1
|
Higgs MH, Beckstead MJ. Impact of Unitary Synaptic Inhibition on Spike Timing in Ventral Tegmental Area Dopamine Neurons. eNeuro 2024; 11:ENEURO.0203-24.2024. [PMID: 38969500 PMCID: PMC11287791 DOI: 10.1523/eneuro.0203-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Midbrain dopamine neurons receive convergent synaptic input from multiple brain areas, which perturbs rhythmic pacemaking to produce the complex firing patterns observed in vivo. This study investigated the impact of single and multiple inhibitory inputs on ventral tegmental area (VTA) dopamine neuron firing in mice of both sexes using novel experimental measurements and modeling. We first measured unitary inhibitory postsynaptic currents produced by single axons using both minimal electrical stimulation and minimal optical stimulation of rostromedial tegmental nucleus and ventral pallidum afferents. We next determined the phase resetting curve, the reversal potential for GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs), and the average interspike membrane potential trajectory during pacemaking. We combined these data in a phase oscillator model of a VTA dopamine neuron, simulating the effects of unitary inhibitory postsynaptic conductances (uIPSGs) on spike timing and rate. The effect of a uIPSG on spike timing was predicted to vary according to its timing within the interspike interval or phase. Simulations were performed to predict the pause duration resulting from the synchronous arrival of multiple uIPSGs and the changes in firing rate and regularity produced by asynchronous uIPSGs. The model data suggest that asynchronous inhibition is more effective than synchronous inhibition, because it tends to hold the neuron at membrane potentials well positive to the IPSC reversal potential. Our results indicate that small fluctuations in the inhibitory synaptic input arriving from the many afferents to each dopamine neuron are sufficient to produce highly variable firing patterns, including pauses that have been implicated in reinforcement.
Collapse
Affiliation(s)
- Matthew H Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
2
|
Wilson CJ, Jones JA. Propagation of Oscillations in the Indirect Pathway of the Basal Ganglia. J Neurosci 2023; 43:6112-6125. [PMID: 37400253 PMCID: PMC10476642 DOI: 10.1523/jneurosci.0445-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oscillatory signals propagate in the basal ganglia from prototypic neurons in the external globus pallidus (GPe) to their target neurons in the substantia nigra pars reticulata (SNr), internal pallidal segment, and subthalamic nucleus. Neurons in the GPe fire spontaneously, so oscillatory input signals can be encoded as changes in timing of action potentials within an ongoing spike train. When GPe neurons were driven by an oscillatory current in male and female mice, these spike-timing changes produced spike-oscillation coherence over a range of frequencies extending at least to 100 Hz. Using the known kinetics of the GPe→SNr synapse, we calculated the postsynaptic currents that would be generated in SNr neurons from the recorded GPe spike trains. The ongoing synaptic barrage from spontaneous firing, frequency-dependent short-term depression, and stochastic fluctuations at the synapse embed the input oscillation into a noisy sequence of synaptic currents in the SNr. The oscillatory component of the resulting synaptic current must compete with the noisy spontaneous synaptic barrage for control of postsynaptic SNr neurons, which have their own frequency-dependent sensitivities. Despite this, SNr neurons subjected to synaptic conductance changes generated from recorded GPe neuron firing patterns also became coherent with oscillations over a broad range of frequencies. The presynaptic, synaptic, and postsynaptic frequency sensitivities were all dependent on the firing rates of presynaptic and postsynaptic neurons. Firing rate changes, often assumed to be the propagating signal in these circuits, do not encode most oscillation frequencies, but instead determine which signal frequencies propagate effectively and which are suppressed.SIGNIFICANCE STATEMENT Oscillations are present in all the basal ganglia nuclei, include a range of frequencies, and change over the course of learning and behavior. Exaggerated oscillations are a hallmark of basal ganglia pathologies, and each has a specific frequency range. Because of its position as a hub in the basal ganglia circuitry, the globus pallidus is a candidate origin for oscillations propagating between nuclei. We imposed low-amplitude oscillations on individual globus pallidus neurons at specific frequencies and measured the coherence between the oscillation and firing as a function of frequency. We then used these responses to measure the effectiveness of oscillatory propagation to other basal ganglia nuclei. Propagation was effective for oscillation frequencies as high as 100 Hz.
