weston
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Owen W Tomlinson
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
- School of Nursing Midwifery and Social Work, The University of Queensland, Brisbane, Australia
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
36
|
Lopresti AL, Smith SJ. An examination into the mental and physical effects of a saffron extract (affron®) in recreationally-active adults: A randomized, double-blind, placebo-controlled study. J Int Soc Sports Nutr 2022; 19:219-238. [PMID: 35813851 PMCID: PMC9261746 DOI: 10.1080/15502783.2022.2083455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, Australia
- Murdoch University, College of Science, Health, Engineering and Education, Perth, Australia
| | - Stephen J Smith
- Clinical Research Australia, Perth, Australia
- Murdoch University, College of Science, Health, Engineering and Education, Perth, Australia
| |
Collapse
|
37
|
Korad S, Mündel T, Fan JL, Perry BG. Cerebral autoregulation across the menstrual cycle in eumenorrheic women. Physiol Rep 2022; 10:e15287. [PMID: 35524340 PMCID: PMC9076937 DOI: 10.14814/phy2.15287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
There is emerging evidence that ovarian hormones play a significant role in the lower stroke incidence observed in pre‐menopausal women compared with men. However, the role of ovarian hormones in cerebrovascular regulation remains to be elucidated. We examined the blood pressure‐cerebral blood flow relationship (cerebral autoregulation) across the menstrual cycle in eumenorrheic women (n = 12; mean ± SD: age, 31 ± 7 years). Participants completed sit‐to‐stand and Valsalva maneuvers (VM, mouth pressure of 40 mmHg for 15 s) during the early follicular (EF), late follicular (LF), and mid‐luteal (ML) menstrual cycle phases, confirmed by serum measurement of progesterone and 17β‐estradiol. Middle cerebral artery blood velocity (MCAv), arterial blood pressure and partial pressure of end‐tidal carbon dioxide were measured. Cerebral autoregulation was assessed by transfer function analysis during spontaneous blood pressure oscillations, rate of regulation (RoR) during sit‐to‐stand maneuvers, and Tieck’s autoregulatory index during VM phases II and IV (AI‐II and AI‐IV, respectively). Resting mean MCAv (MCAvmean), blood pressure, and cerebral autoregulation were unchanged across the menstrual cycle (all p > 0.12). RoR tended to be different (EF, 0.25 ± 0.06; LF; 0.19 ± 0.04; ML, 0.18 ± 0.12 sec−1; p = 0.07) and demonstrated a negative relationship with 17β‐estradiol (R2 = 0.26, p = 0.02). No changes in AI‐II (EF, 1.95 ± 1.20; LF, 1.67 ± 0.77 and ML, 1.20 ± 0.55) or AI‐IV (EF, 1.35 ± 0.21; LF, 1.27 ± 0.26 and ML, 1.20 ± 0.2) were observed (p = 0.25 and 0.37, respectively). Although, a significant interaction effect (p = 0.02) was observed for the VM MCAvmean response. These data indicate that the menstrual cycle has limited impact on cerebrovascular autoregulation, but individual differences should be considered.
