1
|
Martínez-Lazaro R, Reyes-Carrión A, Bartolomé-Martín D, Giraldez T. The NMDAR-BK channelosomes as regulators of synaptic plasticity. Biochem Soc Trans 2025; 53:BST20240425. [PMID: 39874044 DOI: 10.1042/bst20240425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons. Since then, additional evidence has confirmed this functional coupling in other brain regions and highlighted its significance in neuronal function and pathophysiology. In this review, we explore the current understanding of these macrocomplexes in the brain, the molecular mechanisms behind their interactions and their potential roles in neurodevelopmental disorders, paving the way for new treatment strategies.
Collapse
Affiliation(s)
- Rebeca Martínez-Lazaro
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| | - Andrea Reyes-Carrión
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| | - David Bartolomé-Martín
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, Tenerife, ES-38071, Spain
| | - Teresa Giraldez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| |
Collapse
|
2
|
Baeza-Loya S, Eatock RA. Effects of transient, persistent, and resurgent sodium currents on excitability and spike regularity in vestibular ganglion neurons. Front Neurol 2024; 15:1471118. [PMID: 39624672 PMCID: PMC11608953 DOI: 10.3389/fneur.2024.1471118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 12/11/2024] Open
Abstract
Vestibular afferent neurons occur as two populations with differences in spike timing regularity that are independent of rate. The more excitable regular afferents have lower current thresholds and sustained spiking responses to injected currents, while irregular afferent neurons have higher thresholds and transient responses. Differences in expression of low-voltage-activated potassium (KLV) channels are emphasized in models of spiking regularity and excitability in these neurons, leaving open the potential contributions of the voltage-gated sodium (NaV) channels responsible for the spike upstroke. We investigated the impact of different NaV current modes (transient, persistent, and resurgent) with whole-cell patch clamp experiments in mouse vestibular ganglion neurons (VGNs), the cultured and dissociated cell bodies of afferents. All VGNs had transient NaV current, many had a small persistent (non-inactivating) NaV current, and a few had resurgent current, which flows after the spike when NaV channels that were blocked are unblocked. A known NaV1.6 channel blocker decreased spike rate and altered spike waveforms in both sustained and transient VGNs and affected all three modes of NaV current. A NaV channel agonist enhanced persistent current and increased spike rate and regularity. We hypothesized that persistent and resurgent currents have different effects on sustained (regular) VGNs vs. transient (irregular) VGNs. Lacking blockers specific for the different current modes, we used modeling to isolate their effects on spiking of simulated transient and sustained VGNs, driven by simulated current steps and noisy trains of simulated EPSCs. In all simulated neurons, increasing transient NaV current increased spike rate and rate-independent regularity. In simulated sustained VGNs, adding persistent current increased both rate and rate-independent regularity, while adding resurgent current had limited impact. In transient VGNs, adding persistent current had little impact, while adding resurgent current increased both rate and rate-independent irregularity by enhancing sensitivity to synaptic noise. These experiments show that the small NaV current modes may enhance the differentiation of afferent populations, with persistent currents selectively making regular afferents more regular and resurgent currents selectively making irregular afferents more irregular.
Collapse
Affiliation(s)
- Selina Baeza-Loya
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Baeza-Loya S, Eatock RA. Effects of transient, persistent, and resurgent sodium currents on excitability and spike regularity in vestibular ganglion neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569044. [PMID: 38076890 PMCID: PMC10705474 DOI: 10.1101/2023.11.28.569044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Vestibular afferent neurons occur as two populations with differences in spike timing regularity that are independent of rate. The more excitable regular afferents have lower current thresholds and sustained spiking responses to injected currents, while irregular afferent neurons have higher thresholds and transient responses. Differences in expression of low-voltage-activated potassium (K LV ) channels are emphasized in models of spiking regularity and excitability in these neurons, leaving open the potential contributions of the voltage-gated sodium (Na V ) channels responsible for the spike upstroke. We investigated the impact of different Na V current modes (transient, persistent, and resurgent) with whole-cell patch clamp experiments in mouse vestibular ganglion neurons (VGNs), the cultured and dissociated cell bodies of afferents. All VGNs had transient Na V current, many had a small persistent (non-inactivating) Na V current, and a few had resurgent current, which flows after the spike peak when Na V channels that were blocked are unblocked. Na V 1.6 channels conducted most or all of each Na V current mode, and a Na V 1.6-selective blocker decreased spike rate and altered spike waveforms in both sustained and transient VGNs. A Na V channel agonist enhanced persistent current and increased spike rate and regularity. We hypothesized that persistent and resurgent currents have different effects on sustained (regular) VGNs vs. transient (irregular) VGNs. Lacking blockers specific for the different current modes, we used modeling to isolate their effects on spiking of simulated transient and sustained VGNs, driven by simulated current steps and noisy trains of simulated EPSCs. In all simulated neurons, increasing transient Na V current increased spike rate and rate-independent regularity. In simulated sustained VGNs, adding persistent current increased both rate and rate-independent regularity, while adding resurgent current had limited impact. In transient VGNs, adding persistent current had little impact, while adding resurgent current increased both rate and rate-independent irregularity by enhancing sensitivity to synaptic noise. These experiments show that the small Na V current modes may enhance the differentiation of afferent populations, with persistent currents selectively making regular afferents more regular and resurgent currents selectively making irregular afferents less regular.
Collapse
|
4
|
Vareberg AD, Bok I, Eizadi J, Ren X, Hai A. Inference of network connectivity from temporally binned spike trains. J Neurosci Methods 2024; 404:110073. [PMID: 38309313 PMCID: PMC10949361 DOI: 10.1016/j.jneumeth.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Processing neural activity to reconstruct network connectivity is a central focus of neuroscience, yet the spatiotemporal requisites of biological nervous systems are challenging for current neuronal sensing modalities. Consequently, methods that leverage limited data to successfully infer synaptic connections, predict activity at single unit resolution, and decipher their effect on whole systems, can uncover critical information about neural processing. Despite the emergence of powerful methods for inferring connectivity, network reconstruction based on temporally subsampled data remains insufficiently unexplored. NEW METHOD We infer synaptic weights by processing firing rates within variable time bins for a heterogeneous feed-forward network of excitatory, inhibitory, and unconnected units. We assess classification and optimize model parameters for postsynaptic spike train reconstruction. We test our method on a physiological network of leaky integrate-and-fire neurons displaying bursting patterns and assess prediction of postsynaptic activity from microelectrode array data. RESULTS Results reveal parameters for improved prediction and performance and suggest that lower resolution data and limited access to neurons can be preferred. COMPARISON WITH EXISTING METHOD(S) Recent computational methods demonstrate highly improved reconstruction of connectivity from networks of parallel spike trains by considering spike lag, time-varying firing rates, and other underlying dynamics. However, these methods insufficiently explore temporal subsampling representative of novel data types. CONCLUSIONS We provide a framework for reverse engineering neural networks from data with limited temporal quality, describing optimal parameters for each bin size, which can be further improved using non-linear methods and applied to more complicated readouts and connectivity distributions in multiple brain circuits.
Collapse
Affiliation(s)
- Adam D Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Xiaoxuan Ren
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States.
| |
Collapse
|
5
|
Echeverría F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K + (BK) channel in health and disease. Front Pharmacol 2024; 15:1373507. [PMID: 38584598 PMCID: PMC10995336 DOI: 10.3389/fphar.2024.1373507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.
