1
|
Guo X, Zhou Y, Li X, Mu J. Resistance exercise training improves disuse-induced skeletal muscle atrophy in humans: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2025; 26:134. [PMID: 39920735 PMCID: PMC11806896 DOI: 10.1186/s12891-025-08384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND This meta-analysis aimed to determine whether resistance exercise training (RET) can attenuate the loss of muscle volume and function in anti-gravitational muscles, especially quadriceps and calf muscles, during immobilization/disuse conditions. METHODS A comprehensive literature search was conducted to identify randomized controlled trials comparing RET vs. no exercise during immobilization/disuse. Searches were conducted in databases including Web of Science, PubMed, EBOSCO, and Cochrane Library, without imposing a time limit until 20 March, 2023. Studies reporting outcomes related to muscle volume, MVC, peak power, concentric peak force, eccentric peak force, isometric MVC torque of knee extension, isometric MVC torque of knee flexion were included. Data were pooled using random-effects models. RESULTS Eleven randomized controlled trials were finally included. RET elicited substantial benefits for preserving quadriceps muscle volume (n = 5, MD = 252.56, 95% CI = 151.92, 353.21, p < 0.001). RET demonstrated a statistically significant preventive effect on the reduction of MVC in both quadriceps (n = 4, MD = 338.59, 95% CI = 247.49, 429.69, p < 0.001) and calf muscles (n = 3, MD = 478.59, 95% CI = 160.42, 796.77, p < 0.01). Peak power of quadriceps muscles (n = 4, MD = 166.08, 95% CI = 28.44, 303.73, p < 0.05) and calf muscles (n = 2, MD = 176.58, 95% CI = 102.36, 250.79, p < 0.001) were elevated after RET intervention. RET significantly ameliorated the weakening of both concentric and eccentric peak force in quadriceps (concentric: n = 2, MD = 470.95, 95% CI = 355.45, 586.44, p < 0.001; eccentric: n = 1, MD = 351.51, 95% CI = 254.43, 448.58, p < 0.001) and calf muscles (concentric: n = 2, MD = 867.52, 95% CI = 548.18, 1186.86, p < 0.001; eccentric: n = 1, MD = 899.86, 95% CI = 558.17, 1241.55, p < 0.001). Additionally, the diminishing of isometric MVC torques of knee extension (n = 6, MD = 41.85, 95% CI = 20.93, 62.77, p < 0.001) and knee flexion (n = 4, MD = 13.20, 95% CI = 8.12, 18.77, p < 0.001) were enhanced significantly after RET intervention. CONCLUSIONS RET effectively minimized deterioration of muscle volume and muscle function during immobilization/disuse, particularly in anti-gravitational muscles. RET should be recommended to maintain muscle and neuromuscular health for spaceflight, bed rest, immobilization/disuse conditions. Further research is needed to explore the effects of RET in more diverse populations and under various disuse conditions. More high-quality research will be required to demonstrate the aforementioned benefits conclusively.
Collapse
Affiliation(s)
- Xian Guo
- Sport Science School, Beijing Sport University, Beijing, 100084, China.
- Beijing Sports Nutrition Engineering Research Center, Beijing, 100084, China.
| | - Yanbing Zhou
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xinxin Li
- Sport Science School, Beijing Sport University, Beijing, 100084, China
| | - Jinhao Mu
- Sport Science School, Beijing Sport University, Beijing, 100084, China
| |
Collapse
|
2
|
Zhou Y, Liu Y, Luo H, Wen C, Cui Y, Du L, Kwaku OE, Li L, Xiong L, Zheng J, Ding X, Shen X, Zhou P, Hu H, Yue R. Myoferlin alleviates pressure overload-induced cardiac hypertrophy and dysfunction by inhibiting NLRP3-mediated pyroptosis. PeerJ 2024; 12:e18499. [PMID: 39553724 PMCID: PMC11568814 DOI: 10.7717/peerj.18499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Myoferlin (MYOF) is a muscle-derived secretory protein. Recent studies have found that MYOF protects against cell damage. However, the role of MYOF in cardiac hypertrophy remains unclear. Increasing evidence suggests that NLRP3 (NOD-like receptor protein 3) and the pyroptosis cascade play critical roles in the development of cardiac hypertrophy and inflammation. To investigate the role of MYOF in cardiac hypertrophy, we conducted a transverse aortic constriction (TAC) experiment in a mouse model. We found that MYOF can improve cardiac hypertrophy and cardiac function. Furthermore, our study confirmed a connection between cardiac hypertrophy and myocardial pyroptosis. Cardiac hypertrophy significantly increased the proportion of apoptotic cells and upregulated apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and gasdermin D (GSDMD). This suggests that pharmacological or genetic inhibition of NLRP3 can effectively reduce cardiac hypertrophy. An abnormal increase in NLRP3 can reverse the cardioprotective effects of MYOF. Our findings indicate that MYOF is a potential therapeutic agent for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanxu Liu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hao Luo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Cong Wen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yangyang Cui
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Linqing Du
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ofe Eugene Kwaku
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Family Health University College and Hospital, Opposite Kofi Annan International Peace Keeping Training Center, Teshie- Accra, Ghana
| | - Lan Li
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lijuan Xiong
- Department of Cardiology, People’s Hospital of Guang ’an District, Guang ’an, Sichuan, China
| | - Jiankang Zheng
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuefeng Ding
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiufeng Shen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peng Zhou
- Department of Cardiology, People’s Hospital of Guang ’an District, Guang ’an, Sichuan, China
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Cardiology, People’s Hospital of Guang ’an District, Guang ’an, Sichuan, China
| |
Collapse
|
3
|
Brock Symons T, Park J, Kim JH, Kwon EH, Delacruz J, Lee J, Park Y, Chung E, Lee S. Attenuation of skeletal muscle atrophy via acupuncture, electro-acupuncture, and electrical stimulation. Integr Med Res 2023; 12:100949. [PMID: 37214317 PMCID: PMC10192920 DOI: 10.1016/j.imr.2023.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background Accelerated skeletal muscle wasting is a shared trait among many pathologies and aging. Acupuncture has been used as a therapeutic intervention to control pain; however, little is known about its effects on skeletal muscle atrophy and function. The study's purpose was to compare the effects of acupuncture, electro-acupuncture, and electrical stimulation on cast-induced skeletal muscle atrophy. Methods Forty female Sprague Dawley rats were randomly divided into groups: Control, casted (CAST), CAST+Acupuncture (CAST-A), 4) CAST+Electro-acupuncture (CAST-EA), and CAST+Electrical stimulation (CAST-ES) (n = 8). Plaster casting material was wrapped around the left hind limb. Acupuncture and electro-acupuncture (10 Hz, 6.4 mA) treatments were applied by needling acupoints (stomach-36 and gallbladder-34). Electrical stimulation (10 Hz, 6.4 mA) was conducted by needling the lateral and medial gastrocnemius muscles. Treatments were conducted for 15 min, three times/week for 14 days. Muscle atrophy F-box (MAFbx), muscle RING finger 1 (MuRF1), and contractile properties were assessed. Results Fourteen days of cast-immobilization decreased muscle fiber CSA by 56% in the CAST group (p = 0.00); whereas, all treatment groups demonstrated greater muscle fiber CSA than the CAST group (p = 0.00). Cast-immobilization increased MAFbx and MuRF1 protein expression in the CAST group (p<0.01) while the CAST-A, CAST-EA, and CAST-ES groups demonstrated lower levels of MAFbx and MuRF1 protein expression (p<0.02) compared to the CAST group. Following fourteen days of cast-immobilization, peak twitch tension did not differ between the CAST-A and CON groups (p = 0.12). Conclusion Skeletal muscle atrophy, induced by 14 days of cast-immobilization, was significantly attenuated by acupuncture, electro-acupuncture, or electrical stimulation.