Collapse
Affiliation(s)
- Charles J Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - James A Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
3
|
Jones JA, Higgs MH, Olivares E, Peña J, Wilson CJ. Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus. J Neurosci 2023; 43:1281-1297. [PMID: 36623877 PMCID: PMC9987574 DOI: 10.1523/jneurosci.1969-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Autonomously firing GABAergic neurons in the external globus pallidus (GPe) form a local synaptic network. In slices, most GPe neurons receive a continuous inhibitory synaptic barrage from 1 or 2 presynaptic GPe neurons. We measured the barrage's effect on the firing rate and regularity of GPe neurons in male and female mice using perforated patch recordings. Silencing the firing of parvalbumin-positive (PV+) GPe neurons by activating genetically expressed Archaerhodopsin current increased the firing rate and regularity of PV- neurons. In contrast, silencing Npas1+ GPe neurons with Archaerhodopsin had insignificant effects on Npas1- neuron firing. Blocking spontaneous GABAergic synaptic input with gabazine reproduced the effects of silencing PV+ neuron firing on the firing rate and regularity of Npas1+ neurons and had similar effects on PV+ neuron firing. To simulate the barrage, we constructed conductance waveforms for dynamic clamp based on experimentally measured inhibitory postsynaptic conductance trains from 1 or 2 unitary local connections. The resulting inhibition replicated the effect on firing seen in the intact active network in the slice. We then increased the number of unitary inputs to match estimates of local network connectivity in vivo As few as 5 unitary inputs produced large increases in firing irregularity. The firing rate was also reduced initially, but PV+ neurons exhibited a slow spike-frequency adaptation that partially restored the rate despite sustained inhibition. We conclude that the irregular firing pattern of GPe neurons in vivo is largely due to the ongoing local inhibitory synaptic barrage produced by the spontaneous firing of other GPe neurons.SIGNIFICANCE STATEMENT Functional roles of local axon collaterals in the external globus pallidus (GPe) have remained elusive because of difficulty in isolating local inhibition from other GABAergic inputs in vivo, and in preserving the autonomous firing of GPe neurons and detecting their spontaneous local inputs in slices. We used perforated patch recordings to detect spontaneous local inputs during rhythmic firing. We found that the autonomous firing of single presynaptic GPe neurons produces inhibitory synaptic barrages that significantly alter the firing regularity of other GPe neurons. Our findings suggest that, although GPe neurons receive input from only a few other GPe neurons, each local connection has a large impact on their firing.
Collapse
Affiliation(s)
- James A. Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Matthew H. Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Erick Olivares
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jacob Peña
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Charles J. Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
4
|
Lin M, Wang Y, Wang Y, Chen F. Electrical activation of the pedunculopontine tegmental nucleus modulates the neuronal activities of the subthalamic nucleus and the substantia nigra pars reticulata in anesthetized rats. J Neurosci Res 2022; 100:2090-2106. [DOI: 10.1002/jnr.25117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/28/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Muxin Lin
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education Shanghai Jiao Tong University Shanghai China
- Exercise, Health and Technology Centre, Department of Physical Education Shanghai Jiao Tong University Shanghai China
| | - Ying Wang
- Core Research Facilities Southern University of Science and Technology Shenzhen China
| | - Yi Wang
- Enlight Medical Technologies (Shanghai) Co., Ltd. Shanghai China
| | - Fujun Chen
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education Shanghai Jiao Tong University Shanghai China
- Exercise, Health and Technology Centre, Department of Physical Education Shanghai Jiao Tong University Shanghai China
- WLA Laboratories, World Laureates Association Shanghai China
| |
Collapse
|
5
|
Whalen TC, Parker JE, Gittis AH, Rubin JE. Transmission of delta band (0.5-4 Hz) oscillations from the globus pallidus to the substantia nigra pars reticulata in dopamine depletion. J Comput Neurosci 2022; 51:361-380. [PMID: 37266768 PMCID: PMC10527635 DOI: 10.1007/s10827-023-00853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/20/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Parkinson's disease (PD) and animal models of PD feature enhanced oscillations in several frequency bands in the basal ganglia (BG). Past research has emphasized the enhancement of 13-30 Hz beta oscillations. Recently, however, oscillations in the delta band (0.5-4 Hz) have been identified as a robust predictor of dopamine loss and motor dysfunction in several BG regions in mouse models of PD. In particular, delta oscillations in the substantia nigra pars reticulata (SNr) were shown to lead oscillations in motor cortex (M1) and persist under M1 lesion, but it is not clear where these oscillations are initially generated. In this paper, we use a computational model to study how delta oscillations may arise in the SNr due to projections from the globus pallidus externa (GPe). We propose a network architecture that incorporates inhibition in SNr from oscillating GPe neurons and other SNr neurons. In our simulations, this configuration yields firing patterns in model SNr neurons that match those measured in vivo. In particular, we see the spontaneous emergence of near-antiphase active-predicting and inactive-predicting neural populations in the SNr, which persist under the inclusion of STN inputs based on experimental recordings. These results demonstrate how delta oscillations can propagate through BG nuclei despite imperfect oscillatory synchrony in the source site, narrowing down potential targets for the source of delta oscillations in PD models and giving new insight into the dynamics of SNr oscillations.