Collapse
Affiliation(s)
- Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Naileth Gonzalez-Sanabria
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
7
|
Pham T, Hussein T, Calis D, Bischof H, Skrabak D, Cruz Santos M, Maier S, Spähn D, Kalina D, Simonsig S, Ehinger R, Groschup B, Knipper M, Plesnila N, Ruth P, Lukowski R, Matt L. BK channels sustain neuronal Ca 2+ oscillations to support hippocampal long-term potentiation and memory formation. Cell Mol Life Sci 2023; 80:369. [PMID: 37989805 PMCID: PMC10663188 DOI: 10.1007/s00018-023-05016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Mutations of large conductance Ca2+- and voltage-activated K+ channels (BK) are associated with cognitive impairment. Here we report that CA1 pyramidal neuron-specific conditional BK knock-out (cKO) mice display normal locomotor and anxiety behavior. They do, however, exhibit impaired memory acquisition and retrieval in the Morris Water Maze (MWM) when compared to littermate controls (CTRL). In line with cognitive impairment in vivo, electrical and chemical long-term potentiation (LTP) in cKO brain slices were impaired in vitro. We further used a genetically encoded fluorescent K+ biosensor and a Ca2+-sensitive probe to observe cultured hippocampal neurons during chemical LTP (cLTP) induction. cLTP massively reduced intracellular K+ concentration ([K+]i) while elevating L-Type Ca2+ channel- and NMDA receptor-dependent Ca2+ oscillation frequencies. Both, [K+]i decrease and Ca2+ oscillation frequency increase were absent after pharmacological BK inhibition or in cells lacking BK. Our data suggest that L-Type- and NMDAR-dependent BK-mediated K+ outflow significantly contributes to hippocampal LTP, as well as learning and memory.
Collapse
Affiliation(s)
- Thomas Pham
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Tamara Hussein
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - David Spähn
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Daniel Kalina
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stefanie Simonsig
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Bernhard Groschup
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Zemel BM, Nevue AA, Tavares LES, Dagostin A, Lovell PV, Jin DZ, Mello CV, von Gersdorff H. Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes. eLife 2023; 12:e81992. [PMID: 37158590 PMCID: PMC10241522 DOI: 10.7554/elife.81992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.
Collapse
Affiliation(s)
- Benjamin M Zemel
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Leonardo ES Tavares
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Andre Dagostin
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Dezhe Z Jin
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Oregon Hearing Research Center, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
9
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
10
|
Zhou DJ, Pavuluri S, Snehal I, Schmidt CM, Situ-Kcomt M, Taraschenko O. Movement disorders associated with antiseizure medications: A systematic review. Epilepsy Behav 2022; 131:108693. [PMID: 35483204 PMCID: PMC9596228 DOI: 10.1016/j.yebeh.2022.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
New-onset movement disorders have been frequently reported in association with the use of antiseizure medications (ASMs). The frequency of specific motor manifestations and the spectrum of their semiology for various ASMs have not been well characterized. We carried out a systematic review of literature and conducted a search on CINAHL, Cochrane Library, EMBASE, MEDLINE, PsycINFO, and Scopus from inception to April 2021. We compiled the data for all currently available ASMs using the conventional terminology of movement disorders. Among 5123 manuscripts identified by the search, 437 met the inclusion criteria. The largest number of reports of abnormal movements were in association with phenobarbital, valproic acid, lacosamide, and perampanel, and predominantly included tremor and ataxia. The majority of attempted interventions for all agents were discontinuation of the offending drug or dose reduction which led to the resolution of symptoms in most patients. Familiarity with the movement disorder phenomenology previously encountered in relation with specific ASMs facilitates early recognition of adverse effects and timely institution of targeted interventions.
Collapse
Affiliation(s)
- Daniel J Zhou
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Spriha Pavuluri
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Isha Snehal
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Cynthia M Schmidt
- Leon S. McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE, United States
| | - Miguel Situ-Kcomt
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Olga Taraschenko
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
11
|
de Oliveira MCVA, Viana DCF, Silva AA, Pereira MC, Duarte FS, Pitta MGR, Pitta IR, Pitta MGR. Synthesis of novel thiazolidinic-phthalimide derivatives evaluated as new multi-target antiepileptic agents. Bioorg Chem 2021; 119:105548. [PMID: 34959174 DOI: 10.1016/j.bioorg.2021.105548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 12/25/2022]
Abstract
Epilepsy is a disease that affects millions of people around the globe and has a multifactorial cause. Inflammation is a process that can be involved in the development of seizures. Thus, the present study proposed the design and synthesis of new candidates for antiepileptic drugs that would also control the inflammatory process. Nine new derivatives of the substituted thiazophthalimide hybrid core were obtained with satisfactory purity ≥99% and yields between 27% and 87%. All compounds showed cell viability values greater than 90% in the culture of PBMC cells from healthy volunteers and, therefore, were not considered cytotoxic. These compounds modulated proinflammatory cytokines IFN-y and IL-17A and can mitigate inflammation. Acute toxicity studies of compound 7i in an animal model indicated that the compound has low toxicity and an LD50 greater than 2 g/kg in healthy adult rats. The same compound did not show positive results for anticonvulsant activity through the PTZ test. However, 7i demonstrates the interaction with the target GABA-A receptor in silico, indicating a possible activity as an agonist of that receptor. Thus, further studies are needed to investigate the anticonvulsant activity, in particular, using models in which the inflammatory process triggers epileptic seizures.
Collapse
Affiliation(s)
- Maria Cecilia V A de Oliveira
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Douglas C F Viana
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Anderson A Silva
- Laboratory of Experimental Neuropharmacology, Department of Physiology and Pharmacology, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Michelly C Pereira
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Filipe S Duarte
- Laboratory of Experimental Neuropharmacology, Department of Physiology and Pharmacology, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Maira G R Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Ivan R Pitta
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil; Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Marina G R Pitta
- Laboratory of Design and Drug Synthesis (LPSF), Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
12
|
The Control of Rat Hippocampal Gamma Oscillation Strength by BK Channel Activity. Neuroscience 2021; 475:220-228. [PMID: 34509547 DOI: 10.1016/j.neuroscience.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Neuronal network oscillations in the gamma frequency band (30-80 Hz, γ oscillations) are associated with the higher brain functions such as perception, attention, learning and memory. BK channels mediate rapid repolarization and fast afterhyperpolarization in neurons and control neuronal excitability, and potentially control hippocampal γ oscillations. In this study, we examined the effects of modulating BK channels on hippocampal γ oscillations in the absence or presence of Ca2+ influx through voltage-gated Ca2+ channels (VGCC) or Ca2+-permeable AMPA receptors (CP-AMPAR). We found that blocking BK channels enhanced γ power, without affecting oscillation frequency or regularity, suggesting that BK channel activity suppresses γ oscillations. Blocking either VGCC or CP-AMPAR itself enhanced γ power, and completely occluded the effect of BK channel blockers on γ oscillations, whereas blocking BK channels first could not prevent a further γ power increase upon blockade of either CP-AMPAR or VGCC. We propose that Ca2+ influx through VGCC or CP-AMPAR during γ oscillations, cause membrane BK channel activation and regulate hippocampal γ oscillation strength by negative feedback.
