1
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
2
|
Squier K, Mousavizadeh R, Damji F, Beck C, Hunt M, Scott A. In vitro collagen biomarkers in mechanically stimulated human tendon cells: a systematic review. Connect Tissue Res 2024; 65:89-101. [PMID: 38375562 DOI: 10.1080/03008207.2024.2313582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE The aim of this study was to comprehensively examine and summarize the available in vitro evidence regarding the relationship between mechanical stimulation and biomarkers of collagen synthesis in human-derived tendon cells. METHODS Systematic review with narrative analyses and risk of bias assessment guided by the Health Assessment and Translation tool. The electronic databases MEDLINE (Ovid), EMBASE (Ovid), CENTRAL (Ovid) and COMPENDEX (Engineering Village) were systematically searched from inception to 3 August 2023. Inclusion criteria encompassed English language, original experimental, or quasi-experimental in vitro publications that subjected human tendon cells to mechanical stimulation, with collagen synthesis (total collagen, type I, III, V, XI, XII, and XIV) and related biomarkers (matrix metalloproteinases, transforming growth factor β, scleraxis, basic fibroblast growth factor) as outcomes. RESULTS Twenty-one publications were included. A pervasive definite high risk of bias was evident in all included studies. Owing to incomplete outcome reporting and heterogeneity in mechanical stimulation protocols, planned meta-analyses were unfeasible. Reviewed data suggested that human tendon cells respond to mechanical stimulation with increased synthesis of collagen (e.g., COL1A1, procollagen, total soluble collagen, etc.), scleraxis and several matrix metalloproteinases. Results also indicate that mechanical stimulation dose magnitude may influence synthesis in several biomarkers. CONCLUSIONS A limited number of studies, unfortunately characterized by a definite high risk of bias, suggest that in vitro mechanical stimulation primarily increases type I collagen synthesis by human tendon cells. Findings from this systematic review provide researchers and clinicians with biological evidence concerning the possible beneficial influence of exercise and loading on cellular-level tendon adaptation.
Collapse
Affiliation(s)
- Kipling Squier
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rouhollah Mousavizadeh
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Faraz Damji
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Charlotte Beck
- Woodward Library, University of British Columbia, Vancouver, Canada
| | - Michael Hunt
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Alexander Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Dyment NA, Barrett JG, Awad H, Bautista CA, Banes A, Butler DL. A brief history of tendon and ligament bioreactors: Impact and future prospects. J Orthop Res 2020; 38:2318-2330. [PMID: 32579266 PMCID: PMC7722018 DOI: 10.1002/jor.24784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Bioreactors are powerful tools with the potential to model tissue development and disease in vitro. For nearly four decades, bioreactors have been used to create tendon and ligament tissue-engineered constructs in order to define basic mechanisms of cell function, extracellular matrix deposition, tissue organization, injury, and tissue remodeling. This review provides a historical perspective of tendon and ligament bioreactors and their contributions to this advancing field. First, we demonstrate the need for bioreactors to improve understanding of tendon and ligament function and dysfunction. Next, we detail the history and evolution of bioreactor development and design from simple stretching of explants to fabrication and stimulation of two- and three-dimensional constructs. Then, we demonstrate how research using tendon and ligament bioreactors has led to pivotal basic science and tissue-engineering discoveries. Finally, we provide guidance for new basic, applied, and clinical research utilizing these valuable systems, recognizing that fundamental knowledge of cell-cell and cell-matrix interactions combined with appropriate mechanical and chemical stimulation of constructs could ultimately lead to functional tendon and ligament repairs in the coming decades.
