1
|
Tao X, Croom K, Newman-Tancredi A, Varney M, Razak KA. Acute administration of NLX-101, a Serotonin 1A receptor agonist, improves auditory temporal processing during development in a mouse model of Fragile X Syndrome. J Neurodev Disord 2025; 17:1. [PMID: 39754065 PMCID: PMC11697955 DOI: 10.1186/s11689-024-09587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits. In electroencephalograph (EEG) recordings from humans and mice, these deficits manifest as increased N1 amplitudes in event-related potentials (ERP), increased gamma band single trial power (STP) and reduced phase locking to rapid temporal modulations of sound. In our previous study, we found that administration of the selective serotonin-1 A (5-HT1A)receptor biased agonist, NLX-101, protected Fmr1 KO mice from auditory hypersensitivity-associated seizures. Here we tested the hypothesis that NLX-101 will normalize EEG phenotypes in developing Fmr1 KO mice. METHODS To test this hypothesis, we examined the effect of NLX-101 on EEG phenotypes in male and female wildtype (WT) and Fmr1 KO mice. Using epidural electrodes, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (ASSR) paradigm at two ages, postnatal (P) 21 and 30 days, from both auditory and frontal cortices of awake, freely moving mice, following NLX-101 (at 1.8 mg/kg i.p.) or saline administration. RESULTS Saline-injected Fmr1 KO mice showed increased N1 amplitudes, increased STP and reduced phase locking to auditory gap-in-noise stimuli versus wild-type mice, reproducing previously published EEG phenotypes. An acute injection of NLX-101 did not alter ERP amplitudes at either P21 or P30, but significantly reduces STP at P30. Inter-trial phase clustering was significantly increased in both age groups with NLX-101, indicating improved temporal processing. The differential effects of serotonin modulation on ERP, background power and temporal processing suggest different developmental mechanisms leading to these phenotypes. CONCLUSIONS These results suggest that NLX-101 could constitute a promising treatment option for targeting post-synaptic 5-HT1A receptors to improve auditory temporal processing, which in turn may improve speech and language function in FXS.
Collapse
Affiliation(s)
- Xin Tao
- Graduate Neuroscience Program, University of California, Riverside, CA, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, CA, USA
| | | | | | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, CA, USA.
- Department of Psychology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Hood KE, Hurley LM. Listening to your partner: serotonin increases male responsiveness to female vocal signals in mice. Front Hum Neurosci 2024; 17:1304653. [PMID: 38328678 PMCID: PMC10847236 DOI: 10.3389/fnhum.2023.1304653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC). Within the IC, serotonergic activity reflects not only the presence of a conspecific, but also the valence of a given social interaction. To assess whether serotonin can influence the perception of vocal signals in male mice, we manipulated serotonin systemically with an injection of its precursor 5-HTP, and locally in the IC with an infusion of fenfluramine, a serotonin reuptake blocker. Mice then participated in a behavioral assay in which males suppress their ultrasonic vocalizations (USVs) in response to the playback of female broadband vocalizations (BBVs), used in defensive aggression by females when interacting with males. Both 5-HTP and fenfluramine increased the suppression of USVs during BBV playback relative to controls. 5-HTP additionally decreased the baseline production of a specific type of USV and male investigation, but neither drug treatment strongly affected male digging or grooming. These findings show that serotonin modifies behavioral responses to vocal signals in mice, in part by acting in auditory brain regions, and suggest that mouse vocal behavior can serve as a useful model for exploring the mechanisms of context in human communication.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Acute and Repeated Administration of NLX-101, a Selective Serotonin-1A Receptor Biased Agonist, Reduces Audiogenic Seizures in Developing Fmr1 Knockout Mice. Neuroscience 2023; 509:113-124. [PMID: 36410632 DOI: 10.1016/j.neuroscience.2022.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Fragile XSyndrome (FXS) is a leading known genetic cause of Autism Spectrum Disorders (ASD) and intellectual disability. A consistent and debilitating phenotype of FXS is sensory hypersensitivity that manifests strongly in the auditory domain and may lead to delayed language and high anxiety. The mouse model of FXS, the Fmr1 KO mouse, also shows auditory hypersensitivity, an extreme form of which is seen as audiogenic seizures (AGS). The midbrain inferior colliculus (IC) is critically involved in generating audiogenic seizures and IC neurons are hyper-responsive to sounds in developing Fmr1 KO mice. Serotonin-1A receptor (5-HT1A) activation reduces IC activity. Therefore, we tested whether 5-HT1A activation is sufficient to reduce audiogenic seizures in Fmr1 KO mice. A selective and post-synaptic 5-HT1A receptor biased agonist, 3-Chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin-1-yl] methanone (NLX-101, 0.6, 1.2, 1.8 or 2.4 mg/kg, i.p.) was administered to Fmr1 KO mice 15 min before seizure induction. Whereas the 0.6 mg/kg dose was ineffective in reducing seizures, the 1.2, 1.8 and 2.4 mg/kg doses of NLX-101 dramatically reduced seizures and increased mouse survival. Treatment with a combination of NLX-101 and 5-HT1A receptor antagonists prevented the protective effects of NLX-101, indicating that NLX-101 acts selectively through 5-HT1A receptors to reduce audiogenic seizures. NLX-101 (1.8 mg/kg) was still strongly effective in reducing seizures even after repeated administration over 5 days, suggesting an absence of tachyphylaxis to the effects of the compound. Together, these studies point to a promising treatment option targeting post-synaptic 5-HT1A receptors to reduce auditory hypersensitivity in FXS, and potentially across autism spectrum disorders.
Collapse
|
4
|
Gentile Polese A, Nigam S, Hurley LM. 5-HT1A Receptors Alter Temporal Responses to Broadband Vocalizations in the Mouse Inferior Colliculus Through Response Suppression. Front Neural Circuits 2021; 15:718348. [PMID: 34512276 PMCID: PMC8430226 DOI: 10.3389/fncir.2021.718348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
Neuromodulatory systems may provide information on social context to auditory brain regions, but relatively few studies have assessed the effects of neuromodulation on auditory responses to acoustic social signals. To address this issue, we measured the influence of the serotonergic system on the responses of neurons in a mouse auditory midbrain nucleus, the inferior colliculus (IC), to vocal signals. Broadband vocalizations (BBVs) are human-audible signals produced by mice in distress as well as by female mice in opposite-sex interactions. The production of BBVs is context-dependent in that they are produced both at early stages of interactions as females physically reject males and at later stages as males mount females. Serotonin in the IC of males corresponds to these events, and is elevated more in males that experience less female rejection. We measured the responses of single IC neurons to five recorded examples of BBVs in anesthetized mice. We then locally activated the 5-HT1A receptor through iontophoretic application of 8-OH-DPAT. IC neurons showed little selectivity for different BBVs, but spike trains were characterized by local regions of high spike probability, which we called "response features." Response features varied across neurons and also across calls for individual neurons, ranging from 1 to 7 response features for responses of single neurons to single calls. 8-OH-DPAT suppressed spikes and also reduced the numbers of response features. The weakest response features were the most likely to disappear, suggestive of an "iceberg"-like effect in which activation of the 5-HT1A receptor suppressed weakly suprathreshold response features below the spiking threshold. Because serotonin in the IC is more likely to be elevated for mounting-associated BBVs than for rejection-associated BBVs, these effects of the 5-HT1A receptor could contribute to the differential auditory processing of BBVs in different behavioral subcontexts.