Collapse
|
13
|
Qian X, Wu YH, Che YY, Zhao W, Shu LF, Zhu J, Wang YH, Chen T. IP 3R-mediated activation of BK channels contributes to mGluR5-induced protection against spinal cord ischemia-reperfusion injury. Neurochem Int 2021; 150:105191. [PMID: 34547325 DOI: 10.1016/j.neuint.2021.105191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023]
Abstract
Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.
Collapse
Affiliation(s)
- Xiao Qian
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yong-Hui Wu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yuan-Yuan Che
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Wei Zhao
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Long-Fei Shu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
14
|
Ramakrishna Y, Sadeghi SG. Activation of GABA B receptors results in excitatory modulation of calyx terminals in rat semicircular canal cristae. J Neurophysiol 2020; 124:962-972. [PMID: 32816581 PMCID: PMC7509296 DOI: 10.1152/jn.00243.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Previous studies have found GABA in vestibular end organs. However, existence of GABA receptors or possible GABAergic effects on vestibular nerve afferents has not been investigated. The current study was conducted to determine whether activation of GABAB receptors affects calyx afferent terminals in the central region of the cristae of semicircular canals. We used patch-clamp recording in postnatal day 13-18 (P13-P18) Sprague-Dawley rats of either sex. Application of GABAB receptor agonist baclofen inhibited voltage-sensitive potassium currents. This effect was blocked by selective GABAB receptor antagonist CGP 35348. Application of antagonists of small (SK)- and large-conductance potassium (BK) channels almost completely blocked the effects of baclofen. The remaining baclofen effect was blocked by cadmium chloride, suggesting that it could be due to inhibition of voltage-gated calcium channels. Furthermore, baclofen had no effect in the absence of calcium in the extracellular fluid. Inhibition of potassium currents by GABAB activation resulted in an excitatory effect on calyx terminal action potential firing. While in the control condition calyces could only fire a single action potential during step depolarizations, in the presence of baclofen they fired continuously during steps and a few even showed repetitive discharge. We also found a decrease in threshold for action potential generation and a decrease in first-spike latency during step depolarization. These results provide the first evidence for the presence of GABAB receptors on calyx terminals, showing that their activation results in an excitatory effect and that GABA inputs could be used to modulate calyx response properties.NEW & NOTEWORTHY Using in vitro whole cell patch-clamp recordings from calyx terminals in the vestibular end organs, we show that activation of GABAB receptors result in an excitatory effect, with decreased spike-frequency adaptation and shortened first-spike latencies. Our results suggest that these effects are mediated through inhibition of calcium-sensitive potassium channels.
Collapse
Affiliation(s)
- Yugandhar Ramakrishna
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Communication Disorders and Sciences, California State University, Northridge, Northridge, California
| | - Soroush G Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, Buffalo, New York
- Neuroscience Program, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
15
|
Meredith FL, Rennie KJ. Persistent and resurgent Na + currents in vestibular calyx afferents. J Neurophysiol 2020; 124:510-524. [PMID: 32667253 DOI: 10.1152/jn.00124.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
16
|
Steinhardt CR, Fridman GY. Predicting Response of Spontaneously Firing Afferents to Prosthetic Pulsatile Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2929-2933. [PMID: 33018620 DOI: 10.1109/embc44109.2020.9175282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pulsatile electrical stimulation is used in neural prostheses such as the vestibular prosthesis. In a healthy vestibular system, head motion is encoded by changes in the firing rates of afferents around their spontaneous baseline rate. For people suffering from bilateral vestibular disorder (BVD), head motion no longer modulates firing rate. Vestibular prostheses use a gyroscope to detect head motion and stimulate neurons directly in a way that mimics natural modulation. Proper restoration of vestibular function relies on the ability of stimulation to evoke the same firing patterns as the healthy system. For this reason, it is necessary to understand what firing rates are produced for different stimulation parameters. Two stimulation parameters commonly controlled in pulsatile neuromodulation are pulse rate and pulse amplitude. Previous neural recording experiments in the vestibular nerve contradict widely held assumptions about the relationship between pulse rates and evoked spike activity, and the relationship between pulse amplitude and neural activity has not been explored. Here we use a well-established computational model of the vestibular afferent to simulate responses to different pulse rates and amplitudes. We confirm that our simulated neural results agree with the existing experimental data. Finally, we developed the "Action Potential Collision" (APC) equation that defines induced firing as a function of spontaneous firing rate, pulse rate, and pulse amplitude. We show that this relationship can successfully predict simulated vestibular activity by accounting for interactions between pulses and spontaneous firing.
Collapse
|
17
|
Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020; 168:107966. [PMID: 32120063 DOI: 10.1016/j.neuropharm.2020.107966] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
Antiseizure drugs (ASDs) prevent the occurrence of seizures; there is no evidence that they have disease-modifying properties. In the more than 160 years that orally administered ASDs have been available for epilepsy therapy, most agents entering clinical practice were either discovered serendipitously or with the use of animal seizure models. The ASDs originating from these approaches act on brain excitability mechanisms to interfere with the generation and spread of epileptic hyperexcitability, but they do not address the specific defects that are pathogenic in the epilepsies for which they are prescribed, which in most cases are not well understood. There are four broad classes of such ASD mechanisms: (1) modulation of voltage-gated sodium channels (e.g. phenytoin, carbamazepine, lamotrigine), voltage-gated calcium channels (e.g. ethosuximide), and voltage-gated potassium channels [e.g. retigabine (ezogabine)]; (2) enhancement of GABA-mediated inhibitory neurotransmission (e.g. benzodiazepines, tiagabine, vigabatrin); (3) attenuation of glutamate-mediated excitatory neurotransmission (e.g. perampanel); and (4) modulation of neurotransmitter release via a presynaptic action (e.g. levetiracetam, brivaracetam, gabapentin, pregabalin). In the past two decades there has been great progress in identifying the pathophysiological mechanisms of many genetic epilepsies. Given this new understanding, attempts are being made to engineer specific small molecule, antisense and gene therapies that functionally reverse or structurally correct pathogenic defects in epilepsy syndromes. In the near future, these new therapies will begin a paradigm shift in the treatment of some rare genetic epilepsy syndromes, but targeted therapies will remain elusive for the vast majority of epilepsies until their causes are identified. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
18
|
Graded Coexpression of Ion Channel, Neurofilament, and Synaptic Genes in Fast-Spiking Vestibular Nucleus Neurons. J Neurosci 2019; 40:496-508. [PMID: 31719168 DOI: 10.1523/jneurosci.1500-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022] Open
Abstract
Computations that require speed and temporal precision are implemented throughout the nervous system by neurons capable of firing at very high rates, rapidly encoding and transmitting a rich amount of information, but with substantial metabolic and physical costs. For economical fast spiking and high throughput information processing, neurons need to optimize multiple biophysical properties in parallel, but the mechanisms of this coordination remain unknown. We hypothesized that coordinated gene expression may underlie the coordinated tuning of the biophysical properties required for rapid firing and signal transmission. Taking advantage of the diversity of fast-spiking cell types in the medial vestibular nucleus of mice of both sexes, we examined the relationship between gene expression, ionic currents, and neuronal firing capacity. Across excitatory and inhibitory cell types, genes encoding voltage-gated ion channels responsible for depolarizing and repolarizing the action potential were tightly coexpressed, and their absolute expression levels increased with maximal firing rate. Remarkably, this coordinated gene expression extended to neurofilaments and specific presynaptic molecules, providing a mechanism for coregulating axon caliber and transmitter release to match firing capacity. These findings suggest the presence of a module of genes, which is coexpressed in a graded manner and jointly tunes multiple biophysical properties for economical differentiation of firing capacity. The graded tuning of fast-spiking capacity by the absolute expression levels of specific ion channels provides a counterexample to the widely held assumption that cell-type-specific firing patterns can be achieved via a vast combination of different ion channels.SIGNIFICANCE STATEMENT Although essential roles of fast-spiking neurons in various neural circuits have been widely recognized, it remains unclear how neurons efficiently coordinate the multiple biophysical properties required to maintain high rates of action potential firing and transmitter release. Taking advantage of diverse fast-firing capacities among medial vestibular nucleus neurons of mice, we identify a group of ion channel, synaptic, and structural genes that exhibit mutually correlated expression levels, which covary with firing capacity. Coexpression of this fast-spiking gene module may be a basic strategy for neurons to efficiently and coordinately tune the speed of action potential generation and propagation and transmitter release at presynaptic terminals.