Collapse
Affiliation(s)
- Nathaniel A. Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Jennifer G. Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia Tech, Leesburg, VA
| | - Hani Awad
- Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14627
| | | | - Albert Banes
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, NC
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC
| | - David L. Butler
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221
| |
Collapse
|
4
|
Abstract
Tendons connect muscles to bones to transfer the forces necessary for movement. Cell-cell junction proteins, cadherins and connexins, may play a role in tendon development and injury. In this review, we begin by highlighting current understanding of how cell-cell junctions may regulate embryonic tendon development and differentiation. We then examine cell-cell junctions in postnatal tendon, before summarizing the role of cadherins and connexins in adult tendons. More information exists regarding the role of cell-cell junctions in the formation and homeostasis of other musculoskeletal tissues, namely cartilage and bone. Therefore, to inform future tendon studies, we include a brief survey of cadherins and connexins in chondrogenesis and osteogenesis, and summarize how cell-cell junctions are involved in some musculoskeletal tissue pathologies. An enhanced understanding of how cell-cell junctions participate in tendon development, maintenance, and disease will benefit future regenerative strategies.
Collapse
Affiliation(s)
| | - Jett B Murray
- Biological Engineering, University of Idaho, Moscow, ID
| | | |
Collapse
|
5
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Connizzo BK, Grodzinsky AJ. Release of pro-inflammatory cytokines from muscle and bone causes tenocyte death in a novel rotator cuff in vitro explant culture model. Connect Tissue Res 2018; 59:423-436. [PMID: 29447021 PMCID: PMC6240787 DOI: 10.1080/03008207.2018.1439486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Tendinopathy is a significant clinical problem thought to be associated with altered mechanical loading. Explant culture models allow researchers to alter mechanical loading in a controlled in vitro environment while maintaining tenocytes in their native matrix. However, current models do not accurately represent commonly injured tendons, ignoring contributions of associated musculature and bone, as well as regional collagen structure. This study details the characterization of amouse rotator cuff explant culture model, including bone, tendon, and muscle (BTM). MATERIALS AND METHODS Following harvest, BTM explants were maintained in stress-deprived culture for one week and tendon was then assessed for changes in cell viability, metabolism, matrix structure and content. RESULTS Matrix turnover occurred throughout culture as manifested in both gene expression and biosynthesis, but this did not translate to net changes in total collagen or sulfated glycosaminoglycan content. Furthermore, tendon structure was not significantly altered throughout culture. However, we found significant cell death in BTM tendons after 3 days in culture, which we hypothesize is cytokine-induced. Using a targeted multiplex assay, we found high levels of pro-inflammatory cytokines released to the culture medium from muscle and bone, levels that did cause cell deathin tendon-alone controls. CONCLUSIONS Overall, this model presents an innovative approach to understandingrotator cuff injury and tenocyte mechanobiology in a clinically-relevant tendon structure. Our model can be a powerful tool to investigate how mechanical and biological stimuli can alter normal tendon health and lead to tendon degeneration, and may provide a testbed for therapeutics for tendon repair.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Alan J. Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
7
|
Bell R, Robles-Harris M, Anderson M, Laudier D, Schaffler M, Flatow E, Andarawis-Puri N. Inhibition of apoptosis exacerbates fatigue-damage tendon injuries in an in vivo rat model. Eur Cell Mater 2018; 36:44-56. [PMID: 30058060 PMCID: PMC6350530 DOI: 10.22203/ecm.v036a04] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve the mechanical properties of fatigue-damaged tendons. The working hypothesis was that, despite the low vascular nature of the tendon, apoptosis would be inhibited, prompting increased production of matrix proteins and restoring tendon mechanical properties. Rats received 2 or 5 d of systemic pan-caspase inhibitor (Q-VD-OPh) or dimethyl sulfoxide (DMSO) carrier control injections starting immediately prior to fatigue loading and were sacrificed at days 7 and 14 post-fatigue-loading. Systemic pan-caspase inhibition for 2 d led to a surprising increase in apoptosis, but inhibition for 5 d increased the population of live cells that could repair the fatigue damage. Further analysis of the 5 d group showed that effective inhibition led to an increased population of cells producing ECM and PCM proteins, although typically in conjunction with oxidative stress markers. Ultimately, inhibition of apoptosis led to further deterioration in mechanical properties of fatigue-damaged tendons.
