1
|
Galindo-Torres P, Rosas C, Ramos-Rodríguez S, Galindo-Sánchez CE. Chronic thermal stress on Octopus maya embryos down-regulates epigenome-related genes and those involved in the nervous system development and morphogenesis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101332. [PMID: 39366120 DOI: 10.1016/j.cbd.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Red Octopus maya is strongly influenced by temperature. Recent studies have reported negative reproduction effects on males and females when exposed to temperatures higher than 27 °C. Embryos under thermal stress show morphological and physiological alterations; similar phenotypes have been reported in embryos from stressed females, evidencing transgenerational consequences. Transcriptomic profiles were characterized along embryo development during normal-under thermal stress and epigenetic alterations through DNA methylation and damage quantification. Total RNA in organogenesis, activation, and growth stages in control and thermal stress were sequenced with Illumina RNA-Seq. Similarly, total DNA was used for DNA methylation and damage quantification between temperatures and embryo stages. Differential gene expression analyses showed that embryos express genes associated with oxygen transport, morphogenesis, nervous system, neuroendocrine cell differentiation, spermatogenesis, and male sex differentiation. Conversely, embryos turn off genes involved mainly in nervous system development, morphogenesis, and gene expression regulation when exposed to thermal stress - consistent with O. maya embryo phenotypes showing abnormal arms, eyes, and body development. No significant differences were observed in quantifying DNA methylation between temperatures but they were for DNA damage quantification. Epigenetic alterations are hypothesized to occur since several genes found downregulated belong to the epigenetic machinery but at histone tail level.
Collapse
Affiliation(s)
- Pavel Galindo-Torres
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigacion (UMDI), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico (UNAM), Puerto DE Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico.
| | - Sadot Ramos-Rodríguez
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Clara E Galindo-Sánchez
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| |
Collapse
|
2
|
Kim KT, Kim MA, Kim WJ, Jung MM, Kim DH, Sohn YC. Transcriptome analysis of East Asian common octopus, Octopus sinensis, paralarvae. Genes Genomics 2024; 46:955-966. [PMID: 38922499 DOI: 10.1007/s13258-024-01537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The genes involved in cephalopod development and their association with hatching and survival during early life stages have been extensively studied. However, few studies have investigated the paralarvae transcriptome of the East Asian common octopus (Octopus sinen sis). OBJECTIVE This study aimed to identify the genes related to embryonic development and hatching in O. sinensis using RNA sequencing (RNA-seq) and verify the genes most relevant to different embryonic stages. METHODS RNA samples from hatched and 25 days post-hatching (dph) O. sinensis paralarvae were used to construct cDNA libraries. Clean reads from individual samples were aligned to the reference O. sinensis database to identify the differentially expressed genes (DEGs) between the 0- and 25-dph paralarvae libraries. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to supplement the RNA-seq data for embryogenic developmental stages. RESULTS A total of 12,597 transcripts were annotated and 5,468 DEGs were identified between the 0- and 25-dph O. sinensis paralarvae, including 2,715 upregulated and 2,753 downregulated transcripts in the 25-dph paralarvae. Several key DEGs were related to transmembrane transport, lipid biosynthesis, monooxygenase activity, lipid transport, neuropeptide signaling, transcription regulation, and protein-cysteine S-palmitoyltransferase activity during the post-hatching development of O. sinensis paralarvae. RT-qPCR analysis further revealed that SLC5A3A, ABCC12, and NPC1 transcripts in 20 and/or 30 days post-fertilization (dpf) embryos were significantly higher (p < 0.05) than those in 10-dpf embryos. CONCLUSION Transcriptome profiles provide molecular targets to understand the embryonic development, hatching, and survival of O. sinensis paralarvae, and enhance octopus production.
Collapse
Affiliation(s)
- Ki Tae Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong, Gyeongsangnam-Do, 53017, Republic of Korea
| | - Mi Ae Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-Do, 25457, Republic of Korea
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, Gangwon-Do, 25457, Republic of Korea
| | - Woo Jin Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Min Min Jung
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science, Jeju-do, 63068, Republic of Korea
| | - Dong Hwi Kim
- East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung, Gangwon-Do, 25435, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-Do, 25457, Republic of Korea.
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, Gangwon-Do, 25457, Republic of Korea.
| |
Collapse
|
3
|
Wang HY, Yu K, Liu WJ, Jiang HM, Guo SQ, Xu JP, Li YD, Chen P, Ding XY, Fu P, Zhang YCF, Mei YS, Zhang G, Zhou HB, Jing J. Molecular Characterization of Two Wamide Neuropeptide Signaling Systems in Mollusk Aplysia. ACS Chem Neurosci 2023. [PMID: 37339428 DOI: 10.1021/acschemneuro.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Neuropeptides with the C-terminal Wamide (Trp-NH2) are one of the last common ancestors of peptide families of eumetazoans and play various physiological roles. In this study, we sought to characterize the ancient Wamide peptides signaling systems in the marine mollusk Aplysia californica, i.e., APGWamide (APGWa) and myoinhibitory peptide (MIP)/Allatostatin B (AST-B) signaling systems. A common feature of protostome APGWa and MIP/AST-B peptides is the presence of a conserved Wamide motif in the C-terminus. Although orthologs of the APGWa and MIP signaling systems have been studied to various extents in annelids or other protostomes, no complete signaling systems have yet been characterized in mollusks. Here, through bioinformatics, molecular and cellular biology, we identified three receptors for APGWa, namely, APGWa-R1, APGWa-R2, and APGWa-R3. The EC50 values for APGWa-R1, APGWa-R2, and APGWa-R3 are 45, 2100, and 2600 nM, respectively. For the MIP signaling system, we predicted 13 forms of peptides, i.e., MIP1-13 that could be generated from the precursor identified in our study, with MIP5 (WKQMAVWa) having the largest number of copies (4 copies). Then, a complete MIP receptor (MIPR) was identified and the MIP1-13 peptides activated the MIPR in a dose-dependent manner, with EC50 values ranging from 40 to 3000 nM. Peptide analogs with alanine substitution experiments demonstrated that the Wamide motif at the C-terminus is necessary for receptor activity in both the APGWa and MIP systems. Moreover, cross-activity between the two signaling systems showed that MIP1, 4, 7, and 8 ligands could activate APGWa-R1 with a low potency (EC50 values: 2800-22,000 nM), which further supported that the APGWa and MIP signaling systems are somewhat related. In summary, our successful characterization of Aplysia APGWa and MIP signaling systems represents the first example in mollusks and provides an important basis for further functional studies in this and other protostome species. Moreover, this study may be useful for elucidating and clarifying the evolutionary relationship between the two Wamide signaling systems (i.e., APGWa and MIP systems) and their other extended neuropeptide signaling systems.