Collapse
|
19
|
El-Atab N, Shaikh SF, Hussain MM. Nano-scale transistors for interfacing with brain: design criteria, progress and prospect. NANOTECHNOLOGY 2019; 30:442001. [PMID: 31342924 DOI: 10.1088/1361-6528/ab3534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
According to the World Health Organization, one quarter of the world's population suffers from various neurological disorders ranging from depression to Alzheimer's disease. Thus, understanding the operation mechanism of the brain enables us to help those who are suffering from these diseases. In addition, recent clinical medicine employs electronic brain implants, despite the fact of being invasive, to treat disorders ranging from severe coronary conditions to traumatic injuries. As a result, the deaf could hear, the blind could see, and the paralyzed could control robotic arms and legs. Due to the requirement of high data management capability with a power consumption as low as possible, designing nanoscale transistors as essential I/O electronics is a complex task. Herein, we review the essential design criteria for such nanoscale transistors, progress and prospect for implantable brain-machine-interface electronics. This article also discusses their technological challenges for practical implementation.
Collapse
Affiliation(s)
- Nazek El-Atab
- MMH Labs, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | | |
Collapse
|
20
|
Gagnon-Turcotte G, Keramidis I, Ethier C, De Koninck Y, Gosselin B. A Wireless Electro-Optic Headstage With a 0.13- μm CMOS Custom Integrated DWT Neural Signal Decoder for Closed-Loop Optogenetics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1036-1051. [PMID: 31352352 DOI: 10.1109/tbcas.2019.2930498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a wireless electro-optic headstage that uses a 0.13- μm CMOS custom integrated circuit (IC) implementing a digital neural decoder (ND-IC) for enabling real-time closed-loop (CL) optogenetics. The ND-IC processes the neural activity data using three digital cores: 1) the detector core detects and extracts the action potential (AP) of individual neurons by using an adaptive threshold; 2) the data compression core compresses the detected AP by using an efficient Symmlet-2 discrete wavelet transform (DWT) processor for decreasing the amount of data to be transmitted by the low-power wireless link; and 3) the classification core sorts the compressed AP into separated clusters on the fly according to their wave shapes. The ND-IC encompasses several innovations: 1) the compression core decreases the complexity from O(n 2) to O(n · log(n)) compared to the previous solutions, while using two times less memory, thanks to the use of a new coefficient sorting tree; and 2) the AP classification core reuses both the compressed DWT coefficients to perform implicit dimensionality reduction, which allows for performing intensive signal processing on-chip, while increasing power and hardware efficiency. This core also reuses the signal standard deviation already computed by the AP detector core as threshold for performing automatic AP sorting. The headstage also introduces innovations by enabling a new wireless CL scheme between the neural data acquisition module and the optical stimulator. Our CL scheme uses the AP sorting and timing information produced by the ND-IC for detecting complex firing patterns within the brain. The headstage is also smaller (1.13 cm 3), lighter (3.0 g with a 40 mAh battery) and less invasive than the previous solutions, while providing a measured autonomy of 2h40, with the ND-IC. The whole system and the ND-IC are first validated in vivo in the LD thalamus of a Long-Evans rat, and then in freely-moving CL experiments involving a mouse virally expressing ChR2-mCherry in inhibitory neurons of the prelimbic cortex, and the results show that our system works well within an in vivo experimental setting with a freely moving mouse.
Collapse
|
21
|
Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol 2019; 151:1173-1189. [PMID: 31427379 PMCID: PMC6785733 DOI: 10.1085/jgp.201912457] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Bailey et al. review a new neurological channelopathy associated with KCNMA1, encoding the BK voltage- and Ca2+-activated K+ channel. KCNMA1 encodes the pore-forming α subunit of the “Big K+” (BK) large conductance calcium and voltage-activated K+ channel. BK channels are widely distributed across tissues, including both excitable and nonexcitable cells. Expression levels are highest in brain and muscle, where BK channels are critical regulators of neuronal excitability and muscle contractility. A global deletion in mouse (KCNMA1−/−) is viable but exhibits pathophysiology in many organ systems. Yet despite the important roles in animal models, the consequences of dysfunctional BK channels in humans are not well characterized. Here, we summarize 16 rare KCNMA1 mutations identified in 37 patients dating back to 2005, with an array of clinically defined pathological phenotypes collectively referred to as “KCNMA1-linked channelopathy.” These mutations encompass gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity, as well as several variants of unknown significance (VUS). Human KCNMA1 mutations are primarily associated with neurological conditions, including seizures, movement disorders, developmental delay, and intellectual disability. Due to the recent identification of additional patients, the spectrum of symptoms associated with KCNMA1 mutations has expanded but remains primarily defined by brain and muscle dysfunction. Emerging evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with semi-distinct patient symptoms, such as paroxysmal nonkinesigenic dyskinesia (PNKD) with GOF and ataxia with LOF. However, due to the de novo origins for the majority of KCNMA1 mutations identified to date and the phenotypic variability exhibited by patients, additional evidence is required to establish causality in most cases. The symptomatic picture developing from patients with KCNMA1-linked channelopathy highlights the importance of better understanding the roles BK channels play in regulating cell excitability. Establishing causality between KCNMA1-linked BK channel dysfunction and specific patient symptoms may reveal new treatment approaches with the potential to increase therapeutic efficacy over current standard regimens.
Collapse
Affiliation(s)
- Cole S Bailey
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Hans J Moldenhauer
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Su Mi Park
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Sotirios Keros
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Andrea L Meredith
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
22
|
Eshra A, Hirrlinger P, Hallermann S. Enriched Environment Shortens the Duration of Action Potentials in Cerebellar Granule Cells. Front Cell Neurosci 2019; 13:289. [PMID: 31379501 PMCID: PMC6646744 DOI: 10.3389/fncel.2019.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment for rodents is known to enhance motor performance. Structural and molecular changes have been reported to be coupled with an enriched environment, but functional alterations of single neurons remain elusive. Here, we compared mice raised under control conditions and an enriched environment. We tested the motor performance on a rotarod and subsequently performed whole-cell patch-clamp recordings in cerebellar slices focusing on granule cells of lobule IX, which is known to receive vestibular input. Mice raised in an enriched environment were able to remain on an accelerating rotarod for a longer period of time. Electrophysiological analyses revealed normal passive properties of granule cells and a functional adaptation to the enriched environment, manifested in faster action potentials (APs) with a higher depolarized voltage threshold and larger AP overshoot. Furthermore, the maximal firing frequency of APs was higher in mice raised in an enriched environment. These data show that enriched environment causes specific alterations in the biophysical properties of neurons. Furthermore, we speculate that the ability of cerebellar granule cells to generate higher firing frequencies improves motor performance.