Collapse
Affiliation(s)
- R. Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - M.A. Robles-Harris
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - M. Anderson
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D. Laudier
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M.B. Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - E.L. Flatow
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N. Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA,Address for correspondence: Nelly Andarawis-Puri, PhD, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14850, NY, USA.
| |
Collapse
|
8
|
Wang T, Thien C, Wang C, Ni M, Gao J, Wang A, Jiang Q, Tuan RS, Zheng Q, Zheng MH. 3D uniaxial mechanical stimulation induces tenogenic differentiation of tendon-derived stem cells through a PI3K/AKT signaling pathway. FASEB J 2018; 32:4804-4814. [PMID: 29596022 DOI: 10.1096/fj.201701384r] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tendon is a mechanosensitive tissue, but little is known about how mechanical stimulation selectively signals tenogenic differentiation and neo-tendon formation. In this study, we compared the impact of uniaxial and biaxial mechanical loading on tendon-derived stem cells (TDSCs). Our data show that there are variations in cell signaling and cell differentiation of mouse TDSCs in response to uniaxial and biaxial loading in monolayer culture. Whereas uniaxial loading induced TDSCs toward tenogenic and osteogenic differentiation, biaxial loading induced osteogenic, adipogenic, and chondrogenic differentiation of TDSCs. Furthermore, by applying uniaxial loading on 3-dimensional (3D) TDSC constructs, tenogenic-specific differentiation and neo-tendon formation were observed, results that were replicated in human TDSCs. We also showed that uniaxial loading induced PKB (AKT) phosphorylation (pAKT), whereas biaxial loading induced pERK. Most importantly, we found that inhibition of the PI3K/AKT signaling pathway could attenuate tenogenic differentiation and tendon formation in 3D TDSC constructs subjected to uniaxial loading. Taken together, our study highlights the importance of appropriate mechanobiological stimulation in 3D cell niches on tendon-like tissue formation and demonstrates that uniaxial mechanical loading plays an essential role in tenogenic differentiation and tendon formation by activating the PI3K/AKT signaling pathway.-Wang, T., Thien, C., Wang, C., Ni, M., Gao, J., Wang, A., Jiang, Q., Tuan, R. S., Zheng, Q., Zheng, M. H. 3D uniaxial mechanical stimulation induces tenogenic differentiation of tendon-derived stem cells through a PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Christine Thien
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carolyn Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ming Ni
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Junjie Gao
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Allan Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia.,Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstruction, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; and
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ming H Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
9
|
Wang T, Chen P, Zheng M, Wang A, Lloyd D, Leys T, Zheng Q, Zheng MH. In vitro loading models for tendon mechanobiology. J Orthop Res 2018; 36:566-575. [PMID: 28960468 DOI: 10.1002/jor.23752] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023]
Abstract
Tendons are the connective tissue responsible for transferring force from muscles to bones. A key factor in tendon development, maturation, repair, and degradation is its biomechanical environment. Understanding tendon mechanobiology is essential for the development of injury prevention strategies, rehabilitation protocols and potentially novel treatments in tendon injury and degeneration. Despite the simple overall loading on tendon tissue, cells within the tissue in vivo experience a much more complex mechanical environment including tension, compression and shear forces. This creates a substantial challenge in the establishment of in vitro loading models of the tendon. This article reviews multiple loading models used for the study of tendon mechanobiology and summarizes the main findings. Although impressive progress has been achieved in the functionality and mimicry of in vitro loading models, an ideal platform is yet to be developed. Multidisciplinary approaches and collaborations will be the key to unveiling the tendon mechanobiology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:566-575, 2018.