Collapse
Affiliation(s)
- Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Sunny Nigam
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
| | - Laura M. Hurley
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish. Brain Sci 2020; 10:brainsci10090586. [PMID: 32847111 PMCID: PMC7563198 DOI: 10.3390/brainsci10090586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/19/2023] Open
Abstract
The drastic increase in hallucinogenic compounds in illicit drug markets of new psychoactive substances (NPS) is a worldwide threat. Among these, 2, 5-dimetoxy-4-bromo-amphetamine (DOB) and paramethoxyamphetamine (PMA; marketed as “ecstasy”) are frequently purchased on the dark web and consumed for recreational purposes during rave/dance parties. In fact, these two substances seem to induce the same effects as MDMA, which could be due to their structural similarities. According to users, DOB and PMA share the same euphoric effects: increasing of the mental state, increasing sociability and empathy. Users also experienced loss of memory, temporal distortion, and paranoia following the repetition of the same thought. The aim of this study was to investigate the effect of the acute systemic administration of DOB and PMA (0.01–30 mg/kg; i.p.) on motor, sensorimotor (visual, acoustic, and tactile), and startle/PPI responses in CD-1 male mice. Moreover, the pro-psychedelic effect of DOB (0.075–2 mg/kg) and PMA (0.0005–0.5 mg/kg) was investigated by using zebrafish as a model. DOB and PMA administration affected spontaneous locomotion and impaired behaviors and startle/PPI responses in mice. In addition, the two compounds promoted hallucinatory states in zebrafish by reducing the hallucinatory score and swimming activity in hallucinogen-like states.
Collapse
|
7
|
Barrett FS, Preller KH, Herdener M, Janata P, Vollenweider FX. Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music. Cereb Cortex 2018; 28:3939-3950. [PMID: 29028939 PMCID: PMC6887693 DOI: 10.1093/cercor/bhx257] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 11/12/2022] Open
Abstract
Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences.
Collapse
Affiliation(s)
- Frederick S Barrett
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr, Baltimore, MD, USA
| | - Katrin H Preller
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, Zurich, Switzerland
| | - Marcus Herdener
- Department of Psychiatry, Psychotherapy and Psychosomatics, Center for Addictive Disorders,University Hospital for Psychiatry Zurich, Lenggstr. 31, Zurich, Switzerland
| | - Petr Janata
- Department of Psychology, University of California, Davis, 1 Shields Dr, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Pl, Davis, CA, USA
| | - Franz X Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, Zurich, Switzerland
| |
Collapse
|
8
|
Incrocci RM, Paliarin F, Nobre MJ. Prelimbic NMDA receptors stimulation mimics the attenuating effects of clozapine on the auditory electrophysiological rebound induced by ketamine withdrawal. Neurotoxicology 2018; 69:1-10. [PMID: 30170016 DOI: 10.1016/j.neuro.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
Abstract
Ketamine (KET) is a non-competitive N-Methyl-d-aspartate (NMDA) receptors antagonist that intensifies sensory experiences, prompts hallucinations and delusions, exacerbates previously installed psychosis and disrupts physiological evoked potentials (AEPs). Pharmacologically, KET stimulates glutamate efflux in the medial prefrontal cortex, mainly in the prelimbic (PrL) sub-region. Efferences from this region exert a top-down regulatory control of bottom-up sensory processes either directly or indirectly. In the midbrain, the central nucleus of the inferior colliculus (CIC) plays a fundamental role in the processing of auditory ascending information related to sound localization, sensorimotor gating, and preattentive event-related potentials. Auditory hallucinations elicited during a psychotic outbreak are accompanied by CIC neural activation. Thus, it is possible that NMDA-mediated glutamate neurotransmission in the PrL indirectly modulates CIC neuronal firing. The aim of the present study was to assess the effects of KET on the latency and amplitude of AEPs elicited in the CIC of rats tested during KET effects and following withdrawal from the chronic administration. Changes on emotionally induced by KET treatment were evaluated with the use of the elevated zero maze (EZM). Unlike typical neuroleptics, the atypical antipsychotic clozapine (CLZ) potently blocks the disruption of the sensorimotor gating induced by NMDA antagonists. Therefore, the effects of KET withdrawal on AEPs were challenged with a systemic injection of CLZ. In addition, we further investigated the role of NMDA receptors of the PrL on the AEPs expression recorded in the CIC through intra-PrL infusions of NMDA itself. Our results showed that the processing of sensory information in the CIC is under indirect control of PrL. These data suggest that the long-term KET treatment disrupts the collicular auditory field potentials, possibly through influencing PrL glutamate activity on intrinsic 5-HT mechanisms in the dorsal raphe and CIC.
Collapse
Affiliation(s)
- Roberta Monteiro Incrocci
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Franciely Paliarin
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Manoel Jorge Nobre
- Departamento de Psicologia, Uni-FACEF, 14401-135, Franca, SP, Brazil; Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Abstract
From the beginning of therapeutic research with psychedelics, music listening has been consistently used as a method to guide or support therapeutic experiences during the acute effects of psychedelic drugs. Recent findings point to the potential of music to support meaning-making, emotionality, and mental imagery after the administration of psychedelics, and suggest that music plays an important role in facilitating positive clinical outcomes of psychedelic therapy. This review explores the history of, contemporary research on, and future directions regarding the use of music in psychedelic research and therapy, and argues for more detailed and rigorous investigation of the contribution of music to the treatment of psychiatric disorders within the novel framework of psychedelic therapy.
Collapse
Affiliation(s)
- Frederick S Barrett
- a Department of Psychiatry and Behavioral Sciences, Behavioral Pharmacology Research Unit , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Katrin H Preller
- b Neuropsychopharmacology and Brain Imaging, Department of Psychiatry Psychotherapy and Psychosomatics , University Hospital for Psychiatry Zurich , Zurich , Switzerland.,c Department of Psychiatry , Yale University School of Medicine , New Haven , CT , USA
| | - Mendel Kaelen
- d Psychedelic Research Group, Department of Medicine , Imperial College London , London , UK.,e Wavepaths Ltd , London , UK
| |
Collapse
|
10
|
Petersen CL, Hurley LM. Putting it in Context: Linking Auditory Processing with Social Behavior Circuits in the Vertebrate Brain. Integr Comp Biol 2018; 57:865-877. [PMID: 28985384 DOI: 10.1093/icb/icx055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood. The serotonergic system offers an excellent model to address these types of questions. Serotonin fluctuates in the mouse inferior colliculus (IC), an auditory midbrain region important for species-specific vocalizations, during specific social and non-social contexts. Furthermore, serotonin is an indicator of the valence of event-based changes within individual social interactions. We propose a model in which the brain's social behavior network serves as an afferent effector of the serotonergic dorsal raphe nucleus in order to gate contextual release of serotonin in the IC. Specifically, discrete vasopressinergic nuclei within the hypothalamus and extended amygdala that project to the dorsal raphe are functionally engaged during contexts in which serotonin fluctuates in the IC. Since serotonin strongly influences the responses of IC neurons to social vocalizations, this pathway could serve as a feedback loop whereby integrative social centers modulate their own sources of input. The end result of this feedback would be to produce a process that is geared, from sensory input to motor output, toward responding appropriately to a dynamic external world.