Collapse
Affiliation(s)
- Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei-Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui-Min Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ju-Ping Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ya-Dong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xue-Ying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ping Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan-Chu-Fei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Shuo Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hai-Bo Zhou
- Peng Cheng Laboratory, Shenzhen 518000, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Peng Cheng Laboratory, Shenzhen 518000, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
4
|
Fu P, Mei YS, Liu WJ, Chen P, Jin QC, Guo SQ, Wang HY, Xu JP, Zhang YCF, Ding XY, Liu CP, Liu CY, Mao RT, Zhang G, Jing J. Identification of three elevenin receptors and roles of elevenin disulfide bond and residues in receptor activation in Aplysia californica. Sci Rep 2023; 13:7662. [PMID: 37169790 PMCID: PMC10175484 DOI: 10.1038/s41598-023-34596-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Neuropeptides are ubiquitous intercellular signaling molecules in the CNS and play diverse roles in modulating physiological functions by acting on specific G-protein coupled receptors (GPCRs). Among them, the elevenin signaling system is now believed to be present primarily in protostomes. Although elevenin was first identified from the L11 neuron of the abdominal ganglion in mollusc Aplysia californica, no receptors have been described in Aplysia, nor in any other molluscs. Here, using two elevenin receptors in annelid Platynereis dumerilii, we found three putative elevenin GPCRs in Aplysia. We cloned the three receptors and tentatively named them apElevR1, apElevR2, and apElevR3. Using an inositol monophosphate (IP1) accumulation assay, we demonstrated that Aplysia elevenin with the disulfide bond activated the three putative receptors with low EC50 values (ranging from 1.2 to 25 nM), supporting that they are true receptors for elevenin. In contrast, elevenin without the disulfide bond could not activate the receptors, indicating that the disulfide bond is required for receptor activity. Using alanine substitution of individual conserved residues other than the two cysteines, we showed that these residues appear to be critical to receptor activity, and the three different receptors had different sensitivities to the single residue substitution. Finally, we examined the roles of those residues outside the disulfide bond ring by removing these residues and found that they also appeared to be important to receptor activity. Thus, our study provides an important basis for further study of the functions of elevenin and its receptors in Aplysia and other molluscs.
Collapse
Affiliation(s)
- Ping Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yu-Shuo Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wei-Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Qing-Chun Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ju-Ping Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yan-Chu-Fei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xue-Ying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Cui-Ping Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Cheng-Yi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Rui-Ting Mao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
AI protein structure prediction-based modeling and mutagenesis of a protostome receptor and peptide ligands reveal key residues for their interaction. J Biol Chem 2022; 298:102440. [PMID: 36049520 PMCID: PMC9562341 DOI: 10.1016/j.jbc.2022.102440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite progress in this area, molecular mechanisms governing LK peptide-receptor interactions remain to be elucidated. Previously, we identified a precursor protein for Aplysia leucokinin-like peptides (ALKs) that contains the greatest number of amidated peptides among LK precursors in all species identified so far. Here, we identified the first ALK receptor from Aplysia, ALKR. We used cell-based IP1 activation assays to demonstrate that the two ALK peptides with the most copies, ALK1 and ALK2, activated ALKR with high potencies. Other endogenous ALK-derived peptides bearing the FXXWX-amide motif also activated ALKR to various degrees. Our examination of cross-species activity of ALKs with the Anopheles LKR was consistent with a critical role for the FXXWX-amide motif in receptor activity. Furthermore, we showed, through alanine substitution of ALK1, the highly conserved phenylalanine (F), tryptophan (W), and C-terminal amidation were each essential for receptor activation. Finally, we used an AI-based protein structure prediction server (Robetta) and Autodock Vina to predict the ligand-bound conformation of ALKR. Our model predicted several interactions (i.e., hydrophobic interactions, hydrogen bonds, and amide-pi stacking) between ALK peptides and ALKR, and several of our substitution and mutagenesis experiments were consistent with the predicted model. In conclusion, our results provide important information defining the possible interactions between ALK peptides and their receptors. The workflow utilized here may be useful for studying other ligand-receptor interactions for a neuropeptide signaling system, particularly in protostomes.