Collapse
Affiliation(s)
- Tao Wang
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Centre for Orthopaedic Translational Research, School of Biomedical Science, University of Western Australia, Nedlands, Australia
| | - Peilin Chen
- Centre for Orthopaedic Translational Research, School of Biomedical Science, University of Western Australia, Nedlands, Australia
| | | | - Allan Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Science, University of Western Australia, Nedlands, Australia.,Sir Charles Gairdner Hospital, Perth, Australia
| | - David Lloyd
- School of Sport Science, Exercise and Health, University of Western Australia, Crawley, Australia.,Centre for Musculoskeletal Research, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Toby Leys
- Sir Charles Gairdner Hospital, Perth, Australia
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ming H Zheng
- Centre for Orthopaedic Translational Research, School of Biomedical Science, University of Western Australia, Nedlands, Australia
| |
Collapse
|
10
|
Foolen J, Wunderli SL, Loerakker S, Snedeker JG. Tissue alignment enhances remodeling potential of tendon-derived cells - Lessons from a novel microtissue model of tendon scarring. Matrix Biol 2017. [PMID: 28636876 DOI: 10.1016/j.matbio.2017.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tendinopathy is a widespread and unresolved clinical challenge, in which associated pain and hampered mobility present a major cause for work-related disability. Tendinopathy associates with a change from a healthy tissue with aligned extracellular matrix (ECM) and highly polarized cells that are connected head-to-tail, towards a diseased tissue with a disorganized ECM and randomly distributed cells, scar-like features that are commonly attributed to poor innate regenerative capacity of the tissue. A fundamental clinical dilemma with this scarring process is whether treatment strategies should focus on healing the affected (disorganized) tissue or strengthen the remaining healthy (anisotropic) tissue. The question was thus asked whether the intrinsic remodeling capacity of tendon-derived cells depends on the organization of the 3D extracellular matrix (isotropic vs anisotropic). Progress in this field is hampered by the lack of suitable in vitro tissue platforms. We aimed at filling this critical gap by creating and exploiting a next generation tissue platform that mimics aspects of the tendon scarring process; cellular response to a gradient in tissue organization from isotropic (scarred/non-aligned) to highly anisotropic (unscarred/aligned) was studied, as was a transient change from isotropic towards highly anisotropic. Strikingly, cells residing in an 'unscarred' anisotropic tissue indicated superior remodeling capacity (increased gene expression levels of collagen, matrix metalloproteinases MMPs, tissue inhibitors of MMPs), when compared to their 'scarred' isotropic counterparts. A numerical model then supported the hypothesis that cellular remodeling capacity may correlate to cellular alignment strength. This in turn may have improved cellular communication, and could thus relate to the more pronounced connexin43 gap junctions observed in anisotropic tissues. In conclusion, increased tissue anisotropy was observed to enhance the cellular potential for functional remodeling of the matrix. This may explain the poor regenerative capacity of tenocytes in chronic tendinopathy, where the pathological process has resulted in ECM disorganization. Additionally, it lends support to treatment strategies that focus on strengthening the remaining healthy tissue, rather than regenerating scarred tissue.
Collapse
Affiliation(s)
- Jasper Foolen
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefania L Wunderli
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jess G Snedeker
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland.
| |
Collapse
|
11
|
Enhanced gap junction intercellular communication inhibits catabolic and pro-inflammatory responses in tenocytes against heat stress. J Cell Commun Signal 2017; 11:369-380. [PMID: 28601938 DOI: 10.1007/s12079-017-0397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/28/2017] [Indexed: 12/17/2022] Open
Abstract
Elevation of tendon core temperature during severe activity is well known. However, its effects on tenocyte function have not been studied in detail. The present study tested a hypothesis that heat stimulation upregulates tenocyte catabolism, which can be modulated by the inhibition or the enhancement of gap junction intercellular communication (GJIC). Tenocytes isolated from rabbit Achilles tendons were subjected to heat stimulation at 37 °C, 41 °C or 43 °C for 30 min, and changes in cell viability, gene expressions and GJIC were examined. It was found that GJIC exhibited no changes by the stimulation even at 43 °C, but cell viability was decreased and catabolic and proinflammatory gene expressions were upregulated. Inhibition of GJIC demonstrated further upregulated catabolic and proinflammatory gene expressions. In contrast, enhanced GJIC, resulting from forced upregulation of connexin 43 gene, counteracted the heat-induced upregulation of catabolic and proinflammatory genes. These findings suggest that the temperature rise in tendon core could upregulate catabolic and proinflammatory activities, potentially leading to the onset of tendinopathy, and such upregulations could be suppressed by the enhancement of GJIC. Therefore, to prevent tendon injury at an early stage from becoming chronic injury, tendon core temperature and GJIC could be targets for post-activity treatments.