Collapse
Affiliation(s)
- T. Brock Symons
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Jinho Park
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Joo Hyun Kim
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Eun Hye Kwon
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Jesse Delacruz
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Junghoon Lee
- Department of Health and Human Performance, University of Houston, Houston, TX, U.S.A
| | - Yoonjung Park
- Department of Health and Human Performance, University of Houston, Houston, TX, U.S.A
| | - Eunhee Chung
- Department of Kinesiology, The University of Texas at San Antonio, San Antonio, TX, U.S.A
| | - Sukho Lee
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| |
Collapse
|
4
|
Macedo AG, Almeida TAF, Massini DA, De Paula VF, De Oliveira DM, Pessôa Filho DM. Effects of exercise training on glucocorticoid-induced muscle atrophy: literature review. Steroids 2023; 195:109240. [PMID: 37061112 DOI: 10.1016/j.steroids.2023.109240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Glucocorticoids (GCs) administration, such as cortisol acetate (CA) and dexamethasone (DEXA), is used worldwide due to their anti-inflammatory, anti-allergic, and immunosuppressive properties. However, muscle atrophy is one of the primary deleterious induced responses from the chronic treatment with GCs since it stimulates muscle degradation inhibiting muscle protein synthesis. Animal models allow a better understanding of the molecular pathways involved in this process of gene modulation and production of hypertrophic and atrophic proteins. The treatment with GCs, such as DEXA, promotes the reduction of hypertrophic proteins such as serine/threonine tyrosine kinase (AKT), protein kinase mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) and increased gene expression or production of atrophic proteins, such as myostatin, muscle atrophic F-box (atrogin-1), or muscle ring finger protein-1 (MuRF-1). In both continuous exercise (CE) and resistance exercise (RE) forms, exercise training is used to mitigate muscle atrophy induced by GCs. The CE attenuated muscle atrophy induced by CA or DEXA in the plantaris and extensor digitorum longus muscle, while RE mitigated the DEXA-induced atrophy in plantaris and flexor hallux longus muscles. The RE response appears to have occurred by modulation of hypertrophic proteins through increased protein production or phosphorylated/total ratio of mTOR and p70S6K and decreased atrophic protein production of atrogin-1 and MuRF-1. CE needs future research to understand the molecular pathways of its protective response. Abreviations: GCs, glucocorticoids; CA, cortisol acetate. DEXA, dexamethason; ET, exercise training; CE, continuous exercise; RE, resistance exercise; AKT, serine/threonine tyrosine kinase; mTOR, protein kinase mammalian target of rapamycin; p70S6K, ribosomal protein S6 kinase; FOXO3A, forkead box 3A; atrogin-1, muscle atrophic F-box; MuRF-1, muscle ring finger protein; PI3K, phosphatidylinositol 3 kinase; IGF-I, Insulin-like Growth Factor-I; IRS-1, insulin receptor substrate; REDD1, regulated in development and DNA damage responses 1; HSP70, heat shock protein 70; GR, glucocorticoid receptor; Smad2, Cytoplasmic Smad2; Smad3, Cytoplasmic Smad3; CS, Cushing's syndrome.
Collapse
Affiliation(s)
- Anderson G Macedo
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil.
| | - Tiago A F Almeida
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil; CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Danilo A Massini
- Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil
| | - Vinícius F De Paula
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos, SP, Brazil
| | - David M De Oliveira
- Federal University Jataí, Department of Physical Education, km 195, 3900, Goiás, Jataí, Brazil
| | - Dalton M Pessôa Filho
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil
| |
Collapse
|
5
|
Grosman-Rimon L, Vadasz B, Bondi M, Cohen M, Santos S, Katz J, Clarke H, Singh S, Rimon J, Kumbhare D, Eilat-Adar S. Potential Role of Insulin-Like Growth Factors in Myofascial Pain Syndrome: A Narrative Review. Am J Phys Med Rehabil 2022; 101:1175-1182. [PMID: 35067552 DOI: 10.1097/phm.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Insulin-like growth factors have diverse functions in skeletal muscles by acting through multiple signaling pathways, including growth regulation and differentiation, anti-inflammation, and antioxidation. Insulin-like growth factors have anti-inflammatory effects and also play roles in nociceptive pathways, determining pain sensitivity, in addition to their protective role against ischemic injury in both the nervous system and skeletal muscle. In skeletal muscle, insulin-like growth factors maintain homeostasis, playing key roles in maintenance, accelerating muscle regeneration, and repair processes. As part of their maintenance role, increased levels of insulin-like growth factors may be required for the repair mechanisms after exercise. Although the role of insulin-like growth factors in myofascial pain syndrome is not completely understood, there is evidence from a recent study that insulin-like growth factor 2 levels in patients with myofascial pain syndrome are lower than those of healthy individuals and are associated with increased levels of inflammatory biomarkers. Importantly, higher insulin-like growth factor 2 levels are associated with increased pain severity in myofascial pain syndrome patients. This may suggest that too low or high insulin-like growth factor levels may contribute to musculoskeletal disorder process, whereas a midrange levels may optimize healing without contributing to pain hypersensitivity. Future studies are required to address the mechanisms of insulin-like growth factor 2 in myofascial pain syndrome and the optimal level as a therapeutic agent.
Collapse
Affiliation(s)
- Liza Grosman-Rimon
- From the Academic College at Wingate, Wingate Institute, Netanya, Israel (LG-R, SE-A); Toronto Rehabilitation Institute, University Health Network, University of Toronto Centre for the Study of Pain, Toronto, Canada (LG-R, S. Santos, HC, DK); Department of Pathology McGaw Medical Center of Northwestern University, Chicago, IL (BV); Department of Neurological Rehabilitation, The Chaim Sheba Medical Center, Tel Hashomer, Israel (MB); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (MB); The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (MC); Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Canada (JK, HC); Department of Psychology, Faculty of Health, York University, Toronto, Canada (JK, JR); and Royal College of Surgeons in Ireland, Dublin, Ireland (S. Singh)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Effect of different muscle contraction mode on the expression of Myostatin, IGF-1, and PGC-1 alpha family members in human Vastus Lateralis muscle. Mol Biol Rep 2020; 47:9251-9258. [PMID: 33222041 DOI: 10.1007/s11033-020-06017-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/16/2020] [Indexed: 01/15/2023]
Abstract
Muscle contraction stimulates a transient change of myogenic factors, partly related to the mode of contractions. Here, we assessed the response of IGF-1Ea, IGF-1Eb, IGF-1Ec, PGC1α-1, PGC1α-4, and myostatin to the eccentric Vs. the concentric contraction in human skeletal muscle. Ten healthy males were performed an acute eccentric and concentric exercise bout (n = 5 per group). For each contraction type, participants performed 12 sets of 10 repetitions knee extension by the dominant leg. Baseline and post-exercise muscle biopsy were taken 4 weeks before and immediately after experimental sessions from Vastus Lateralis muscle. Genes expression was measured by real-time PCR technique. There was a significant increase in PGC1α-1, PGC1α-4, IGF-1Ea and, IGF-1Eb mRNA after concentric contraction (p ≤ 0.05), while the PGC1α-4 and IGF-1Ec significantly increased after eccentric contraction (p ≤ 0.05). It is intriguing to highlight that; no significant differences between groups were evident for changes in any variables following exercise bouts (p ≥ 0.05). Our results found that concentric and eccentric contractions presented different responses in PGC1α-1, IGF-1Ea, IGF-1Eb, and IGF-1Ec mRNA. However, a similar significant increase in mRNA content was observed in PGC1α-4. Further, no apparent differences could be found between the response of genes to eccentric and concentric contraction.
Collapse
|
7
|
Invernizzi M, de Sire A, Carda S, Venetis K, Renò F, Cisari C, Fusco N. Bone Muscle Crosstalk in Spinal Cord Injuries: Pathophysiology and Implications for Patients' Quality of Life. Curr Osteoporos Rep 2020; 18:422-431. [PMID: 32519284 DOI: 10.1007/s11914-020-00601-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide a comprehensive overview of (i) bone and muscle tissue modifications pathophysiology in spinal cord injury (SCI), (ii) experimental data on the physiopathological mechanisms underpinning these modifications and their similarities with the aging process, and (iii) potential clinical implications in the management of the disabling sequelae of SCI. RECENT FINDINGS Several studies attempted to describe the biology underpinning the links between bone and muscle tissues in the setting of highly disabling conditions, such as osteoporosis, sarcopenia, and neurodegenerative disorders, although these bidirectional connections remain still unclear. SCI could be considered an in vivo paradigmatic model of the bone muscle interactions in unloading conditions that might be expanded in the field of neurodegenerative disorders or cancer studies. Future studies should take into consideration the newer insights into bone muscle crosstalk in order to develop multitargeted and therapeutic interventions.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Rehabilitation Unit, "Mons. L. Novarese" Hospital, Moncrivello, Vercelli, Italy
| | - Stefano Carda
- Neuropsychology and Neurorehabilitation Service, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Konstantinos Venetis
- Ph.D. Program in Translational Medicine, University of Milan, Milan, Italy
- Division of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Carlo Cisari
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Physical Medicine and Rehabilitation Unit, University Hospital "Maggiore della Carità", Novara, Italy
| | - Nicola Fusco
- Division of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Duan K, Gao X, Zhu D. The clinical relevance and mechanism of skeletal muscle wasting. Clin Nutr 2020; 40:27-37. [PMID: 32788088 DOI: 10.1016/j.clnu.2020.07.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Skeletal muscle wasting occurs in both chronic and acute diseases. Increasing evidence has shown this debilitating process is associated with short- and long-term outcomes in critical, cancer and surgical patients. Both muscle quantity and quality, as reflected by the area and density of a given range of attenuation in CT scan, impact the patient prognosis. In addition, ultrasound and bioelectrical impedance analysis (BIA) are also widely used in the assessment of body composition due to their bedside viability and no radioactivity. Mechanism researches have revealed complicated pathways are involved in muscle wasting, which include altered IGF1-Akt-FoxO signaling, elevated levels of myostatin and activin A, activation of NF-κB pathway and glucocorticoid effects. Particularly, central nervous system (CNS) has been proven to participate in regulating muscle wasting in various conditions, such as infection and tumor. Several promising therapeutic agents have been under developing in the treatment of muscle atrophy, such as myostatin antagonist, ghrelin analog, non-steroidal selective androgen receptor modulators (SARMs). Notably, nutritional therapy is still the fundamental support in combating muscle wasting. However, the optimizing and tailored nutrition regimen relies on accurate metabolism measurement and large clinical trials in the future. Here, we will discuss the current understanding of muscle wasting and potential treatment in clinical practice.