Collapse
|
6
|
Ventura-López C, López-Galindo L, Rosas C, Sánchez-Castrejón E, Galindo-Torres P, Pascual C, Rodríguez-Fuentes G, Juárez OE, Galindo-Sánchez CE. Sex-specific role of the optic gland in octopus maya: A transcriptomic analysis. Gen Comp Endocrinol 2022; 320:114000. [PMID: 35217062 DOI: 10.1016/j.ygcen.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
The optic glands (OG) of cephalopods are a source of molecules associated with the control of reproductive traits and lifecycle events such as sexual maturation, reproductive behavior, feeding, parental care, and senescence. However, little is known about the role of the optic gland in Octopus maya adults during mating and egg laying. RNA sequencing, de novo transcriptome assembly, ubiquity and differential expression analysis were performed. First, we analyzed the expression patterns of transcripts commonly associated with OG regulatory functions to describe their possible role once the maturation of the gonad is complete. The transcriptomic profiles of the optic gland of both sexes were compared with emphasis on the signaling pathways involved in the dimorphism of reproductive traits. Results suggest that in the OG of males, the reproductive condition (mated or non-mated) did not affect the general expression profile. In contrast, more differentially expressed genes were observed in females. In mated females, the mRNA metabolic process and the response to norepinephrine were enriched, suggesting a high cellular activity in preparation for the laying of the embryos. Whereas in egg-laying females, energetic and metabolic processes were the most represented, including the oxidation-reduction process. Finally, the gene expression patterns in senescence females suggest a physiological response to starvation as well as upregulation of genes involved retrotransposon activity. In conclusion, more substantial fluctuations in gene expression were observed in the optic glands of the fertilized females compared to the males. Such differences might be associated with the regulation of the egg-laying and the onset of senescence.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Laura López-Galindo
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, Ensenada, Baja California CP 22860, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Edna Sánchez-Castrejón
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Pavel Galindo-Torres
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Oscar E Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Clara E Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| |
Collapse
|
7
|
Jiang HM, Yang Z, Xue YY, Wang HY, Guo SQ, Xu JP, Li YD, Fu P, Ding XY, Yu K, Liu WJ, Zhang G, Wang J, Zhou HB, Susswein AJ, Jing J. Identification of an allatostatin C signaling system in mollusc Aplysia. Sci Rep 2022; 12:1213. [PMID: 35075137 PMCID: PMC8786951 DOI: 10.1038/s41598-022-05071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides, as pervasive intercellular signaling molecules in the CNS, modulate a variety of behavioral systems in both protostomes and deuterostomes. Allatostatins are neuropeptides in arthropods that inhibit the biosynthesis of juvenile hormones. Based on amino acid sequences, they are divided into three different types in arthropods: allatostatin A, allatostatin B, allatostatin C. Allatostatin C (AstC) was first isolated from Manduca sexta, and it has an important conserved feature of a disulfide bridge formed by two cysteine residues. Moreover, AstC appears to be the ortholog of mammalian somatostatin, and it has functions in common with somatostatin, such as modulating feeding behaviors. The AstC signaling system has been widely studied in arthropods, but minimally studied in molluscs. In this study, we seek to identify the AstC signaling system in the marine mollusc Aplysia californica. We cloned the AstC precursor from the cDNA of Aplysia. We predicted a 15-amino acid peptide with a disulfide bridge, i.e., AstC, using NeuroPred. We then cloned two putative allatostatin C-like receptors and through NCBI Conserved Domain Search we found that they belonged to the G protein-coupled receptor (GPCR) family. In addition, using an inositol monophosphate 1 (IP1) accumulation assay, we showed that Aplysia AstC could activate one of the putative receptors, i.e., the AstC-R, at the lowest EC50, and AstC without the disulfide bridge (AstC') activated AstC-R with the highest EC50. Moreover, four molluscan AstCs with variations of sequences from Aplysia AstC but with the disulfide bridge activated AstC-R at intermediate EC50. In summary, our successful identification of the Aplysia AstC precursor and its receptor (AstC-R) represents the first example in molluscs, and provides an important basis for further studies of the AstC signaling system in Aplysia and other molluscs.
Collapse
Affiliation(s)
- Hui-Min Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zhe Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ying-Yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ju-Ping Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ya-Dong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ping Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xue-Ying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wei-Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Jian Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
| | - Abraham J Susswein
- The Mina and Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Sharker MR, Sukhan ZP, Kim SC, Rha SJ, Kho KH. In silico prediction of neuropeptides from the neural ganglia of Pacific abalone Haliotis discus hannai (Mollusca: Gastropoda). THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2019.1708485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- M. R. Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Z. P. Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - S. C. Kim
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - S.-J. Rha
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - K. H. Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
9
|
Juárez OE, López-Galindo L, Pérez-Carrasco L, Lago-Lestón A, Rosas C, Di Cosmo A, Galindo-Sánchez CE. Octopus maya white body show sex-specific transcriptomic profiles during the reproductive phase, with high differentiation in signaling pathways. PLoS One 2019; 14:e0216982. [PMID: 31095623 PMCID: PMC6522055 DOI: 10.1371/journal.pone.0216982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes, have been considered the hematopoietic organ of the cephalopods. Its glandular appearance and its lobular morphology suggest that different parts of the WB may perform different functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this study is to describe the transcriptomic profile of WB to better understand its functions, with emphasis on the difference between sexes during reproductive events. Then, validation via qPCR was performed using different tissues to find out tissue-specific transcripts. High differentiation in signaling pathways was observed in the comparison of female and male transcriptomic profiles. For instance, the expression of genes involved in the androgen receptor-signaling pathway were detected only in males, whereas estrogen receptor showed higher expression in females. Highly expressed genes in males enriched oxidation-reduction and apoptotic processes, which are related to the immune response. On the other hand, expression of genes involved in replicative senescence and the response to cortisol were only detected in females. Moreover, the transcripts with higher expression in females enriched a wide variety of signaling pathways mediated by molecules like neuropeptides, integrins, MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide transcripts, showed higher expression in females' WB and were not detected in other analyzed tissues. These results suggest that the differentiation in signaling pathways in white bodies of O. maya influences the physiological dimorphism between females and males during the reproductive phase.