Collapse
|
12
|
Mehdizadeh A, Gardiner BS, Lavagnino M, Smith DW. Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage. Biomech Model Mechanobiol 2017; 16:1329-1348. [DOI: 10.1007/s10237-017-0890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/18/2017] [Indexed: 11/28/2022]
|
13
|
Cell Signaling in Tenocytes: Response to Load and Ligands in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:79-95. [DOI: 10.1007/978-3-319-33943-6_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci 2015; 72:2853-67. [PMID: 26091748 PMCID: PMC4503509 DOI: 10.1007/s00018-015-1963-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5035, Indianapolis, IN, 46202, USA,
| | | |
Collapse
|
15
|
Du L, Dong F, Guo L, Hou Y, Yi F, Liu J, Xu D. Interleukin-1β increases permeability and upregulates the expression of vascular endothelial-cadherin in human renal glomerular endothelial cells. Mol Med Rep 2015; 11:3708-14. [PMID: 25572875 DOI: 10.3892/mmr.2015.3172] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/20/2014] [Indexed: 01/30/2023] Open
Abstract
The renal glomerular capillary endothelium is part of the glomerular filtration barrier and is involved in acute and chronic inflammation of the glomerulus. Glomerular endothelial cells are a unique type of microvascular cell, which remain to be fully characterized. The aim of the present study was to examine the permeability of glomerular endothelial cells and their responses to interleukin (IL)‑1β, a pro‑inflammatory cytokine. Human glomerular endothelial cell (HRGEC) and human umbilical vein endothelial cell (HUVEC) monolayers were examined using a Transwell permeability assay, transendothelial electrical resistance (TEER) and by determining the expression of the adhesion molecule, vascular endothelial (VE)‑cadherin, in the absence or presence of 10 ng/ml IL‑1β. Compared with the HUVECs, the HRGECs demonstrated higher permeability, lower TEER and reduced expression of VE‑cadherin. IL‑1β induced an increase in the permeability and a decrease in the TEER of the HRGECs, however, to a lesser extent compared with the HUVECs. Following IL‑1β treatment, the expression of VE‑cadherin was increased in the HRGECs and decreased in the HUVECs. These results suggested that HRGECs have distinct biological properties and specific gene expression features in response to IL‑1β.
Collapse
Affiliation(s)
- Linna Du
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ling Guo
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
16
|
Freedman BR, Bade ND, Riggin CN, Zhang S, Haines PG, Ong KL, Janmey PA. The (dys)functional extracellular matrix. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3153-64. [PMID: 25930943 DOI: 10.1016/j.bbamcr.2015.04.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
The extracellular matrix (ECM) is a major component of the biomechanical environment with which cells interact, and it plays important roles in both normal development and disease progression. Mechanical and biochemical factors alter the biomechanical properties of tissues by driving cellular remodeling of the ECM. This review provides an overview of the structural, compositional, and mechanical properties of the ECM that instruct cell behaviors. Case studies are reviewed that highlight mechanotransduction in the context of two distinct tissues: tendons and the heart. Although these two tissues demonstrate differences in relative cell-ECM composition and mechanical environment, they share similar mechanisms underlying ECM dysfunction and cell mechanotransduction. Together, these topics provide a framework for a fundamental understanding of the ECM and how it may vary across normal and diseased tissues in response to mechanical and biochemical cues. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Benjamin R Freedman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan D Bade
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Corinne N Riggin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip G Haines
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katy L Ong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Janmey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Chowdhury B, David AL, Thrasivoulou C, Becker DL, Bader DL, Chowdhury TT. Tensile strain increased COX-2 expression and PGE2 release leading to weakening of the human amniotic membrane. Placenta 2014; 35:1057-64. [PMID: 25280972 DOI: 10.1016/j.placenta.2014.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/14/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022]
Abstract