Collapse
Affiliation(s)
- Kaipeng Duan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Xin Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Dongming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
9
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
10
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
11
|
Zhu W, Zhou B, Zhao C, Ba Z, Xu H, Yan X, Liu W, Zhu B, Wang L, Ren C. Myoferlin, a multifunctional protein in normal cells, has novel and key roles in various cancers. J Cell Mol Med 2019; 23:7180-7189. [PMID: 31475450 PMCID: PMC6815776 DOI: 10.1111/jcmm.14648] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/30/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Myoferlin, a protein of the ferlin family, has seven C2 domains and exhibits activity in some cells, including myoblasts and endothelial cells. Recently, myoferlin was identified as a promising target and biomarker in non-small-cell lung cancer, breast cancer, pancreatic adenocarcinoma, hepatocellular carcinoma, colon cancer, melanoma, oropharyngeal squamous cell carcinoma, head and neck squamous cell carcinoma, clear cell renal cell carcinoma and endometrioid carcinoma. This evidence indicated that myoferlin was involved in the proliferation, invasion and migration of tumour cells, the mechanism of which mainly included promoting angiogenesis, vasculogenic mimicry, energy metabolism reprogramming, epithelial-mesenchymal transition and modulating exosomes. The roles of myoferlin in both normal cells and cancer cells are of great significance to provide novel and efficient methods of tumour treatment. In this review, we summarize recent studies and findings of myoferlin and suggest that myoferlin is a novel potential candidate for clinical diagnosis and targeted cancer therapy.
Collapse
Affiliation(s)
- Wei Zhu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bolun Zhou
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chenxuan Zhao
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhengqing Ba
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hongjuan Xu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xuejun Yan
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Weidong Liu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Zhu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lei Wang
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Caiping Ren
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Oh JH, Chung SW, Oh KS, Yoo JC, Jee W, Choi JA, Kim YS, Park JY. Effect of recombinant human growth hormone on rotator cuff healing after arthroscopic repair: preliminary result of a multicenter, prospective, randomized, open-label blinded end point clinical exploratory trial. J Shoulder Elbow Surg 2018; 27:777-785. [PMID: 29337026 DOI: 10.1016/j.jse.2017.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND This study evaluated the effect of systemic injection of recombinant human growth hormone (rhGH) on outcomes after arthroscopic rotator cuff repair. METHODS This multicenter, prospective, randomized, comparative trial, randomized patients who underwent arthroscopic repair of large-sized rotator cuff tears into 3 groups: rhGH 4 mg group (n = 26), rhGH 8 mg group (n = 24) , and control group (n = 26). Sustained release rhGH was injected subcutaneously once weekly for 3 months postoperatively. The healing failure rate (primary end point), fatty infiltration, and atrophy of the supraspinatus muscle, and functional scores (Constant and American Shoulder and Elbow Surgeons scores) were evaluated at 6 months. Range of motion, pain visual analog scale, and serum insulin-like growth factor-1 level were measured at each follow-up. RESULTS The healing failure rate was similar between groups (rhGH 4 mg group, 30.8%; rhGH 8 mg group, 16.7%; and control group, 34.6%; all P > .05) The proportion of severe fatty infiltration (Goutallier grade ≥3) was 20.8% in the rhGH 8 mg group, 23.1% in the rhGH 4 mg group, and 34.6% in the control group (P > .05). Functional outcomes, range of motion, and pain visual analog scale were similar between groups (all P > .05). The rhGH 8 mg group showed more increased peak insulin-like growth factor-1 level (279.43 ng/mL) than the rhGH 4 mg group ((196.82 ng/mL) and control group (186.31 ng/mL), which was not statistically different (all P > .05). No rhGH injection-related major safety issues occurred. CONCLUSIONS This preliminary study showed no statistically significant improvement in healing or outcomes related to the treatment of rhGH after rotator cuff repair. However, further study with more enrolled patients after resetting the rhGH dose or daily administration protocol would be mandatory.
Collapse
Affiliation(s)
- Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Oh
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea.
| | - Jae Chul Yoo
- Department of Orthopaedic Surgery, Sungkyunkwan University School of Medicine, Samsung Seoul Hospital, Seoul, Republic of Korea
| | - Wonhee Jee
- Department of Radiology, Catholic University College of Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Jung-Ah Choi
- Department of Radiology, Hallym University College of Medicine, Dongtan Sacred Hospital, Hwaseong, Republic of Korea
| | - Yang-Soo Kim
- Department of Orthopaedic Surgery, Catholic University College of Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Jin-Young Park
- Center for Shoulder, Elbow & Sports Medicine, Neon Orthopaedic Clinic, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Kwon I, Jang Y, Cho JY, Jang YC, Lee Y. Long-term resistance exercise-induced muscular hypertrophy is associated with autophagy modulation in rats. J Physiol Sci 2018; 68:269-280. [PMID: 28213823 PMCID: PMC10718009 DOI: 10.1007/s12576-017-0531-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
Abstract
Elevation of anabolism and concurrent suppression of catabolism are critical metabolic adaptations for muscular hypertrophy in response to resistance exercise (RE). Here, we investigated if RE-induced muscular hypertrophy is acquired by modulating a critical catabolic process autophagy. Male Wistar Hannover rats (14 weeks old) were randomly assigned to either sedentary control (SC, n = 10) or resistance exercise (RE, n = 10). RE elicited significant hypertrophy of flexor digitorum profundus (FDP) muscles in parallel with enhancement in anabolic signaling pathways (phosphorylation of AKT, mTOR, and p70S6K). Importantly, RE-treated FDP muscle exhibited a significant decline in autophagy evidenced by diminished phosphorylation levels of AMPK, a decrease in LC3-II/LC3-I ratio, an increase in p62 level, and a decline in active form of lysosomal protease CATHEPSIN L in the absence of alterations of key autophagy proteins: ULK1 phosphorylation, BECLIN1, and BNIP3. Our study suggests that RE-induced hypertrophy is achieved by potentiating anabolism and restricting autophagy-induced catabolism.
Collapse
Affiliation(s)
- Insu Kwon
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, College of Health, University of West Florida, Pensacola, FL, USA
| | - Yongchul Jang
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, College of Health, University of West Florida, Pensacola, FL, USA
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| | - Young C Jang
- School of Applied Physiology and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, College of Health, University of West Florida, Pensacola, FL, USA.
| |
Collapse
|
14
|
Gao Y, Arfat Y, Wang H, Goswami N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol 2018; 9:235. [PMID: 29615929 PMCID: PMC5869217 DOI: 10.3389/fphys.2018.00235] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives.
