1
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
Wu C, Hu X, Jiang Y, Tang J, Ge H, Deng S, Li X, Feng J. Involvement of ERK and Oxidative Stress in Airway Exposure to Cadmium Chloride Aggravates Airway Inflammation in Ovalbumin-Induced Asthmatic Mice. TOXICS 2024; 12:235. [PMID: 38668459 PMCID: PMC11054730 DOI: 10.3390/toxics12040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Inhalation represents a significant route of cadmium (Cd) exposure, which is associated with an elevated risk of lung diseases. This research study aims to evaluate the impact of repeated low-dose cadmium inhalation on exacerbating airway inflammation induced by ovalbumin (OVA) in asthma-afflicted mice. Mice were grouped into four categories: control (Ctrl), OVA, cadmium chloride (CdCl2), and OVA + cadmium chloride (OVA + CdCl2). Mice in the OVA group displayed increased airway mucus secretion and peribronchial and airway inflammation characterized by eosinophil cell infiltration, along with elevated levels of Th2 cytokines (IL-4, IL-5, IL-13) in bronchoalveolar lavage fluids (BALFs). These parameters were further exacerbated in the OVA + CdCl2 group. Additionally, the OVA + CdCl2 group exhibited higher levels of the oxidative stress marker malondialdehyde (MDA), greater activity of glutathione peroxidase (GSH-Px), and higher phosphorylation of extracellular regulated kinase (ERK) in lung tissue. Treatment with U0126 (an ERK inhibitor) and α-tocopherol (an antioxidant) in the OVA + CdCl2 group resulted in reduced peribronchial and airway inflammation as well as decreased airway mucus secretion. These findings indicate that CdCl2 exacerbates airway inflammation in OVA-induced allergic asthma mice following airway exposure. ERK and oxidative stress are integral to this process, and the inhibition of these pathways significantly alleviates the adverse effects of CdCl2 on asthma exacerbation.
Collapse
Affiliation(s)
- Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xiaozhao Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
3
|
Chang J, Wang J, Luo B, Li W, Xiong Z, Du C, Wang X, Wang Y, Tian J, Li S, Fang Y, Li L, Dong J, Tan K, Fan Y, Cao P. Vitamin E stabilizes iron and mitochondrial metabolism in pulmonary fibrosis. Front Pharmacol 2023; 14:1240829. [PMID: 38125893 PMCID: PMC10731373 DOI: 10.3389/fphar.2023.1240829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Pulmonary fibrosis (PF) is a fatal chronic lung disease that causes structural damage and decreased lung function and has a poor prognosis. Currently, there is no medicine that can truly cure PF. Vitamin E (VE) is a group of natural antioxidants with anticancer and antimutagenic properties. There have been a few reports about the attenuation of PF by VE in experimental animals, but the molecular mechanisms are not fully understood. Methods: Bleomycin-induced PF (BLM-PF) mouse model, and cultured mouse primary lung fibroblasts and MLE 12 cells were utilized. Pathological examination of lung sections, immunoblotting, immunofluorescent staining, and real-time PCR were conducted in this study. Results: We confirmed that VE significantly delayed the progression of BLM-PF and increased the survival rates of experimental mice with PF. VE suppressed the pathological activation and fibrotic differentiation of lung fibroblasts and epithelial-mesenchymal transition and alleviated the inflammatory response in BLM-induced fibrotic lungs and pulmonary epithelial cells in vitro. Importantly, VE reduced BLM-induced ferritin expression in fibrotic lungs, whereas VE did not exhibit iron chelation properties in fibroblasts or epithelial cells in vitro. Furthermore, VE protected against mitochondrial dysmorphology and normalized mitochondrial protein expression in BLM-PF lungs. Consistently, VE suppressed apoptosis in BLM-PF lungs and pulmonary epithelial cells in vitro. Discussion: Collectively, VE markedly inhibited BLM-induced PF through a complex mechanism, including improving iron metabolism and mitochondrial structure and function, mitigating inflammation, and decreasing the fibrotic functions of fibroblasts and epithelial cells. Therefore, VE presents a highly potential therapeutic against PF due to its multiple protective effects with few side effects.
Collapse
Affiliation(s)
- Jing Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jiahui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Beibei Luo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Weihao Li
- Special Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziyue Xiong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Chaoqi Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xue Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yuejiao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jingya Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Shuxin Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yue Fang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Longjie Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jing Dong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer's disease and Parkinson's disease. Front Physiol 2023; 14:1207280. [PMID: 37405135 PMCID: PMC10315612 DOI: 10.3389/fphys.2023.1207280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent neurodegenerative disorders severely impacting life expectancy and quality of life of millions of people worldwide. AD and PD exhibit both a very distinct pathophysiological disease pattern. Intriguingly, recent researches, however, implicate that overlapping mechanisms may underlie AD and PD. In AD and PD, novel cell death mechanisms, encompassing parthanatos, netosis, lysosome-dependent cell death, senescence and ferroptosis, apparently rely on the production of reactive oxygen species, and seem to be modulated by the well-known, "old" second messenger cAMP. Signaling of cAMP via PKA and Epac promotes parthanatos and induces lysosomal cell death, while signaling of cAMP via PKA inhibits netosis and cellular senescence. Additionally, PKA protects against ferroptosis, whereas Epac1 promotes ferroptosis. Here we review the most recent insights into the overlapping mechanisms between AD and PD, with a special focus on cAMP signaling and the pharmacology of cAMP signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Minh D. A. Luu
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Alsharairi NA. Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status-A Review. Curr Issues Mol Biol 2023; 45:5099-5117. [PMID: 37367073 DOI: 10.3390/cimb45060324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Asthma is considered a chronic inflammatory disorder associated with airway hyperresponsiveness (AHR). Increased oxidative stress (OS) is a clinical feature of asthma, which promotes the inflammatory responses in bronchial/airway epithelial cells. Smokers and nonsmokers with asthma have been shown to have increases in several OS and inflammatory biomarkers. However, studies suggest significant differences in OS and inflammation biomarkers between smokers and nonsmokers. A few studies suggest associations between antioxidant intake from diet/supplements and asthma in patients with different smoking status. Evidence is lacking on the protective role of antioxidant vitamin and/or mineral consumption against asthma by smoking status with respect to inflammation and OS biomarkers. Therefore, the aim of this review is to highlight current knowledge regarding the relations between antioxidant intake, asthma, and its associated biomarkers, according to smoking status. This paper can be used to guide future research directions towards the health consequences of antioxidant intake in smoking and nonsmoking asthmatics.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast P.O. Box 4222, QLD, Australia
| |
Collapse
|
6
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
7
|
Zajac D, Wojciechowski P. The Role of Vitamins in the Pathogenesis of Asthma. Int J Mol Sci 2023; 24:ijms24108574. [PMID: 37239921 DOI: 10.3390/ijms24108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamins play a crucial role in the proper functioning of organisms. Disturbances of their levels, seen as deficiency or excess, enhance the development of various diseases, including those of the cardiovascular, immune, or respiratory systems. The present paper aims to summarize the role of vitamins in one of the most common diseases of the respiratory system, asthma. This narrative review describes the influence of vitamins on asthma and its main symptoms such as bronchial hyperreactivity, airway inflammation, oxidative stress, and airway remodeling, as well as the correlation between vitamin intake and levels and the risk of asthma in both pre- and postnatal life.
Collapse
Affiliation(s)
- Dominika Zajac
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| |
Collapse
|
8
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
9
|
Di Cicco M, Ghezzi M, Kantar A, Song WJ, Bush A, Peroni D, D'Auria E. Pediatric obesity and severe asthma: Targeting pathways driving inflammation. Pharmacol Res 2023; 188:106658. [PMID: 36642111 DOI: 10.1016/j.phrs.2023.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Asthma affects more than 300 million people of all ages worldwide, including about 10-15% of school-aged children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses to achieve symptom control or remaining "uncontrolled" despite this therapy. In SA, other diagnoses have been excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two main "obese asthma" phenotypes have been described in childhood with high or low levels of Type 2 inflammation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, particularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify selective targets for specific treatments, such as biological agents.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Ghezzi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Gruppo Ospedaliero San Donato, Bergamo, Italy and Università Vita Salute San Raffaele, Milan, Italy
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Andrew Bush
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital and National Heart and Lung Institute, School of Medicine, Imperial College London, London, UK
| | - Diego Peroni
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
11
|
Sun Y, Xia X, Basnet D, Zheng JC, Huang J, Liu J. Mechanisms of Ferroptosis and Emerging Links to the Pathology of Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:904152. [PMID: 35837484 PMCID: PMC9273851 DOI: 10.3389/fnagi.2022.904152] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a diverse class of diseases attributed to chronic progressive neuronal degeneration and synaptic loss in the brain and/or spinal cord, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and multiple sclerosis. The pathogenesis of neurodegenerative diseases is complex and diverse, often involving mitochondrial dysfunction, neuroinflammation, and epigenetic changes. However, the pathogenesis of neurodegenerative diseases has not been fully elucidated. Recently, accumulating evidence revealed that ferroptosis, a newly discovered iron-dependent and lipid peroxidation-driven type of programmed cell death, provides another explanation for the occurrence and progression of neurodegenerative diseases. Here, we provide an overview of the process and regulation mechanisms of ferroptosis, and summarize current research progresses that support the contribution of ferroptosis to the pathogenesis of neurodegenerative diseases. A comprehensive understanding of the emerging roles of ferroptosis in neurodegenerative diseases will shed light on the development of novel therapeutic technologies and strategies for slowing down the progression of these diseases.