Collapse
Affiliation(s)
- Stephanie Korad
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Toby Mündel
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, Manaaki Manawa, The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
38
|
Sayegh ALC, Fan JL, Vianna LC, Dawes M, Paton JFR, Fisher JP. Sex-differences in the sympathetic neurocirculatory responses to chemoreflex activation. J Physiol 2022; 600:2669-2689. [PMID: 35482235 PMCID: PMC9324851 DOI: 10.1113/jp282327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The purpose of this study was to determine whether there are sex differences in the cardiorespiratory and sympathetic neurocirculatory responses to central, peripheral, and combined central and peripheral chemoreflex activation. Ten women (29 ± 6 years, 22.8 ± 2.4 kg/m2: mean ± SD) and 10 men (30 ± 7 years, 24.8 ± 3.2 kg/m2) undertook randomized 5 min breathing trials of: room air (eucapnia), isocapnic hypoxia (10% oxygen (O2); peripheral chemoreflex activation), hypercapnic hyperoxia (7% carbon dioxide (CO2), 50% O2; central chemoreflex activation) and hypercapnic hypoxia (7% CO2, 10% O2; central and peripheral chemoreflex activation). Control trials of isocapnic hyperoxia (peripheral chemoreflex inhibition) and hypocapnic hyperoxia (central and peripheral chemoreflex inhibition) were also included. Muscle sympathetic nerve activity (MSNA; microneurography), mean arterial pressure (MAP; finger photoplethysmography) and minute ventilation (V˙E; pneumotachometer) were measured. Total MSNA (P = 1.000 and P = 0.616), MAP (P = 0.265) and V˙E (P = 0.587 and P = 0.472) were not different in men and women during eucapnia and during isocapnic hypoxia. Women exhibited attenuated increases in V˙E during hypercapnic hyperoxia (27.3 ± 6.3 vs. 39.5 ± 7.5 l/min, P < 0.0001) and hypercapnic hypoxia (40.9 ± 9.1 vs. 53.8 ± 13.3 l/min, P < 0.0001) compared with men. However, total MSNA responses were augmented in women (hypercapnic hyperoxia 378 ± 215 vs. 258 ± 107%, P = 0.017; hypercapnic hypoxia 607 ± 290 vs. 362 ± 268%, P < 0.0001). No sex differences in total MSNA, MAP or V˙E were observed during isocapnic hyperoxia and hypocapnic hyperoxia. Our results indicate that young women have augmented sympathetic responses to central chemoreflex activation, which explains the augmented MSNA response to combined central and peripheral chemoreflex activation. Key points Sex differences in the control of breathing have been well studied, but whether there are differences in the sympathetic neurocirculatory responses to chemoreflex activation between healthy women and men is incompletely understood. We observed that, compared with young men, young women displayed augmented increases in muscle sympathetic nerve activity during both hypercapnic hyperoxia (central chemoreflex activation) and hypercapnic hypoxia (central and peripheral chemoreflex activation) but had attenuated increases in minute ventilation. In contrast, no sex differences were found in either muscle sympathetic nerve activity or minute ventilation responses to isocapnic hypoxia (peripheral chemoreceptor stimulation). Young women have blunted ventilator, but augmented sympathetic responses, to central (hypercapnic hyperoxia) and combined central and peripheral chemoreflex activation (hypercapnic hypoxia), compared with young men. The possible causative association between the reduced ventilation and heightened sympathetic responses in young women awaits validation.
Collapse
Affiliation(s)
- Ana Luiza C Sayegh
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Jui-Lin Fan
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Mathew Dawes
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - James P Fisher
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
39
|
Lew LA, Williams JS, Stone JC, Au AKW, Pyke KE, MacDonald MJ. Examination of Sex-Specific Participant Inclusion in Exercise Physiology Endothelial Function Research: A Systematic Review. Front Sports Act Living 2022; 4:860356. [PMID: 35399599 PMCID: PMC8990239 DOI: 10.3389/fspor.2022.860356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background To combat historical underrepresentation of female participants in research, guidelines have been established to motivate equal participation by both sexes. However, the pervasiveness of female exclusion has not been examined in vascular exercise physiology research. The purpose of this study was to systematically quantify the sex-specific prevalence of human participants and identify the rationales for sex-specific inclusion/exclusion in research examining the impact of exercise on vascular endothelial function. Methods A systematic search was conducted examining exercise/physical activity and vascular endothelial function, assessed via flow mediated dilation. Studies were categorized by sex: male-only, female-only, or mixed sex, including examination of the sample size of males and females. Analysis was performed examining sex-inclusion criteria in study design and reporting and rationale for inclusion/exclusion of participants on the basis of sex. Changes in proportion of female participants included in studies were examined over time in 5 year cohorts. Results A total of 514 studies were identified, spanning 26 years (1996–2021). Of the total participants, 64% were male and 36% were female, and a male bias was identified (32% male-only vs. 12% female-only studies). Proportions of female participants in studies remained relatively constant in the last 20 years. Male-only studies were less likely to report sex in the title compared to female-only studies (27 vs. 78%, p < 0.001), report sex in the abstract (72 vs. 98%, p < 0.001) and justify exclusion on the basis of sex (15 vs. 55%, p < 0.001). Further, male-only studies were more likely to be conducted in healthy populations compared to female-only studies (p = 0.002). Qualitative analysis of justifications identified four themes: sex-specific rationale or gap in the literature, exclusion of females based on the hormonal cycle or sex-differences, maintaining congruence with the male norm, and challenges with recruitment, retention and resources. Conclusions This systematic review provides the first analysis of sex-based inclusion/exclusion and rationale for sex-based decisions in human vascular exercise physiology research. These findings contribute to identifying the impact of research guidelines regarding inclusion of males and females and the perceived barriers to designing studies with equal sex participation, in an effort to increase female representation in vascular exercise physiology research. Systematic Review Registration: CRD42022300388.