Collapse
Affiliation(s)
- Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Nandu Goswami
- Physiology Unit, Otto Loewi Center of Research for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Muscle fibers and their synapses differentially adapt to aging and endurance training. Exp Gerontol 2018; 106:183-191. [PMID: 29550562 DOI: 10.1016/j.exger.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND This project aimed to determine the adaptability of the neuromuscular system to the stimuli of exercise training, and aging. METHODS Young adult, and aged male rats were randomly assigned to either exercise training, or sedentary control groups. Exercise training featured an 8 week program of treadmill running. At the end of the intervention period, neuromuscular function was quantified with ex vivo stimulation procedures on isolated soleus muscles. Morphological adaptations were determined by quantifying myofiber profiles (fiber size and type) of soleus muscles. RESULTS Ex vivo procedures confirmed that rested (fresh) young muscles were significantly (P < 0.05) stronger than aged ones. By the end of the 5 min stimulation protocol, however, young and aged muscles displayed similar levels of strength. Neuromuscular transmission efficacy as assessed by comparing force produced during indirect (neural) and direct (muscle) stimulation was unaffected by aging, or training, but under both conditions significantly declined over the stimulation protocol mimicking declines in strength. Myofiber size was unaffected by age, but training caused reductions in young, but not aged myofibers. Aged solei displayed a higher percentage of Type I fibers, along with a lower percentage of Type II fibers than young muscles. CONCLUSIONS The greater strength of young muscles has a neural, rather than a muscular focal point. The loss of strength discerned over the 5 min stimulation protocol was linked to similar fatigue-related impairments in neuromuscular transmission. The two components of the neuromuscular system, i.e. nerves and muscles, do not respond in concert to the stimulus of either aging, or exercise training.
Collapse
|
16
|
Baker BA. Efficacy of Age-Specific High-Intensity Stretch-Shortening Contractions in Reversing Dynapenia, Sarcopenia, and Loss of Skeletal Muscle Quality. J Funct Morphol Kinesiol 2018; 3:36. [PMID: 31149646 PMCID: PMC6537613 DOI: 10.3390/jfmk3020036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the aging process, skeletal muscle performance and physiology undergoes alterations leading to decrements in functional capacity, health-span, and independence. Background: The utility and implementation of age-specific exercise is a paramount research agenda focusing on ameliorating the loss of both skeletal muscle performance and physiology; yet, to date, no consensus exists as to the most appropriate mechanical loading protocol design or overall exercise prescription that best meets this need. Thus, the purpose of this review is to highlight the most optimal type of exercise presently available and provide the most current, evidence-based findings for its efficacy. The hypothesis that high-intensity, stretch-shortening contractions (SSCs)-a form of "resistance-type exercise" training-present as the preferred exercise mode for serving as an intervention-based modality to attenuate dynapenia, sarcopenia, and decreased muscle quality with aging, even restoring the overall youthful phenotype, will be demonstrated. Conclusions: Appreciating the fundamental evidence supporting the use of high-intensity SSCs in positively impacting aging skeletal muscle's responsivity and their use as a specific and sensitive countermeasure is crucial. Moreover, from an applied perspective, SSCs may improve skeletal muscle quality and rejuvenate health-span and, ultimately, lead to augmented functional capacity, independence, and quality of life concomitant with decreased morbidity.
Collapse
Affiliation(s)
- Brent A Baker
- Health Effects Laboratory Division, Toxicology and Molecular Biology Branch, Systems Mechanophysiology and Aging Research Team, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
17
|
The Role of IGF-1 Signaling in Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:109-137. [PMID: 30390250 DOI: 10.1007/978-981-13-1435-3_6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a key anabolic growth factor stimulating phosphatidylinositol 3-kinase (PI3K)/Akt signaling which is well known for regulating muscle hypertrophy. However, the role of IGF-1 in muscle atrophy is less clear. This review provides an overview of the mechanisms via which IGF-1 signaling is implicated in several conditions of muscle atrophy and via which mechanisms protein turnover is altered. IGF-1/PI3K/Akt signaling stimulates the rate of protein synthesis via p70S6Kinase and p90 ribosomal S6 kinase and negatively regulates protein degradation, predominantly by its inhibiting effect on proteasomal and lysosomal protein degradation. Caspase-dependent protein degradation is also attenuated by IGF/PI3K/Akt signaling, whereas evidence for an effect on calpain-dependent protein degradation is inconclusive. IGF-1/PI3K/Akt signaling reduces during denervation-, unloading-, and joint immobilization-induced muscle atrophy, whereas IGF-1/PI3K/Akt signaling seems unaltered during aging-associated muscle atrophy. During denervation and aging, IGF-1 overexpression or injection counteracts denervation- and aging-associated muscle atrophy, despite enhanced anabolic resistance with regard to IGF-1 signaling with aging. It remains unclear whether pharmacological stimulation of IGF-1/PI3K/Akt signaling attenuates immobilization- or unloading-induced muscle atrophy. Exploration of the possibilities to interfere with IGF-1/PI3K/Akt signaling reveals that microRNAs targeting IGF-1 signaling components are promising targets to counterbalance muscle atrophy. Overall, the findings summarized in this review show that in disuse conditions, but not with aging, IGF-1/PI3K/Akt signaling is attenuated and that in some conditions stimulation of this pathway may alleviate skeletal muscle atrophy.
Collapse
|
18
|
Allen TJ, Jones T, Tsay A, Morgan DL, Proske U. Muscle damage produced by isometric contractions in human elbow flexors. J Appl Physiol (1985) 2017; 124:388-399. [PMID: 29074710 DOI: 10.1152/japplphysiol.00535.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isometric exercise is often prescribed during rehabilitation from injury to maintain muscle condition and prevent disuse atrophy. However, such exercise can lead to muscle soreness and damage. Here we investigate which parameters of isometric contractions are responsible for the damage. Bouts of 30 repetitions of maximum voluntary contractions of elbow flexors in 38 subjects were carried out and peak force, soreness, and tenderness were measured before the exercise, immediately afterwards, at 2 h, and at 24 h postexercise. When one arm was held near the optimum angle for force generation (90°), the force it produced was greater by 28% than by the other arm held at a longer length (155°). However, despite the smaller contraction forces of the muscle held at the longer length, after the exercise it exhibited a greater fall in force that persisted out to 24 h (20% fall) and more delayed soreness than the muscle exercised at 90° (7% fall at 24 h). The result indicates a length dependence of the damage process for isometric contractions at maximum effort. In four additional experiments, evidence was provided that the damage occurred during the plateau of the contraction and not the rising or relaxation phases. The damage had a prompt onset and was cumulative, continuing for the duration of the contraction. We interpret our findings in terms of the nonuniform lengthening of sarcomeres during the plateau of the contractions and conclude that muscle damage from isometric exercise is minimized if carried out at lengths below the optimum, using half-maximum or smaller contractions. NEW & NOTEWORTHY Isometric exercise, where muscle contracts while the limb is held fixed, is often possible for individuals rehabilitating from injury and can help maintain muscle condition. Such exercise has been reported to cause some muscle damage and soreness. We confirm this and show that to minimize damage, exercising muscles should be held at shorter than the optimum length for force and carried out at half-maximum effort or less.
Collapse
Affiliation(s)
- Trevor J Allen
- Department of Physiology, Monash University , Clayton, Victoria , Australia
| | - Tyson Jones
- Department of Physiology, Monash University , Clayton, Victoria , Australia
| | - Anthony Tsay
- Department of Physiology, Monash University , Clayton, Victoria , Australia
| | - David L Morgan
- Department of Physiology, Monash University , Clayton, Victoria , Australia
| | - Uwe Proske
- Department of Physiology, Monash University , Clayton, Victoria , Australia
| |
Collapse
|
19
|
Han DS, Huang CH, Chen SY, Yang WS. Serum reference value of two potential doping candidates-myostatin and insulin-like growth factor-I in the healthy young male. J Int Soc Sports Nutr 2017; 14:2. [PMID: 28077934 PMCID: PMC5223470 DOI: 10.1186/s12970-016-0160-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/16/2016] [Indexed: 11/20/2022] Open
Abstract
Background Myostatin negatively regulates muscle growth, and its inhibition by suitable proteins can increase muscle bulk and exercise performance. However, the reference values of serum myostatin in athletes performing strength training are still lacking. Methods A cross-sectional study recruiting28 male collegiate athletes performing strength training and 29 age-matched normal controls was conducted. The serum concentration of myostatin and insulin-like growth factor 1 (IGF-1), grip strength, and body composition were the main outcome measures. We used regression models to analyze the correlation between serum markers and the physiological parameters. The athlete group had greater height, weight, body mass index (BMI), fat mass percentage, fat-free mass, muscle mass, waist girth, grip strength, and estimated daily energy expenditure. Results The IGF-1 concentration was higher in the athlete group (324 ± 80 vs. 263 ± 134 ng/ml), but the myostatin levels did not differ (12.1 ± 3.7 vs. 12.4 ± 3.5 ng/ml). The reference value for IGF-1 among the healthy young males was 293 ± 114 ng/ml, correlated with age and height; the value for myostatin was 12.3 ± 3.6 ng/ml, correlated negatively with BMI, fat mass percentage, and waist girth after adjustment for age. Conclusion Myostatin level is negatively related to fat percentage, and serum IGF-1 is positively related to height. The reference values could provide a basis for future doping-related study.