Collapse
Affiliation(s)
- Yiyan Sun
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Diksha Basnet
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
- *Correspondence: Jialin C. Zheng,
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Jian Huang,
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Jianhui Liu,
| |
Collapse
|
12
|
Edwards G, Olson CG, Euritt CP, Koulen P. Molecular Mechanisms Underlying the Therapeutic Role of Vitamin E in Age-Related Macular Degeneration. Front Neurosci 2022; 16:890021. [PMID: 35600628 PMCID: PMC9114494 DOI: 10.3389/fnins.2022.890021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
The eye is particularly susceptible to oxidative stress and disruption of the delicate balance between oxygen-derived free radicals and antioxidants leading to many degenerative diseases. Attention has been called to all isoforms of vitamin E, with α-tocopherol being the most common form. Though similar in structure, each is diverse in antioxidant activity. Preclinical reports highlight vitamin E’s influence on cell physiology and survival through several signaling pathways by activating kinases and transcription factors relevant for uptake, transport, metabolism, and cellular action to promote neuroprotective effects. In the clinical setting, population-based studies on vitamin E supplementation have been inconsistent at times and follow-up studies are needed. Nonetheless, vitamin E’s health benefits outweigh the controversies. The goal of this review is to recognize the importance of vitamin E’s role in guarding against gradual central vision loss observed in age-related macular degeneration (AMD). The therapeutic role and molecular mechanisms of vitamin E’s function in the retina, clinical implications, and possible toxicity are collectively described in the present review.
Collapse
|
13
|
Qian L, Mehrabi Nasab E, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med 2022; 70:863-882. [PMID: 35168999 PMCID: PMC9016245 DOI: 10.1136/jim-2021-002098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria, as the powerhouse organelle of cells, are greatly involved in regulating cell signaling pathways, including those related to the innate and acquired immune systems, cellular differentiation, growth, death, apoptosis, and autophagy as well as hypoxic stress responses in various diseases. Asthma is a chronic complicated airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, mucus hypersecretion, and remodeling of airway. The asthma mortality and morbidity rates have increased worldwide, so understanding the molecular mechanisms underlying asthma progression is necessary for new anti-asthma drug development. The lung is an oxygen-rich organ, and mitochondria, by sensing and processing O2, contribute to the generation of ROS and activation of pro-inflammatory signaling pathways. Asthma pathophysiology has been tightly associated with mitochondrial dysfunction leading to reduced ATP synthase activity, increased oxidative stress, apoptosis induction, and abnormal calcium homeostasis. Defects of the mitochondrial play an essential role in the pro-remodeling mechanisms of lung fibrosis and airway cells' apoptosis. Identification of mitochondrial therapeutic targets can help repair mitochondrial biogenesis and dysfunction and reverse related pathological changes and lung structural remodeling in asthma. Therefore, we here overviewed the relationship between mitochondrial signaling pathways and asthma pathogenic mechanisms.
Collapse
Affiliation(s)
- Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai, China
| | - Entezar Mehrabi Nasab
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | | | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| |
Collapse
|
14
|
Cook-Mills JM, Averill SH, Lajiness JD. Asthma, allergy and vitamin E: Current and future perspectives. Free Radic Biol Med 2022; 179:388-402. [PMID: 34785320 PMCID: PMC9109636 DOI: 10.1016/j.freeradbiomed.2021.10.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 02/03/2023]
Abstract
Asthma and allergic disease result from interactions of environmental exposures and genetics. Vitamin E is one environmental factor that can modify development of allergy early in life and modify responses to allergen after allergen sensitization. Seemingly varied outcomes from vitamin E are consistent with the differential functions of the isoforms of vitamin E. Mechanistic studies demonstrate that the vitamin E isoforms α-tocopherol and γ-tocopherol have opposite functions in regulation of allergic inflammation and development of allergic disease, with α-tocopherol having anti-inflammatory functions and γ-tocopherol having pro-inflammatory functions in allergy and asthma. Moreover, global differences in prevalence of asthma by country may be a result, at least in part, of differences in consumption of these two isoforms of tocopherols. It is critical in clinical and animal studies that measurements of the isoforms of tocopherols be determined in vehicles for the treatments, and in the plasma and/or tissues before and after intervention. As allergic inflammation is modifiable by tocopherol isoforms, differential regulation by tocopherol isoforms provide a foundation for development of interventions to improve lung function in disease and raise the possibility of early life dietary interventions to limit the development of lung disease.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Samantha H Averill
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jacquelyn D Lajiness
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
15
|
Allam VSRR, Paudel KR, Gupta G, Singh SK, Vishwas S, Gulati M, Gupta S, Chaitanya MVNL, Jha NK, Gupta PK, Patel VK, Liu G, Kamal MA, Hansbro PM, Oliver BGG, Chellappan DK, Dua K. Nutraceuticals and mitochondrial oxidative stress: bridging the gap in the management of bronchial asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62733-62754. [PMID: 35796922 PMCID: PMC9477936 DOI: 10.1007/s11356-022-21454-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023]
Abstract
Asthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. It is currently one of the leading causes of morbidity and mortality in the world. Oxidative stress further complicates the pathology of the disease. The current treatment strategies for asthma mainly involve the use of anti-inflammatory agents and bronchodilators. However, long-term usage of such medications is associated with severe adverse effects and complications. Hence, there is an urgent need to develop newer, novel, and safe treatment modalities for the management of asthma. This has therefore prompted further investigations and detailed research to identify and develop novel therapeutic interventions from potent untapped resources. This review focuses on the significance of oxidative stressors that are primarily derived from both mitochondrial and non-mitochondrial sources in initiating the clinical features of asthma. The review also discusses the biological scavenging system of the body and factors that may lead to its malfunction which could result in altered states. Furthermore, the review provides a detailed insight into the therapeutic role of nutraceuticals as an effective strategy to attenuate the deleterious effects of oxidative stress and may be used in the mitigation of the cardinal features of bronchial asthma.
Collapse
Affiliation(s)
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, Australia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia
- Institutes for Systems Genetics, Frontiers Science Center for Disease related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
16
|
Caldeira DDAF, Weiss DJ, Rocco PRM, Silva PL, Cruz FF. Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Front Immunol 2021; 12:782074. [PMID: 34887870 PMCID: PMC8649841 DOI: 10.3389/fimmu.2021.782074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 01/14/2023] Open
Abstract
Mitochondria are essential organelles for cell metabolism, growth, and function. Mitochondria in lung cells have important roles in regulating surfactant production, mucociliary function, mucus secretion, senescence, immunologic defense, and regeneration. Disruption in mitochondrial physiology can be the central point in several pathophysiologic pathways of chronic lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and asthma. In this review, we summarize how mitochondria morphology, dynamics, redox signaling, mitophagy, and interaction with the endoplasmic reticulum are involved in chronic lung diseases and highlight strategies focused on mitochondrial therapy (mito-therapy) that could be tested as a potential therapeutic target for lung diseases.