Collapse
Affiliation(s)
- Abdelmoneim Eshra
- Medical Faculty, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Petra Hirrlinger
- Medical Faculty, Medizinisch-Experimentelles Zentrum, Leipzig University, Leipzig, Germany
| | - Stefan Hallermann
- Medical Faculty, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| |
Collapse
|
23
|
Tighilet B, Leonard J, Mourre C, Chabbert C. Apamin treatment accelerates equilibrium recovery and gaze stabilization in unilateral vestibular neurectomized cats: Cellular and behavioral aspects. Neuropharmacology 2019; 144:133-142. [DOI: 10.1016/j.neuropharm.2018.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|
24
|
Sun Z, Williams DJ, Xu B, Gogos JA. Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Transl Psychiatry 2018; 8:85. [PMID: 29666363 PMCID: PMC5904157 DOI: 10.1038/s41398-018-0132-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/19/2017] [Accepted: 02/18/2018] [Indexed: 02/05/2023] Open
Abstract
Given its high penetrance, clearly delineated and evolutionary conserved genomic structure, mouse models of the 22q11.2 deletion provide an ideal organism-based and cell-based model of this well-established disease mutation for schizophrenia. In this study we examined the development of changes in intrinsic properties, action potential firing and synaptic transmission using whole-cell patch-clamp recordings of cultured embryonic cortical neurons from Df(16)A +/- and WT mice at DIV7 and DIV14, respectively. Compared to neurons from the WT littermates, significantly increased input resistance and decreased rising rate of action potential was observed in Df(16)A +/- mice at DIV7 but not at DIV14 indicative of delayed neuronal maturation. Neurons from Df(16)A +/- mice also showed significantly higher cellular excitability at both DIV7 and DIV14. Evaluation of Ca2+ homeostasis perturbation caused by 22q11.2 deletion using calcium imaging revealed a significantly lower amplitude of calcium elevation and a smaller area under the curve after depolarization in neurons from Df(16)A +/- mice at both DIV7 and DIV14. Furthermore, the properties of inhibitory synaptic events were significantly altered in Df(16)A +/- mice. We identified changes in mRNA expression profiles, especially in ion channels, receptors, and transporters that may underlie the neurophysiological effects of this mutation. Overall, we show a number of alterations in electrophysiological and calcium homeostatic properties of embryonic cortical neurons from a 22q11.2 deletion mouse model at different culture times and provide valuable insights towards revealing disease mechanisms and discovery of new therapeutic compounds.
Collapse
Affiliation(s)
- Ziyi Sun
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China. .,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| | - Damian J. Williams
- 0000 0001 2285 2675grid.239585.0Columbia Stem Cell Core Facility, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Bin Xu
- 0000 0001 2285 2675grid.239585.0Department of Psychiatry, Columbia University Medical Center, New York, NY 10032 USA
| | - Joseph A. Gogos
- 0000000419368729grid.21729.3fDepartment of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA ,0000 0001 2285 2675grid.239585.0Department of Neuroscience, Columbia University Medical Center, New York, NY 10032 USA
| |
Collapse
|
25
|
Giraudet F, Charles P, Mom T, Boespflug-Tanguy O, Dürr A, Deltenre P, Avan P. Rapid exhaustion of auditory neural conduction in a prototypical mitochondrial disease, Friedreich ataxia. Clin Neurophysiol 2018; 129:1121-1129. [PMID: 29625343 DOI: 10.1016/j.clinph.2018.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 03/13/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In patients with Friedreich ataxia (FRDA), mitochondrial failure leads to impaired cellular energetics. Since many FRDA patients have impaired hearing in noise, we investigated the objective consequences on standard auditory brainstem-evoked responses (ABRs). METHODS In 37 FRDA patients, among whom 34 with abnormal standard ABRs, hearing sensitivity, speech-in-noise intelligibility and otoacoustic emissions were controlled. ABR recordings were split into four consecutive segments of the total time frame used for data collection, thus allowing the dynamics of ABR averaging to be observed. RESULTS Most ears showed features of an auditory neuropathy spectrum disorder with flattened ABRs and impaired speech-in-noise intelligibility contrasting with near-normal hearing sensitivity and normal preneural responses. Yet split-ABRs revealed short-lived wave patterns in 26 out of 68 ears with flattened standard ABRs (38%). While averaging went on, the pattern of waves shifted so that interwave latencies increased by 35% on average. CONCLUSIONS In FRDA, the assumption of stationarity used for extracting standard ABRs is invalid. The preservation of early split-ABRs indicates no short-term dyssynchrony of action potentials. A large decrease in conduction velocity along auditory neurons occurs within seconds, attributed to fast energetic failure. SIGNIFICANCE This model of metabolic sensory neuropathy warns against exposure of metabolically-impaired patients to sustained auditory stimulation.
Collapse
Affiliation(s)
- Fabrice Giraudet
- Laboratory of Neurosensory Biophysics, UMR INSERM 1107, University Clermont Auvergne, Clermont-Ferrand, France
| | - Perrine Charles
- APHP Department of Genetics, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Thierry Mom
- Laboratory of Neurosensory Biophysics, UMR INSERM 1107, University Clermont Auvergne, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Assistance Publique des Hopitaux de Paris (APHP), Reference Center for Rare Diseases "Leukodystrophies," Child Neurology and Metabolic Disorders Department, Robert Debré University Hospital, Paris, France; Inserm, Paris Diderot University, UMR 1141, DHU PROTECT, Sorbonne Paris-Cite, Robert Debré University Hospital, Paris, France
| | - Alexandra Dürr
- APHP Department of Genetics, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; ICM, Institut du Cerveau et de la Moelle, INSERM U1127, CNRS UMR7225, Sorbonne Universités - UPMC Université Paris VI UMR-S1127, Paris, France
| | - Paul Deltenre
- CHU Brugmann, Université Libre de Bruxelles, Belgium
| | - Paul Avan
- Laboratory of Neurosensory Biophysics, UMR INSERM 1107, University Clermont Auvergne, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France.
| |
Collapse
|
26
|
Smith GT, Proffitt MR, Smith AR, Rusch DB. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:93-112. [PMID: 29058069 DOI: 10.1007/s00359-017-1223-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Sexually dimorphic behaviors are often regulated by androgens and estrogens. Steroid receptors and metabolism are control points for evolutionary changes in sexual dimorphism. Electric communication signals of South American knifefishes are a model for understanding the evolution and physiology of sexually dimorphic behavior. These signals are regulated by gonadal steroids and controlled by a simple neural circuit. Sexual dimorphism of the signals varies across species. We used transcriptomics to examine mechanisms for sex differences in electric organ discharges (EODs) of two closely related species, Apteronotus leptorhynchus and Apteronotus albifrons, with reversed sexual dimorphism in their EODs. The pacemaker nucleus (Pn), which controls EOD frequency (EODf), expressed transcripts for steroid receptors and metabolizing enzymes, including androgen receptors, estrogen receptors, aromatase, and 5α-reductase. The Pn expressed mRNA for ion channels likely to regulate the high-frequency activity of Pn neurons and for neuromodulator and neurotransmitter receptors that may regulate EOD modulations used in aggression and courtship. Expression of several ion channel genes, including those for Kir3.1 inward-rectifying potassium channels and sodium channel β1 subunits, was sex-biased or correlated with EODf in ways consistent with EODf sex differences. Our findings provide a basis for future studies to characterize neurogenomic mechanisms by which sex differences evolve.