Collapse
Affiliation(s)
- Lindsay A. Lew
- Cardiovascular Stress Response Lab, School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Jennifer S. Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jenna C. Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Alicia K. W. Au
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Kyra E. Pyke
- Cardiovascular Stress Response Lab, School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Maureen J. MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- *Correspondence: Maureen J. MacDonald
| |
Collapse
|
40
|
Eagan LE, Chesney CA, Mascone SE, Ranadive SM. Arterial stiffness and blood pressure are similar in naturally menstruating and oral contraceptive pill using women during the higher-hormone phases. Exp Physiol 2022; 107:374-382. [PMID: 35199392 DOI: 10.1113/ep090151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are there differences in blood pressure, arterial stiffness and indices of pressure waveforms between young oral contraceptive pill using and naturally menstruating women during lower and higher hormone phases of their cycles? What is the main finding and its importance? Blood pressure, arterial stiffness and indices of pressure waveforms are influenced similarly by exogenous and endogenous hormones. However, lower levels of exogenous hormones moderately increase blood pressure among OCP. ABSTRACT Elevations in blood pressure (BP) are understood as having a bidirectional relationship with stiffening of central and peripheral arteries. Arterial stiffness is mitigated by oestrogen, which aides in arterial vasorelaxation. To evaluate whether BP, stiffness, and pressure waveforms were different between young healthy naturally menstruating (non-OCP) and oral contraceptive pill using women (OCP), we measured brachial and aortic BPs, carotid-to-femoral pulse wave velocity (cfPWV), carotid β-stiffness, elastic-modulus, central augmentation index (AIx and AIx75), and forward and backward pressure waveforms (Pf and Pb) in 22 women (22 (1) yr, OCP: n = 12). To assess phasic differences, women were studied during the early follicular (EF; ≤5 days of menstruation onset) and early luteal (EL; 4 (2) days post-ovulation) phases of non-OCP and compared to the placebo pill (PP; ≤5 days of onset) and active pill (AP; ≤5 days of highest-dose AP) phases of OCP. During the lower hormone phases, OCP have significantly higher brachial SBP (119.3 (8.3) vs. 110.2 (8.3) mmHg, P = 0.02) and aortic SBP (104.10 (7.44) vs. 96.80 (6.39) mmHg, P = 0.03) as compared to non-OCP; however, during the higher hormone phases, there are no differences in measures of brachial or aortic BP, arterial stiffness, or indices of BP waveforms between OCP and non-OCP (P≥0.05). In conclusion, exogenous and endogenous hormones have similar influences on BP and arterial stiffness; however, lower levels of exogenous hormones augment both central and peripheral BPs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Sara E Mascone
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| |
Collapse
|
41
|
Giersch GEW, Charkoudian N, McClung HL. The Rise of the Female Warfighter: Physiology, Performance, and Future Directions. Med Sci Sports Exerc 2021; 54:683-691. [PMID: 34939610 DOI: 10.1249/mss.0000000000002840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Since 1948, the United States military has been open to both men and women as permanent party service members. However, in the majority of the time since, there have been a subset of military occupational specialties (MOS), or job descriptions, open only to men. In particular, jobs requiring more intense physical and/or environmental strain were considered to be beyond the physiological capabilities of women. In the present analysis, we review the literature regarding neuromuscular, physical performance, and environmental physiology in women, to highlight that women have no inherent limitation in their capacity to participate in relevant roles and jobs within the military, within accepted guidelines to promote risk mitigation across sexes. First, we discuss performance and injury risk: both neuromuscular function and physical capabilities. Second, physiological responses to environmental stress. Third, we discuss risk as it relates to reproductive health and nutritional considerations. We conclude with a summary of current physiological, performance and injury risk data in men and women that support our overarching purpose, as well as suggestions for future directions.