INTRODUCTION There is evidence that premature rupture of the fetal membrane at term/preterm is a result of stretch and tissue weakening due to enhanced prostaglandin E2 (PGE2) production. However, the effect of tensile strain on inflammatory mediators and the stretch sensitive protein connexin-43 (Cx43) has not been examined. We determined whether the inflammatory environment influenced tissue composition and response of the tissue to tensile strain. METHODS Human amniotic membranes isolated from the cervix (CAM) or placenta regions (PAM) were examined by second harmonic generation to identify collagen orientation and subjected to tensile testing to failure. In separate experiments, specimens were subjected to cyclic tensile strain (2%, 1 Hz) for 24 h. Specimens were examined for Cx43 by immunofluorescence confocal microscopy and expression of COX-2 and Cx43 by RT-qPCR. PGE2, collagen, elastin and glycosaminoglycan (GAG) levels were analysed by biochemical assay. RESULTS Values for tensile strength were significantly higher in PAM than CAM with mechanical parameters dependent on collagen orientation. Gene expression for Cx43 and COX-2 was enhanced by tensile strain leading to increased PGE2 release and GAG levels in PAM and CAM when compared to unstrained controls. In contrast, collagen and elastin content was reduced by tensile strain in PAM and CAM. DISCUSSION Fibre orientation has a significant effect on amniotic strength. Tensile strain increased Cx43/COX-2 expression and PGE2 release resulting in tissue softening mediated by enhanced GAG levels and a reduction in collagen/elastin content. CONCLUSION A combination of inflammatory and mechanical factors may disrupt amniotic membrane biomechanics and matrix composition.
Collapse
Affiliation(s)
- B Chowdhury
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - A L David
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - C Thrasivoulou
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - D L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11, Mandalay Road, Singapore
| | - D L Bader
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Faculty of Health Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - T T Chowdhury
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
18
|
Kuzma-Kuzniarska M, Yapp C, Pearson-Jones TW, Jones AK, Hulley PA. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:15001. [PMID: 24390370 PMCID: PMC4019415 DOI: 10.1117/1.jbo.19.1.015001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures.
Collapse
Affiliation(s)
- Maria Kuzma-Kuzniarska
- University of Oxford, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford OX3 7LD, United Kingdom
| | - Clarence Yapp
- University of Oxford, Structural Genomics Consortium, Oxford OX3 7DQ, United Kingdom
| | - Thomas W. Pearson-Jones
- University of Oxford, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford OX3 7LD, United Kingdom
| | - Andrew K. Jones
- Oxford Brookes University, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences Oxford OX3 0BP, United Kingdom
| | - Philippa A. Hulley
- University of Oxford, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford OX3 7LD, United Kingdom
| |
Collapse
|
19
|
Kjaer M, Bayer ML, Eliasson P, Heinemeier KM. What is the impact of inflammation on the critical interplay between mechanical signaling and biochemical changes in tendon matrix? J Appl Physiol (1985) 2013; 115:879-83. [DOI: 10.1152/japplphysiol.00120.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mechanical loading can influence tendon collagen homeostasis in animal models, while the dynamics of the human adult tendon core tissue are more debatable. Currently available data indicate that human tendon adaptation to loading may happen primarily in the outer tendon region. A role of inflammation in this peritendinous adaptation is supported by a rise in inflammatory mediators in the peritendinous area after physiological mechanical loading in humans. This plays a role in the exercise-induced rise in tendon blood flow and peritendinous collagen synthesis. Although inflammatory activity can activate proteolytic pathways in tendon, mechanical loading can protect against matrix degradation. Acute tendon injury displays an early inflammatory response that seems to be lowered when mechanical loading is applied during regeneration of tendon. Chronically overloaded tendons (tendinopathy) do neither at rest nor after acute exercise display any enhanced inflammatory activity, and thus the basis for using anti-inflammatory medication to treat tendon overuse seems limited.