Collapse
Affiliation(s)
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, 47405 IN, USA
| |
Collapse
|
11
|
Laursen B, Bundgaard CH, Graversen C, Grupe M, Sanchez C, Leiser SC, Sorensen HBD, Drewes AM, Bastlund JF. Acute dosing of vortioxetine strengthens event-related brain activity associated with engagement of attention and cognitive functioning in rats. Brain Res 2017; 1664:37-47. [DOI: 10.1016/j.brainres.2017.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Bettina Laursen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark; Department of Synaptic Transmission In vivo, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| | - Cecilie H Bundgaard
- Department of Electrical Engineering, Technical University of Denmark, Building 349, Oersteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Carina Graversen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Morten Grupe
- Department of Synaptic Transmission In vivo, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Connie Sanchez
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Steven C Leiser
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Helge B D Sorensen
- Department of Electrical Engineering, Technical University of Denmark, Building 349, Oersteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Jesper F Bastlund
- Department of Synaptic Transmission In vivo, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| |
Collapse
|
12
|
de Oliveira RP, Nagaishi KY, Barbosa Silva RC. Atypical antipsychotic clozapine reversed deficit on prepulse inhibition of the acoustic startle reflex produced by microinjection of DOI into the inferior colliculus in rats. Behav Brain Res 2017; 325:72-78. [DOI: 10.1016/j.bbr.2017.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 01/23/2023]
|
13
|
Santos M, Marques C, Nóbrega Pinto A, Fernandes R, Coutinho MB, Almeida E Sousa C. Autism spectrum disorders and the amplitude of auditory brainstem response wave I. Autism Res 2017; 10:1300-1305. [PMID: 28371266 DOI: 10.1002/aur.1771] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 11/11/2022]
Abstract
To determine whether children with autism spectrum disorders (ASDs) have an increased number of wave I abnormal amplitudes in auditory brainstem responses (ABRs) than age- and sex-matched typically developing children. This analytical case-control study compared patients with ASDs between the ages of 2 and 6 years and children who had a language delay not associated with any other pathology. Amplitudes of ABR waves I and V; absolute latencies (ALs) of waves I, III, and V; and interpeak latencies (IPLs) I-III, III-IV, and I-V at 90 dB were compared between ASD patients and normally developing children. The study enrolled 40 children with documented ASDs and 40 age- and sex-matched control subjects. Analyses of the ABR showed that children with ASDs exhibited higher amplitudes of wave 1 than wave V (35%) more frequently than the control group (10%), and this difference between groups reached statistical significance by Chi-squared analysis. There were no significant differences in ALs and IPLs between ASD children and matched controls. To the best of our knowledge, this is the first case-control study testing the amplitudes of ABR wave I in ASD children. The reported results suggest a potential for the use of ABR recordings in children, not only for the clinical assessment of hearing status, but also for the possibility of using amplitude of ABR wave I as an early marker of ASDs allowing earlier diagnosis and intervention. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1300-1305. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariline Santos
- Centro Hospitalar do Porto, Portugal, Largo do Prof. Albel Salazar, 4099-001, Porto, Portugal
| | - Cristina Marques
- Centro Hospitalar do Porto, Portugal, Largo do Prof. Albel Salazar, 4099-001, Porto, Portugal
| | - Ana Nóbrega Pinto
- Centro Hospitalar do Porto, Portugal, Largo do Prof. Albel Salazar, 4099-001, Porto, Portugal
| | - Raquel Fernandes
- Centro Hospitalar do Porto, Portugal, Largo do Prof. Albel Salazar, 4099-001, Porto, Portugal
| | - Miguel Bebiano Coutinho
- Centro Hospitalar do Porto, Portugal, Largo do Prof. Albel Salazar, 4099-001, Porto, Portugal
| | - Cecília Almeida E Sousa
- Centro Hospitalar do Porto, Portugal, Largo do Prof. Albel Salazar, 4099-001, Porto, Portugal
| |
Collapse
|
14
|
Kurela L, Wallace M. Serotonergic Modulation of Sensory and Multisensory Processing in Superior Colliculus. Multisens Res 2017. [DOI: 10.1163/22134808-00002552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability to integrate information across the senses is vital for coherent perception of and interaction with the world. While much is known regarding the organization and function of multisensory neurons within the mammalian superior colliculus (SC), very little is understood at a mechanistic level. One open question in this regard is the role of neuromodulatory networks in shaping multisensory responses. While the SC receives substantial serotonergic projections from the raphe nuclei, and serotonergic receptors are distributed throughout the SC, the potential role of serotonin (5-HT) signaling in multisensory function is poorly understood. To begin to fill this knowledge void, the current study provides physiological evidence for the influences of 5-HT signaling on auditory, visual and audiovisual responses of individual neurons in the intermediate and deep layers of the SC, with a focus on the 5HT2a receptor. Using single-unit extracellular recordings in combination with pharmacological methods, we demonstrate that alterations in 5HT2a receptor signaling change receptive field (RF) architecture as well as responsivity and integrative abilities of SC neurons when assessed at the level of the single neuron. In contrast, little changes were seen in the local field potential (LFP). These results are the first to implicate the serotonergic system in multisensory processing, and are an important step to understanding how modulatory networks mediate multisensory integration in the SC.