Collapse
Affiliation(s)
- Timothy C Whalen
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- Design Interactive, Inc., Orlando, FL, United States
| | - John E Parker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Aryn H Gittis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Olivares E, Higgs MH, Wilson CJ. Local inhibition in a model of the indirect pathway globus pallidus network slows and deregularizes background firing, but sharpens and synchronizes responses to striatal input. J Comput Neurosci 2022; 50:251-272. [PMID: 35274227 DOI: 10.1007/s10827-022-00814-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
The external segment of globus pallidus (GPe) is a network of oscillatory neurons connected by inhibitory synapses. We studied the intrinsic dynamic and the response to a shared brief inhibitory stimulus in a model GPe network. Individual neurons were simulated using a phase resetting model based on measurements from mouse GPe neurons studied in slices. The neurons showed a broad heterogeneity in their firing rates and in the shapes and sizes of their phase resetting curves. Connectivity in the network was set to match experimental measurements. We generated statistically equivalent neuron heterogeneity in a small-world model, in which 99% of connections were made with near neighbors and 1% at random, and in a model with entirely random connectivity. In both networks, the resting activity was slowed and made more irregular by the local inhibition, but it did not show any periodic pattern. Cross-correlations among neuron pairs were limited to directly connected neurons. When stimulated by a shared inhibitory input, the individual neuron responses separated into two groups: one with a short and stereotyped period of inhibition followed by a transient increase in firing probability, and the other responding with a sustained inhibition. Despite differences in firing rate, the responses of the first group of neurons were of fixed duration and were synchronized across cells.
Collapse
Affiliation(s)
- Erick Olivares
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Matthew H Higgs
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
8
|
Cui Q, Pamukcu A, Cherian S, Chang IYM, Berceau BL, Xenias HS, Higgs MH, Rajamanickam S, Chen Y, Du X, Zhang Y, McMorrow H, Abecassis ZA, Boca SM, Justice NJ, Wilson CJ, Chan CS. Dissociable Roles of Pallidal Neuron Subtypes in Regulating Motor Patterns. J Neurosci 2021; 41:4036-4059. [PMID: 33731450 PMCID: PMC8176746 DOI: 10.1523/jneurosci.2210-20.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/21/2021] [Accepted: 02/20/2021] [Indexed: 01/27/2023] Open
Abstract
We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.
Collapse
Affiliation(s)
- Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Suraj Cherian
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Isaac Y M Chang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Harry S Xenias
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Matthew H Higgs
- Department of Biology, University of Texas at San Antonio, San Antonio 78249, Texas
| | - Shivakumar Rajamanickam
- Center for Metabolic and degenerative disease, Institute of Molecular Medicine, University of Texas, Houston 77030, Texas
- Department of Integrative Pharmacology, University of Texas, Houston 77030, Texas
| | - Yi Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison 53706, Wisconsin
| | - Xixun Du
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Yu Zhang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Hayley McMorrow
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Zachary A Abecassis
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington 20057, DC
| | - Nicholas J Justice
- Center for Metabolic and degenerative disease, Institute of Molecular Medicine, University of Texas, Houston 77030, Texas
- Department of Integrative Pharmacology, University of Texas, Houston 77030, Texas
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio 78249, Texas
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| |
Collapse
|
9
|
Fischer P. Mechanisms of Network Interactions for Flexible Cortico-Basal Ganglia-Mediated Action Control. eNeuro 2021; 8:ENEURO.0009-21.2021. [PMID: 33883192 PMCID: PMC8205496 DOI: 10.1523/eneuro.0009-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/28/2023] Open
Abstract
In humans, finely tuned γ synchronization (60-90 Hz) rapidly appears at movement onset in a motor control network involving primary motor cortex, the basal ganglia and motor thalamus. Yet the functional consequences of brief movement-related synchronization are still unclear. Distinct synchronization phenomena have also been linked to different forms of motor inhibition, including relaxing antagonist muscles, rapid movement interruption and stabilizing network dynamics for sustained contractions. Here, I will introduce detailed hypotheses about how intrasite and intersite synchronization could interact with firing rate changes in different parts of the network to enable flexible action control. The here proposed cause-and-effect relationships shine a spotlight on potential key mechanisms of cortico-basal ganglia-thalamo-cortical (CBGTC) communication. Confirming or revising these hypotheses will be critical in understanding the neuronal basis of flexible movement initiation, invigoration and inhibition. Ultimately, the study of more complex cognitive phenomena will also become more tractable once we understand the neuronal mechanisms underlying behavioral readouts.