Collapse
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, MA Biophysical and Biomedical Modeling Division, United States Army Research Institute of Environmental Medicine, Natick, MA Oak Ridge Institute for Science and Technology, Oak Ridge, TN
| | | | | |
Collapse
|
42
|
Molbo L, Hansen RK, Østergaard LR, Frøkjær JB, Larsen RG. Sex differences in microvascular function across lower leg muscles in humans. Microvasc Res 2021; 139:104278. [PMID: 34774583 DOI: 10.1016/j.mvr.2021.104278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022]
Abstract
Studies have reported sex-based differences in conduit artery function, however little is known about possible sex-based differences in microvascular function, and possible influence of muscle group. Blood-oxygen-level-dependent (BOLD) MR images acquired during ischemia-reperfusion assess the reactive hyperemic response in the microvasculature of skeletal muscle. We tested the hypothesis that women have greater microvascular reactivity, reflected by faster time-to-peak (TTP) and time-to-half-peak (TTHP) of the BOLD response, across all lower leg muscles. In healthy, young men (n = 18) and women (n = 12), BOLD images of both lower legs were acquired continuously during 30 s of rest, 5 min of cuff occlusion and 2 min of reperfusion, in a 3 T MR scanner. Segmentation of tibialis anterior (TA), soleus (SO), gastrocnemius medial (GM), and the peroneal group (PG) were performed using image registration, and TTP and TTHP of the BOLD response were determined for each muscle. Overall, women had faster TTP (p = 0.001) and TTHP (p = 0.01) than men. Specifically, women had shorter TTP and TTHP in TA (27.5-28.4%), PG (33.9-41.6%), SO (14.7-19.7%) and GM (15.4-18.8%). Overall, TTP and TTHP were shorter in TA compared with PG (25.1-31.1%; p ≤ 0.007), SO (14.3-16%; p ≤ 0.03) and GM (15.6-26%; p ≤ 0.01). Intra class correlations analyses showed large variation in absolute agreement (range: 0.10-0.81) of BOLD parameters between legs (within distinct muscles). Faster TTP and TTHP across all lower leg muscles, in women, provide novel evidence of sex-based differences in microvascular function of young adults matched for age, body mass index, and physical activity level.
Collapse
Affiliation(s)
- Lars Molbo
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
43
|
Baranauskas MN, Freemas JA, Tan R, Carter SJ. Moving beyond inclusion: Methodological considerations for the menstrual cycle and menopause in research evaluating effects of dietary nitrate on vascular function. Nitric Oxide 2021; 118:39-48. [PMID: 34774755 DOI: 10.1016/j.niox.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Recent reports have acknowledged the underrepresentation of women in the field of dietary nitrate (NO3-) research. Undoubtedly, greater participation from women is warranted to clarify potential sex differences in the responses to dietary NO3- interventions. However, careful consideration for the effects of sex hormones - principally 17β-estradiol - on endogenous nitric oxide (NO) synthesis and dietary NO3- reductase capacity is necessary for improved interpretation and reproducibility of such investigations. From available literature, we present a narrative review describing how hormonal variations across the menstrual cycle, as well as with menopause, may impact NO biosynthesis catalyzed by NO synthase enzymes and NO3- reduction via the enterosalivary pathway. In doing so, we address methodological considerations related to the menstrual cycle and hormonal contraceptive use relevant for the inclusion of premenopausal women along with factors to consider when testing postmenopausal women. Adherence to such methodological practices may explicate the utility of dietary NO3- supplementation as a means to improve vascular function among women across the lifespan.