Collapse
Affiliation(s)
- LeAnne R. Kurela
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark T. Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Hearing & Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Hanson JL, Hurley LM. Serotonin, estrus, and social context influence c-Fos immunoreactivity in the inferior colliculus. Behav Neurosci 2016; 130:600-613. [PMID: 27657308 PMCID: PMC5114148 DOI: 10.1037/bne0000165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental task of sensory systems is to extract relevant social information from a range of environmental stimuli in the face of changing behavioral contexts and reproductive states. Neuromodulatory pathways that interact with such contextual variables are 1 mechanism for achieving this. In the mouse inferior colliculus (IC), a midbrain auditory region, the neuromodulator serotonin increases in females interacting with courting males, but events downstream of serotonin release have not been investigated. Here, we manipulated serotonin levels in female mice with the serotonin releaser fenfluramine or the serotonin depleter para-chlorophenylalaninemethyl ester (pCPA). Females were then exposed to an empty cage, a male partner, or a playback of courtship vocalizations, and the numbers of neurons in the IC with positive immunoreactivity for the immediate early gene product c-Fos were measured. The effects of drug treatments depended on social context and estrous state. Fenfluramine had greater effects in the nonsocial than in the partner social treatments. Females in proestrus or estrus and given fenfluramine had higher densities of c-Fos immunoreactive neurons, while females in diestrus had fewer immunoreactive neurons. The drug pCPA had the expected opposite effect of fenfluramine, causing a decreased response in pro/estrus females and an increased response in diestrus females. These findings show that the effects of serotonin on c-Fos activity in the IC of females is dependent on both external context and reproductive state, and suggest that these effects occur downstream of serotonin release. (PsycINFO Database Record
Collapse
|
16
|
Felix RA, Elde CJ, Nevue AA, Portfors CV. Serotonin modulates response properties of neurons in the dorsal cochlear nucleus of the mouse. Hear Res 2016; 344:13-23. [PMID: 27838373 DOI: 10.1016/j.heares.2016.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023]
Abstract
The neurochemical serotonin (5-hydroxytryptamine, 5-HT) is involved in a variety of behavioral functions including arousal, reward, and attention, and has a role in several complex disorders of the brain. In the auditory system, 5-HT fibers innervate a number of subcortical nuclei, yet the modulatory role of 5-HT in nearly all of these areas remains poorly understood. In this study, we examined spiking activity of neurons in the dorsal cochlear nucleus (DCN) following iontophoretic application of 5-HT. The DCN is an early site in the auditory pathway that receives dense 5-HT fiber input from the raphe nuclei and has been implicated in the generation of auditory disorders marked by neuronal hyperexcitability. Recordings from the DCN in awake mice demonstrated that iontophoretic application of 5-HT had heterogeneous effects on spiking rate, spike timing, and evoked spiking threshold. We found that 56% of neurons exhibited increases in spiking rate during 5-HT delivery, while 22% had decreases in rate and the remaining neurons had no change. These changes were similar for spontaneous and evoked spiking and were typically accompanied by changes in spike timing. Spiking increases were associated with lower first spike latencies and jitter, while decreases in spiking generally had opposing effects on spike timing. Cases in which 5-HT application resulted in increased spiking also exhibited lower thresholds compared to the control condition, while cases of decreased spiking had no threshold change. We also found that the 5-HT2 receptor subtype likely has a role in mediating increased excitability. Our results demonstrate that 5-HT can modulate activity in the DCN of awake animals and that it primarily acts to increase neuronal excitability, in contrast to other auditory regions where it largely has a suppressive role. Modulation of DCN function by 5-HT has implications for auditory processing in both normal hearing and disordered states.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA.
| | - Cameron J Elde
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Alexander A Nevue
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Christine V Portfors
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| |
Collapse
|
17
|
Keesom SM, Hurley LM. Socially induced serotonergic fluctuations in the male auditory midbrain correlate with female behavior during courtship. J Neurophysiol 2016; 115:1786-96. [PMID: 26792882 PMCID: PMC4869479 DOI: 10.1152/jn.00742.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/16/2016] [Indexed: 11/22/2022] Open
Abstract
Cues from social partners trigger the activation of socially responsive neuromodulatory systems, priming brain regions including sensory systems to process these cues appropriately. The fidelity with which neuromodulators reflect the qualities of ongoing social interactions in sensory regions is unclear. We addressed this issue by using voltammetry to monitor serotonergic fluctuations in an auditory midbrain nucleus, the inferior colliculus (IC), of male mice (Mus musculus) paired with females, and by concurrently measuring behaviors of both social partners. Serotonergic activity strongly increased in male mice as they courted females, relative to serotonergic activity in the same males during trials with no social partners. Across individual males, average changes in serotonergic activity were negatively correlated with behaviors exhibited by female partners, including broadband squeaks, which relate to rejection of males. In contrast, serotonergic activity did not correlate with male behaviors, including ultrasonic vocalizations. These findings suggest that during courtship, the level of serotonergic activity in the IC of males reflects the valence of the social interaction from the perspective of the male (i.e., whether the female rejects the male or not). As a result, our findings are consistent with the hypothesis that neuromodulatory effects on neural responses in the IC may reflect the reception, rather than the production, of vocal signals.
Collapse
Affiliation(s)
- Sarah M Keesom
- Department of Biology, Indiana University, Bloomington, Indiana; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana; and
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana; and Program in Neuroscience, Indiana University, Bloomington, Indiana
| |
Collapse
|
18
|
Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain. Sci Rep 2016; 6:20757. [PMID: 26867811 PMCID: PMC4751617 DOI: 10.1038/srep20757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/07/2016] [Indexed: 12/24/2022] Open
Abstract
Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound.
Collapse
|
19
|
Papesh MA, Hurley LM. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors. Hear Res 2015; 332:121-136. [PMID: 26688176 DOI: 10.1016/j.heares.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.
Collapse
Affiliation(s)
- Melissa A Papesh
- Indiana University, Department of Speech and Hearing Sciences, 200 South Jordan Avenue, Bloomington, IN 47405, USA.
| | - Laura M Hurley
- Indiana University, Department of Biology, Center for the Integrative Study of Animal Behavior, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Smith AR, Kwon JH, Navarro M, Hurley LM. Acoustic trauma triggers upregulation of serotonin receptor genes. Hear Res 2014; 315:40-8. [PMID: 24997228 PMCID: PMC4140997 DOI: 10.1016/j.heares.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/20/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022]
Abstract
Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 h. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes.
Collapse
Affiliation(s)
- Adam R Smith
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Jae Hyun Kwon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Marco Navarro
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Biology, Saint Louis University, Saint Louis, MO 63103, USA
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Wang DH, Wong-Lin K. Comodulation of dopamine and serotonin on prefrontal cortical rhythms: a theoretical study. Front Integr Neurosci 2013; 7:54. [PMID: 23935568 PMCID: PMC3733011 DOI: 10.3389/fnint.2013.00054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 12/29/2022] Open
Abstract
The prefrontal cortex (PFC) is implicated to play an important role in cognitive control. Abnormal PFC activities and rhythms have been observed in some neurological and neuropsychiatric disorders, and evidences suggest influences from the neuromodulators dopamine (DA) and serotonin (5-HT). Despite the high level of interest in these brain systems, the combined effects of DA and 5-HT modulation on PFC dynamics remain unknown. In this work, we build a mathematical model that incorporates available experimental findings to systematically study the comodulation of DA and 5-HT on the network behavior, focusing on beta and gamma band oscillations. Single neuronal model shows pyramidal cells with 5-HT1A and 2A receptors can be non-monotonically modulated by 5-HT. Two-population excitatory-inhibitory type network consisting of pyramidal cells with D1 receptors can provide rich repertoires of oscillatory behavior. In particular, 5-HT and DA can modulate the amplitude and frequency of the oscillations, which can emerge or cease, depending on receptor types. Certain receptor combinations are conducive for the robustness of the oscillatory regime, or the existence of multiple discrete oscillatory regimes. In a multi-population heterogeneous model that takes into account possible combination of receptors, we demonstrate that robust network oscillations require high DA concentration. We also show that selective D1 receptor antagonists (agonists) tend to suppress (enhance) network oscillations, increase the frequency from beta toward gamma band, while selective 5-HT1A antagonists (agonists) act in opposite ways. Selective D2 or 5-HT2A receptor antagonists (agonists) can lead to decrease (increase) in oscillation amplitude, but only 5-HT2A antagonists (agonists) can increase (decrease) the frequency. These results are comparable to some pharmacological effects. Our work illustrates the complex mechanisms of DA and 5-HT when operating simultaneously through multiple receptors.