Collapse
Affiliation(s)
- G Troy Smith
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA. .,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
| | - Melissa R Proffitt
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - Adam R Smith
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
27
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
Maisel B, Lindenberg K. Channel noise effects on first spike latency of a stochastic Hodgkin-Huxley neuron. Phys Rev E 2017; 95:022414. [PMID: 28297877 DOI: 10.1103/physreve.95.022414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 06/06/2023]
Abstract
While it is widely accepted that information is encoded in neurons via action potentials or spikes, it is far less understood what specific features of spiking contain encoded information. Experimental evidence has suggested that the timing of the first spike may be an energy-efficient coding mechanism that contains more neural information than subsequent spikes. Therefore, the biophysical features of neurons that underlie response latency are of considerable interest. Here we examine the effects of channel noise on the first spike latency of a Hodgkin-Huxley neuron receiving random input from many other neurons. Because the principal feature of a Hodgkin-Huxley neuron is the stochastic opening and closing of channels, the fluctuations in the number of open channels lead to fluctuations in the membrane voltage and modify the timing of the first spike. Our results show that when a neuron has a larger number of channels, (i) the occurrence of the first spike is delayed and (ii) the variation in the first spike timing is greater. We also show that the mean, median, and interquartile range of first spike latency can be accurately predicted from a simple linear regression by knowing only the number of channels in the neuron and the rate at which presynaptic neurons fire, but the standard deviation (i.e., neuronal jitter) cannot be predicted using only this information. We then compare our results to another commonly used stochastic Hodgkin-Huxley model and show that the more commonly used model overstates the first spike latency but can predict the standard deviation of first spike latencies accurately. We end by suggesting a more suitable definition for the neuronal jitter based upon our simulations and comparison of the two models.
Collapse
Affiliation(s)
- Brenton Maisel
- Department of Chemistry and Biochemistry, and BioCircuits Institute, University of California San Diego, La Jolla, California 92093-0340, USA
| | - Katja Lindenberg
- Department of Chemistry and Biochemistry, and BioCircuits Institute, University of California San Diego, La Jolla, California 92093-0340, USA
| |
Collapse
|
29
|
Gagnon-Turcotte G, LeChasseur Y, Bories C, Messaddeq Y, De Koninck Y, Gosselin B. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1-14. [PMID: 27337721 DOI: 10.1109/tbcas.2016.2547864] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents a wireless headstage with real-time spike detection and data compression for combined optogenetics and multichannel electrophysiological recording. The proposed headstage, which is intended to perform both optical stimulation and electrophysiological recordings simultaneously in freely moving transgenic rodents, is entirely built with commercial off-the-shelf components, and includes 32 recording channels and 32 optical stimulation channels. It can detect, compress and transmit full action potential waveforms over 32 channels in parallel and in real time using an embedded digital signal processor based on a low-power field programmable gate array and a Microblaze microprocessor softcore. Such a processor implements a complete digital spike detector featuring a novel adaptive threshold based on a Sigma-delta control loop, and a wavelet data compression module using a new dynamic coefficient re-quantization technique achieving large compression ratios with higher signal quality. Simultaneous optical stimulation and recording have been performed in-vivo using an optrode featuring 8 microelectrodes and 1 implantable fiber coupled to a 465-nm LED, in the somatosensory cortex and the Hippocampus of a transgenic mouse expressing ChannelRhodospin (Thy1::ChR2-YFP line 4) under anesthetized conditions. Experimental results show that the proposed headstage can trigger neuron activity while collecting, detecting and compressing single cell microvolt amplitude activity from multiple channels in parallel while achieving overall compression ratios above 500. This is the first reported high-channel count wireless optogenetic device providing simultaneous optical stimulation and recording. Measured characteristics show that the proposed headstage can achieve up to 100% of true positive detection rate for signal-to-noise ratio (SNR) down to 15 dB, while achieving up to 97.28% at SNR as low as 5 dB. The implemented prototype features a lifespan of up to 105 minutes, and uses a lightweight (2.8 g) and compact [Formula: see text] rigid-flex printed circuit board.
Collapse
|
30
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
31
|
Delvendahl I, Hallermann S. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS. Trends Neurosci 2016; 39:722-737. [DOI: 10.1016/j.tins.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
|
32
|
Darvas F, Mehić E, Caler CJ, Ojemann JG, Mourad PD. Toward Deep Brain Monitoring with Superficial EEG Sensors Plus Neuromodulatory Focused Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1834-47. [PMID: 27181686 PMCID: PMC5768413 DOI: 10.1016/j.ultrasmedbio.2016.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 05/09/2023]
Abstract
Noninvasive recordings of electrophysiological activity have limited anatomic specificity and depth. We hypothesized that spatially tagging a small volume of brain with a unique electroencephalography (EEG) signal induced by pulsed focused ultrasound could overcome those limitations. As a first step toward testing this hypothesis, we applied transcranial ultrasound (2 MHz, 200-ms pulses applied at 1050 Hz for 1 s at a spatial peak temporal average intensity of 1.4 W/cm(2)) to the brains of anesthetized rats while simultaneously recording EEG signals. We observed a significant 1050-Hz electrophysiological signal only when ultrasound was applied to a living brain. Moreover, amplitude demodulation of the EEG signal at 1050 Hz yielded measurement of gamma band (>30 Hz) brain activity consistent with direct measurements of that activity. These results represent preliminary support for use of pulsed focused ultrasound as a spatial tagging mechanism for non-invasive EEG-based mapping of deep brain activity with high spatial resolution.
Collapse
Affiliation(s)
- Felix Darvas
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Edin Mehić
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Connor J Caler
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jeff G Ojemann
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Pierre D Mourad
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA; Division of Engineering and Mathematics, University of Washington, Bothell, Washington, USA.
| |
Collapse
|
33
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
34
|
Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons. J Neurosci 2016; 35:16404-17. [PMID: 26674866 DOI: 10.1523/jneurosci.5291-14.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell.