Collapse
Affiliation(s)
- Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan ; Community and Geriatric Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan ; Department of Athletic Training and Health, National Taiwan Sport University, TaoYuan, Taiwan ; Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 100 Taiwan
| | - Chi-Huang Huang
- Department of Athletic Training and Health, National Taiwan Sport University, TaoYuan, Taiwan
| | - Ssu-Yuan Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd., Taipei, Taiwan ; Department of Physical Medicine & Rehabilitation, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Rd., Taipei, 100 Taiwan ; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Khodabukus A, Baar K. Factors That Affect Tissue-Engineered Skeletal Muscle Function and Physiology. Cells Tissues Organs 2016; 202:159-168. [DOI: 10.1159/000446067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Tissue-engineered skeletal muscle has the promise to be a tool for studying physiology, screening muscle-active drugs, and clinical replacement of damaged muscle. To maximize the potential benefits of engineered muscle, it is important to understand the factors required for tissue formation and how these affect muscle function. In this review, we evaluate how biomaterials, cell source, media components, and bioreactor interventions impact muscle function and phenotype.
Collapse
|
21
|
Itoh Y, Murakami T, Mori T, Agata N, Kimura N, Inoue-Miyazu M, Hayakawa K, Hirano T, Sokabe M, Kawakami K. Training at non-damaging intensities facilitates recovery from muscle atrophy. Muscle Nerve 2016; 55:243-253. [PMID: 27301985 DOI: 10.1002/mus.25218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Resistance training promotes recovery from muscle atrophy, but optimum training programs have not been established. We aimed to determine the optimum training intensity for muscle atrophy. METHODS Mice recovering from atrophied muscles after 2 weeks of tail suspension underwent repeated isometric training with varying joint torques 50 times per day. RESULTS Muscle recovery assessed by maximal isometric contraction and myofiber cross-sectional areas (CSAs) were facilitated at 40% and 60% maximum contraction strength (MC), but at not at 10% and 90% MC. At 60% and 90% MC, damaged and contained smaller diameter fibers were observed. Activation of myogenic satellite cells and a marked increase in myonuclei were observed at 40%, 60%, and 90% MC. CONCLUSIONS The increases in myofiber CSAs were likely caused by increased myonuclei formed through fusion of resistance-induced myofibers with myogenic satellite cells. These data indicate that resistance training without muscle damage facilitates efficient recovery from atrophy. Muscle Nerve 55: 243-253, 2017.
Collapse
Affiliation(s)
- Yuta Itoh
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Taro Murakami
- Faculty of Wellness, Shigakkan University, Ohbu, Japan
| | - Tomohiro Mori
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhide Agata
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Nahoko Kimura
- Aiche Medical College for Physical and Occupational Therapy, Kiyosu, Japan
| | | | - Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Hirano
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kawakami
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Welfare and Health Sciences, Oita University, Dannoharu 700, Oita City, 870-1192, Japan
| |
Collapse
|
22
|
Fix DK, Hardee JP, Bateman TA, Carson JA. Effect of irradiation on Akt signaling in atrophying skeletal muscle. J Appl Physiol (1985) 2016; 121:917-924. [PMID: 27562841 DOI: 10.1152/japplphysiol.00218.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Muscle irradiation (IRR) exposure can accompany unloading during spaceflight or cancer treatment, and this has been shown to be sufficient by itself to induce skeletal muscle signaling associated with a remodeling response. Although protein kinase B/Akt has an established role in the regulation of muscle growth and metabolism, there is a limited understanding of how Akt signaling in unloaded skeletal muscle is affected by IRR. Therefore, we examined the combined effects of acute IRR and short-term unloading on muscle Akt signaling. Female C57BL/6 mice were subjected to load bearing or hindlimb suspension (HS) for 5 days (n = 6/group). A single, unilateral hindlimb IRR dose (0.5 Gy X-ray) was administered on day 3 Gastrocnemius muscle protein expression was examined. HS resulted in decreased AktT308 phosphorylation, whereas HS+IRR resulted in increased AktT308 phosphorylation above baseline. HS resulted in reduced AktS473 phosphorylation, which was rescued by HS+IRR. Interestingly, IRR alone resulted in increased phosphorylation of AktS473, but not that of AktT308 HS resulted in decreased mTORC1 signaling, and this suppression was not altered by IRR. Both IRR and HS resulted in increased MuRF-1 expression, whereas atrogin-1 expression was not affected by either condition. These results demonstrate that either IRR alone or when combined with HS can differentially affect Akt phosphorylation, but IRR did not disrupt suppressed mTORC1 signaling by HS. Collectively, these findings highlight that a single IRR dose is sufficient to disrupt the regulation of Akt signaling in atrophying skeletal muscle.
Collapse
Affiliation(s)
- Dennis K Fix
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Ted A Bateman
- Departments of Biomedical Engineering and Radiation Oncology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| |
Collapse
|
23
|
Tarantino U, Baldi J, Scimeca M, Piccirilli E, Piccioli A, Bonanno E, Gasbarra E. The role of sarcopenia with and without fracture. Injury 2016; 47 Suppl 4:S3-S10. [PMID: 27496721 DOI: 10.1016/j.injury.2016.07.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Bone and muscle tissues are in a close relationship. They are linked from a biological and functional point of view and both are related to an increased fracture risk in the elderly. The aging process is involved in the loss of functionality of both bones and muscles. In particular, aging-induced decline in muscle size and quality accompanies catabolic alterations in bone tissue; furthermore, age-related changes in bone alter its response to muscle-derived stimulation. The increased fracture risk in individuals with sarcopenia and osteoporosis is due to the decline of muscle mass and strength, the decrease in bone mineral density (BMD) and limited mobility. In this study, we investigated the role of sarcopenia and the main age-related bone diseases, osteoporosis (OP) and osteoarthritis (OA). METHODS Muscular performance status was evaluated using the Physical Activity Scale for the Elderly (PASE) test in 27 female patients with OP who underwent total hip arthroplasty for hip fracture, and in 27 age-matched female patients with OA who underwent total hip arthroplasty. Dual-energy X-ray absorptiometry (DEXA) was performed and the T-score values were used to discriminate between OP and OA patients. Body Mass Index (BMI) was calculated. As part of a multiparametric model of evaluation, biopsies of vastus lateralis muscle were analysed by immunohistochemical reaction to find a correlation with the above mentioned functional index. RESULTS The PASE test showed that the OP patients had a low or moderate level of physical activity before fracture occurred, whereas the OA patients had more intensive pre-fracture physical performances. Histological analysis showed that osteoporosis is characterised by a preferential type II fibre atrophy; in particular, data correlation showed that lower PASE test scores were related to lower diameter of type II fibres. No correlation was found between bone mineral density (BMD) and PASE test results. DISCUSSION AND CONCLUSION Osteoporosis is closely related to sarcopenia before and after fracture. Bone remodelling is influenced by muscle morphological and functional impairment and sarcopenia is considered one of the major factors for functional limitation and motor dependency in elderly osteoporotic individuals. Therefore, physical activity should be strongly recommended for OP patients at diagnosis.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy.
| | - Jacopo Baldi
- Department of Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy; School of Specialisation in Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy
| | - Manuel Scimeca
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; "Multidisciplinary Study of the Effects of Microgravity on Bone Cells" Project, Italian Space Agency (ASI), Spatial Biomedicine Center, Via del Politecnico snc, 00133 Rome, Italy
| | - Eleonora Piccirilli
- Department of Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy; School of Specialisation in Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy
| | - Andrea Piccioli
- Oncologic Centre, "Palazzo Baleani", Azienda Policlinico Umberto I, Corso Vittorio Emanuele II 244, Rome, Italy
| | - Elena Bonanno
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy
| |
Collapse
|
24
|
Abstract
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
|
25
|
Su Z, Hu L, Cheng J, Klein JD, Hassounah F, Cai H, Li M, Wang H, Wang XH. Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates denervation-induced muscle atrophy. J Appl Physiol (1985) 2016; 120:426-36. [PMID: 26679610 PMCID: PMC4754622 DOI: 10.1152/japplphysiol.00175.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Muscle wasting occurs in a variety of clinical situations, including denervation. There is no effective pharmacological treatment for muscle wasting. In this study, we used a tibial nerve denervation model to test acupuncture plus low-frequency electric stimulation (Acu-LFES) as a therapeutic strategy for muscle atrophy. Acupuncture needles were connected to an SDZ-II electronic acupuncture device delivering pulses at 20 Hz and 1 mA; the treatment was 15 min daily for 2 wk. Acu-LFES prevented soleus and plantaris muscle weight loss and increased muscle cross-sectional area in denervated mice. The abundances of Pax7, MyoD, myogenin, and embryonic myosin heavy chain were significantly increased by Acu-LFES in both normal and denervated muscle. The number of central nuclei was increased in Acu-LFES-treated muscle fibers. Phosphorylation of Akt was downregulated by denervation leading to a decline in muscle mass; however, Acu-LFES prevented the denervation-induced decline largely by upregulation of the IGF-1 signaling pathway. Acu-LFES reduced the abundance of muscle catabolic proteins forkhead O transcription factor and myostatin, contributing to the attenuated muscle atrophy. Acu-LFES stimulated the expression of macrophage markers (F4/80, IL-1b, and arginase-1) and inflammatory cytokines (IL-6, IFNγ, and TNFα) in normal and denervated muscle. Acu-LFES also stimulated production of the muscle-specific microRNAs miR-1 and miR-206. We conclude that Acu-LFES is effective in counteracting denervation-induced skeletal muscle atrophy and increasing muscle regeneration. Upregulation of IGF-1, downregulation of myostatin, and alteration of microRNAs contribute to the attenuation of muscle atrophy in denervated mice.