Collapse
Affiliation(s)
- Da-Hui Wang
- Department of Systems Science and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Beijing, China
| | | |
Collapse
|
22
|
Pollak GD. The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system. Hear Res 2013; 305:86-101. [PMID: 23545427 DOI: 10.1016/j.heares.2013.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/20/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
This review is concerned with how communication calls are processed and represented by populations of neurons in both the inferior colliculus (IC), the auditory midbrain nucleus, and the dorsal nucleus of the lateral lemniscus (DNLL), the nucleus just caudal to the IC. The review has five sections where focus in each section is on inhibition and its role in shaping response selectivity for communication calls. In the first section, the lack of response selectivity for calls in DNLL neurons is presented and discusses why inhibition plays virtually no role in shaping selectivity. In the second section, the lack of selectivity in the DNLL is contrasted with the high degree of response selectivity in the IC. The third section then reviews how inhibition in the IC shapes response selectivities for calls, and how those selectivities can create a population response with a distinctive response profile to a particular call, which differs from the population profile evoked by any other call. The fourth section is concerned with the specifics of inhibition in the IC, and how the interaction of excitation and inhibition creates directional selectivities for frequency modulations, one of the principal acoustic features of communication signals. The two major hypotheses for directional selectivity are presented. One is the timing hypothesis, which holds that the precise timing of excitation relative to inhibition is the feature that shapes directionality. The other hypothesis is that the relative magnitudes of excitation and inhibition are the dominant features that shape directionality, where timing is relatively unimportant. The final section then turns to the role of serotonin, a neuromodulator that can markedly change responses to calls in the IC. Serotonin provides a linkage between behavioral states and processing. This linkage is discussed in the final section together with the hypothesis that serotonin acts to enhances the contrast in the population responses to various calls over and above the distinctive population responses that were created by inhibition. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- George D Pollak
- Section of Neurobiology and Center for Perceptual Systems, 337 Patterson Laboratory Building, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
23
|
Hurley LM, Sullivan MR. From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits 2012; 6:58. [PMID: 22973195 PMCID: PMC3434355 DOI: 10.3389/fncir.2012.00058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system. Serotonergic inputs to the IC originate from centralized raphe nuclei, release serotonin in the IC, and activate serotonin receptors expressed by auditory neurons. Different types of serotonin receptors act as parallel pathways regulating specific features of circuitry within the IC. This results from variation in subcellular localizations and effector pathways of different receptors, which consequently influence auditory responses in distinct ways. Serotonin receptors may regulate GABAergic inhibition, influence response gain, alter spike timing, or have effects that are dependent on the level of activity. Serotonin receptor types additionally interact in nonadditive ways to produce distinct combinatorial effects. This array of effects of serotonin is likely to depend on behavioral context, since the levels of serotonin in the IC transiently increase during behavioral events including stressful situations and social interaction. These studies support a broad model of serotonin receptors as a link between behavioral context and reconfiguration of circuitry in the IC, and the resulting possibility that plasticity at the level of specific receptor types could alter the relationship between context and circuit function.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
24
|
Plasticity of serotonergic innervation of the inferior colliculus in mice following acoustic trauma. Hear Res 2011; 283:89-97. [PMID: 22101024 DOI: 10.1016/j.heares.2011.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/11/2011] [Accepted: 11/03/2011] [Indexed: 01/30/2023]
Abstract
Acoustic trauma often results in permanent damage to the cochlea, triggering changes in processing within central auditory structures such as the inferior colliculus (IC). The serotonergic neuromodulatory system, present in the IC, is responsive to chronic changes in the activity of sensory systems. The current study investigated whether the density of serotonergic innervation in the IC is changed following acoustic trauma. The trauma stimulus consisted of an 8 kHz pure tone presented at a level of 113 dB SPL for six consecutive hours to anesthetized CBA/J mice. Following a minimum recovery period of three weeks, serotonergic fibers were visualized via histochemical techniques targeting the serotonin reuptake transporter (SERT) and quantified using stereologic probes. SERT-positive fiber densities were then compared between the traumatized and protected hemispheres of unilaterally traumatized subjects and those of controls. A significant effect of acoustic trauma was found between the hemispheres of unilaterally traumatized subjects such that the IC contralateral to the ear of exposure contained a lower density of SERT-positive fibers than the IC ipsilateral to acoustic trauma. No significant difference in density was found between the hemispheres of control subjects. Additional dimensions of variability in serotonergic fibers were seen among subdivisions of the IC and with age. The central IC had a slightly but significantly lowered density of serotonergic fibers than other subdivisions of the IC, and serotonergic fibers also declined with age. Overall, the results indicate that acoustic trauma is capable of producing modest but significant decreases in the density of serotonergic fibers innervating the IC.
Collapse
|
25
|
Hurley LM, Hall IC. Context-dependent modulation of auditory processing by serotonin. Hear Res 2011; 279:74-84. [PMID: 21187135 PMCID: PMC3134116 DOI: 10.1016/j.heares.2010.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Context-dependent plasticity in auditory processing is achieved in part by physiological mechanisms that link behavioral state to neural responses to sound. The neuromodulator serotonin has many characteristics suitable for such a role. Serotonergic neurons are extrinsic to the auditory system but send projections to most auditory regions. These projections release serotonin during particular behavioral contexts. Heightened levels of behavioral arousal and specific extrinsic events, including stressful or social events, increase serotonin availability in the auditory system. Although the release of serotonin is likely to be relatively diffuse, highly specific effects of serotonin on auditory neural circuitry are achieved through the localization of serotonergic projections, and through a large array of receptor types that are expressed by specific subsets of auditory neurons. Through this array, serotonin enacts plasticity in auditory processing in multiple ways. Serotonin changes the responses of auditory neurons to input through the alteration of intrinsic and synaptic properties, and alters both short- and long-term forms of plasticity. The infrastructure of the serotonergic system itself is also plastic, responding to age and cochlear trauma. These diverse findings support a view of serotonin as a widespread mechanism for behaviorally relevant plasticity in the regulation of auditory processing. This view also accommodates models of how the same regulatory mechanism can have pathological consequences for auditory processing.