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health - Bloomington, Bloomington, Indiana University, 47405, USA.
| | - Jessica A Freemas
- Department of Kinesiology, School of Public Health - Bloomington, Bloomington, Indiana University, 47405, USA
| | - Rachel Tan
- Department of Natural Science, Seaver College, Pepperdine University, 90263, USA
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health - Bloomington, Bloomington, Indiana University, 47405, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
44
|
Zheng H, Badenhorst CE, Lei TH, Che Muhamed AM, Liao YH, Amano T, Fujii N, Nishiyasu T, Kondo N, Mündel T. Measurement error of self-paced exercise performance in athletic women is not affected by ovulatory status or ambient environment. J Appl Physiol (1985) 2021; 131:1496-1504. [PMID: 34590913 DOI: 10.1152/japplphysiol.00342.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Measurement error(s) of exercise tests for women are severely lacking in the literature. The purpose of this investigation was to 1) determine whether ovulatory status or ambient environment were moderating variables when completing a 30-min self-paced work trial and 2) provide test-retest norms specific to athletic women. A retrospective analysis of three heat stress studies was completed using 33 female participants (31 ± 9 yr, 54 ± 10 mL·min-1·kg-1) that yielded 130 separate trials. Participants were classified as ovulatory (n = 19), anovulatory (n = 4), and oral contraceptive pill users (n = 10). Participants completed trials ∼2 wk apart in their (quasi-) early follicular and midluteal phases in two of moderate (1.3 ± 0.1 kPa, 20.5 ± 0.5°C, 18 trials), warm-dry (2.2 ± 0.2 kPa, 34.1 ± 0.2°C, 46 trials), or warm-humid (3.4 ± 0.1 kPa, 30.2 ± 1.1°C, 66 trials) environments. We quantified reliability using limits of agreement, intraclass correlation coefficient (ICC), standard error of measurement (SEM), and coefficient of variation (CV). Test-retest reliability was high, clinically valid (ICC = 0.90, P < 0.01), and acceptable with a mean CV of 4.7%, SEM of 3.8 kJ (2.1 W), and reliable bias of -2.1 kJ (-1.2 W). The various ovulatory status and contrasting ambient conditions had no appreciable effect on reliability. These results indicate that athletic women can perform 30-min self-paced work trials ∼2 wk apart with an acceptable and low variability irrespective of their hormonal status or heat-stressful environments.NEW & NOTEWORTHY This study highlights that aerobically trained women perform 30-min self-paced work trials ∼2 wk apart with acceptably low variability and their hormonal/ovulatory status and the introduction of greater ambient heat and humidity do not moderate this measurement error.