Collapse
Affiliation(s)
- Zhen Su
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Li Hu
- Acumox and Tuina Research Section, College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Jinzhong Cheng
- Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Faten Hassounah
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Hui Cai
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Min Li
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Haidong Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
26
|
Tanaka S, Obatake T, Hoshino K, Nakagawa T. Influence of exercise intensity on atrophied quadriceps muscle in the rat. J Phys Ther Sci 2015; 27:3445-50. [PMID: 26696716 PMCID: PMC4681923 DOI: 10.1589/jpts.27.3445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/19/2015] [Indexed: 12/04/2022] Open
Abstract
[Purpose] The aim of this study was to determine the effect of resistance training on
atrophied skeletal muscle in rats based on evidence derived from physical therapy.
[Subjects and Methods] Rats were forced to undergo squats as resistance training for 3
weeks after atrophying the rectus femoris muscle by hindlimb suspension for 2 weeks. The
intensity of resistance training was adjusted to 50% and 70% of the maximum lifted weight,
i.e., 50% of the one-repetition maximum and 70% of the one-repetition maximum,
respectively. [Results] Three weeks of training did not alter the one-repetition maximum,
and muscle fibers were injured while measuring the one-repetition maximum and reloading.
The decrease in cross-sectional area in the rectus femoris muscle induced by unloading for
2 weeks was significantly recovered after training at 70% of the one-repetition maximum.
The levels of muscle RING-finger protein-1 mRNA expression were significantly lower in
muscles trained at 70% of the one-repetition maximum than in untrained muscles.
[Conclusion] These results suggest that high-intensity resistance training can promote
atrophic muscle recovery, which provides a scientific basis for therapeutic exercise
methods for treatment of atrophic muscle in physical therapy.
Collapse
Affiliation(s)
- Shoji Tanaka
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Taishi Obatake
- Department of Rehabilitation, Kanazawa Nishi Hospital, Japan ; School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Koichi Hoshino
- Department of Rehabilitation, Mitsugi General Hospital, Japan
| | - Takao Nakagawa
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| |
Collapse
|
27
|
Huey KA, Smith SA, Sulaeman A, Breen EC. Skeletal myofiber VEGF is necessary for myogenic and contractile adaptations to functional overload of the plantaris in adult mice. J Appl Physiol (1985) 2015; 120:188-95. [PMID: 26542520 DOI: 10.1152/japplphysiol.00638.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
The ability to enhance muscle size and function is important for overall health. In this study, skeletal myofiber vascular endothelial growth factor (VEGF) was hypothesized to regulate hypertrophy, capillarity, and contractile function in response to functional overload (FO). Adult myofiber-specific VEGF gene-ablated mice (skmVEGF(-/-)) and wild-type (WT) littermates underwent plantaris FO or sham surgery (SHAM). Mass, morphology, in vivo function, IGF-1, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and Akt were measured at 7, 14, and 30 days. FO resulted in hypertrophy in both genotypes, but fiber sizes were 13% and 23% smaller after 14 and 30 days, respectively, and mass 15% less after 30 days in skmVEGF(-/-) than WT. FO increased isometric force after 30 days in WT and decreased in skmVEGF(-/-) after 7 and 14 days. FO also resulted in a reduction in specific force and this differed between genotypes at 14 days. Fatigue resistance improved only in 14-day WT mice. Capillary density was decreased by FO in both genotypes. However, capillary-to-fiber ratios were 19% and 15% lower in skmVEGF(-/-) than WT at the 14- and 30-day time points, respectively. IGF-1 was increased by FO at all time points and was 45% and 40% greater in skmVEGF(-/-) than WT after 7 and 14 days, respectively. bFGF, HGF, total Akt, and phospho-Akt, independent of VEGF expression, and VEGF levels in WT were increased after 7 days of FO. These findings suggest VEGF-dependent capillary maintenance supports muscle growth and function in overloaded muscle and is not rescued by compensatory IGF-1 expression.
Collapse
Affiliation(s)
- Kimberly A Huey
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa; and
| | - Sophia A Smith
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa; and
| | - Alexis Sulaeman
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Ellen C Breen
- Department of Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
28
|
Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER. Role of IGF-I signaling in muscle bone interactions. Bone 2015; 80:79-88. [PMID: 26453498 PMCID: PMC4600536 DOI: 10.1016/j.bone.2015.04.036] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/11/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Daniel D Bikle
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Candice Tahimic
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Wenhan Chang
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Yongmei Wang
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Anastassios Philippou
- National and Kapodistrian University of Athens, Department of Physiology, Medical School, Goudi-Athens, Greece
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
29
|
Biressi S, Gopinath SD. The quasi-parallel lives of satellite cells and atrophying muscle. Front Aging Neurosci 2015; 7:140. [PMID: 26257645 PMCID: PMC4510774 DOI: 10.3389/fnagi.2015.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells (SCs), have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking SC function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in SCs in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within SCs that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass.
Collapse
Affiliation(s)
- Stefano Biressi
- Dulbecco Telethon Institute and Centre for Integrative Biology (CIBIO), University of TrentoTrento, Italy
| | | |
Collapse
|
30
|
Saeman MR, DeSpain K, Liu MM, Carlson BA, Song J, Baer LA, Wade CE, Wolf SE. Effects of exercise on soleus in severe burn and muscle disuse atrophy. J Surg Res 2015; 198:19-26. [PMID: 26104324 DOI: 10.1016/j.jss.2015.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Muscle loss is a sequela of severe burn and critical illness with bed rest contributing significantly to atrophy. We hypothesize that exercise will mitigate muscle loss after burn with bed rest. MATERIALS AND METHODS Male rats were assigned to sham ambulatory (S/A), burn ambulatory (B/A), sham hindlimb unloading (S/H), or burn hindlimb unloading (B/H). Rats received a 40% scald burn or sham and were ambulatory or placed in hindlimb unloading, a model of bed rest. Half from each group performed twice daily resistance climbing. Hindlimb isometric forces were measured on day 14. RESULTS Soleus mass and muscle function were not affected by burn alone. Mass was significantly lower in hindlimb unloading (79 versus 139 mg, P < 0.001) and no exercise (103 versus 115 mg, P < 0.01). Exercise significantly increased soleus mass in B/H (86 versus 77 mg, P < 0.01). Hindlimb unloading significantly decreased muscle force in the twitch (12 versus 31 g, P < 0.001), tetanic (55 versus 148 g, P < 0.001), and specific tetanic measurements (12 versus 22 N/cm(2), P < 0.001). Effects of exercise on force depended on other factors. In B/H, exercise significantly increased twitch (14 versus 8 g, P < 0.05) and specific tetanic force (14 versus 7 N/cm(2), P < 0.01). Fatigue index was lower in ambulatory (55%) and exercise (52%) versus hindlimb (69%, P = 0.03) and no exercise (73%, P = 0.002). CONCLUSIONS Hindlimb unloading is a significant factor in muscle atrophy. Exercise increased the soleus muscle mass, twitch, and specific force in this model. However, the fatigue index decreased with exercise in all groups. This suggests exercise contributes to functional muscle change in this model of disuse and critical illness.