Collapse
Affiliation(s)
- L M Hurley
- Indiana University, Jordan Hall/Biology, 1001 E. Third St, Bloomington, IN 47405, USA.
| | | |
Collapse
|
26
|
Deemyad T, Maler L, Chacron MJ. Inhibition of SK and M channel-mediated currents by 5-HT enables parallel processing by bursts and isolated spikes. J Neurophysiol 2011; 105:1276-94. [PMID: 21209357 PMCID: PMC4850069 DOI: 10.1152/jn.00792.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although serotonergic innervation of sensory brain areas is ubiquitous, its effects on sensory information processing remain poorly understood. We investigated these effects in pyramidal neurons within the electrosensory lateral line lobe (ELL) of weakly electric fish. Surprisingly, we found that 5-HT is present at different levels across the different ELL maps; the presence of 5-HT fibers was highest in the map that processes intraspecies communication signals. Electrophysiological recordings revealed that 5-HT increased excitability and burst firing through a decreased medium afterhyperpolarization resulting from reduced small-conductance calcium-activated (SK) currents as well as currents mediated by an M-type potassium channel. We next investigated how 5-HT alters responses to sensory input. 5-HT application decreased the rheobase current, increased the gain, and decreased first spike latency. Moreover, it reduced discriminability between different stimuli, as quantified by the mutual information rate. We hypothesized that 5-HT shifts pyramidal neurons into a burst-firing mode where bursts, when considered as events, can detect the presence of particular stimulus features. We verified this hypothesis using signal detection theory. Our results indeed show that serotonin-induced bursts of action potentials, when considered as events, could detect specific stimulus features that were distinct from those detected by isolated spikes. Moreover, we show the novel result that isolated spikes transmit more information after 5-HT application. Our results suggest a novel function for 5-HT in that it enables differential processing by action potential patterns in response to current injection.
Collapse
Affiliation(s)
- Tara Deemyad
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
27
|
Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation. Neuroscience 2011; 174:200-15. [DOI: 10.1016/j.neuroscience.2010.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 11/19/2022]
|
28
|
Ramsey LCB, Sinha SR, Hurley LM. 5-HT1A and 5-HT1B receptors differentially modulate rate and timing of auditory responses in the mouse inferior colliculus. Eur J Neurosci 2010; 32:368-79. [PMID: 20646059 PMCID: PMC2921951 DOI: 10.1111/j.1460-9568.2010.07299.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is a physiological signal that translates both internal and external information about behavioral context into changes in sensory processing through a diverse array of receptors. The details of this process, particularly how receptors interact to shape sensory encoding, are poorly understood. In the inferior colliculus, a midbrain auditory nucleus, 5-HT1A receptors have suppressive and 5-HT1B receptors have facilitatory effects on evoked responses of neurons. We explored how these two receptor classes interact by testing three hypotheses: that they (i) affect separate neuron populations; (ii) affect different response properties; or (iii) have different endogenous patterns of activation. The first two hypotheses were tested by iontophoretic application of 5-HT1A and 5-HT1B receptor agonists individually and together to neurons in vivo. 5-HT1A and 5-HT1B agonists affected overlapping populations of neurons. During co-application, 5-HT1A and 5-HT1B agonists influenced spike rate and frequency bandwidth additively, with each moderating the effect of the other. In contrast, although both agonists individually influenced latencies and interspike intervals, the 5-HT1A agonist dominated these measurements during co-application. The third hypothesis was tested by applying antagonists of the 5-HT1A and 5-HT1B receptors. Blocking 5-HT1B receptors was complementary to activation of the receptor, but blocking 5-HT1A receptors was not, suggesting the endogenous activation of additional receptor types. These results suggest that cooperative interactions between 5-HT1A and 5-HT1B receptors shape auditory encoding in the inferior colliculus, and that the effects of neuromodulators within sensory systems may depend nonlinearly on the specific profile of receptors that are activated.
Collapse
Affiliation(s)
| | - Shiva R. Sinha
- 159 Swain West, Department of Physics, Indiana University, Bloomington, IN 47405
| | - Laura M. Hurley
- Jordan Hall, Department of Biology, 1001 E. Third St, Indiana University, Bloomington, IN 47405
| |
Collapse
|
29
|
Hall IC, Rebec GV, Hurley LM. Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. ACTA ACUST UNITED AC 2010; 213:1009-17. [PMID: 20228336 DOI: 10.1242/jeb.035956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuromodulation by serotonin (5-HT) could link behavioral state and environmental events with sensory processing. Within the auditory system, the presence of 5-HT alters the activity of neurons in the inferior colliculus (IC), but the conditions that influence 5-HT neurotransmission in this region of the brain are unknown. We used in vivo voltammetry to measure extracellular 5-HT in the IC of behaving mice to address this issue. Extracellular 5-HT increased with the recovery from anesthesia, suggesting that the neuromodulation of auditory processing is correlated with the level of behavioral arousal. Awake mice were further exposed to auditory (broadband noise), visual (light) or olfactory (2,5-dihydro-2,4,5-trimethylthiazoline, TMT) stimuli, presented with food or confined in a small arena. Only the auditory stimulus or restricted movement increased the concentration of extracellular 5-HT in the IC. Changes occurred within minutes of stimulus onset, with the auditory stimulus increasing extracellular 5-HT by an average of 5% and restricted movement increasing it by an average of 14%. These findings suggest that the neuromodulation of auditory processing by 5-HT is a dynamic process that is dependent on internal state and behavioral conditions.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biology, 1001 E. Third Street, 342 Jordan Hall, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
30
|
Hitoglou M, Ververi A, Antoniadis A, Zafeiriou DI. Childhood autism and auditory system abnormalities. Pediatr Neurol 2010; 42:309-14. [PMID: 20399382 DOI: 10.1016/j.pediatrneurol.2009.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/05/2009] [Accepted: 10/26/2009] [Indexed: 11/17/2022]
Abstract
Hearing disorders are common among children with autism, ranging from peripheral and sensorineural hearing deficit or loss to auditory hypersensitivity with bizarre reactions to sounds. The auditory abnormalities and consequent sensory deprivation exacerbate the communication deficit of autism, and early auditory assessment holds an important place in the planning of intervention and the overall prognosis of patients. Physiologic, pathologic, imaging, and neurochemical studies have revealed an array of aberrations in the perception and processing of the audiologic stimuli, including (among others) maturational defects, atypical lateralization, and serotonin dysfunction.
Collapse
Affiliation(s)
- Magdalini Hitoglou
- Unit of Communication Disabilities, 1st ENT Department, Aristotle University of Thessaloniki, 54622 Thessaloniki, Greece
| | | | | | | |
Collapse
|
31
|
Abstract
OBJECTIVES To assess the role of serotonin transporter gene (SLC6A4) polymorphism in tinnitus. MATERIALS AND METHODS Fifty-four consecutive patients experiencing subjective tinnitus and 174 healthy controls were allocated for the study. Psychoacoustic parameters of tinnitus were measured. Beck Depression Inventory was used to assess the depression level of the patients. Tinnitus Handicap Inventory was used to assess the severity of tinnitus. A visual analog scale was designed to measure the impact of tinnitus on quality of life of the patients. The 44-bp insertion-deletion in the promoter region (5-HTTLPR) and 17-bp variable number tandem repeats in the second intron of the serotonin transporter gene were assessed. RESULTS No difference was found between the genotypes and allele frequencies of the patients and controls regarding variable number tandem repeats and 5-HTTLPR polymorphisms (p > 0.05). There was no association between the psychoacoustic parameters of tinnitus and SLC6A4 polymorphism (p > 0.05). There was a significant association between the 5-HTTLPR polymorphism and scores from the visual analog scale of the patients (p < 0.05). CONCLUSION Generation of tinnitus signal is not associated with SLC6A4 polymorphism and possibly with serotonergic mechanisms. However, the "ll" genotype variant of the SLC6A4 polymorphic promoter region seems associated with the limbic and autonomic nervous system symptoms of the patients with tinnitus. Therefore, serotonergic mechanisms may help explain the neurophysiological model of tinnitus, and serotonin replacement or serotonin reuptake inhibitors may increase the success rate of tinnitus treatment modalities based on the neurophysiologic model of tinnitus.