Collapse
Affiliation(s)
- Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, United Kingdom
| |
Collapse
|
10
|
Higgs MH, Jones JA, Chan CS, Wilson CJ. Periodic unitary synaptic currents in the mouse globus pallidus during spontaneous firing in slices. J Neurophysiol 2021; 125:1482-1500. [PMID: 33729831 PMCID: PMC8424575 DOI: 10.1152/jn.00071.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/27/2023] Open
Abstract
Neurons in the external globus pallidus (GPe) are autonomous pacemakers, but their spontaneous firing is continually perturbed by synaptic input. Because GPe neurons fire rhythmically in slices, spontaneous inhibitory synaptic currents (IPSCs) should be evident there. We identified periodic series of IPSCs in slices, each corresponding to unitary synaptic currents from one presynaptic cell. Optogenetic stimulation of the striatal indirect pathway axons caused a pause and temporal resetting of the periodic input, confirming that it arose from local neurons subject to striatal inhibition. We determined the firing statistics of the presynaptic neurons from the unitary IPSC statistics and estimated their frequencies, peak amplitudes, and reliabilities. To determine what types of GPe neurons received the spontaneous inhibition, we recorded from genetically labeled parvalbumin (PV) and Npas1-expressing neurons. Both cell types received periodic spontaneous IPSCs with similar frequencies. Optogenetic inhibition of PV neurons reduced the spontaneous IPSC rate in almost all neurons with active unitary inputs, whereas inhibition of Npas1 neurons rarely affected the spontaneous IPSC rate in any neurons. These results suggest that PV neurons provided most of the active unitary inputs to both cell types. Optogenetic pulse stimulation of PV neurons at light levels that can activate cut axons yielded an estimate of connectivity in the fully connected network. The local network is a powerful source of inhibition to both PV and Npas1 neurons, which contributes to irregular firing and may influence the responses to external synaptic inputs.NEW & NOTEWORTHY Brain circuits are often quiet in slices. In the globus pallidus, network activity continues because of the neurons' rhythmic autonomous firing. In this study, synaptic currents generated by the network barrage were measured in single neurons. Unitary synaptic currents arising from single presynaptic neurons were identified by their unique periodicity. Periodic synaptic currents were large and reliable, even at the cell's natural firing rates, but arose from a small number of other globus pallidus neurons.
Collapse
Affiliation(s)
- Matthew H Higgs
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - James A Jones
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Charles J Wilson
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Schwab BC, Kase D, Zimnik A, Rosenbaum R, Codianni MG, Rubin JE, Turner RS. Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication. PLoS Biol 2020; 18:e3000829. [PMID: 33048920 PMCID: PMC7584254 DOI: 10.1371/journal.pbio.3000829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/23/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.
Collapse
Affiliation(s)
- Bettina C. Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Technical Medical Center, University of Twente, Enschede, the Netherlands
| | - Daisuke Kase
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
| | - Marcello G. Codianni
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Phillips RS, Rosner I, Gittis AH, Rubin JE. The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs. eLife 2020; 9:e55592. [PMID: 32894224 PMCID: PMC7476764 DOI: 10.7554/elife.55592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/14/2020] [Indexed: 11/20/2022] Open
Abstract
As a rodent basal ganglia (BG) output nucleus, the substantia nigra pars reticulata (SNr) is well positioned to impact behavior. SNr neurons receive GABAergic inputs from the striatum (direct pathway) and globus pallidus (GPe, indirect pathway). Dominant theories of action selection rely on these pathways' inhibitory actions. Yet, experimental results on SNr responses to these inputs are limited and include excitatory effects. Our study combines experimental and computational work to characterize, explain, and make predictions about these pathways. We observe diverse SNr responses to stimulation of SNr-projecting striatal and GPe neurons, including biphasic and excitatory effects, which our modeling shows can be explained by intracellular chloride processing. Our work predicts that ongoing GPe activity could tune the SNr operating mode, including its responses in decision-making scenarios, and GPe output may modulate synchrony and low-frequency oscillations of SNr neurons, which we confirm using optogenetic stimulation of GPe terminals within the SNr.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| | - Ian Rosner
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Aryn H Gittis
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jonathan E Rubin
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| |
Collapse
|
13
|
Abstract
Behavior is readily classified into patterns of movements with inferred common goals-actions. Goals may be discrete; movements are continuous. Through the careful study of isolated movements in laboratory settings, or via introspection, it has become clear that animals can exhibit exquisite graded specification to their movements. Moreover, graded control can be as fundamental to success as the selection of which action to perform under many naturalistic scenarios: a predator adjusting its speed to intercept moving prey, or a tool-user exerting the perfect amount of force to complete a delicate task. The basal ganglia are a collection of nuclei in vertebrates that extend from the forebrain (telencephalon) to the midbrain (mesencephalon), constituting a major descending extrapyramidal pathway for control over midbrain and brainstem premotor structures. Here we discuss how this pathway contributes to the continuous specification of movements that endows our voluntary actions with vigor and grace.