Collapse
Affiliation(s)
- Huixin Zheng
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Claire E Badenhorst
- School of Sport Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Ahmad Munir Che Muhamed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Tatsuro Amano
- Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
45
|
Mascone SE, Chesney CA, Eagan LE, Ranadive SM. Similar inflammatory response and conduit artery vascular function between sexes following induced inflammation. Exp Physiol 2021; 106:2276-2285. [PMID: 34605100 DOI: 10.1113/ep089913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are there sex differences in vascular function following induced inflammation when oestrogen is typically similar between sexes? What is the main finding and its importance? The present study suggests no sex differences in conduit artery vascular responses to acutely induced inflammation during the low-oestrogen phase of the menstrual cycle in premenopausal women. However, women exhibit lower microvascular function than men. Overall, the results underpin the role of oestrogen in previously observed sex differences and the importance of reporting the phase in the hormonal cycle when women are studied. ABSTRACT Sex differences in cardiovascular disease incidence in premenopausal women and age-matched men have been attributed to the cardioprotective influence of oestrogen. However, limited knowledge exists regarding sex differences following acute inflammation when oestrogen concentrations are lower in women. We evaluated sex differences in vascular responses to induced inflammation when oestrogen concentrations are typically lower in women (early follicular phase or placebo phase of hormonal contraception). In 15 women and 14 men, interleukin-6 (IL-6) concentrations and vascular function [via brachial artery flow-mediated dilatation (FMD)] were assessed at baseline (BL) and 24 (24H) and 48 hours (48H) after administration of influenza vaccine. After induction of inflammation, both sexes exhibited an increase in IL-6 concentrations at 24H [mean (SD) BL vs. 24H: women, 0.563 (0.50) vs. 1.141 (0.65) pg/ml; men, 0.385 (0.17) vs. 1.113 (0.69) pg/ml; P < 0.05] that returned to near-baseline concentrations by 48H (BL vs. 48H, P > 0.05). There were no sex differences in FMD, allometrically scaled FMD or IL-6 concentrations at any time point (P > 0.05). Notably, women exhibited significantly lower microvascular function than men at every time point [P < 0.05; reactive hyperaemic area under the curve (in arbitrary units): women, BL 35,512 (14,916), 24H 34,428 (14,292) and 48H 39,467 (13,936); men, BL 61,748 (27,324), 24H 75,028 (29,051) and 48H 59,532 (13,960)]. When oestrogen concentrations are typically lower in women, women exhibit a similar inflammatory response and conduit artery function, but lower microvascular response to reactive hyperaemia, in comparison to age-matched men.
Collapse
Affiliation(s)
- Sara E Mascone
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
46
|
Rasica L, Inglis EC, Iannetta D, Soares RN, Murias JM. Fitness Level- and Sex-related Differences in Macro- and Microvascular Responses during Reactive Hyperemia. Med Sci Sports Exerc 2021; 54:497-506. [PMID: 34652334 DOI: 10.1249/mss.0000000000002806] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Reactive hyperemia (RH) is widely used for the investigation of macrovascular (Flow-Mediated Dilation, FMD) and microvascular (Near Infrared Spectroscopy-Vascular Occlusion Test, NIRS-VOT) function. Mixed results have been reported on fitness level- and sex-related differences in FMD outcomes, and little is known about microvascular differences in untrained and chronically trained males and females. METHODS Fifteen chronically trained (CT: 8 MALES, 7 FEMALES) and sixteen untrained (UT: 8 MALES, 8 FEMALES) individuals participated in this study. Aerobic fitness (V[Combining Dot Above]O2max) was assessed during a cycling incremental exercise test to volitional exhaustion. FMD and NIRS-VOT were performed simultaneously on the lower limb investigating superficial femoral artery and vastus lateralis muscle, respectively. RESULTS %FMD was not different between groups (CT MALES, 4.62 ± 1.42; CT FEMALES, 4.15 ± 2.23; UT MALES, 5.10 ± 2.53; CT FEMALES, 3.20 ± 1.67). Peak blood flow showed greater values in CT vs UT (p ≤ 0.0001) and MALES vs FEMALES (p = 0.032). RH blood flow AUC was greater in CT vs UT (p = 0.001). At the microvascular level, desaturation and reperfusion rates were faster in CT vs UT (p = 0.018 and p = 0.013) and MALES vs FEMALES (p = 0.011 and p = 0.005). V[Combining Dot Above]O2max was significantly correlated with reperfusion rate (p = 0.0005) but not with %FMD. CONCLUSION Whereas NIRS-VOT outcomes identified fitness- and sex-related differences in vascular responses, %FMD did not. However, when reactive hyperemia-related outcomes from the FMD analysis were considered, fitness- and/or sex-related differences were detected. These data highlight the importance of integrating FMD and NIRS-VOT outcomes for a more comprehensive evaluation of vascular function.