Collapse
Affiliation(s)
- Oscar E. Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Laura López-Galindo
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Leonel Pérez-Carrasco
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Carlos Rosas
- Unidad Académica Sisal, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Anna Di Cosmo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| |
Collapse
|
10
|
Wang ZY, Ragsdale CW. Multiple optic gland signaling pathways implicated in octopus maternal behaviors and death. J Exp Biol 2018; 221:jeb185751. [PMID: 30104305 PMCID: PMC6198452 DOI: 10.1242/jeb.185751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
Post-reproductive life in the female octopus is characterized by an extreme pattern of maternal care: the mother cares for her clutch of eggs without feeding until her death. These maternal behaviors are eradicated if the optic glands, the octopus analog of the vertebrate pituitary gland, are removed from brooding females. Despite the optic gland's importance in regulating maternal behavior, the molecular features underlying optic gland function are unknown. Here, we identify major signaling systems of the Octopus bimaculoides optic gland. Through behavioral analyses and transcriptome sequencing, we report that the optic gland undergoes remarkable molecular changes that coincide with transitions between behavioral stages. These include the dramatic upregulation and downregulation of catecholamine, steroid, insulin and feeding peptide pathways. Transcriptome analyses in other tissues demonstrate that these molecular changes are not generalized markers of senescence, but instead, specific features of the optic glands. Our study expands the classic optic gland-pituitary gland analogy and more specifically, it indicates that, rather than a single 'self-destruct' hormone, the maternal optic glands employ multiple pathways as systemic hormonal signals of behavioral regulation.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Cropper EC, Jing J, Vilim FS, Barry MA, Weiss KR. Multifaceted Expression of Peptidergic Modulation in the Feeding System of Aplysia. ACS Chem Neurosci 2018; 9:1917-1927. [PMID: 29309115 DOI: 10.1021/acschemneuro.7b00447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides are present in species throughout the animal kingdom and generally exert actions that are distinct from those of small molecule transmitters. It has, therefore, been of interest to define the unique behavioral role of this class of substances. Progress in this regard has been made in experimentally advantageous invertebrate preparations. We focus on one such system, the feeding circuit in the mollusc Aplysia. We review research conducted over several decades that played an important role in establishing that peptide cotransmitters are released under behaviorally relevant conditions. We describe how this was accomplished. For example, we describe techniques developed to purify novel peptides, localize them to identified neurons, and detect endogenous peptide release. We also describe physiological experiments that demonstrated that peptides are bioactive under behaviorally relevant conditions. The feeding system is like others in that peptides exert effects that are both convergent and divergent. Work in the feeding system clearly illustrates how this creates potential for behavioral flexibility. Finally, we discuss experiments that determined physiological consequences of one of the hallmark features of peptidergic modulation, its persistence. Research in the feeding system demonstrated that this persistence can change network state and play an important role in determining network output.
Collapse
Affiliation(s)
- Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
- State Key Laboratory of Pharmaceutical Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ferdinand S. Vilim
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Michael A. Barry
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| |
Collapse
|
12
|
Baldascino E, Di Cristina G, Tedesco P, Hobbs C, Shaw TJ, Ponte G, Andrews PLR. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression. Front Physiol 2017; 8:1001. [PMID: 29326594 PMCID: PMC5736919 DOI: 10.3389/fphys.2017.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin-related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake regulation and digestive tract motility control and (ii) the difference in relative gene expression in the gastric ganglion in octopus with relatively high and low parasitic loads and the similarities to changes in the enteric innervation of mammals with digestive tract parasites. Our results provide additional data to the described neurochemical complexity of O. vulgaris gastric ganglion.
Collapse
Affiliation(s)
- Elena Baldascino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Perla Tedesco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| |
Collapse
|
13
|
Ahn SJ, Martin R, Rao S, Choi MY. Neuropeptides predicted from the transcriptome analysis of the gray garden slug Deroceras reticulatum. Peptides 2017; 93:51-65. [PMID: 28502716 DOI: 10.1016/j.peptides.2017.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/28/2022]
Abstract
The gray garden slug, Deroceras reticulatum (Gastropoda: Pulmonata), is one of the most common terrestrial molluscs. Research for this slug has focused mainly on its ecology, biology, and management due to the severe damage it causes on a wide range of vegetables and field crops. However, little is known about neuropeptides and hormonal signalings. This study, therefore, aimed to establish the transcriptome of D. reticulatum and to identify a comprehensive repertoire of neuropeptides in this slug. Illumina high-throughput sequencing of the whole body transcriptome of D. reticulatum generated a total of 5.9 billion raw paired-end reads. De novo assembly by Trinity resulted in 143,575 transcripts and further filtration selected 120,553 unigenes. Gene Ontology (GO) terms were assigned to 30,588 unigenes, composed of biological processes (36.9%), cellular components (30.2%) and molecular functions (32.9%). Functional annotation by BLASTx revealed 39,987 unigenes with hits, which were further categorized into important functional groups based on sequence abundance. Neuropeptides, ion channels, ribosomal proteins, G protein-coupled receptors, detoxification, immunity and cytoskeleton-related sequences were dominant among the transcripts. BLAST searches and PCR amplification were used to identify 65 putative neuropeptide precursor genes from the D. reticulatum transcriptome, which include achatin, AKH, allatostatin A, B and C, allatotropin, APGWamide, CCAP, cerebrin, conopressin, cysteine-knot protein hormones (bursicon alpha/beta and GPA2/GPB5), elevenin, FCAP, FFamide, FVamide (enterin, fulicin, MIP and PRQFVamide), GGNG, GnRH, insulin, NdWFamide, NKY, PKYMDT, PRXamide (myomodulin, pleurin and sCAP), RFamide (CCK/SK, FMRFamide, FxRIamide, LFRFamide, luqin and NPF), and tachykinin. Over 330 putative peptides were encoded by these precursors. Comparative analysis among different molluscan species clearly revealed that, while D. reticulatum neuropeptide sequences are conserved in Mollusca, there are also some unique features distinct from other members of this species. This is the first transcriptome-wide report of neuropeptides in terrestrial slugs. Our results provide comprehensive transcriptome data of the gray garden slug, with a more detailed focus on the rich repertoire of putative neuropeptide sequences, laying the foundation for molecular studies in this terrestrial slug pest.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- USDA-ARS Horticultural Crops Research Unit,3420 NW Orchard Avenue, Corvallis, OR, 97330, USA; Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Ruth Martin
- USDA-ARS Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Sujaya Rao
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit,3420 NW Orchard Avenue, Corvallis, OR, 97330, USA.
| |
Collapse
|
14
|
Livnat I, Tai HC, Jansson ET, Bai L, Romanova EV, Chen TT, Yu K, Chen SA, Zhang Y, Wang ZY, Liu DD, Weiss KR, Jing J, Sweedler JV. A d-Amino Acid-Containing Neuropeptide Discovery Funnel. Anal Chem 2016; 88:11868-11876. [PMID: 27788334 PMCID: PMC5144109 DOI: 10.1021/acs.analchem.6b03658] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
A receptor binding
class of d-amino acid-containing peptides
(DAACPs) is formed in animals from an enzymatically mediated post-translational
modification of ribosomally translated all-l-amino acid peptides.