Collapse
Affiliation(s)
- Melody R Saeman
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Kevin DeSpain
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming-Mei Liu
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Brett A Carlson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Juquan Song
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lisa A Baer
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Charles E Wade
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Steven E Wolf
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
31
|
Abstract
Atrophy occurs in specific muscles with inactivity (for example, during plaster cast immobilization) or denervation (for example, in patients with spinal cord injuries). Muscle wasting occurs systemically in older people (a condition known as sarcopenia); as a physiological response to fasting or malnutrition; and in many diseases, including chronic obstructive pulmonary disorder, cancer-associated cachexia, diabetes, renal failure, cardiac failure, Cushing syndrome, sepsis, burns and trauma. The rapid loss of muscle mass and strength primarily results from excessive protein breakdown, which is often accompanied by reduced protein synthesis. This loss of muscle function can lead to reduced quality of life, increased morbidity and mortality. Exercise is the only accepted approach to prevent or slow atrophy. However, several promising therapeutic agents are in development, and major advances in our understanding of the cellular mechanisms that regulate the protein balance in muscle include the identification of several cytokines, particularly myostatin, and a common transcriptional programme that promotes muscle wasting. Here, we discuss these new insights and the rationally designed therapies that are emerging to combat muscle wasting.
Collapse
|
32
|
Khodabukus A, Baar K. Streptomycin Decreases the Functional Shift to a Slow Phenotype Induced by Electrical Stimulation in Engineered Muscle. Tissue Eng Part A 2015; 21:1003-12. [DOI: 10.1089/ten.tea.2014.0462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alastair Khodabukus
- Division of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Keith Baar
- Division of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| |
Collapse
|
33
|
Abstract
Aging-induced declines in muscle size and quality are thought to contribute to catabolic alterations in bone, but changes in bone with age also profoundly alter its response to muscle-derived stimuli. This review provides an overview of some of the alterations that occur in muscle and bone with aging, and discusses the cellular and molecular mechanisms that may impact these age-associated changes.
Collapse
Affiliation(s)
- Susan A Novotny
- Orthopedic Research Department, Gillette Children's Specialty Healthcare, Saint Paul, Minnesota;
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia; and
| | - Mark W Hamrick
- Cellular Biology & Anatomy, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
34
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
35
|
Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G, Sandri M. Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem 2014; 289:21909-25. [PMID: 24891504 PMCID: PMC4139209 DOI: 10.1074/jbc.m114.561845] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure, and in aging. In fact, excessive proteolysis causes cachexia, accelerates disease progression, and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes, and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, whereas transcriptional control of the atrophy-related genes peaks at 3 days, changes of miRNA expression maximized at 7 days after denervation. Among the different miRNAs, microRNA-206 and -21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for fine-tuning the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions.
Collapse
Affiliation(s)
- Ricardo José Soares
- From the Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy, the Ph.D. Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Stefano Cagnin
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Francesco Chemello
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Matteo Silvestrin
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Antonio Musaro
- the DAHFMO-Unit of Histology and Medical Embryology, Sapienza University, 00161 Roma, Italy, and
| | - Cristiano De Pitta
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy,
| | - Gerolamo Lanfranchi
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy,
| | - Marco Sandri
- From the Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy, the Department of Biomedical Sciences and the Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy, the Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| |
Collapse
|
36
|
Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol 2014; 5:99. [PMID: 24672488 PMCID: PMC3955994 DOI: 10.3389/fphys.2014.00099] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/27/2014] [Indexed: 12/25/2022] Open
Abstract
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy.
Collapse
Affiliation(s)
- Naomi E Brooks
- Health and Exercise Science Research Group, School of Sport, University of Stirling Stirling, UK
| | - Kathryn H Myburgh
- Muscle Research Group, Department of Physiological Sciences, Stellenbosch University Stellenbosch, South Africa
| |
Collapse
|
37
|
Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2013; 2:2829-70. [PMID: 23720267 DOI: 10.1002/cphy.c110066] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
38
|
de Oliveira Nunes Teixeira V, Filippin LI, Viacava PR, de Oliveira PG, Xavier RM. Muscle wasting in collagen-induced arthritis and disuse atrophy. Exp Biol Med (Maywood) 2013; 238:1421-30. [PMID: 24186267 DOI: 10.1177/1535370213505961] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of muscle wasting and decreased mobility have a major functional effect in rheumatoid arthritis, but they have been poorly studied. The objective of our study is to describe muscular involvement and the pathways in an experimental model of arthritis compared to the pathways in disuse atrophy. Female Wistar rats were separated into three groups: control (CO), collagen-induced arthritis (CIA), and immobilized (IM). Spontaneous locomotion and weight were evaluated weekly. The gastrocnemius muscle was evaluated by histology and immunoblotting to measure the expression of myostatin (a negative regulator), LC3 (autophagy), MuRF-1 (proteasome-mediated proteolysis), MyoD, and myogenin (satellite-cell activation). The significance level was set at P < 0.05, and histological analysis of joints confirmed the severity of the arthropathy. There was a significant difference in spontaneous locomotion in the CIA group. Animal body weight, gastrocnemius muscle weight, and relative muscle weight decreased 20%, 30%, and 20%, respectively, in the CIA rats. Inflammatory infiltration and swelling were present in the gastrocnemius muscles of the CIA rats. The mean cross-sectional area was reduced by 30% in the CIA group and by 60% in the IM group. The expressions of myostatin and LC3 between the groups were similar. There was increased expression of MuRF-1 in the IM (1.9-fold) and CIA (3.1-fold) groups and of myogenin in the muscles of the CIA animals (1.7-fold), while MyoD expression was decreased in the IM (20%) rats. This study demonstrated that the development of experimental arthritis is associated with decreased mobility, body weight, and muscle loss. Both IM and CIA animal models presented muscle atrophy, but while proteolysis and the regeneration pathways were activated in the CIA model, there was no activation of regeneration in the IM model. We can assume that muscle atrophy in experimental arthritis is associated with the disease itself and not simply with decreased mobility.
Collapse
|
39
|
Baldwin KM, Haddad F, Pandorf CE, Roy RR, Edgerton VR. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. Front Physiol 2013; 4:284. [PMID: 24130531 PMCID: PMC3795307 DOI: 10.3389/fphys.2013.00284] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/18/2013] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a motor unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC) gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s). Hence, this review will examine findings from three different animal models of unloading: (1) space flight (SF), i.e., microgravity; (2) hindlimb suspension (HS), a procedure that chronically eliminates weight bearing of the lower limbs; and (3) spinal cord isolation (SI), a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: (1) all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; (2) transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and (3) signaling pathways impacting these alterations appear to be similar in each of the models investigated.
Collapse
Affiliation(s)
- Kenneth M Baldwin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine CA, USA
| | | | | | | | | |
Collapse
|
40
|
Growth inhibition and compensation in response to neonatal hypoxia in rats. Pediatr Res 2013; 74:111-20. [PMID: 23842077 PMCID: PMC3737398 DOI: 10.1038/pr.2013.80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/30/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hypoxia (Hx) is an important disease mechanism in prematurity, childhood asthma, and obesity. In children, Hx results in chronic inflammation. METHODS We investigated the effects of Hx (12% O2) during postnatal days 2-20 in rats. Control groups were normoxic control (Nc), and normoxic growth restricted (Gr) (14-pup litters). RESULTS The Hx-exposed and Gr rats had similar decreases in growth. Hx increased plasma tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels and decreased insulin-like growth factor 1 (IGF-I) and vascular endothelial growth factor (VEGF) levels. Hx resulted in hypertrophy of the right ventricle (RV) but disproportionate decrements in limb skeletal muscle (SM) growth. miR-206 was depressed in the hypertrophied RV of Hx rats but was increased in growth-retarded SM. Hx resulted in decreased RV messenger RNA (mRNA) level for myostatin but had no effect on SM myostatin. The mRNA for Hx-sensitive factors such as hypoxia inducible factor-1α (HIF-1α) was depressed in the RV of Hx rats, suggesting negative feedback. CONCLUSION The results indicate that Hx induces a proinflammatory state that depresses growth-regulating mechanisms and that tissues critical for survival, such as the heart, can escape from this general regulatory program to sustain life. This study identifies accessible biomarkers for evaluating the impact of interventions designed to mitigate the long-term deleterious consequences of Hx that all too often occur in babies born prematurely.
Collapse
|
41
|
|
42
|
Al-Nassan S, Fujita N, Kondo H, Murakami S, Fujino H. Chronic Exercise Training Down-Regulates TNF-α and Atrogin-1/MAFbx in Mouse Gastrocnemius Muscle Atrophy Induced by Hindlimb Unloading. Acta Histochem Cytochem 2012; 45:343-9. [PMID: 23378678 PMCID: PMC3554785 DOI: 10.1267/ahc.12023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate the effect of chronic moderate-intensity training in order to prevent muscle atrophy with a focus on TNF-α and atrogin-1/MAFbx as main proteolytic indicators. Hindlimb unloading model of mice received treadmill running exercise for 1 hr per day during hindlimb unloading period of 6 weeks. The gastrocnemius muscle mass, muscle fiber cross-sectional area, and succinate dehydrogenase (SDH) activity in the muscle fiber were higher in the exercised group, while TNF-α and atrogin-1/MAFbx mRNA expressions were significantly lower. Results in the present study showed that chronic exercise could prevent over expression of TNF-α and atrogin-1/MAFbx in the atrophied skeletal muscle, providing further support to the effects of chronic exercise training on muscle atrophy.