Collapse
Affiliation(s)
- Dayene de Assis Fernandes Caldeira
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, United States
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Zheng P, Bian X, Zhai Y, Li C, Li N, Hao C, Huang H, Luo W, Huang Z, Liao C, Xue M, Guo MQ, Sun B, Wu JL. Metabolomics reveals a correlation between hydroxyeicosatetraenoic acids and allergic asthma: Evidence from three years' immunotherapy. Pediatr Allergy Immunol 2021; 32:1654-1662. [PMID: 34087025 DOI: 10.1111/pai.13569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Subcutaneous immunotherapy (SCIT) is an effective, safe, preventative treatment for allergic asthma; however, potential biomarkers for monitoring SCIT have rarely been reported. OBJECTIVE Metabolomics was utilized for the discovery of new biomarkers and analyzing disease pathophysiology of allergic asthma, and it was also applied to determine the metabolomic profiles of serum samples from children with asthma undergoing SCIT and identify potential biomarkers for allergic asthma and its therapeutic monitoring. METHODS Untargeted metabolomics using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry was performed on 15 asthmatic and 15 healthy pediatric sera to profile carboxylic acids. Statistical analysis combined with pathway enrichment analysis was applied to identify potential biomarkers. Then, targeted metabolomics was performed to study longitudinal changes of eicosanoid profiles on sera from 20 participants with asthma who received SCIT at baseline, 6 months, one, two, and three years (ChiCTR-DDT-13003728). RESULTS Metabolomic analysis revealed that levels of eicosanoids, particularly 12(S)-hydroxyeicosatetraenoic acid (HETE; AUC = 0.94, p < .0001) and 15(S)-HETE (AUC = 0.89, p = .0028), metabolized from arachidonic acid by lipoxygenase and glutathione peroxidase enzymes, were significantly higher in asthma group than in healthy individuals. Furthermore, levels of these important metabolites increased in the first year of SCIT treatment and then decreased from years one to three, being significantly lower after three years of treatment than baseline levels. CONCLUSION 12(S)- and 15(S)-HETEs are potential biomarkers to participate in the pathogenesis and treatment of allergic asthma. Moreover, these metabolites may be a new target for biological indicators to monitor the therapeutic effect of SCIT, particularly in the setting of allergic asthma.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiqing Bian
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Yingying Zhai
- Pediatric Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Chuangli Hao
- Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenting Luo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhifeng Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenxi Liao
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| |
Collapse
|
18
|
Metabolomics Reveals Process of Allergic Rhinitis Patients with Single- and Double-Species Mite Subcutaneous Immunotherapy. Metabolites 2021; 11:metabo11090613. [PMID: 34564431 PMCID: PMC8471092 DOI: 10.3390/metabo11090613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only treatment that can change the course of allergic diseases. However, there has not been any research on metabolic reactions in relation to AIT with single or mixed allergens. In this study, patients with allergic rhinitis caused by Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f) were treated with single-mite (Der p) and double-mite (Der p:Der f = 1:1) subcutaneous immunotherapy (SCIT), respectively. To compare the efficacy and the dynamic changes of inflammation-related single- and double-species mite subcutaneous immunotherapy (SM-SCIT and DM-SCIT), we performed visual analogue scale (VAS) score, rhinoconjunctivitis quality of life questionnaire (RQLQ) score and serum metabolomics in allergic rhinitis patients during SCIT. VAS and RQLQ score showed no significant difference in efficacy between the two treatments. A total of 57 metabolites were identified, among which downstream metabolites (5(S)-HETE (Hydroxyeicosatetraenoic acid), 8(S)-HETE, 11(S)-HETE, 15(S)-HETE and 11-hydro TXB2) in the ω-6-related arachidonic acid and linoleic acid pathway showed significant differences after approximately one year of treatment in SM-SCIT or DM-SCIT, and the changes of the above serum metabolic components were correlated with the magnitude of RQLQ improvement, respectively. Notably, 11(S)-HETE decreased more with SM-SCIT, and thus it could be used as a potential biomarker to distinguish the two treatment schemes. Both SM-SCIT and DM-SCIT have therapeutic effects on patients with allergic rhinitis, but there is no significant difference in efficacy between them. The reduction of inflammation-related metabolites proved the therapeutic effect, and potential biomarkers (arachidonic acid and its downstream metabolites) may distinguish the options of SCIT.
Collapse
|
19
|
Allam VSRR, Chellappan DK, Jha NK, Shastri MD, Gupta G, Shukla SD, Singh SK, Sunkara K, Chitranshi N, Gupta V, Wich PR, MacLoughlin R, Oliver BGG, Wernersson S, Pejler G, Dua K. Treatment of chronic airway diseases using nutraceuticals: Mechanistic insight. Crit Rev Food Sci Nutr 2021; 62:7576-7590. [PMID: 33977840 DOI: 10.1080/10408398.2021.1915744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, New South Wales, Australia
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Krishna Sunkara
- Emergency Clinical Management, Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
20
|
Singh N, Kulkarni GT, Kumar Y. Therapeutic Potential of Antileukotriene Drug- Camellia sinensis Extract Co-Formulation on Histamine Induced Asthma in Guinea Pigs. Curr Drug Res Rev 2021; 13:59-72. [PMID: 32787770 DOI: 10.2174/2589977512666200812151620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND/OBJECTIVE To study the therapeutic potential of Antileukotriene drug- Camellia sinensis extract co-formulation on histamine induced asthma in guinea pigs. METHODS SRSD of Montelukast sodium was prepared by the solvent evaporation method. Lyophilized aqueous extract of Camellia sinensis leaves and SRSD mixture was filled in capsule and the capsule shell was coated to achieve initial release lag time. In vitro and pharmacokinetic study of capsules was performed and compared with commercial tablets. A further role of green tea, as an antioxidant adjunct for asthma management, has been analyzed by lung histology, mast cell count and oxidative stress assay in the serum of control and experimental animals. RESULTS The drug release from the commercial tablet was immediate and rapid, but capsule has shown an initial 3.5 hr lag time followed by sustained action up to 8 hr. Pharmacokinetic results show that studied formulations are bioequivalent with respect to Cmax and AUC, while rest parameters showed asignificant difference. Mast cells count in lung tissue were increased (p<0.001) in the experimental group along with glycoprotein deposition in asthmatic bronchioles. Levels of SOD and GPX were decreased (p<0.05) while CAT was increased (p<0.04) in the asthma group in comparison to control. CONCLUSION In the experimental animal model, co-formulation was effective in modulating allergic inflammation and contributing to better control of the inflammatory response. Our findings suggest that Camellia sinensis leaves extract may be used as an adjunct for future improvements in asthma treatment and prevention.
Collapse
Affiliation(s)
- Neelam Singh
- Department of Pharmaceutics, ITS College of Pharmacy, NH-58, Ghaziabad 201206, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, India
| | - Yatendra Kumar
- Department of Pharmaceutics, ITS College of Pharmacy, NH-58, Ghaziabad 201206, India
| |
Collapse
|
21
|
Kamaraj Y, Dhayalan S, Chinnaiyan U, Kumaresan V, Subramaniyan S, Kumar D, Muniyandi K, Punamalai G. Triterpenoid compound betulin attenuates allergic airway inflammation by modulating antioxidants, inflammatory cytokines and tissue transglutaminase in ovalbumin-induced asthma mice model. J Pharm Pharmacol 2021; 73:968-978. [PMID: 33769499 DOI: 10.1093/jpp/rgab015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/20/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES This study hypothesized that to analyse the anti-inflammatory effect of triterpenoid compound betulin in ovalbumin (OVA)-induced asthmatic mice. METHODS In this study, betulin was intraperitoneally administered in OVA-challenged and sensitized mice. The effect of betulin on inflammatory cells, lung function, reactive oxygen species (ROS) production, antioxidants status, oxidative stress markers, serum IgE level and inflammatory cytokines status in BALF was examined by enzyme-linked immunosorbent assay. The expression of tTG, TGF-β1, MMP-9 and TIMP-1 in lung tissue was scrutinized by RT-qPCR analysis, and the expression of TREM-1, p-IκB-α and NF-κBp65 proteins in lung tissue was examined by western blot analysis. KEY FINDINGS We found that the betulin treatment has effectively attenuated the proliferation of inflammatory cells, reduced the ROS generation, elevated the antioxidant enzymes and attenuated the level of oxidative markers in asthma induced mice. Moreover, reduced the level of serum IgE and pro-inflammatory cytokines, and increased the anti-inflammatory cytokine IFN-γ. Betulin treatment down-regulated the expression of MMP-9, tTG and TGF-β1 genes; moreover, betulin treatment effectively down-regulated the TREM-1, p-IκB-α and NF-κBp65 proteins level in lung. CONCLUSION Betulin exhibited effective anti-asthmatic activity by attenuating the accumulation of inflammatory cells, expression of tTG, TGF-β1 and MMP-9 genes in lung tissue.
Collapse
Affiliation(s)
- Yoganathan Kamaraj
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - Sangeetha Dhayalan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - Uma Chinnaiyan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - Veenayohini Kumaresan
- Division of Plant Pathology, UPASI Tea Research Foundation, Valparai, Coimbatore, Tamil Nadu, India
| | - Satheeshkumar Subramaniyan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - Deepak Kumar
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - Kokila Muniyandi
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - Ganesh Punamalai
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| |
Collapse
|
22
|
Grasemann H, Holguin F. Oxidative stress and obesity-related asthma. Paediatr Respir Rev 2021; 37:18-21. [PMID: 32660723 DOI: 10.1016/j.prrv.2020.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Obesity is an asthma comorbidity associated with poor control, increased exacerbation risk and reduced response to inhaled and systemic corticosteroids. It affects children and adults differentially. In those with early onset asthma, it associated with increased eosinophilic inflammation, whereas in late onset, it correlates with lower nitric oxide (NO) and predominantly non-T2 inflammation. There are probably multiple pathways by which obesity impacts asthma; airway and systemic oxidative stress has been proposed as a mechanism that could potentially explain the obesity mediated increased comorbidity and poor response to treatment. More likely than not, oxidative stress is an epiphenomenon of a very diverse set of processes driven by complex changes in airway and systemic metabolism. This article provides a comprehensive overview of the clinical, metabolic, pathophysiological and therapeutic aspects of oxidative stress in patients with obesity and asthma.