Although this modification can be required for biological actions,
detecting it is challenging because DAACPs have the same mass as their
all-l-amino acid counterparts. We developed a suite of mass
spectrometry (MS) protocols for the nontargeted discovery of DAACPs
and validated their effectiveness using neurons from Aplysia
californica. The approach involves the following three steps,
with each confirming and refining the hits found in the prior step.
The first step is screening for peptides resistant to digestion by
aminopeptidase M. The second verifies the presence of a chiral amino
acid via acid hydrolysis in deuterium chloride, labeling with Marfey’s
reagent, and liquid chromatography–mass spectrometry to determine
the chirality of each amino acid. The third involves synthesizing
the putative DAACPs and comparing them to the endogenous standards.
Advantages of the method, the d-amino acid-containing neuropeptide
discovery funnel, are that it is capable of detecting the d-form of any common chiral amino acid, and the first two steps do
not require peptide standards. Using these protocols, we report that
two peptides from the Aplysia achatin-like neuropeptide
precursor exist as GdYFD and SdYADSKDEESNAALSDFA.
Interestingly, GdYFD was bioactive in the Aplysia feeding and locomotor circuits but SdYADSKDEESNAALSDFA
was not. The discovery funnel provides an effective means to characterize
DAACPs in the nervous systems of animals in a nontargeted manner.
Collapse
Affiliation(s)
| | | | | | | | | | - Ting-Ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Song-An Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Yan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Zheng-Yang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Dan-Dan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University , Nanjing, Jiangsu 210046, China.,Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | | |
Collapse
|
15
|
Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguillé G, Bernay B, Garderes J, Kraut A, Couté Y, Henry J. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying. J Proteome Res 2015; 15:48-67. [PMID: 26632866 DOI: 10.1021/acs.jproteome.5b00463] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Valérie Cornet
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Bruno Zanuttini
- Normandy University , GREYC, UMR CNRS 6072, F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | | - Benoît Bernay
- Normandy University , F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| | - Johan Garderes
- Center for Marine Research, "Ruder Boskovic" Institute , HR-52210 Rovinj, Croatia
| | - Alexandra Kraut
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Yohan Couté
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Joël Henry
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| |
Collapse
|
16
|
Latent modulation: a basis for non-disruptive promotion of two incompatible behaviors by a single network state. J Neurosci 2013; 33:3786-98. [PMID: 23447591 DOI: 10.1523/jneurosci.5371-12.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Behavioral states often preferentially enhance specific classes of behavior and suppress incompatible behaviors. In the nervous system, this may involve upregulation of the efficacy of neural modules that mediate responses to one stimulus and suppression of modules that generate antagonistic or incompatible responses to another stimulus. In Aplysia, prestimulation of egestive inputs [esophageal nerve (EN)] facilitates subsequent EN-elicited egestive responses and weakens ingestive responses to ingestive inputs [Cerebral-Buccal Interneuron (CBI-2)]. However, a single state can also promote incompatible behaviors in response to different stimuli. This is the case in Aplysia, where prestimulation of CBI-2 inputs not only enhances subsequent CBI-2-elicited ingestive responses, but also strengthens EN-elicited egestive responses. We used the modularly organized feeding network of Aplysia to characterize the organizational principles that allow a single network state to promote two opposing behaviors, ingestion and egestion, without the two interfering with each other. We found that the CBI-2 prestimulation-induced state upregulates the excitability of neuron B65 which, as a member of the egestive module, increases the strength of egestive responses. Furthermore, we found that this upregulation is likely mediated by the actions of the neuropeptides FCAP (Feeding Circuit Activating Peptide) and CP2 (Cerebral Peptide 2). This increased excitability is mediated by a form of modulation that we refer to as "latent modulation" because it is established during stimulation of CBI-2, which does not activate B65. However, when B65 is recruited into EN-elicited egestive responses, the effects of the latent modulation are expressed as a higher B65 firing rate and a resultant strengthening of the egestive response.
Collapse
|
17
|
Abstract
All nervous systems are subject to neuromodulation. Neuromodulators can be delivered as local hormones, as cotransmitters in projection neurons, and through the general circulation. Because neuromodulators can transform the intrinsic firing properties of circuit neurons and alter effective synaptic strength, neuromodulatory substances reconfigure neuronal circuits, often massively altering their output. Thus, the anatomical connectome provides a minimal structure and the neuromodulatory environment constructs and specifies the functional circuits that give rise to behavior.