Collapse
Affiliation(s)
- Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | | | | | | | | |
Collapse
|
47
|
Kirby NV, Lucas SJE, Cable TG, Armstrong OJ, Weaver SR, Lucas RAI. Sex differences in adaptation to intermittent post-exercise sauna bathing in trained middle-distance runners. SPORTS MEDICINE-OPEN 2021; 7:51. [PMID: 34297227 PMCID: PMC8302716 DOI: 10.1186/s40798-021-00342-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Background The purpose of this study was to investigate the effect of sex on the efficacy of intermittent post-exercise sauna bathing to induce heat acclimation and improve markers of temperate exercise performance in trained athletes. Methods Twenty-six trained runners (16 female; mean ± SD, age 19 ± 1 years, V̇O2max F: 52.6 ± 6.9 mL⋅kg−1⋅min−1, M: 64.6 ± 2.4 mL⋅kg−1⋅min−1) performed a running heat tolerance test (30 min, 9 km⋅h−1/2% gradient, 40 °C/40%RH; HTT) and temperate (18 °C) exercise tests (maximal aerobic capacity [V̇O2max] and lactate profile) pre and post 3 weeks of normal exercise training plus 29 ± 1 min post-exercise sauna bathing (101–108 °C) 3 ± 1 times per week. Results Females and males exhibited similar reductions (interactions p > 0.05) in peak rectal temperature (− 0.3 °C; p < 0.001), skin temperature (− 0.9 °C; p < 0.001) and heart rate (− 9 beats·min−1; p = 0.001) during the HTT at post- vs pre-intervention. Only females exhibited an increase in active sweat glands on the forearm (measured via modified iodine technique; F: + 57%, p < 0.001; M: + 1%, p = 0.47). Conversely, only males increased forearm blood flow (measured via venous occlusion plethysmography; F: + 31%, p = 0.61; M: + 123%; p < 0.001). Females and males showed similar (interactions p > 0.05) improvements in V̇O2max (+ 5%; p = 0.02) and running speed at 4 mmol·L−1 blood lactate concentration (+ 0.4 km·h−1; p = 0.001). Conclusions Three weeks of post-exercise sauna bathing effectively induces heat acclimation in females and males, though possibly amid different thermoeffector adaptations. Post-exercise sauna bathing is also an effective ergogenic aid for both sexes. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-021-00342-6.
Collapse
Affiliation(s)
- Nathalie V Kirby
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK. .,Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, K1N 6N5, Canada.
| | - Samuel J E Lucas
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Thomas G Cable
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,Loughborough University, Loughborough, UK
| | | | - Samuel R Weaver
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
48
|
Lalande S, Hemingway HW, Jarrard CP, Moore AM, Olivencia-Yurvati AH, Richey RE, Romero SA. Influence of ischemia-reperfusion injury on endothelial function in men and women with similar serum estradiol concentrations. Am J Physiol Regul Integr Comp Physiol 2021; 321:R273-R278. [PMID: 34259042 DOI: 10.1152/ajpregu.00147.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior data suggest that, relative to the early follicular phase, women in the late follicular phase are protected against endothelial ischemia-reperfusion (I/R) injury when estradiol concentrations are highest. In addition, endothelial I/R injury is consistently observed in men with naturally low endogenous estradiol concentrations that are similar to those of women in the early follicular phase. Therefore, the purpose of this study was to determine whether the vasodeleterious effect of I/R injury differs between women in the early follicular phase of the menstrual cycle and age-matched men. We tested the hypothesis that I/R injury would attenuate endothelium-dependent vasodilation to the same extent in women and age-matched men with similar circulating estradiol concentrations. Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasound) in young healthy men (n = 22) and women (n = 12) before (pre-I/R) and immediately after (post-I/R) I/R injury, which was induced via 20 min of arm circulatory arrest followed by 20-min reperfusion. Serum estradiol concentrations did not differ between sexes (men 115.0 ± 33.9 pg·mL-1 vs. women 90.5 ± 40.8 pg·mL-1; P = 0.2). The magnitude by which I/R injury attenuated endothelium-dependent vasodilation did not differ between men (pre-I/R 5.4 ± 2.4% vs. post-I/R 3.0 ± 2.7%) and women (pre-I/R 6.1 ± 2.8% vs. post-I/R 3.7 ± 2.7%; P = 0.9). Our data demonstrate that I/R injury similarly reduces endothelial function in women in the early follicular phase of the menstrual cycle and age-matched men with similar estradiol concentrations.