Collapse
Affiliation(s)
- Saad Al-Nassan
- Department of Rehabilitation Science, Kobe University, Graduate School of Health Sciences
| | - Naoto Fujita
- Department of Rehabilitation Science, Kobe University, Graduate School of Health Sciences
| | - Hiroyo Kondo
- Department of Food Sciences and Nutrition, Nagoya Women’s University
| | | | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University, Graduate School of Health Sciences
| |
Collapse
|
43
|
Hamrick MW. The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. BONEKEY REPORTS 2012; 1:60. [PMID: 23951457 DOI: 10.1038/bonekey.2012.60] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 01/17/2023]
Abstract
In vitro and in vivo studies provide evidence that a variety of growth factors and cytokines are actively secreted by muscle tissue. Muscle can therefore function as an endocrine and paracrine organ. These peptides characterize the muscle secretome, and many muscle-derived factors such as insulin-like growth factor-1, basic fibroblast growth factor, interleukin-15, myostatin and secreted protein acidic and rich in cysteine (osteonectin) are also known to have significant effects on bone metabolism. The factors secreted by muscle may vary according to muscle activity, in that muscle contraction, muscle atrophy or traumatic muscle injury can alter the type and relative abundance of particular factors released from muscle cells. The molecular and cellular pathways by which muscle-derived factors affect different types of bone cells (for example, osteoblasts, osteoclasts and osteocytes) are, however, poorly understood. Nevertheless, these findings further underscore the complex nature of muscle-bone interactions, and highlight the importance of integrating muscle biology and physiology into our understanding of bone growth, development and aging.
Collapse
Affiliation(s)
- Mark W Hamrick
- Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University , Augusta, GA, USA
| |
Collapse
|
44
|
Nicastro H, Zanchi NE, da Luz CR, de Moraes WM, Ramona P, de Siqueira Filho MA, Chaves DF, Medeiros A, Brum PC, Dardevet D, Lancha AH. Effects of leucine supplementation and resistance exercise on dexamethasone-induced muscle atrophy and insulin resistance in rats. Nutrition 2012; 28:465-71. [DOI: 10.1016/j.nut.2011.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/23/2011] [Accepted: 08/17/2011] [Indexed: 10/15/2022]
|
45
|
An experimental model for resistance exercise in rodents. J Biomed Biotechnol 2012; 2012:457065. [PMID: 22496606 PMCID: PMC3303681 DOI: 10.1155/2012/457065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/21/2011] [Accepted: 11/28/2011] [Indexed: 02/03/2023] Open
Abstract
This study aimed to develop an equipment and system of resistance exercise (RE), based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction). Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions), and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and "disturbing" stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans.
Collapse
|
46
|
Nicastro H, Zanchi N, da Luz C, Lancha Jr. A. Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy. Braz J Med Biol Res 2011; 44:1070-9. [DOI: 10.1590/s0100-879x2011007500125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/09/2011] [Indexed: 12/27/2022] Open
|
47
|
Murphy KT, Cobani V, Ryall JG, Ibebunjo C, Lynch GS. Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice. J Appl Physiol (1985) 2011; 110:1065-72. [PMID: 21270350 DOI: 10.1152/japplphysiol.01183.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Counteracting the atrophy of skeletal muscle associated with disuse has significant implications for minimizing the wasting and weakness in plaster casting, joint immobilization, and other forms of limb unloading, with relevance to orthopedics, sports medicine, and plastic and reconstructive surgery. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the loss of muscle mass and functional capacity in mice during 14 or 21 days of unilateral hindlimb casting. Twelve-week-old C57BL/10 mice were subjected to unilateral hindlimb plaster casting or served as controls. Mice received subcutaneous injections of saline or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n = 6-9) on days 0 and 7 and were tested for muscle function on day 14, or were treated on days 0, 7, and 14 and tested for muscle function on day 21. Hindlimb casting reduced muscle mass, fiber size, and function of isolated soleus and extensor digitorum longus (EDL) muscles (P < 0.05). PF-354 attenuated the loss of muscle mass, fiber size, and function with greater effects after 14 days than after 21 days of casting, when wasting and weakness had plateaued (P < 0.05). Antibody-directed myostatin inhibition therefore attenuated the atrophy and loss of functional capacity in muscles from mice subjected to unilateral hindlimb casting with reductions in muscle size and strength being most apparent during the first 14 days of disuse. These findings highlight the therapeutic potential of antibody-directed myostatin inhibition for disuse atrophy especially within the first 2 wk of disuse.
Collapse
Affiliation(s)
- Kate T Murphy
- Basic and Clinical Myology Laboratory, Dept. of Physiology, The Univ. of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
48
|
Effect of branched-chain amino acid supplementation during unloading on regulatory components of protein synthesis in atrophied soleus muscles. Eur J Appl Physiol 2011; 111:1815-28. [PMID: 21222129 DOI: 10.1007/s00421-010-1825-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/29/2010] [Indexed: 11/27/2022]
Abstract
Maintenance of skeletal muscle mass depends on the equilibrium between protein synthesis and protein breakdown; diminished functional demand during unloading breaks this balance and leads to muscle atrophy. The current study analyzed time-course alterations in regulatory genes and proteins in the unloaded soleus muscle and the effects of branched-chain amino acid (BCAA) supplementation on muscle atrophy and abundance of molecules that regulate protein turnover. Short-term (6 days) hindlimb suspension of rats resulted in significant losses of myofibrillar proteins, total RNA, and rRNAs and pronounced atrophy of the soleus muscle. Muscle disuse induced upregulation and increases in the abundance of the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), increases in gene and protein amounts of two ubiquitin ligases (muscle RING-finger protein 1 and muscle atrophy F-box protein), and decreases in the expression of cyclin D1, the ribosomal protein S6 kinase 1, the mammalian target of rapamycin (mTOR), and ERK1/2. BCAA addition to the diet did not prevent muscle atrophy and had no apparent effect on regulators of proteasomal protein degradation. However, BCAA supplementation reduced the loss of myofibrillar proteins and RNA, attenuated the increases in 4E-BP1, and partially preserved cyclin D1, mTOR and ERK1 proteins. These results indicate that BCAA supplementation alone does not oppose protein degradation but partly preserves specific signal transduction proteins that act as regulators of protein synthesis and cell growth in the non-weight-bearing soleus muscle.
Collapse
|
49
|
Abstract
Myoblast fusion contributes to muscle growth in development and during regeneration of mature muscle. Myoblasts fuse to each other as well as to multinucleate myotubes to enlarge the myofiber. The molecular mechanisms of myoblast fusion are incompletely understood. Adhesion, apposition, and membrane fusion are accompanied by cytoskeletal rearrangements. The ferlin family of proteins is implicated in human muscle disease and has been implicated in fusion events in muscle, including myoblast fusion, vesicle trafficking and membrane repair. Dysferlin was the first mammalian ferlin identified and it is now known that there are six different ferlins. Loss-of-function mutations in the dysferlin gene lead to limb girdle muscular dystrophy and the milder disorder Miyoshi Myopathy. Dysferlin is a membrane-associated protein that has been implicated in resealing disruptions in the muscle plasma membrane. Newer data supports a broader role for dysferlin in intracellular vesicular movement, a process also important for resealing. Myoferlin is highly expressed in myoblasts that undergoing fusion, and the absence of myoferlin leads to impaired myoblast fusion. Myoferlin also regulates intracellular trafficking events, including endocytic recycling, a process where internalized vesicles are returned to the plasma membrane. The trafficking role of ferlin proteins is reviewed herein with a specific focus as to how this machinery alters myogenesis and muscle growth.
Collapse
Affiliation(s)
- Avery D Posey
- Genomics and Systems Biology, Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
50
|
Han DS, Huang HP, Wang TG, Hung MY, Ke JY, Chang KT, Chang HY, Ho YP, Hsieh WY, Yang WS. Transcription activation of myostatin by trichostatin A in differentiated C2C12 myocytes via ASK1-MKK3/4/6-JNK and p38 mitogen-activated protein kinase pathways. J Cell Biochem 2010; 111:564-73. [DOI: 10.1002/jcb.22740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|