Collapse
Affiliation(s)
- Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
18
|
Romanova EV, Sasaki K, Alexeeva V, Vilim FS, Jing J, Richmond TA, Weiss KR, Sweedler JV. Urotensin II in invertebrates: from structure to function in Aplysia californica. PLoS One 2012; 7:e48764. [PMID: 23144960 PMCID: PMC3493602 DOI: 10.1371/journal.pone.0048764] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/05/2012] [Indexed: 02/07/2023] Open
Abstract
Neuropeptides are ancient signaling molecules that are involved in many aspects of organism homeostasis and function. Urotensin II (UII), a peptide with a range of hormonal functions, previously has been reported exclusively in vertebrates. Here, we provide the first direct evidence that UII-like peptides are also present in an invertebrate, specifically, the marine mollusk Aplysia californica. The presence of UII in the central nervous system (CNS) of Aplysia implies a more ancient gene lineage than vertebrates. Using representational difference analysis, we identified an mRNA of a protein precursor that encodes a predicted neuropeptide, we named Aplysia urotensin II (apUII), with a sequence and structural similarity to vertebrate UII. With in-situ hybridization and immunohistochemistry, we mapped the expression of apUII mRNA and its prohormone in the CNS and localized apUII-like immunoreactivity to buccal sensory neurons and cerebral A-cluster neurons. Mass spectrometry performed on individual isolated neurons, and tandem mass spectrometry on fractionated peptide extracts, allowed us to define the posttranslational processing of the apUII neuropeptide precursor and confirm the highly conserved cyclic nature of the mature neuropeptide apUII. Electrophysiological analysis of the central effects of a synthetic apUII suggests it plays a role in satiety and/or aversive signaling in feeding behaviors. Finding the homologue of vertebrate UII in the numerically small CNS of an invertebrate animal model is important for gaining insights into the molecular mechanisms and pathways mediating the bioactivity of UII in the higher metazoan.
Collapse
Affiliation(s)
- Elena V. Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kosei Sasaki
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Vera Alexeeva
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ferdinand S. Vilim
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jian Jing
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Timothy A. Richmond
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Klaudiusz R. Weiss
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Veenstra JA. Neuropeptide evolution: neurohormones and neuropeptides predicted from the genomes of Capitella teleta and Helobdella robusta. Gen Comp Endocrinol 2011; 171:160-75. [PMID: 21241702 DOI: 10.1016/j.ygcen.2011.01.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
Abstract
Genes encoding neurohormones and neuropeptide precursors were identified in the genomes of two annelids, the leech Helobdella robusta and the polychaete worm Capitella teleta. Although no neuropeptides have been identified from these two species and relatively few neuropeptides from annelids in general, 43 and 35 such genes were found in Capitella and Helobdella, respectively. The predicted peptidomes of these two species are similar to one another and also similar to those of mollusks, particular in the case of Capitella. Helobdella seems to have less neuropeptide genes than Capitella and it lacks the glycoprotein hormones bursicon and GPA2/GPB5; in both cases the genes coding the two subunits as well as the genes coding their receptors are absent from its genome. In Helobdella several neuropeptide genes are duplicated, thus it has five NPY genes, including one pseudogene, as well as four genes coding Wwamides (allatostatin B). Genes coding achatin, allatotropin, allatostatin C, conopressin, FFamide, FLamide, FMRFamide, GGRFamide, GnRH, myomodulin, NPY, pedal peptides, RGWamide (a likely APGWamide homolog), RXDLamide, VR(F/I)amide, WWamide were found in both species, while genes coding cerebrin, elevenin, GGNG, LFRWamide, LRFYamide, luqin, lymnokinin and tachykinin were only found in Capitella.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, 33400 Talence, France.
| |
Collapse
|
20
|
Jing J, Sweedler JV, Cropper EC, Alexeeva V, Park JH, Romanova EV, Xie F, Dembrow NC, Ludwar BC, Weiss KR, Vilim FS. Feedforward compensation mediated by the central and peripheral actions of a single neuropeptide discovered using representational difference analysis. J Neurosci 2010; 30:16545-58. [PMID: 21147994 PMCID: PMC3072109 DOI: 10.1523/jneurosci.4264-10.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/21/2010] [Accepted: 10/05/2010] [Indexed: 12/31/2022] Open
Abstract
Compensatory mechanisms are often used to achieve stability by reducing variance, which can be accomplished via negative feedback during homeostatic regulation. In principle, compensation can also be implemented through feedforward mechanisms where a regulator acts to offset the anticipated output variation; however, few such neural mechanisms have been demonstrated. We provide evidence that an Aplysia neuropeptide, identified using an enhanced representational difference analysis procedure, implements feedforward compensation within the feeding network. We named the novel peptide "allatotropin-related peptide" (ATRP) because of its similarity to insect allatotropin. Mass spectrometry confirmed the peptide's identity, and in situ hybridization and immunostaining mapped its distribution in the Aplysia CNS. ATRP is present in the higher-order cerebral-buccal interneuron (CBI) CBI-4, but not in CBI-2. Previous work showed that CBI-4-elicited motor programs have a shorter protraction duration than those elicited by CBI-2. Here we show that ATRP shortens protraction duration of CBI-2-elicited ingestive programs, suggesting a contribution of ATRP to the parametric differences between CBI-4-evoked and CBI-2-evoked programs. Importantly, because Aplysia muscle contractions are a graded function of motoneuronal activity, one consequence of the shortening of protraction is that it can weaken protraction movements. However, this potential weakening is offset by feedforward compensatory actions exerted by ATRP. Centrally, ATRP increases the activity of protraction motoneurons. Moreover, ATRP is present in peripheral varicosities of protraction motoneurons and enhances peripheral motoneuron-elicited protraction muscle contractions. Therefore, feedforward compensatory mechanisms mediated by ATRP make it possible to generate a faster movement with an amplitude that is not greatly reduced, thereby producing stability.