Collapse
Affiliation(s)
- Hartmut Grasemann
- Hospital for Sick Children, Respiratory Medicine, University of Toronto. Toronto, Canada
| | - Fernando Holguin
- Department of Medicine, Pulmonary Sciences and Critical Care. University of Colorado. Denver, CO, United States.
| |
Collapse
|
23
|
Shams MH, Jafari R, Eskandari N, Masjedi M, Kheirandish F, Ganjalikhani Hakemi M, Ghasemi R, Varzi AM, Sohrabi SM, Baharvand PA, Safari M. Anti-allergic effects of vitamin E in allergic diseases: An updated review. Int Immunopharmacol 2021; 90:107196. [PMID: 33221170 DOI: 10.1016/j.intimp.2020.107196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Allergic diseases are caused by the immune system's response to innocent antigens called allergens. Recent decades have seen a significant increase in the prevalence of allergic diseases worldwide, which has imposed various socio-economic effects in different countries. Various factors, including genetic factors, industrialization, improved hygiene, and climate change contribute to the development of allergic diseases in many parts of the world. Moreover, changes in lifestyle and diet habits play pivotal roles in the prevalence of allergic diseases. Dietary changes caused by decreased intake of antioxidants such as vitamin E lead to the generation of oxidative stress, which is central to the development of allergic diseases. It has been reported in many articles that oxidative stress diverts immune responses to the cells associated with the pathogenesis of allergic diseases. The aim of this short review was to summarize current knowledge about the anti-allergic properties of vitamin E.
Collapse
Affiliation(s)
- Mohammad-Hossein Shams
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Jafari
- Faculty of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohsen Masjedi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Kheirandish
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Ramin Ghasemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali-Mohammad Varzi
- Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyyed-Mohsen Sohrabi
- Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mozhgan Safari
- Department of Pediatrics, School of Medicines, Hamedan University of Medical Science, Hamedan, Iran
| |
Collapse
|
24
|
Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev 2020; 29:29/157/200165. [PMID: 33060165 DOI: 10.1183/16000617.0165-2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial biology has seen a surge in popularity in the past 5 years, with the emergence of numerous new avenues of exciting mitochondria-related research including immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early 1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental models of chronic and acute respiratory diseases. However, it is only in the past decade with the emergence of more sophisticated tools and methodologies that we are beginning to understand how this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In this review, we highlight the diverse role of mitochondria in individual lung cell populations and what happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for mitochondrial dysfunction in the ageing and diseased lung.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA.,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
25
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Akintunde JK, Abioye JB, Ebinama ON. Potential Protective Effects of Naringin on Oculo-Pulmonary Injury Induced by PM 10 (Wood Smoke) Exposure by Modulation of Oxidative Damage and Acetylcholine Esterase Activity in a Rat Model. CURRENT THERAPEUTIC RESEARCH 2020; 92:100586. [PMID: 32419878 PMCID: PMC7214769 DOI: 10.1016/j.curtheres.2020.100586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Millions of households in the world depend on wood and biomass for cooking and heating. This dependence leads to undesirable toxic effects, such as ocular and pulmonary toxicity. OBJECTIVES The present study examined the potential oculoprotective and pulmonary protective activity of naringin (NRG), a naturally occurring flavonoid, against wood smoke (WS)-induced toxicity in a rat model. METHODS Forty-eight adult male albino rats were randomly distributed into six (n=8) groups. All rats were fed, given water, and observed for 21 days, Group I (control) received only distilled water and no WS exposure, Group II was exposed to WS, Group III was exposed to WS and given 50 mg/kg/d α-tocopherol (vitamin E), Group IV was exposed to WS and given 80 mg/kg/day NRG, Group V was administered only 80 mg/kg/d NRG only, and Group VI was administered only 50 mg/kg/d vitamin E. WS exposure was for 20 min/d. The effect of NRG treatment on acetylcholinesterase activity, nitric oxide radical production, malondialdehyde level, and antioxidant enzymes (ie, superoxide dismustase and catalase) in WS-exposed rats was examined. RESULTS Subchronic (21 day) exposure to WS induced ocular and pulmonary toxicity manifested by the infiltration of parenchyma, atrophy, and inflammation of the cells, which was correlated with alterations in antioxidant enzyme concentrations. Cell damage was associated with an increase in acetylcholinesterase activity and nitric oxide radical concentrations. The toxicity triggered by WS was modulated by the coadministration of NRG. CONCLUSION These results suggest that NRG treatment may be useful to reduce WS-induced oxidative stress and related ocular and pulmonary damage in rats. (Curr Ther Res Clin Exp. 2012; 73:XXX-XXX).
Collapse
Affiliation(s)
- Jacob K. Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture,Abeokuta, Ogun State, Nigeria
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Joseph B. Abioye
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Owen N. Ebinama
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| |
Collapse
|
27
|
Konieczka P, Barszcz M, Kowalczyk P, Szlis M, Jankowski J. The potential of acetylsalicylic acid and vitamin E in modulating inflammatory cascades in chickens under lipopolysaccharide-induced inflammation. Vet Res 2019; 50:65. [PMID: 31533824 PMCID: PMC6751615 DOI: 10.1186/s13567-019-0685-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
Distinct enzymes, including cyclooxygenase 1 and 2 (COX-1 and COX-2), lipoxygenase (LOXs), and cytochrome P450 monooxygenase (CYP450), produce different stress mediators and mediate inflammation in birds. Bioactive agents such as acetylsalicylic acid (ASA) and vitamin E (vE) may affect enzyme activities and could be used in poultry production to control the magnitude of acute phase inflammation. Here, we characterized COX, LOX, and CYP450 mRNA expression levels in chicken immune tissues in response to Escherichia coli lipopolysaccharide (LPS) challenge and investigated whether ASA and vE could alter gene expression. Additionally, for the first time in chickens, we evaluated oxygen consumption by platelet mitochondria as a biomarker of mitochondria function in response to ASA- and vE. LPS challenge compromised bird growth rates, but neither dietary ASA nor vE significantly ameliorated this effect; however, gradually increasing dietary vE levels were more effective than basal levels. ASA regulated arachidonic acid metabolism, providing an eicosanoid synthesis substrate, whereas gradually increasing vE levels evoked aspirin resistance during challenge. Gene expression in immune tissues was highly variable, indicating a complex regulatory network controlling inflammatory pathways. However, unlike COX-1, COX-2 and CYP450 exhibited increased mRNA expression in some cases, suggesting an initiation of novel anti-inflammatory and pro-resolving signals during challenge. Measuring oxygen consumption rate, we revealed that neither the ASA nor vE levels applied here exerted toxic effects on platelet mitochondria.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland. .,Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| |
Collapse
|
28
|
Lauriello M, Di Rubbo V, Sinatti G, Pasqua M, Tucci C, di Marco GP, Necozione S, Eibenstein A. Correlation Between SNOT-22, Nasal Cytology, and Mood Disorders in Patients With Allergic Rhinitis Treated With a Liposomal Nasal Spray. ALLERGY & RHINOLOGY 2019; 10:2152656719866809. [PMID: 31413887 PMCID: PMC6676260 DOI: 10.1177/2152656719866809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with allergic rhinitis (AR) can suffer from mood disorders. The aim of this study was to investigate the clinical effect of a liposomal nasal spray (LN) containing vitamins A and E on the nasal mucosa in patients suffering from AR who had refused any type of anti-allergic treatment. For this purpose, the results of nasal cytology, Visual Analog Scale (VAS), Sino-Nasal Outcome Test-22 (SNOT-22), and Hospital Anxiety and Depression Scale (HADS) test were analyzed. Moreover, we evaluated the relationship between SNOT-22 and nasal cytology and between nasal symptoms and HADS scores. Statistical analysis revealed a significant decrease of scores at T1 in the LN treatment group as concerns VAS, SNOT-22, HADS-Anxiety test and a remarkable reduction of inflammatory cells detected with nasal cytology. Our study showed that higher levels of SNOT-22 corresponded to a higher level of HADS-Anxiety. The mechanisms underlying this relationship in AR patients are currently unknown, but we can suppose that improving mucosal trophism may contribute to the decrease of nasal symptoms and anxiety scores. The improvement of nasal symptoms, as measured by SNOT-22, was significantly correlated with the objective results of nasal cytology. These relationships between SNOT-22 and nasal cytology and between anxiety and cytology were investigated for the first time in our research.