Collapse
Affiliation(s)
- Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Luke T Coddington
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
14
|
Cellular and Synaptic Dysfunctions in Parkinson's Disease: Stepping out of the Striatum. Cells 2019; 8:cells8091005. [PMID: 31470672 PMCID: PMC6769933 DOI: 10.3390/cells8091005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia (BG) are a collection of interconnected subcortical nuclei that participate in a great variety of functions, ranging from motor programming and execution to procedural learning, cognition, and emotions. This network is also the region primarily affected by the degeneration of midbrain dopaminergic neurons localized in the substantia nigra pars compacta (SNc). This degeneration causes cellular and synaptic dysfunctions in the BG network, which are responsible for the appearance of the motor symptoms of Parkinson’s disease. Dopamine (DA) modulation and the consequences of its loss on the striatal microcircuit have been extensively studied, and because of the discrete nature of DA innervation of other BG nuclei, its action outside the striatum has been considered negligible. However, there is a growing body of evidence supporting functional extrastriatal DA modulation of both cellular excitability and synaptic transmission. In this review, the functional relevance of DA modulation outside the striatum in both normal and pathological conditions will be discussed.
Collapse
|
15
|
Tiroshi L, Goldberg JA. Population dynamics and entrainment of basal ganglia pacemakers are shaped by their dendritic arbors. PLoS Comput Biol 2019; 15:e1006782. [PMID: 30730886 PMCID: PMC6382172 DOI: 10.1371/journal.pcbi.1006782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/20/2019] [Accepted: 01/10/2019] [Indexed: 11/30/2022] Open
Abstract
The theory of phase oscillators is an essential tool for understanding population dynamics of pacemaking neurons. GABAergic pacemakers in the substantia nigra pars reticulata (SNr), a main basal ganglia (BG) output nucleus, receive inputs from the direct and indirect pathways at distal and proximal regions of their dendritic arbors, respectively. We combine theory, optogenetic stimulation and electrophysiological experiments in acute brain slices to ask how dendritic properties impact the propensity of the various inputs, arriving at different locations along the dendrite, to recruit or entrain SNr pacemakers. By combining cable theory with sinusoidally-modulated optogenetic activation of either proximal somatodendritic regions or the entire somatodendritic arbor of SNr neurons, we construct an analytical model that accurately fits the empirically measured somatic current response to inputs arising from illuminating the soma and various portions of the dendritic field. We show that the extent of the dendritic tree that is illuminated generates measurable and systematic differences in the pacemaker’s phase response curve (PRC), causing a shift in its peak. Finally, we show that the divergent PRCs correctly predict differences in two major features of the collective dynamics of SNr neurons: the fidelity of population responses to sudden step-like changes in inputs; and the phase latency at which SNr neurons are entrained by rhythmic stimulation, which can occur in the BG under both physiological and pathophysiological conditions. Our novel method generates measurable and physiologically meaningful spatial effects, and provides the first empirical demonstration of how the collective responses of SNr pacemakers are determined by the transmission properties of their dendrites. SNr dendrites may serve to delay distal striatal inputs so that they impinge on the spike initiation zone simultaneously with pallidal and subthalamic inputs in order to guarantee a fair competition between the influence of the monosynaptic direct- and polysynaptic indirect pathways. The substantia nigra pars reticulata (SNr) is a main output nucleus of the basal ganglia (BG), where inputs from the competing direct and indirect pathways converge onto the same neurons. Interestingly, these inputs are differentially distributed with direct and indirect pathway projections arriving at distal and proximal regions of the dendritic arbor, respectively. We employ a novel method combining theory with electrophysiological experiments and optogenetics to study the distinct effects of inputs arriving at different locations along the dendrite. Our approach represents a useful compromise between complexity and reduction in modelling. Our work addresses the question of high fidelity encoding of inputs by networks of neurons in the new context of pacemaking neurons, which are driven to fire by their intrinsic dynamics rather than by a network state. We provide the first empirical demonstration that dendritic delays can introduce latencies in the responses of a population of neurons that are commensurate with synaptic delays, suggesting a new role for SNr dendrites with implications for BG function.