Collapse
Affiliation(s)
- Jian Jing
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morishita F, Furukawa Y, Matsushima O, Minakata H. Regulatory actions of neuropeptides and peptide hormones on the reproduction of molluscsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2010. [DOI: 10.1139/z10-041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive success of individual animals is essential for the survival of any species. Molluscs have adapted to a wide variety of environments (freshwater, brackish water, seawater, and terrestrial habits) and have evolved unique tactics for reproduction. Both of these features attract the academic interests of scientists. Because neuropeptides and peptide hormones play critical roles in neural and neurohormonal regulation of physiological functions and behaviors in this animal group, the regulatory actions of these messengers in reproduction have been extensively investigated. In this review, we will briefly summarize how peptidergic messengers are involved in various aspects of reproduction, using some peptides such as egg-laying hormone, caudo-dorsal cell hormone, APGWamide, and gonadotropin-releasing hormone as typical examples.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Yasuo Furukawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Osamu Matsushima
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Hiroyuki Minakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| |
Collapse
|
22
|
Veenstra JA. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010; 167:86-103. [PMID: 20171220 DOI: 10.1016/j.ygcen.2010.02.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 12/23/2022]
Abstract
The Lottia gigantea genome was prospected for the presence of genes coding neuropeptides and neurohormones. Four genes code insulin-related peptides: two genes code molluscan insulin-like growth hormones, one gene an insulin very similar to vertebrate insulin, and the fourth a peptide related to drosophila insulin-like peptide 7. Four other genes encode the cysteine-knot proteins GPA2/GPB5 and bursicon/parabursicon. Another 37 genes code for precursors of the following neuropeptides: achatin, APGWamide, allatostatin C, allatotropin, buccalin (perhaps an allatostatin A homolog), cerebrin, CCAP, conopressin, elevenin (the predicted neuropeptide made by abdominal neuron 11 in Aplysia), egg laying hormone (two genes), enterin, feeding circuit activating neuropeptide (FCAP), FFamide, FMRFamide, GGNG, a GnRH-like peptide, the newly discovered LASGLVamide, LFRFamide, LFRYamide, LRNFVamide, luqin, lymnokinin, myomodulin (two genes), the newly discovered NKY, NPY, pedal peptide (three genes), PKYMDT, pleurin, PXFVamide, small cardioactive peptides, tachykinins (two genes) and WWamide (an allatostatin B homolog). One gene was found to encode FWISamide, while about 20 closely related genes were found to encode WWFamide. These small neuropeptides appear homologous to the NdWFamide, which contains d-Trp; these genes are similar to the Aplysia gene encoding NWFamide. Some of these peptides had not been previously identified from mollusks, such as the predicted hormones similar to Drosophila and vertebrate insulins, bursicon, the putative proctolin homolog PKYMDT and allatostatin C. Together with neuropeptides which are likely homologs of other insect neuropeptides, such as cerebrin and WWamide, this shows that despite significant differences the molluscan and arthropod neuropeptidomes are more similar than generally recognized.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS, CNIC UMR 5228, 33400 Talence, France.
| |
Collapse
|
23
|
Takahashi T, McDougall C, Troscianko J, Chen WC, Jayaraman-Nagarajan A, Shimeld SM, Ferrier DEK. An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals. BMC Evol Biol 2009; 9:240. [PMID: 19781084 PMCID: PMC2762978 DOI: 10.1186/1471-2148-9-240] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/25/2009] [Indexed: 01/06/2023] Open
Abstract
Background Since the drastic reorganisation of the phylogeny of the animal kingdom into three major clades of bilaterians; Ecdysozoa, Lophotrochozoa and Deuterostomia, it became glaringly obvious that the selection of model systems with extensive molecular resources was heavily biased towards only two of these three clades, namely the Ecdysozoa and Deuterostomia. Increasing efforts have been put towards redressing this imbalance in recent years, and one of the principal phyla in the vanguard of this endeavour is the Annelida. Results In the context of this effort we here report our characterisation of an Expressed Sequence Tag (EST) screen in the serpulid annelid, Pomatoceros lamarckii. We have sequenced over 5,000 ESTs which consolidate into over 2,000 sequences (clusters and singletons). These sequences are used to build phylogenetic trees to estimate relative branch lengths amongst different taxa and, by comparison to genomic data from other animals, patterns of gene retention and loss are deduced. Conclusion The molecular phylogenetic trees including the P. lamarckii sequences extend early observations that polychaetes tend to have relatively short branches in such trees, and hence are useful taxa with which to reconstruct gene family evolution. Also, with the availability of lophotrochozoan data such as that of P. lamarckii, it is now possible to make much more accurate reconstructions of the gene complement of the ancestor of the bilaterians than was previously possible from comparisons of ecdysozoan and deuterostome genomes to non-bilaterian outgroups. It is clear that the traditional molecular model systems for protostomes (e.g. Drosophila melanogaster and Caenorhabditis elegans), which are restricted to the Ecdysozoa, have undergone extensive gene loss during evolution. These ecdysozoan systems, in terms of gene content, are thus more derived from the bilaterian ancestral condition than lophotrochozoan systems like the polychaetes, and thus cannot be used as good, general representatives of protostome genomes. Currently sequenced insect and nematode genomes are less suitable models for deducing bilaterian ancestral states than lophotrochozoan genomes, despite the array of powerful genetic and mechanistic manipulation techniques in these ecdysozoans. A distinct category of genes that includes those present in non-bilaterians and lophotrochozoans, but which are absent from ecdysozoans and deuterostomes, highlights the need for further lophotrochozoan data to gain a more complete understanding of the gene complement of the bilaterian ancestor.