Collapse
|
32
|
Drago A, Serretti A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:601-37. [PMID: 18802918 DOI: 10.1002/ajmg.b.30864] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HTR2C is one of the most relevant and investigated serotonin receptors. Its role in important brain structures such as the midbrain, the lateral septal complex, the hypothalamus, the olfactory bulb, the pons, the choroid plexus, the nucleus pallidus, the striatum and the amygdala, the nucleus accumbens and the anterior cingulated gyrus candidate it as a promising target for genetic association studies. The biological relevance of these brain structures is reviewed by way of the focus on HTR2C activity, with a special attention paid to psychiatric disorders. Evidence from the genetic association studies that dealt with HTR2C is reviewed and discussed alongside the findings derived from the neuronatmic investigations. The reasons for the discrepancies between these two sets of reports are discussed. As a result, HTR2C is shown to play a pivotal role in many different psychiatric behaviors or psychiatric related disrupted molecular balances, nevertheless, genetic association studies brought inconsistent results so far. The most replicated association involve the feeding behavior and antipsychotic induced side effects, both weight gain and motor related: Cys23Ser (rs6318) and -759C/T (rs3813929) report the most consistent results. The lack of association found in other independent studies dampens the clinical impact of these reports. Here, we report a possible explanation for discrepant findings that is poorly or not at all usually considered, that is that HTR2C may exert different or even opposite activities in the brain depending on the structure analyzed and that mRNA editing activity may compensate possible genetically controlled functional effects. The incomplete coverage of the HTR2C variants is proposed as the best cost-benefit ratio bias to fix. The evidence of brain area specific HTR2C mRNA editing opens a debate about how the brain can differently modulate stress events, and process antidepressant treatments, in different brain areas. The mRNA editing activity on HTR2C may play a major role for the negative association results.
Collapse
Affiliation(s)
- Antonio Drago
- Institute of Psychiatry, University of Bologna, Italy
| | | |
Collapse
|
33
|
Miko IJ, Sanes DH. Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent. Hear Res 2009; 251:39-50. [PMID: 19232535 PMCID: PMC2670942 DOI: 10.1016/j.heares.2009.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/07/2009] [Accepted: 02/09/2009] [Indexed: 11/17/2022]
Abstract
In the inferior colliculus (IC), a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action potential was first established for each neuron. A 5s synaptic stimulus train was delivered to the lateral lemniscus (LL), and followed immediately by the initial current pulse to assess a change in postsynaptic gain. The majority of IC neurons (66%) displayed an increase in current-evoked action potentials (Positive Gain). Despite the blockade of ionotropic glutamate receptors, this effect was correlated with membrane depolarization that occurred during the synaptic train. The postsynaptic mechanism for positive gain was examined by selective blockade of specific neurotransmitter receptors. Gain in action potentials was enhanced by antagonists of metabotropic glutamate, acetylcholine, GABA(A) and glycine receptors. In contrast, the gain was blocked or reduced by an antagonist to ionotropic serotonin receptors (5-HT(3)R). Blocking voltage-activated calcium channels with verapamil also reduced the effect. These results suggest that 5-HT(3)R activation, coupled with increased intracellular calcium, can transiently alter postsynaptic excitability in IC neurons.
Collapse
Affiliation(s)
- Ilona J. Miko
- Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003 USA
| | - Dan H. Sanes
- Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003 USA
- Department of Biology, 4 Washington Place, New York University, New York, NY 10003 USA
| |
Collapse
|
34
|
Bohorquez A, Hurley LM. Activation of serotonin 3 receptors changes in vivo auditory responses in the mouse inferior colliculus. Hear Res 2009; 251:29-38. [PMID: 19236912 PMCID: PMC2670957 DOI: 10.1016/j.heares.2009.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/20/2009] [Accepted: 02/12/2009] [Indexed: 12/01/2022]
Abstract
Metabotropic serotonin receptors such as 5-HT1A and 5-HT1B receptors shape the level, selectivity, and timing of auditory responses in the inferior colliculus (IC). Less is known about the effects of ionotropic 5-HT3 receptors, which are cation channels that depolarize neurons. In the present study, the influence of the 5-HT3 receptor on auditory responses in vivo was explored by locally iontophoresing a 5-HT3 receptor agonist and antagonists onto single neurons recorded extracellularly in mice. Three main findings emerge from these experiments. First, activation of the 5-HT3 receptor can either facilitate or suppress auditory responses, but response suppressions are not consistent with 5-HT3 effects on presynaptic GABAergic neurons. Both response facilitations and suppressions are less pronounced in neurons with high precision in response latency, suggesting functional differences in the role of receptor activation for different classes of neuron. Finally, the effects of 5-HT3 activation vary across repetition rate within a subset of single neurons, suggesting that the influence of receptor activation sometimes varies with the level of activity. These findings contribute to the view of the 5-HT3 receptor as an important component of the serotonergic infrastructure in the IC, with effects that are complex and neuron-selective.
Collapse
Affiliation(s)
- Alexander Bohorquez
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, USA
| | - Laura M. Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, USA
| |
Collapse
|
35
|
Motts SD, Schofield BR. Sources of cholinergic input to the inferior colliculus. Neuroscience 2009; 160:103-14. [PMID: 19281878 PMCID: PMC2700879 DOI: 10.1016/j.neuroscience.2009.02.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 01/09/2023]
Abstract
We combined retrograde tracing with immunohistochemistry for choline acetyltransferase to identify the source of cholinergic input to the inferior colliculus (IC) in guinea pigs. Injection of a retrograde tracer into one IC labeled cells in many brainstem nuclei. Retrogradely-labeled cells that were also immunoreactive for choline acetyltransferase were identified in two nuclei in the midbrain tegmentum: the pedunculopontine tegmental nucleus (PPT) and the laterodorsal tegmental nucleus (LDT). More PPT and LDT cells project ipsilaterally than contralaterally to the IC and, on both sides, there are more projecting cells in the PPT than in the LDT. Double-labeled cells were not found in any other brainstem nucleus. A common feature of cholinergic cells in PPT and LDT is collateral projections to multiple targets. We placed different retrograde tracers into each IC to identify cells in PPT and LDT that project to both ICs. In both PPT and LDT, a substantial proportion (up to 57%) of the immunoreactive cells that contained tracer from the contralateral IC also contained tracer from the ipsilateral IC. We conclude that acetylcholine in the IC originates from the midbrain tegmental cholinergic nuclei: PPT and LDT. These nuclei are known to participate in arousal, the sleep/wake cycle and prepulse inhibition of acoustic startle. It is likely that the cholinergic input to the IC is directly associated with these functions.