Collapse
Affiliation(s)
- Lior Tiroshi
- Department of Medical Neurobiology, Institute of Medical Research Israel–Canada, The Faculty of Medicine, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joshua A. Goldberg
- Department of Medical Neurobiology, Institute of Medical Research Israel–Canada, The Faculty of Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
16
|
Simmons DV, Higgs MH, Lebby S, Wilson CJ. Predicting responses to inhibitory synaptic input in substantia nigra pars reticulata neurons. J Neurophysiol 2018; 120:2679-2693. [PMID: 30207859 DOI: 10.1152/jn.00535.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The changes in firing probability produced by a synaptic input are usually visualized using the poststimulus time histogram (PSTH). It would be useful if postsynaptic firing patterns could be predicted from patterns of afferent synaptic activation, but attempts to predict the PSTH from synaptic potential waveforms using reasoning based on voltage trajectory and spike threshold have not been successful, especially for inhibitory inputs. We measured PSTHs for substantia nigra pars reticulata (SNr) neurons inhibited by optogenetic stimulation of striato-nigral inputs or by matching artificial inhibitory conductances applied by dynamic clamp. The PSTH was predicted by a model based on each SNr cell's phase-resetting curve (PRC). Optogenetic activation of striato-nigral input or artificial synaptic inhibition produced a PSTH consisting of an initial depression of firing followed by oscillatory increases and decreases repeating at the SNr cell's baseline firing rate. The phase resetting model produced PSTHs closely resembling the cell data, including the primary pause in firing and the oscillation. Key features of the PSTH, including the onset rate and duration of the initial inhibitory phase, and the subsequent increase in firing probability could be explained from the characteristic shape of the SNr cell's PRC. The rate of damping of the late oscillation was explained by the influence of asynchronous phase perturbations producing firing rate jitter and wander. Our results demonstrate the utility of phase-resetting models as a general method for predicting firing in spontaneously active neurons and their value in interpretation of the striato-nigral PSTH. NEW & NOTEWORTHY The coupling of patterned presynaptic input to sequences of postsynaptic firing is a Gordian knot, complicated by the multidimensionality of neuronal state and the diversity of potential initial states. Even so, it is fundamental for even the simplest understanding of network dynamics. We show that a simple phase-resetting model constructed from experimental measurements can explain and predict the sequence of spike rate changes following synaptic inhibition of an oscillating basal ganglia output neuron.
Collapse
Affiliation(s)
- D V Simmons
- Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| | - M H Higgs
- Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| | - S Lebby
- Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| | - C J Wilson
- Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| |
Collapse
|
17
|
Gremel CM, Lovinger DM. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs. GENES BRAIN AND BEHAVIOR 2016; 16:71-85. [PMID: 27457495 DOI: 10.1111/gbb.12309] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
The mammalian forebrain is characterized by the presence of several parallel cortico-basal ganglia circuits that shape the learning and control of actions. Among these are the associative, limbic and sensorimotor circuits. The function of all of these circuits has now been implicated in responses to drugs of abuse, as well as drug seeking and drug taking. While the limbic circuit has been most widely examined, key roles for the other two circuits in control of goal-directed and habitual instrumental actions related to drugs of abuse have been shown. In this review we describe the three circuits and effects of acute and chronic drug exposure on circuit physiology. Our main emphasis is on drug actions in dorsal striatal components of the associative and sensorimotor circuits. We then review key findings that have implicated these circuits in drug seeking and taking behaviors, as well as drug use disorders. Finally, we consider different models describing how the three cortico-basal ganglia circuits become involved in drug-related behaviors. This topic has implications for drug use disorders and addiction, as treatments that target the balance between the different circuits may be useful for reducing excessive substance use.
Collapse
Affiliation(s)
- C M Gremel
- Neurosciences Graduate Program, Department of Psychology, University of California San Diego, La Jolla, CA
| | - D M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|