Collapse
Affiliation(s)
- Michael Kjaer
- Institute of Sports Medicine, Bispebjerg Hospital and Centre of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika L. Bayer
- Institute of Sports Medicine, Bispebjerg Hospital and Centre of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernilla Eliasson
- Institute of Sports Medicine, Bispebjerg Hospital and Centre of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja M. Heinemeier
- Institute of Sports Medicine, Bispebjerg Hospital and Centre of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Shepherd JH, Screen HRC. Fatigue loading of tendon. Int J Exp Pathol 2013; 94:260-70. [PMID: 23837793 DOI: 10.1111/iep.12037] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/12/2013] [Indexed: 12/28/2022] Open
Abstract
Tendon injuries, often called tendinopathies, are debilitating and painful conditions, generally considered to develop as a result of tendon overuse. The aetiology of tendinopathy remains poorly understood, and whilst tendon biopsies have provided some information concerning tendon appearance in late-stage disease, there is still little information concerning the mechanical and cellular events associated with disease initiation and progression. Investigating this in situ is challenging, and numerous models have been developed to investigate how overuse may generate tendon fatigue damage and how this may relate to tendinopathy conditions. This article aims to review these models and our current understanding of tendon fatigue damage. We review the strengths and limitations of different methodologies for characterizing tendon fatigue, considering in vitro methods that adopt both viable and non-viable samples, as well as the range of different in vivo approaches. By comparing data across model systems, we review the current understanding of fatigue damage development. Additionally, we compare these findings with data from tendinopathic tissue biopsies to provide some insights into how these models may relate to the aetiology of tendinopathy. Fatigue-induced damage consistently highlights the same microstructural, biological and mechanical changes to the tendon across all model systems and also correlates well with the findings from tendinopathic biopsy tissue. The multiple testing routes support matrix damage as an important contributor to tendinopathic conditions, but cellular responses to fatigue appear complex and often contradictory.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK.
| | | |
Collapse
|
21
|
Steiner TH, Bürki A, Ferguson SJ, Gantenbein-Ritter B. Stochastic amplitude-modulated stretching of rabbit flexor digitorum profundus tendons reduces stiffness compared to cyclic loading but does not affect tenocyte metabolism. BMC Musculoskelet Disord 2012; 13:222. [PMID: 23150982 PMCID: PMC3557209 DOI: 10.1186/1471-2474-13-222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 11/08/2012] [Indexed: 11/13/2022] Open
Abstract
Background It has been demonstrated that frequency modulation of loading influences cellular response and metabolism in 3D tissues such as cartilage, bone and intervertebral disc. However, the mechano-sensitivity of cells in linear tissues such as tendons or ligaments might be more sensitive to changes in strain amplitude than frequency. Here, we hypothesized that tenocytes in situ are mechano-responsive to random amplitude modulation of strain. Methods We compared stochastic amplitude-modulated versus sinusoidal cyclic stretching. Rabbit tendon were kept in tissue-culture medium for twelve days and were loaded for 1h/day for six of the total twelve culture days. The tendons were randomly subjected to one of three different loading regimes: i) stochastic (2 – 7% random strain amplitudes), ii) cyclic_RMS (2–4.42% strain) and iii) cyclic_high (2 - 7% strain), all at 1 Hz and for 3,600 cycles, and one unloaded control. Results At the end of the culture period, the stiffness of the “stochastic” group was significantly lower than that of the cyclic_RMS and cyclic_high groups (both, p < 0.0001). Gene expression of eleven anabolic, catabolic and inflammatory genes revealed no significant differences between the loading groups. Conclusions We conclude that, despite an equivalent metabolic response, stochastically stretched tendons suffer most likely from increased mechanical microdamage, relative to cyclically loaded ones, which is relevant for tendon regeneration therapies in clinical practice.