Collapse
|
35
|
Yu L, Zhang XY, Cao SL, Peng SY, Ji DY, Zhu JN, Wang JJ. Na(+) -Ca(2+) Exchanger, Leak K(+) Channel and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Comediate the Histamine-Induced Excitation on Rat Inferior Vestibular Nucleus Neurons. CNS Neurosci Ther 2015; 22:184-93. [PMID: 26387685 DOI: 10.1111/cns.12451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Antihistaminergic drugs have traditionally been used to treat vestibular disorders in the clinic. As a potential central target for antihistaminergic drugs, the inferior vestibular nucleus (IVN) is the largest subnucleus of the central vestibular nuclear complex and is considered responsible for vestibular-autonomic responses and integration of vestibular, cerebellar, and multisensory signals. However, the role of histamine on the IVN, particularly the underlying mechanisms, is still not clear. METHODS Using whole-cell patch-clamp recordings on rat brain slices, histamine-induced effect on IVN neurons and the underlying receptor and ionic mechanisms were investigated. RESULTS We found that histamine remarkably depolarized both spontaneous firing neurons and silent neurons in IVN via both histamine H1 and histamine H2 receptors. Furthermore, Na(+) -Ca(2+) exchangers (NCXs) and background leak K(+) channels linked to H1 receptors and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to H2 receptors comediate the histamine-induced depolarization on IVN neurons. CONCLUSION These results demonstrate the multiple ionic mechanisms underlying the excitatory modulation of histamine/central histaminergic system on IVN neurons and the related vestibular reflexes and functions. The findings also suggest potential targets for the treatment of vestibular disorders in the clinic, at the level of ionic channels in central vestibular nuclei.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Liang Cao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shi-Yu Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Deng-Yu Ji
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Patel RR, Barbosa C, Xiao Y, Cummins TR. Human Nav1.6 Channels Generate Larger Resurgent Currents than Human Nav1.1 Channels, but the Navβ4 Peptide Does Not Protect Either Isoform from Use-Dependent Reduction. PLoS One 2015; 10:e0133485. [PMID: 26182346 PMCID: PMC4504674 DOI: 10.1371/journal.pone.0133485] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/28/2015] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated sodium channels are responsible for the initiation and propagation of action potentials (APs). Two brain isoforms, Nav1.1 and Nav1.6, have very distinct cellular and subcellular expression. Specifically, Nav1.1 is predominantly expressed in the soma and proximal axon initial segment of fast-spiking GABAergic neurons, while Nav1.6 is found at the distal axon initial segment and nodes of Ranvier of both fast-spiking GABAergic and excitatory neurons. Interestingly, an auxiliary voltage-gated sodium channel subunit, Navβ4, is also enriched in the axon initial segment of fast-spiking GABAergic neurons. The C-terminal tail of Navβ4 is thought to mediate resurgent sodium current, an atypical current that occurs immediately following the action potential and is predicted to enhance excitability. To better understand the contribution of Nav1.1, Nav1.6 and Navβ4 to high frequency firing, we compared the properties of these two channel isoforms in the presence and absence of a peptide corresponding to part of the C-terminal tail of Navβ4. We used whole-cell patch clamp recordings to examine the biophysical properties of these two channel isoforms in HEK293T cells and found several differences between human Nav1.1 and Nav1.6 currents. Nav1.1 channels exhibited slower closed-state inactivation but faster open-state inactivation than Nav1.6 channels. We also observed a greater propensity of Nav1.6 to generate resurgent currents, most likely due to its slower kinetics of open-state inactivation, compared to Nav1.1. These two isoforms also showed differential responses to slow and fast AP waveforms, which were altered by the Navβ4 peptide. Although the Navβ4 peptide substantially increased the rate of recovery from apparent inactivation, Navβ4 peptide did not protect either channel isoform from undergoing use-dependent reduction with 10 Hz step-pulse stimulation or trains of slow or fast AP waveforms. Overall, these two channels have distinct biophysical properties that may differentially contribute to regulating neuronal excitability.
Collapse
Affiliation(s)
- Reesha R Patel
- Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cindy Barbosa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yucheng Xiao
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Theodore R Cummins
- Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
37
|
McElvain LE, Faulstich M, Jeanne JM, Moore JD, du Lac S. Implementation of linear sensory signaling via multiple coordinated mechanisms at central vestibular nerve synapses. Neuron 2015; 85:1132-44. [PMID: 25704949 DOI: 10.1016/j.neuron.2015.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 11/10/2014] [Accepted: 01/16/2015] [Indexed: 12/29/2022]
Abstract
Signal transfer in neural circuits is dynamically modified by the recent history of neuronal activity. Short-term plasticity endows synapses with nonlinear transmission properties, yet synapses in sensory and motor circuits are capable of signaling linearly over a wide range of presynaptic firing rates. How do such synapses achieve rate-invariant transmission despite history-dependent nonlinearities? Here, ultrastructural, biophysical, and computational analyses demonstrate that concerted molecular, anatomical, and physiological refinements are required for central vestibular nerve synapses to linearly transmit rate-coded sensory signals. Vestibular synapses operate in a physiological regime of steady-state depression imposed by tonic firing. Rate-invariant transmission relies on brief presynaptic action potentials that delimit calcium influx, large pools of rapidly mobilized vesicles, multiple low-probability release sites, robust postsynaptic receptor sensitivity, and efficient transmitter clearance. Broadband linear synaptic filtering of head motion signals is thus achieved by coordinately tuned synaptic machinery that maintains physiological operation within inherent cell biological limitations.
Collapse
Affiliation(s)
- Lauren E McElvain
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal.
| | | | - James M Jeanne
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Moore
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sascha du Lac
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, La Jolla, CA 92037, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Hamodeh S, Baizer J, Sugihara I, Sultan F. Systematic analysis of neuronal wiring of the rodent deep cerebellar nuclei reveals differences reflecting adaptations at the neuronal circuit and internuclear levels. J Comp Neurol 2015; 522:2481-97. [PMID: 24477707 DOI: 10.1002/cne.23545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 11/11/2022]
Abstract
A common view of the architecture of different brain regions is that, despite their heterogeneity, they have optimized their wiring schemes to make maximal use of space. Based on experimental findings, computational models have delineated how about two-thirds of the neuropil is filled out with dendrites and axons optimizing cable costs and conduction time while keeping the connectivity at the highest level. However, whether this assumption can be generalized to all brain regions has not yet been tested. Here we quantified and charted the components of the neuropil in the four deep cerebellar nuclei (DCN) of the rat's brain. We segmented and traced the neuropil stained with one of two antibodies, one antibody against dendritic microtubule-associated proteins (MAP2a,b) and the second against the Purkinje cell axons (PCP2). We compared fiber length density, average fiber diameter, and volume fraction within different components of the DCN in a random, systematic fashion. We observed differences in dendritic and axonal fiber length density, average fiber diameters, and volume fraction within the four different nuclei that make up the DCN. We observe a relative increase in the length density of dendrites and Purkinje cell axons in two of the DCN, namely, the posterior interposed nucleus and the lateral nucleus. Furthermore, the DCN have a surprisingly low volume fraction of their dendritic length density, which we propose is related to their special circuitry. In summary, our results show previously unappreciated functional adaptations among these nuclei.
Collapse
Affiliation(s)
- Salah Hamodeh
- Department of Cognitive Neurology, HIH for Clinical Brain Research, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
39
|
Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse. Neuron 2014; 84:152-163. [DOI: 10.1016/j.neuron.2014.08.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2014] [Indexed: 01/27/2023]
|
40
|
Allken V, Chepkoech JL, Einevoll GT, Halnes G. The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus. PLoS One 2014; 9:e107780. [PMID: 25268996 PMCID: PMC4182431 DOI: 10.1371/journal.pone.0107780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/17/2014] [Indexed: 12/31/2022] Open
Abstract
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.