Collapse
Affiliation(s)
- Maria Lauriello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vittoria Di Rubbo
- Specialty School of ENT, University of Rome Tor Vergata, Rome, Italy
| | - Gaia Sinatti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marina Pasqua
- Specialty School of ENT, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Tucci
- Specialty School of ENT, University of Rome Tor Vergata, Rome, Italy
| | | | - Stefano Necozione
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberto Eibenstein
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
29
|
Gerald CL, McClendon CJ, Ranabhat RS, Waterman JT, Kloc LL, Conklin DR, Barton KT, Khatiwada JR, Williams LL. Sorrel Extract Reduces Oxidant Production in Airway Epithelial Cells Exposed to Swine Barn Dust Extract In Vitro. Mediators Inflamm 2019; 2019:7420468. [PMID: 31481850 PMCID: PMC6701418 DOI: 10.1155/2019/7420468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to hog barn organic dust contributes to occupational lung diseases, which are mediated by inflammatory and oxidative stress pathways. Isoprostanes-a family of eicosanoids produced by oxidation of phospholipids by oxygen radicals-are biomarkers of pulmonary oxidative stress. Importantly, 8-isoprostane has been implicated as a key biomarker and mediator of oxidative stress because it is a potent pulmonary vasoconstrictor. Antioxidants found in fruits and vegetables hold promise for preventing or reducing effects of oxidative stress-related diseases including chronic bronchitis and chronic obstructive pulmonary disease (COPD). Here, we investigated 8-isoP and oxidant production by organic dust-exposed airway epithelial cells and the inhibitory effects of an extract from calyces of the sorrel plant, Hibiscus sabdariffa, on oxidant-producing pathways. Confluent cultures of normal human tracheobronchial epithelial cells were pretreated or not with 1% sorrel extract prior to 5% dust extract (DE) exposure. Following DE treatments, live cells, cell-free supernatants, or cell extracts were evaluated for the presence of 8-isoprostane, superoxide, hydrogen peroxide, nitric oxide, hydroxyl radical, peroxynitrite, and catalase activity to evaluate sorrel's inhibitory effect on oxidative stress. The well-known radical scavenging antioxidant, N-acetyl cysteine (NAC), was used for comparisons with sorrel. DE exposure augmented the production of all radicals measured including 8-isoprostane (p value < 0.001), which could be inhibited by NAC or sorrel. Among reactive oxygen and nitrogen species generated in response to DE exposure, sorrel had no effect on H2O2 production and NAC had no significant effect on NO· production. The observations reported here suggest a possible role for sorrel in preventing 8-isoprostane and oxidant-mediated stress responses in bronchial epithelial cells exposed to hog barn dust. These findings suggest a potential role for oxidative stress pathways in mediating occupational lung diseases and antioxidants within sorrel and NAC in reducing dust-mediated oxidative stress within the airways of exposed workers.
Collapse
Affiliation(s)
- Carresse L. Gerald
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Chakia J. McClendon
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Rohit S. Ranabhat
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Jenora T. Waterman
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Lauren L. Kloc
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Dawn R. Conklin
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Ke'Yona T. Barton
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Janak R. Khatiwada
- Center of Excellence for Post-Harvest Technologies, North Carolina Agricultural and Technical University, 500 Laureate Way, Kannapolis, NC, USA
| | - Leonard L. Williams
- Center of Excellence for Post-Harvest Technologies, North Carolina Agricultural and Technical University, 500 Laureate Way, Kannapolis, NC, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Sarcoidosis is a chronic disease, which is routinely treated with corticosteroids. Steroid resistance or steroid-induced adverse effects require alternatives. Other immune-modulating pharmacological treatments have been developed, and therefore expanded tremendously. Until now, the role of nutrition in the overall management of sarcoidosis has been neglected although anti-inflammatory properties of nutritional components have been known for many years now. New nutritional possibilities emerge from already existing data and offer new therapeutic avenues in the treatment of sarcoidosis. RECENT FINDINGS Various dietary components have been shown to reduce pulmonary inflammatory processes. It is increasingly recognized, however, that the specificity and magnitude of the effect of nutrition differs from pharmacological interventions. Conventional randomized clinical trials are less suitable to test the effect of nutrition in comparison with testing drugs. Mechanistic knowledge on the action of dietary components in conjunction with an increasing understanding of the molecular processes underlying steroid resistance (as investigated in asthma and COPD and unfortunately hardly in sarcoidosis) lead to exciting suggestions on combinations of nutrition/nutritional bioactive compounds and corticosteroids that may benefit sarcoidosis patients. SUMMARY In order to understand the effects of nutrition in chronic disease, it is important to elucidate mechanisms and pathways of effects. Several complementing lines of evidence should be integrated in order to be able to advise sarcoidosis patients on a healthy diet as such or in combination with prescribed anti-inflammatory therapy.
Collapse
|
31
|
Ten VS, Ratner V. Mitochondrial bioenergetics and pulmonary dysfunction: Current progress and future directions. Paediatr Respir Rev 2019; 34:37-45. [PMID: 31060947 PMCID: PMC6790157 DOI: 10.1016/j.prrv.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022]
Abstract
This review summarizes current understanding of mitochondrial bioenergetic dysfunction applicable to mechanisms of lung diseases and outlines challenges and future directions in this rapidly emerging field. Although the role of mitochondria extends beyond the term of cellular "powerhouse", energy generation remains the most fundamental function of these organelles. It is not counterintuitive to propose that intact energy supply is important for favorable cellular fate following pulmonary insult. In this review, the discussion of mitochondrial dysfunction focuses on those molecular mechanisms that alter cellular bioenergetics in the lungs: (a) inhibition of mitochondrial respiratory chain, (b) mitochondrial leak and uncoupling, (c) alteration of mitochondrial Ca2+ handling, (d) mitochondrial production of reactive oxygen species and self-oxidation. The discussed lung diseases were selected according to their pathological nature and relevance to pediatrics: Acute lung injury (ALI), defined as acute parenchymal lung disease associated with cellular demise and inflammation (Acute Respiratory Distress Syndrome, ARDS, Pneumonia), alveolar developmental failure (Bronchopulmonary Dysplasia, BPD or chronic lung disease in premature infants), obstructive airway diseases (Bronchial asthma) and vascular remodeling affecting pulmonary circulation (Pulmonary Hypertension, PH). The analysis highlights primary mechanisms of mitochondrial bioenergetic dysfunction contributing to the disease-specific pulmonary insufficiency and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Vadim S. Ten
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Veniamin Ratner
- Division of Neonatology, Department of Pediatrics, Icahn Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
32
|
Bao A, Yang H, Ji J, Chen Y, Bao W, Li F, Zhang M, Zhou X, Li Q, Ben S. Involvements of p38 MAPK and oxidative stress in the ozone-induced enhancement of AHR and pulmonary inflammation in an allergic asthma model. Respir Res 2017; 18:216. [PMID: 29284473 PMCID: PMC5747109 DOI: 10.1186/s12931-017-0697-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/11/2017] [Indexed: 11/23/2022] Open
Abstract
Background Exposure to ambient ozone (O3) increases the susceptivity to allergens and triggers exacerbations in patients with asthma. However, the detailed mechanisms of action for O3 to trigger asthma exacerbations are still unclear. Methods An ovalbumin (OVA)-established asthmatic mouse model was selected to expose to filtered air (OVA-model) or 1.0 ppm O3 (OVA-O3 model) during the process of OVA challenge. Next, the possible involvements of p38 MAPK and oxidative stress in the ozone actions on the asthma exacerbations were investigated on the mice of OVA-O3 model by treating them with SB239063 (a p38 MAPK inhibitor), and/or the α-tocopherol (antioxidant). Biological measurements were conducted including airway hyperresponsiveness (AHR), airway resistance (Raw), lung compliance (CL), inflammation in the airway lumen and lung parenchyma, the phosphorylation of p38 MAPK and heat shock protein (HSP) 27 in the tracheal tissues, and the malondialdehyde (MDA) content and the glutathione peroxidase (GSH-Px) activity in lung tissues. Results In OVA-allergic mice, O3 exposure deteriorated airway hyperresponsiveness (AHR), airway resistance (Raw), lung compliance (CL) and pulmonary inflammation, accompanied by the increased oxidative stress in lung tissues and promoted p38 MAPK and HSP27 phosphorylation in tracheal tissues. Administration of SB239063 (a p38 MAPK inhibitor) on OVA-O3 model exclusively mitigated the Raw, the CL, and the BAL IL-13 content, while α-tocopherol (antioxidant) differentially reduced the BAL number of eosinophils and macrophages, the content of BAL hyaluronan, the peribronchial inflammation, as well as the mRNA expression of TNF-α and IL-5 in the lung tissues of OVA-O3 model. Administration of these two chemical inhibitors similarly inhibited the AHR, the BAL IFN-γ and IL-6 production, the perivascular lung inflammation and the lung IL-17 mRNA expression of OVA-O3 model. Interestingly, the combined treatment of both compounds together synergistically inhibited neutrophil counts in the BALF and CXCL-1 gene expression in the lung. Conclusions O3 exposure during the OVA challenge process promoted exacerbation in asthma. Both p38 MAPK and oxidative stress were found to play a critical role in this process and simultaneous inhibition of these two pathways significantly reduced the O3-elicited detrimental effects on the asthma exacerbation.