Collapse
Affiliation(s)
- Susan D. Motts
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy
- Department of Biomedical Sciences, Kent State University
| | - Brett R. Schofield
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy
- Department of Biomedical Sciences, Kent State University
| |
Collapse
|
36
|
Hurley LM, Tracy JA, Bohorquez A. Serotonin 1B receptor modulates frequency response curves and spectral integration in the inferior colliculus by reducing GABAergic inhibition. J Neurophysiol 2008; 100:1656-67. [PMID: 18632894 DOI: 10.1152/jn.90536.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selectivity of sensory neurons for stimuli is often shaped by a balance between excitatory and inhibitory inputs, making this balance an effective target for regulation. In the inferior colliculus (IC), an auditory midbrain nucleus, the amplitude and selectivity of frequency response curves are altered by the neuromodulator serotonin, but the changes in excitatory-inhibitory balance that mediate this plasticity are not well understood. Previous findings suggest that the presynaptic 5-HT1B receptor may act to decrease the release of GABA onto IC neurons. Here, in vivo extracellular recording and iontophoresis of the selective 5-HT1B agonist CP93129 were used to characterize inhibition within and surrounding frequency response curves using two-tone protocols to indirectly measure inhibition as a decrease in spikes relative to an excitatory tone alone. The 5-HT1B agonist attenuated such two-tone spike reduction in a varied pattern among neurons, suggesting that the function of 5-HT1B modulation also varies. The hypothesis that the 5-HT1B receptor reduces inhibition was tested by comparing the effects of CP93129 and the GABAA antagonists bicuculline and gabazine in the same neurons. The effects of GABAA antagonists on spike count, tuning bandwidth, two-tone ratio, and temporal response characteristics mimicked those of CP93129 across the neuron population. GABAA antagonists also blocked or reduced the facilitation of evoked responses by CP93129. These results are all consistent with the reduction of GABAA-mediated inhibition by 5-HT1B receptors in the IC, resulting in an increase in the level of evoked responses in some neurons, and a decrease in spectral selectivity in others.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
37
|
Wang HT, Luo B, Huang YN, Zhou KQ, Chen L. Sodium salicylate suppresses serotonin-induced enhancement of GABAergic spontaneous inhibitory postsynaptic currents in rat inferior colliculus in vitro. Hear Res 2008; 236:42-51. [DOI: 10.1016/j.heares.2007.11.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
38
|
Hurley LM. Activation of the serotonin 1A receptor alters the temporal characteristics of auditory responses in the inferior colliculus. Brain Res 2007; 1181:21-9. [PMID: 17916336 PMCID: PMC2580673 DOI: 10.1016/j.brainres.2007.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 07/19/2007] [Accepted: 08/27/2007] [Indexed: 11/26/2022]
Abstract
Serotonin, like other neuromodulators, acts on a range of receptor types, but its effects also depend on the functional characteristics of the neurons responding to receptor activation. In the inferior colliculus (IC), an auditory midbrain nucleus, activation of a common serotonin (5-HT) receptor type, the 5-HT 1A receptor, depresses auditory-evoked responses in many neurons. Whether these effects occur differentially in different types of neurons is unknown. In the current study, the effects of iontophoretic application of the 5-HT 1A agonist 8-OH-DPAT on auditory responses were compared with the characteristic frequencies (CFs), recording depths, and control first-spike latencies of the same group of IC neurons. The 8-OH-DPAT-evoked change in response significantly correlated with first-spike latency across the population, so that response depressions were more prevalent in longer-latency neurons. The 8-OH-DPAT-evoked change in response did not correlate with CF or with recording depth. 8-OH-DPAT also altered the temporal characteristics of spike trains in a subset of neurons that fired multiple spikes in response to brief stimuli. For these neurons, activation of the 5-HT 1A receptor suppressed lagging spikes proportionally more than initial spikes. These results suggest that the 5-HT 1A receptor, by affecting the timing of the responses of both individual neurons and the neuron population, shifts the temporal profile of evoked activity within the IC.
Collapse
Affiliation(s)
- Laura M Hurley
- Biology Department, Indiana University, 1001 E. Third St. Jordan Hall, Bloomington, IN 47405, USA.
| |
Collapse
|
39
|
Abstract
The lateral giant (LG) command neuron of crayfish responds to an attack directed at the abdomen by triggering a single highly stereotyped escape tail flip. Experimentally applied serotonin (5-hydroxytrptamine, 5-HT) can increase or decrease LG's excitability, depending on the concentration, rate, and duration of 5-HT application. Here we describe three physiological mechanisms that mediate serotonergic facilitation of LG. Two processes strengthen electrical coupling between the primary mechanosensory afferent neurons and LG: first, an early increase in the conductance of electrical synapses between primary afferent neurons and LG dendrites and second, an early increase in the membrane resistance of LG dendrites. The increased coupling facilitates LG's synaptic response and it promotes recruitment of weakly excited afferent neurons to contribute to the response. Third, a delayed increase in the membrane resistance of proximal regions of LG increases the cell's input resistance near the initial segment. Together these mechanisms contribute to serotonergic facilitation of LG's response.
Collapse
|
40
|
Hall IC, Hurley LM. The serotonin releaser fenfluramine alters the auditory responses of inferior colliculus neurons. Hear Res 2007; 228:82-94. [PMID: 17339086 PMCID: PMC1950579 DOI: 10.1016/j.heares.2007.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
Local direct application of the neuromodulator serotonin strongly influences auditory response properties of neurons in the inferior colliculus (IC), but endogenous stores of serotonin may be released in a distinct spatial or temporal pattern. To explore this issue, the serotonin releaser fenfluramine was iontophoretically applied to extracellularly recorded neurons in the IC of the Mexican free-tailed bat (Tadarida brasiliensis). Fenfluramine mimicked the effects of serotonin on spike count and first spike latency in most neurons, and its effects could be blocked by co-application of serotonin receptor antagonists, consistent with fenfluramine-evoked serotonin release. Responses to fenfluramine did not vary during single applications or across multiple applications, suggesting that fenfluramine did not deplete serotonin stores. A predicted gradient in the effects of fenfluramine with serotonin fiber density was not observed, but neurons with fenfluramine-evoked increases in latency occurred at relatively greater recording depths compared to other neurons with similar characteristic frequencies. These findings support the conclusion that there may be spatial differences in the effects of exogenous and endogenous sources of serotonin, but that other factors such as the identities and locations of serotonin receptors are also likely to play a role in determining the dynamics of serotonergic effects.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biology, 1001 E. Third St, 342 Jordan Hall, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
41
|
|