Collapse
Affiliation(s)
- Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Holden W Hemingway
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Caitlin P Jarrard
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Amy M Moore
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E Richey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
49
|
Blood flow restriction in the presence or absence of muscle contractions does not preserve vasculature structure and function following 14-days of limb immobilization. Eur J Appl Physiol 2021; 121:2437-2447. [PMID: 34002326 DOI: 10.1007/s00421-021-04715-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Limb immobilization causes local vasculature to experience detrimental adaptations. Simple strategies to increase blood flow (heating, fidgeting) successfully prevent acute (≤ 1 day) impairments; however, none have leveraged the hyperemic response over prolonged periods (weeks) mirroring injury rehabilitation. Throughout a 14-day unilateral limb immobilization, we sought to preserve vascular structure and responsiveness by repeatedly activating a reactive hyperemic response via blood flow restriction (BFR) and amplifying this stimulus by combining BFR with electric muscle stimulation (EMS). METHODS Young healthy adults (M:F = 14:17, age = 22.4 ± 3.7 years) were randomly assigned to control, BFR, or BFR + EMS groups. BFR and BFR + EMS groups were treated for 30 min twice daily (3 × 10 min ischemia-reperfusion cycles; 15% maximal voluntary contraction EMS), 5 days/week (20 total sessions). Before and after immobilization, artery diameter, flow-mediated dilation (FMD) and blood flow measures were collected in the superficial femoral artery (SFA). RESULTS Following immobilization, there was less retrograde blood velocity (+ 1.8 ± 3.6 cm s-1, P = 0.01), but not retrograde shear (P = 0.097). All groups displayed reduced baseline and peak SFA diameter following immobilization (- 0.46 ± 0.41 mm and - 0.43 ± 0.39 mm, P < 0.01); however, there were no differences by group or across time for FMD (% diameter change, shear-corrected, or allometrically scaled) nor microvascular function assessed by peak flow capacity. CONCLUSION Following immobilization, our results reveal (1) neither BFR nor BFR + EMS mitigate artery structure impairments, (2) intervention-induced shear stress did not affect vascular function assessed by FMD, and (3) retrograde blood velocity is reduced at rest offering potential insight to mechanisms of flow regulation. In conclusion, BFR appears insufficient as a treatment strategy for preventing macrovascular dysfunction during limb immobilization.
Collapse
|
50
|
Hwang C, Piano MR, Phillips SA. The effects of alcohol consumption on flow-mediated dilation in humans: A systematic review. Physiol Rep 2021; 9:e14872. [PMID: 34042304 PMCID: PMC8157766 DOI: 10.14814/phy2.14872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
Changes in endothelial function may contribute to the positive and negative effects of alcohol consumption on cardiovascular conditions, such as hypertension and coronary artery disease. Numerous studies have used brachial artery flow-mediated dilation (FMD) to examine the effects of alcohol consumption on endothelial function in humans. However, the findings are inconsistent and may be due to multiple factors such as heterogeneity in subject characteristics, the alcohol use pattern, and amount/dose of alcohol consumed. Therefore, the aim of this systematic review was to investigate the effect of alcohol consumption on brachial artery FMD in humans considering the above-mentioned factors. This review found that while light to moderate alcohol consumption may have minimal effects on FMD, heavy alcohol consumption was associated with a decrease in FMD. However, most of the published studies included healthy, younger, and male individuals, limiting generalizability to other populations. Future studies should include more women, older subjects, and those from diverse and underrepresented backgrounds.
Collapse
Affiliation(s)
- Chueh‐Lung Hwang
- Department of Physical TherapyCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoILUSA
| | | | - Shane A. Phillips
- Department of Physical TherapyCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoILUSA
| |
Collapse
|