Collapse
Affiliation(s)
- Aihua Bao
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Hong Yang
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Jie Ji
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, PO Box 210, -17177, Stockholm, SE, Sweden
| | - Yuqin Chen
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Wuping Bao
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Feng Li
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Min Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Xin Zhou
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Qiang Li
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Suqin Ben
- Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
33
|
Murad HA, Habib HS, Rafeeq MM, Sulaiman MI, Abdulrahman AS, Khabaz MN. Co-inhalation of roflumilast, rather than formoterol, with fluticasone more effectively improves asthma in asthmatic mice. Exp Biol Med (Maywood) 2017; 242:516-526. [PMID: 28056550 PMCID: PMC5367656 DOI: 10.1177/1535370216685006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
Roflumilast is approved as an add-on therapy for chronic obstructive pulmonary disease. The inflammation in chronic obstructive pulmonary disease is mainly neutrophilic, while in asthma it is mainly eosinophilic, studies addressing role of roflumilast in eosinophilic inflammation are recommended. Also in severe asthma, the dominant inflammatory cells are neutrophils. Thus, roflumilast has a potential off-label use in the treatment of asthma. This study was designed to evaluate the effects of co-inhalation of roflumilast and fluticasone compared to that of formoterol and fluticasone in ovalbumin-sensitized and-challenged BALB/c mice. Besides normal control group, the ovalbumin-asthmatic mice were randomly divided into seven groups (n = 8): positive control, vehicle-treated, and five drug-treated groups. Treatments (µg/kg) were given as 15 min-inhalation once/day for five days as follows: roflumilast (500), formoterol (50), fluticasone (1000), roflumilast + fluticasone (500 + 1000), and formoterol + fluticasone (50 + 1000). Penh values were measured in conscious unrestrained mice using the single-chamber whole-body plethysmography. Airway hyperreactivity to inhaled methacholine was evaluated. Bronchoalveolar lavage fluid was used for the measurements of levels of IL-4, IL-5, TNF-α, OVA-specific IgE, and total and differential white cells. Lung sections were stained with hematoxylin and eosin and periodic acid-Schiff. The asthmatic mice showed significant increases in airway hyperreactivity which were significantly reversed by the combination treatments. The asthmatic mice showed significant increases in levels of IL-4, IL-5, TNF-α, ovalbumin-specific IgE, and total and differential white cells in bronchoalveolar lavage fluid. All treatments (except formoterol) significantly reversed these changes mainly with roflumilast + fluticasone. The asthmatic mice showed severe inflammatory infiltration and goblet cell hyperplasia which were maximally reversed by roflumilast + fluticasone, while minimally reversed by formoterol. In conclusion, co-inhalation of roflumilast + fluticasone more significantly improved inflammation and histopathological changes than co-inhalation of formoterol + fluticasone in ovalumin-asthmatic mice. Further studies are needed to help confirm the potential off-label add-on use of roflumilast in typical and atypical asthma and asthma-chronic obstructive pulmonary disease overlap syndrome. Impact statement Roflumilast, a selective phosphodiesterase-4 inhibitor, was approved for the treatment of chronic obstructive pulmonary disease (COPD). This study showed that co-inhalation of roflumilast and fluticasone significantly decreased airway hyperresponsiveness in ovalumin-asthmatic mice. Also, it more significantly improved inflammation and histopathological changes than co-inhalation of formoterol and fluticasone. The current results showed that inhaled roflumilast reduced counts of eosinophils, neutrophils, and macrophages in bronchoalveolar lavage fluid. Consequently, inhaled roflumilast might be of potential off-label benefit in treatment of eosinophilic and neutrophilic asthma and asthma-COPD overlap syndrome (ACOS). These results could also support other experimental and clinical studies addressing the same issue.
Collapse
Affiliation(s)
- Hussam A Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| | - Hamed S Habib
- Department of Pediatrics, Faculty of Medicine, KAU, Jeddah 21589, Saudi Arabia
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Mansour I Sulaiman
- Department of Pharmacology, Faculty of Medicine, KAU, Jeddah 21589, Saudi Arabia
| | - Amer S Abdulrahman
- Department of Pathology, Faculty of Medicine, Rabigh, KAU, Jeddah 21589, Saudi Arabia
| | - Mohamad Nidal Khabaz
- Department of Pathology, Faculty of Medicine, Rabigh, KAU, Jeddah 21589, Saudi Arabia
| |
Collapse
|
34
|
de Boer A, van de Worp WRPH, Hageman GJ, Bast A. The effect of dietary components on inflammatory lung diseases - a literature review. Int J Food Sci Nutr 2017; 68:771-787. [PMID: 28276906 DOI: 10.1080/09637486.2017.1288199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anti-inflammatory treatment in chronic inflammatory lung diseases usually involves glucocorticosteroids. With patients suffering from serious side effects or becoming resistant, specific nutrients, that are suggested to positively influence disease progression, can be considered as new treatment options. The dietary inflammatory index is used to calculate effects of dietary components on inflammation and lung function to identify most potent dietary components, based on 162 articles. The positive effects of n-3 PUFAs and vitamin E on lung function can at least partially be explained by their anti-inflammatory effect. Many other dietary components showed only small or no effects on inflammation and/or lung function, although the number of weighted studies was often too small for a reliable assessment. Optimal beneficial dietary elements might reduce the required amounts of anti-inflammatory treatments, thereby decreasing both side effects and development of resistance as to improve quality of life of patients suffering from chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Alie de Boer
- a Faculty of Humanities and Sciences , Food Claims Centre Venlo, Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| | - Wouter R P H van de Worp
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Geja J Hageman
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Aalt Bast
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands.,c Faculty of Humanities and Sciences , Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| |
Collapse
|
35
|
Tiron ameliorates oxidative stress and inflammation in a murine model of airway remodeling. Int Immunopharmacol 2016; 39:172-180. [PMID: 27485290 DOI: 10.1016/j.intimp.2016.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Airway remodeling includes lung structural changes that have a role in the irreversibility of pulmonary dysfunction shown in chronic bronchial asthmatics. The current experiment investigated the effect of the mitochondrial antioxidant, tiron in comparison with dexamethasone (DEXA) on airway remodeling in chronic asthma. Sensitized BALB/c mice were challenged with ovalbumin (OVA) aerosol for 8weeks, OVA sensitized-challenged mice were treated with either DEXA or tiron, respectively. After that, lung tissue and bronchoaveolar lavage fluid (BALF) were used for measurement of different biological markers. Lungs were examined for histopathological changes and immunohistochemistry. Upon comparing with vehicle treated animals, trion or DEXA treatment significantly reduced eosinophils, lymphocytes, neutrophils and macrophages count in the BALF. Both drugs significantly alleviated chronic OVA-induced oxidative stress as illustrated by decreased pulmonary malondialdenhyde (MDA) and increased glutathione (GSH) and superoxide dismutase (SOD) levels. Asthmatic mice exhibited elevated levels of NOx, IL-13 and TGF-β1 that were reduced by DEXA and tiron. Histopathological changes and increased immunoreactivity of nuclear factor-Kappa B (NF-κ B) in OVA-challenged mice were minimized by tiron and DEXA treatment. In conclusion, in this model of chronic asthma DEXA and tiron ameliorated airway remodeling and inflammation in experimental chronic asthma with no difference between the effect of tiron and DEXA. Tiron has a potential role as adjuvant treatment in chronic asthma.