Collapse
Affiliation(s)
- Thomas H Steiner
- Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland
| | | | | | | |
Collapse
|
22
|
Patterson-Kane JC, Becker DL, Rich T. The pathogenesis of tendon microdamage in athletes: the horse as a natural model for basic cellular research. J Comp Pathol 2012; 147:227-47. [PMID: 22789861 DOI: 10.1016/j.jcpa.2012.05.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/14/2012] [Indexed: 12/30/2022]
Abstract
The equine superficial digital flexor tendon (SDFT) is a frequently injured structure that is functionally and clinically equivalent to the human Achilles tendon (AT). Both act as critical energy-storage systems during high-speed locomotion and can accumulate exercise- and age-related microdamage that predisposes to rupture during normal activity. Significant advances in understanding of the biology and pathology of exercise-induced tendon injury have occurred through comparative studies of equine digital tendons with varying functions and injury susceptibilities. Due to the limitations of in-vivo work, determination of the mechanisms by which tendon cells contribute to and/or actively participate in the pathogenesis of microdamage requires detailed cell culture modelling. The phenotypes induced must ultimately be mapped back to the tendon tissue environment. The biology of tendon cells and their matrix, and the pathological changes occurring in the context of early injury in both horses and people are reviewed, with a particular focus on the use of various tendon cell and tissue culture systems to model these events.
Collapse
Affiliation(s)
- J C Patterson-Kane
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | |
Collapse
|
23
|
Dean BJF, Franklin SL, Carr AJ. A systematic review of the histological and molecular changes in rotator cuff disease. Bone Joint Res 2012; 1:158-66. [PMID: 23610686 PMCID: PMC3626275 DOI: 10.1302/2046-3758.17.2000115] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/30/2012] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The pathogenesis of rotator cuff disease (RCD) is complex and not fully understood. This systematic review set out to summarise the histological and molecular changes that occur throughout the spectrum of RCD. METHODS We conducted a systematic review of the scientific literature with specific inclusion and exclusion criteria. RESULTS A total of 101 studies met the inclusion criteria: 92 studies used human subjects exclusively, seven used animal overuse models, and the remaining two studies involved both humans and an animal overuse model. A total of 58 studies analysed supraspinatus tendon exclusively, 16 analysed subacromial bursal tissue exclusively, while the other studies analysed other tissue or varying combinations of tissue types including joint fluid and muscle. The molecular biomarkers that were altered in RCD included matrix substances, growth factors, enzymes and other proteins including certain neuropeptides. CONCLUSIONS The pathogenesis of RCD is being slowly unravelled as a result of the significant recent advances in molecular medicine. Future research aimed at further unlocking these key molecular processes will be pivotal in developing new surgical interventions both in terms of the diagnosis and treatment of RCD.
Collapse
Affiliation(s)
- B J F Dean
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD, UK
| | | | | |
Collapse
|
24
|
Roh DS, Funderburgh JL. Rapid changes in connexin-43 in response to genotoxic stress stabilize cell-cell communication in corneal endothelium. Invest Ophthalmol Vis Sci 2011; 52:5174-82. [PMID: 21666237 DOI: 10.1167/iovs.11-7272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine how corneal endothelial (CE) cells respond to acute genotoxic stress through changes in connexin-43 (Cx43) and gap junction intercellular communication (GJIC). METHODS Cultured bovine CE cells were exposed to mitomycin C or other DNA-damaging agents. Changes in the levels, stability, binding partners, and trafficking of Cx43 were assessed by Western blot analysis and immunostaining. Live-cell imaging of a Cx43-green fluorescent protein (GFP) fusion protein was used to evaluate internalization of cell surface Cx43. Dye transfer and fluorescent recovery after photobleaching (FRAP) assessed GJIC. RESULTS After genotoxic stress, Cx43 accumulated in large gap junction plaques, had reduced zonula occludens-1 binding, and displayed increased stability. Live-cell imaging of Cx43-GFP plaques in stressed CE cells revealed reduced gap junction internalization and degradation compared to control cells. Mitomycin C enhanced transport of Cx43 from the endoplasmic reticulum to the cell surface and formation of gap junction plaques. Mitomycin C treatment also protected GJIC from disruption after cytokine treatment. DISCUSSION These results show a novel CE cell response to genotoxic stress mediated by marked and rapid changes in Cx43 and GJIC. This stabilization of cell-cell communication may be an important early adaptation to acute stressors encountered by CE.
Collapse
Affiliation(s)
- Danny S Roh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|