Collapse
Affiliation(s)
- Tokiharu Takahashi
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Martínez-Rubio C, Serrano GE, Miller MW. Localization of biogenic amines in the foregut of Aplysia californica: catecholaminergic and serotonergic innervation. J Comp Neurol 2009; 514:329-42. [PMID: 19330814 PMCID: PMC4023389 DOI: 10.1002/cne.21991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study examined the catecholaminergic and serotonergic innervation of the foregut of Aplysia californica, a model system in which the control of feeding behaviors can be investigated at the cellular level. Similar numbers (15-25) of serotonin-like-immunoreactive (5HTli) and tyrosine hydroxylase-like-immunoreactive (THli) fibers were present in each (bilateral) esophageal nerve (En), the major source of pregastric neural innervation in this system. The majority of En 5HTli and THli fibers originated from the anterior branch (En(2)), which innervates the pharynx and the anterior esophagus. Fewer fibers were present in the posterior branch (En(1)), which innervates the majority of the esophagus and the crop. Backfills of the two En branches toward the central nervous system (CNS) labeled a single, centrifugally projecting serotonergic fiber, originating from the metacerebral cell (MCC). The MCC fiber projected only to En(2). No central THli neurons were found to project to the En. Surveys of the pharynx and esophagus revealed major differences between their patterns of catecholaminergic (CA) and serotonergic innervation. Whereas THli fibers and cell bodies were distributed throughout the foregut, 5HTli fibers were present in restricted plexi, and no 5HTli somata were detected. Double-labeling experiments in the periphery revealed THli neurons projecting toward the buccal ganglion via En(2). Other afferents received dense perisomatic serotonergic innervation. Finally, qualitative and quantitative differences were observed between the buccal motor programs (BMPs) produced by stimulation of the two En branches. These observations increase our understanding of aminergic contributions to the pregastric regulation of Aplysia feeding behaviors.
Collapse
Affiliation(s)
- Clarissa Martínez-Rubio
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| | - Geidy E. Serrano
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| |
Collapse
|
25
|
Morishita F, Minakata H, Takeshige K, Furukawa Y, Takata T, Matsushima O, Mukai ST, Saleuddin ASM, Horiguchi T. Novel excitatory neuropeptides isolated from a prosobranch gastropod, Thais clavigera: The molluscan counterpart of the annelidan GGNG peptides. Peptides 2006; 27:483-92. [PMID: 16309789 DOI: 10.1016/j.peptides.2005.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Accepted: 06/16/2005] [Indexed: 11/17/2022]
Abstract
The GGNG peptides are excitatory neuropeptides identified from earthworms, leeches and polychaeta. Two structurally related peptides were purified and characterized from a mollusk, Thais clavigera (prosobranch gastropod). The peptides designated as Thais excitatory peptide-1 (TEP-1) (KCSGKWAIHACWGGN-NH2) and TEP-2 (KCYGKWAMHACWGGN-NH2) are pentadecapeptides having one disulfide bond and C-terminal GGN-NH2 structures, which are shared by most GGNG peptides. TEP augmented the motilities of Thais esophagus and penial complex. TEP-like immunoreactivity is distributed in both the neurons of the central nervous system and nerve endings in the penial complex. Thus, the involvement of TEP in the contraction of the digestive and reproductive systems is suggested. Substitution of amino acids in TEP revealed that two tryptophan residues in TEP are important for maintaining bioactivity.
Collapse
Affiliation(s)
- F Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Billimoria CP, Li L, Marder E. Profiling of neuropeptides released at the stomatogastric ganglion of the crab, Cancer borealis with mass spectrometry. J Neurochem 2005; 95:191-9. [PMID: 16181423 DOI: 10.1111/j.1471-4159.2005.03355.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies of release under physiological conditions provide more direct data about the identity of neuromodulatory signaling molecules than studies of tissue localization that cannot distinguish between processing precursors and biologically active neuropeptides. We have identified neuropeptides released by electrical stimulation of nerves that contain the axons of the modulatory projection neurons to the stomatogastric ganglion of the crab, Cancer borealis. Preparations were bathed in saline containing a cocktail of peptidase inhibitors to minimize peptide degradation. Both electrical stimulation of projection nerves and depolarization with high K+ saline were used to evoke release. Releasates were desalted and then identified by mass using MALDI-TOF (matrix-assisted laser desorption/ionization-time-of-flight) mass spectrometry. Both previously known and novel peptides were detected. Subsequent to electrical stimulation proctolin, Cancer borealis tachykinin-related peptide (CabTRP), FVNSRYa, carcinustatin-8, allatostatin-3 (AST-3), red pigment concentrating hormone, NRNFLRFa, AST-5, SGFYANRYa, TNRNFLRFa, AST-9, orcomyotropin-related peptide, corazonin, Ala13-orcokinin, and Ser9-Val13-orcokinin were detected. Some of these were also detected after high K+ depolarization. Release was calcium dependent. In summary, we have shown release of the neuropeptides thought to play an important neuromodulatory role in the stomatogastric ganglion, as well as numerous other candidate neuromodulators that remain to be identified.
Collapse
Affiliation(s)
- Cyrus P Billimoria
- Department of Biology, Volen Center, Brandeis University, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
27
|
Abstract
This review covers the literature published in 2003 for marine natural products, with 619 citations (413 for the period January to December 2003) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (656 for 2003), together with their relevant biological activities, source organisms and country or origin. Biosynthetic studies or syntheses that lead to the revision of structures or stereochemistries have been included (78), including any first total syntheses of a marine natural product.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
28
|
Dembrow NC, Jing J, Proekt A, Romero A, Vilim FS, Cropper EC, Weiss KR. A newly identified buccal interneuron initiates and modulates feeding motor programs in aplysia. J Neurophysiol 2003; 90:2190-204. [PMID: 12801904 DOI: 10.1152/jn.00173.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite considerable progress in characterizing the feeding central pattern generator (CPG) in Aplysia, the full complement of neurons that generate feeding motor programs has not yet been identified. The distribution of neuropeptide-containing neurons in the buccal and cerebral ganglia can be used as a tool to identify additional elements of the feeding circuitry by providing distinctions between otherwise morphologically indistinct neurons. For example, our recent study revealed a unique and potentially interesting unpaired PRQFVamide (PRQFVa)-containing neuron in the buccal ganglion. In this study, we describe the morphological and electrophysiological characterization of this novel neuron, which we designate as B50. We found that activation of B50 is capable of producing organized rhythmic output of the feeding CPG. The motor programs elicited by B50 exhibit some similarities as well as differences to motor programs elicited by the command-like cerebral-to-buccal interneuron CBI-2. In addition to activating the feeding CPG, B50 may act as a program modulator.
Collapse
Affiliation(s)
- N C Dembrow
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|