Collapse
|
36
|
Abstract
INTRODUCTION Asthma, a heterogeneous disease with multiple phenotypes, remains a significant health problem. Present treatments are not curative and prevention should be our ultimate goal. Vitamin E supplementation presents a potential easy and cheap preventive therapy but the results of studies are confusing and sometimes contradictory. Clarification is needed. AREAS COVERED Animal studies and research in pregnant women suggest enhanced lifetime resistance to asthma with appropriate fetal exposure to vitamin E. Vitamin E's preventive role is complex and includes functional variations of the different isoforms. Expert commentary: We review the most recent literature on the role of vitamin E isoforms on: lung inflammation, immune development, animal and clinical studies during pregnancy, and the potential influence of vitamin E isoforms on asthma development in offspring. We point out where data are seemingly contradictory, explain why this is so, and comment on where further clarifying research is needed and its future direction.
Collapse
Affiliation(s)
- Richard T Strait
- a Department of Pediatrics , University of Cincinnati, College of Medicine , Cincinnati , OH , USA.,b Division of Emergency Medicine , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Carlos A Camargo
- c Department of Emergency Medicine , Massachusetts General Hospital, Harvard, Medical School , Boston , MA , USA
| |
Collapse
|
37
|
Abdala-Valencia H, Soveg F, Cook-Mills JM. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol 2016; 310:L759-71. [PMID: 26801566 DOI: 10.1152/ajplung.00301.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b(+) subsets of CD11c(+) dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b(+)CD11c(+) dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Frank Soveg
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
38
|
Agrawal A, Mabalirajan U. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Lung Cell Mol Physiol 2015; 310:L103-13. [PMID: 26566906 DOI: 10.1152/ajplung.00320.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases.
Collapse
Affiliation(s)
- Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | |
Collapse
|
39
|
Assayag M, Goldstein S, Samuni A, Berkman N. Cyclic nitroxide radicals attenuate inflammation and Hyper-responsiveness in a mouse model of allergic asthma. Free Radic Biol Med 2015; 87:148-56. [PMID: 26119784 DOI: 10.1016/j.freeradbiomed.2015.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/03/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
The effects of stable cyclic nitroxide radicals have been extensively investigated both in vivo and in vitro demonstrating anti-inflammatory, radioprotective, anti-mutagenic, age-retardant, hypotensive, anti-cancer and anti-teratogenic activities. Yet, these stable radicals have not been evaluated in asthma and other airway inflammatory disorders. The present study investigated the effect of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (TPL) and 3-carbamoyl-proxyl (3-CP) in a mouse model of ovalbumin (OVA)-induced allergic asthma. Both 3-CP and TPL were non-toxic when administered either orally (1% w/w nitroxide-containing chow) or via intraperitoneal (IP) injection (∼300 mg/kg). Feeding the mice orally demonstrated that 3-CP was more effective than TPL in reducing inflammatory cell recruitment into the airway and in suppressing airway hyper-responsiveness (AHR) in OVA-challenged mice. To characterize the optimal time-window of intervention and mode of drug administration, 3-CP was given orally during allergen sensitization, during allergen challenge or during both sensitization and challenge stages, and via IP injection or intranasal instillation for 3 days during the challenge period. 3-CP given via all modes of delivery markedly inhibited OVA-induced airway inflammation, expression of cytokines, AHR and protein nitration of the lung tissue. Oral administration during the entire experiment was the most efficient delivery of 3-CP and was more effective than dexamethasone a potent corticosteroid used for asthma treatment. Under a similar administration regimen (IP injection before the OVA challenge), the effect of 3-CP was similar to that of dexamethasone and even greater on AHR and protein nitration. The protective effect of the nitroxides, which preferentially react with free radicals, in suppressing the increase of main asthmatic inflammatory markers substantiate the key role played by reactive oxygen and nitrogen species in the molecular mechanism of asthma. The present results demonstrate the therapeutic potential of nitroxides for the treatment of asthma.
Collapse
Affiliation(s)
- Miri Assayag
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Sara Goldstein
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Amram Samuni
- Institute of Medical Research, Israel-Canada Medical School, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Neville Berkman
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
40
|
Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, Bao W, Pavlidis S, Barnes PJ, Kanerva J, Bittner A, Rao N, Murphy MP, Kirkham PA, Chung KF, Adcock IM. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2015; 136:769-80. [PMID: 25828268 PMCID: PMC4559140 DOI: 10.1016/j.jaci.2015.01.046] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 01/11/2023]
Abstract
Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD.
Collapse
Affiliation(s)
- Coen H Wiegman
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - Charalambos Michaeloudes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Gulammehdi Haji
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Priyanka Narang
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Colin J Clarke
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kirsty E Russell
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Wuping Bao
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | - Peter J Barnes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | - Anton Bittner
- Janssen Research & Development LLC, San Diego, Calif
| | - Navin Rao
- Janssen Research & Development LLC, San Diego, Calif
| | | | - Paul A Kirkham
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
41
|
Berthon BS, Wood LG. Nutrition and respiratory health--feature review. Nutrients 2015; 7:1618-43. [PMID: 25751820 PMCID: PMC4377870 DOI: 10.3390/nu7031618] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/15/2015] [Accepted: 02/15/2015] [Indexed: 01/08/2023] Open
Abstract
Diet and nutrition may be important modifiable risk factors for the development, progression and management of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). This review examines the relationship between dietary patterns, nutrient intake and weight status in obstructive lung diseases, at different life stages, from in-utero influences through childhood and into adulthood. In vitro and animal studies suggest important roles for various nutrients, some of which are supported by epidemiological studies. However, few well-designed human intervention trials are available to definitively assess the efficacy of different approaches to nutritional management of respiratory diseases. Evidence for the impact of higher intakes of fruit and vegetables is amongst the strongest, yet other dietary nutrients and dietary patterns require evidence from human clinical studies before conclusions can be made about their effectiveness.
Collapse
Affiliation(s)
- Bronwyn S Berthon
- Centre for Asthma and Respiratory Diseases, Level 2, Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| | - Lisa G Wood
- Centre for Asthma and Respiratory Diseases, Level 2, Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
42
|
Bou Ghanem EN, Clark S, Du X, Wu D, Camilli A, Leong JM, Meydani SN. The α-tocopherol form of vitamin E reverses age-associated susceptibility to streptococcus pneumoniae lung infection by modulating pulmonary neutrophil recruitment. THE JOURNAL OF IMMUNOLOGY 2014; 194:1090-9. [PMID: 25512603 PMCID: PMC4834212 DOI: 10.4049/jimmunol.1402401] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Streptococcus pneumoniae infections are an important cause of morbidity and mortality in older patients. Uncontrolled neutrophil-driven pulmonary inflammation exacerbates this disease. To test whether the α-tocopherol (α-Toc) form of vitamin E, a regulator of immunity, can modulate neutrophil responses as a preventive strategy to mitigate the age-associated decline in resistance to S. pneumoniae, young (4 mo) and old (22-24 mo) C57BL/6 mice were fed a diet containing 30-PPM (control) or 500-PPM (supplemented) α-Toc for 4 wk and intratracheally infected with S. pneumoniae. Aged mice fed a control diet were exquisitely more susceptible to S. pneumoniae than young mice. At 2 d postinfection, aged mice suffered 1000-fold higher pulmonary bacterial burden, 2.2-fold higher levels of neutrophil recruitment to the lung, and a 2.25-fold higher rate of lethal septicemia. Strikingly, α-Toc supplementation of aged mice resulted in a 1000-fold lower bacterial lung burden and full control of infection. This α-Toc-induced resistance to pneumococcal challenge was associated with a 2-fold fewer pulmonary neutrophils, a level comparable to S. pneumoniae-challenged, conventionally fed young mice. α-Toc directly inhibited neutrophil egress across epithelial cell monolayers in vitro in response to pneumococci or hepoxilin-A3, an eicosanoid required for pneumococcus-elicited neutrophil trans-epithelial migration. α-Toc altered expression of multiple epithelial and neutrophil adhesion molecules involved in migration, including CD55, CD47, CD18/CD11b, and ICAM-1. These findings suggest that α-Toc enhances resistance of aged mice to bacterial pneumonia by modulating the innate immune response, a finding that has potential clinical significance in combating infection in aged individuals through nutritional intervention.
Collapse
Affiliation(s)
- Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Stacie Clark
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Xiaogang Du
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston MA 02114; and
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston MA 02114; and
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111; Howard Hughes Medical Institute, Boston, MA 02111
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111;
| | - Simin N Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston MA 02114; and
| |
Collapse
|
43
|
Cook-Mills JM, Avila PC. Vitamin E and D regulation of allergic asthma immunopathogenesis. Int Immunopharmacol 2014; 23:364-72. [PMID: 25175918 DOI: 10.1016/j.intimp.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 01/08/2023]
Abstract
Asthma occurs as complex interactions of the environmental and genetics. Clinical studies and animal models of asthma indicate dietary factors such as vitamin E and vitamin D as protective for asthma risk. In this review, we discuss opposing regulatory functions of tocopherol isoforms of vitamin E and regulatory functions of vitamin D in asthma and how the variation in global prevalence of asthma may be explained, at least in part, by these dietary components.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Pedro C Avila
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
44
|
Agrawal A, Prakash YS. Obesity, metabolic syndrome, and airway disease: a bioenergetic problem? Immunol Allergy Clin North Am 2014; 34:785-96. [PMID: 25282291 DOI: 10.1016/j.iac.2014.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple studies have determined that obesity increases asthma risk or severity. Metabolic changes of obesity, such as diabetes or insulin resistance, are associated with asthma and poorer lung function. Insulin resistance is also found to increase asthma risk independent of body mass. Conversely, asthma is associated with abnormal glucose and lipid metabolism, insulin resistance, and obesity. Here we review our current understanding of how dietary and lifestyle factors lead to changes in mitochondrial metabolism and cellular bioenergetics, inducing various components of the cardiometabolic syndrome and airway disease.
Collapse
Affiliation(s)
- Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
45
|
Yang Y, Zhang N, Lan F, Van Crombruggen K, Fang L, Hu G, Hong S, Bachert C. Transforming growth factor-beta 1 pathways in inflammatory airway diseases. Allergy 2014; 69:699-707. [PMID: 24750111 DOI: 10.1111/all.12403] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-beta 1 (TGF-β1) has been reported being involved in the remodeling and immunosuppression processes of inflammatory airway diseases; understanding the regulation of TGF-β1 is therefore a key to unravel the pathomechanisms of these diseases. This review briefly summarizes the current knowledge on the influencing factors for driving TGF-β1 and its regulatory pathways in inflammatory airway diseases and discusses possible therapeutic approaches to TGF-β1 control. The factors include smoking and oxidative stress, prostaglandins (PGs), leukotrienes (LTs), bradykinin (BK), and microRNAs (miRs). Based on the summary, new innovative treatment strategies may be developed for inflammatory airway diseases with an impaired expression of TGF-β1.
Collapse
Affiliation(s)
- Y. Yang
- Department of Oto-Rhino-Laryngology; The First Affiliated Hospital; Chongqing Medical University; Chongqing China
| | - N. Zhang
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent Belgium
- Division of Nose, Throat and Ear Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| | - F. Lan
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent Belgium
- Division of Nose, Throat and Ear Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| | - K. Van Crombruggen
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent Belgium
- Division of Nose, Throat and Ear Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| | - L. Fang
- Department of Oto-Rhino-Laryngology; The First Affiliated Hospital; Chongqing Medical University; Chongqing China
| | - G. Hu
- Department of Oto-Rhino-Laryngology; The First Affiliated Hospital; Chongqing Medical University; Chongqing China
| | - S. Hong
- Department of Oto-Rhino-Laryngology; The First Affiliated Hospital; Chongqing Medical University; Chongqing China
| | - C. Bachert
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent Belgium
- Division of Nose, Throat and Ear Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
46
|
Tiwari M, Dwivedi UN, Kakkar P. Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:326-37. [PMID: 24556222 DOI: 10.1016/j.jep.2014.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/03/2014] [Accepted: 01/27/2014] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (Willd.) Miers is an important constituent of several ayurvedic medicinal preparations. In Ayurveda it is mentioned as "rasayan" and traditionally used for the treatment of asthma, chronic cough besides other ailments. This study was carried out to study the mechanisms involved in protection accorded by extract of Tinospora cordifolia (Tc) stem to asthmatic mice by regulation of oxidative stress, pro-inflammatory mediator release and redox signaling involving NFκB. MATERIALS AND METHODS BALB/c mice were sensitized with intraperitoneal (i.p.) Ovalbumin (Ova) on days 0 and 14, followed by intranasal Ovalbumin (Ova) challenge on days 24 and 27 to generate an in vivo asthma model. Tc extract (hydroalcoholic, 100 mg/kg) and dexamethasone (1 mg/kg) were given orally from day 15 to 23 to the Tc+Ova treated group and Dex+Ova treated group respectively. Oxidative stress parameters e.g. activity of superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase, lipid peroxidation, GSH/GSSG ratio, protein carbonyl content, eosinophil peroxidase, myeloperoxidase activity, and NO release were measured in tissue, blood and bronchoalveolar lavage fluid (BALF). Estimation of cytokines was done in BALF. Western blot analysis was done for IκB α, iNOS, COX-2, iCAM-1 and pJNK MAPKs along with histopathology. RESULTS Tc extract treated mice showed decreased airway hyper-responsiveness, eosinophil count and IgE content in blood as compared to Ova treated asthmatic mice. Increase in activities of SOD, catalase, glutathione reductase, glutathione peroxidase as well as GSH/GSSG ratio was observed while a decrease in MDA formation, protein carbonyl content, eosinophil peroxidase, myeloperoxidase activity and NO release in BALF was seen in Tc treated mice. In BALF, levels of cytokines IL-4 and TNF-α were reduced and IFN-γ levels increased in extract treated mice. At the same time Tc treatment of Ova-challenged mice significantly increased the level of IκB α, cytosolic inhibitor of redox sensitive transcription factor NFκB. Immunoblot analysis revealed considerable decrease in the levels of COX-2, ICAM-1, iNOS, and pJNK. Histopathology and PAS staining also indicate a protective effect of Tc extract in inflammation and mucus hyper-secretion due to goblet cell hyperplasia. CONCLUSION The results suggest a protective effect of Tc extract against oxidative stress, pro-inflammatory mediator release and redox signaling in the murine model of asthma. The Tc extract shows therapeutic potential for management of asthmatic inflammation and other lung inflammatory conditions.
Collapse
Affiliation(s)
- M Tiwari
- Herbal Research Section, Food Drug & Chemical Toxicology Division, CSIR - Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India.
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| | - P Kakkar
- Herbal Research Section, Food Drug & Chemical Toxicology Division, CSIR - Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
47
|
Abdala-Valencia H, Berdnikovs S, Cook-Mills JM. Vitamin E isoforms as modulators of lung inflammation. Nutrients 2013; 5:4347-63. [PMID: 24184873 PMCID: PMC3847734 DOI: 10.3390/nu5114347] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/12/2013] [Accepted: 10/18/2013] [Indexed: 01/19/2023] Open
Abstract
Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Feinberg School of Medicine, Northwestern University, McGaw-M304, 240 E. Huron, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
48
|
Cook-Mills JM, Abdala-Valencia H, Hartert T. Two faces of vitamin E in the lung. Am J Respir Crit Care Med 2013; 188:279-84. [PMID: 23905522 DOI: 10.1164/rccm.201303-0503ed] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Asthma and allergic lung disease occur as complex environmental and genetic interactions. Clinical studies of asthma indicate a number of protective dietary factors, such as vitamin E, on asthma risk. However, these studies have had seemingly conflicting outcomes. In this perspective, we discuss opposing regulatory effects of tocopherol isoforms of vitamin E, mechanisms for tocopherol isoform regulation of allergic lung inflammation, association of vitamin E isoforms with outcomes in clinical studies, and how the variation in global prevalence of asthma may be explained, at least in part, by vitamin E isoforms.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
49
|
12/15-lipoxygenase expressed in non-epithelial cells causes airway epithelial injury in asthma. Sci Rep 2013; 3:1540. [PMID: 23528921 PMCID: PMC3607899 DOI: 10.1038/srep01540] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/08/2013] [Indexed: 01/14/2023] Open
Abstract
The mechanisms underlying asthmatic airway epithelial injury are not clear. 12/15-lipoxygenase (an ortholog of human 15-LOX-1), which is induced by IL-13, is associated with mitochondrial degradation in reticulocytes at physiological conditions. In this study, we showed that 12/15-LOX expressed in nonepithelial cells caused epithelial injury in asthma pathogenesis. While 12/15-LOX overexpression or IL-13 administration to naïve mice showed airway epithelial injury, 12/15-LOX knockout/knockdown in allergic mice reduced airway epithelial injury. The constitutive expression of 15-LOX-1 in bronchial epithelia of normal human lungs further indicated that epithelial 15-LOX-1 may not cause epithelial injury. 12/15-LOX expression is increased in various inflammatory cells in allergic mice. Though non-epithelial cells such as macrophages or fibroblasts released 12/15-LOX metabolites upon IL-13 induction, bronchial epithelia didn't release. Further 12-S-HETE, arachidonic acid metabolite of 12/15-LOX leads to epithelial injury. These findings suggested 12/15-LOX expressed in non-epithelial cells such as macrophages and fibroblasts leads to bronchial epithelial injury.
Collapse
|
50
|
Asthma: a clinical condition for brain health. Exp Neurol 2013; 248:338-42. [PMID: 23850858 DOI: 10.1016/j.expneurol.2013.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 01/07/2023]
|