Collapse
Affiliation(s)
- Vaneeda Allken
- Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Joy-Loi Chepkoech
- Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway; Dept. of Psychology, University of Oslo, Oslo, Norway
| | - Gaute T Einevoll
- Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway; Dept. of Physics, University of Oslo, Oslo, Norway
| | - Geir Halnes
- Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
41
|
Zhang XY, Yu L, Zhuang QX, Peng SY, Zhu JN, Wang JJ. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 2014; 170:156-69. [PMID: 23713466 DOI: 10.1111/bph.12256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/06/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. EXPERIMENTAL APPROACH Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H₁, H₂ and H₄ receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H₁, H₂ and H₄ receptors and for subtypes of Na⁺ -Ca²⁺ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. KEY RESULTS A marked postsynaptic excitatory effect, co-mediated by histamine H₁ and H₂ receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H₁ and H₂ rather than H₄ receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H₁ receptors, whereas HCN channels were responsible for excitation induced by activation of H₂ receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. CONCLUSION AND IMPLICATIONS NCXs coupled to H₁ receptors and HCN channels linked to H₂ receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Resurgent Na(+) current results from a distinctive form of Na(+) channel gating, originally identified in cerebellar Purkinje neurons. In these neurons, the tetrodotoxin-sensitive voltage-gated Na(+) channels responsible for action potential firing have specialized mechanisms that reduce the likelihood that they accumulate in fast inactivated states, thereby shortening refractory periods and permitting rapid, repetitive, and/or burst firing. Under voltage clamp, step depolarizations evoke transient Na(+) currents that rapidly activate and quickly decay, and step repolarizations elicit slower channel reopening, or a 'resurgent' current. The generation of resurgent current depends on a factor in the Na(+) channel complex, probably a subunit such as NaVβ4 (Scn4b), which blocks open Na(+) channels at positive voltages, competing with the fast inactivation gate, and unblocks at negative voltages, permitting recovery from an open channel block along with a flow of current. Following its initial discovery, resurgent Na(+) current has been found in nearly 20 types of neurons. Emerging research suggests that resurgent current is preferentially increased in a variety of clinical conditions associated with altered cellular excitability. Here we review the biophysical, molecular and structural mechanisms of resurgent current and their relation to the normal functions of excitable cells as well as pathophysiology.
Collapse
Affiliation(s)
- Amanda H Lewis
- Ion Channel Research Unit & Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
43
|
Abstract
The electrical output of neurons relies critically on voltage- and calcium-gated ion channels. The traditional view of ion channels is that they operate independently of each other in the plasma membrane in a manner that could be predicted according to biophysical characteristics of the isolated current. However, there is increasing evidence that channels interact with each other not just functionally but also physically. This is exemplified in the case of Cav3 T-type calcium channels, where new work indicates the ability to form signaling complexes with different types of calcium-gated and even voltage-gated potassium channels. The formation of a Cav3-K complex provides the calcium source required to activate KCa1.1 or KCa3.1 channels and, furthermore, to bestow a calcium-dependent regulation of Kv4 channels via associated KChIP proteins. Here, we review these interactions and discuss their significance in the context of neuronal firing properties.
Collapse
|
44
|
Marblestone AH, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR, Glaser JI, Amodei D, Stranges PB, Kalhor R, Dalrymple DA, Seo D, Alon E, Maharbiz MM, Carmena JM, Rabaey JM, Boyden ES, Church GM, Kording KP. Physical principles for scalable neural recording. Front Comput Neurosci 2013; 7:137. [PMID: 24187539 PMCID: PMC3807567 DOI: 10.3389/fncom.2013.00137] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/23/2013] [Indexed: 12/20/2022] Open
Abstract
Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power-bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices.
Collapse
Affiliation(s)
- Adam H. Marblestone
- Biophysics Program, Harvard UniversityBoston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBoston, MA, USA
| | | | - Yael G. Maguire
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
- Plum Labs LLCCambridge, MA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadena, CA, USA
| | | | - Joshua I. Glaser
- Interdepartmental Neuroscience Program, Northwestern UniversityChicago, IL, USA
| | - Dario Amodei
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Reza Kalhor
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
| | - David A. Dalrymple
- Biophysics Program, Harvard UniversityBoston, MA, USA
- NemaloadSan Francisco, CA, USA
- Media Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Dongjin Seo
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Elad Alon
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Michel M. Maharbiz
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Jose M. Carmena
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California at BerkeleyBerkeley, CA, USA
| | - Jan M. Rabaey
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Edward S. Boyden
- Media Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA
- Departments of Brain and Cognitive Sciences and Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - George M. Church
- Biophysics Program, Harvard UniversityBoston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBoston, MA, USA
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
| | - Konrad P. Kording
- Departments of Physical Medicine and Rehabilitation and of Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Sensory Motor Performance Program, The Rehabilitation Institute of ChicagoChicago, IL, USA
| |
Collapse
|
45
|
Rehak R, Bartoletti TM, Engbers JDT, Berecki G, Turner RW, Zamponi GW. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 2013; 8:e61844. [PMID: 23626738 PMCID: PMC3633930 DOI: 10.1371/journal.pone.0061844] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/14/2013] [Indexed: 02/03/2023] Open
Abstract
Calcium-activated potassium channels of the KCa1.1 class are known to regulate repolarization of action potential discharge through a molecular association with high voltage-activated calcium channels. The current study examined the potential for low voltage-activated Cav3 (T-type) calcium channels to interact with KCa1.1 when expressed in tsA-201 cells and in rat medial vestibular neurons (MVN) in vitro. Expression of the channel α-subunits alone in tsA-201 cells was sufficient to enable Cav3 activation of KCa1.1 current. Cav3 calcium influx induced a 50 mV negative shift in KCa1.1 voltage for activation, an interaction that was blocked by Cav3 or KCa1.1 channel blockers, or high internal EGTA. Cav3 and KCa1.1 channels coimmunoprecipitated from lysates of either tsA-201 cells or rat brain, with Cav3 channels associating with the transmembrane S0 segment of the KCa1.1 N-terminus. KCa1.1 channel activation was closely aligned with Cav3 calcium conductance in that KCa1.1 current shared the same low voltage dependence of Cav3 activation, and was blocked by voltage-dependent inactivation of Cav3 channels or by coexpressing a non calcium-conducting Cav3 channel pore mutant. The Cav3-KCa1.1 interaction was found to function highly effectively in a subset of MVN neurons by activating near –50 mV to contribute to spike repolarization and gain of firing. Modelling data indicate that multiple neighboring Cav3-KCa1.1 complexes must act cooperatively to raise calcium to sufficiently high levels to permit KCa1.1 activation. Together the results identify a novel Cav3-KCa1.1 signaling complex where Cav3-mediated calcium entry enables KCa1.1 activation over a wide range of membrane potentials according to the unique voltage profile of Cav3 calcium channels, greatly extending the roles for KCa1.1 potassium channels in controlling membrane excitability.
Collapse
Affiliation(s)
- Renata Rehak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Theodore M. Bartoletti
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jordan D. T. Engbers
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Geza Berecki
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Ray W. Turner
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
46
|
Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells. J Neurosci 2013; 32:16345-59. [PMID: 23152617 DOI: 10.1523/jneurosci.3715-12.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mouse chromaffin cells (MCCs) fire spontaneous action potentials (APs) at rest. Ca(v)1.3 L-type calcium channels sustain the pacemaker current, and their loss results in depolarized resting potentials (V(rest)), spike broadening, and remarkable switches into depolarization block after BayK 8644 application. A functional coupling between Ca(v)1.3 and BK channels has been reported but cannot fully account for the aforementioned observations. Here, using Ca(v)1.3(-/-) mice, we investigated the role of Ca(v)1.3 on SK channel activation and how this functional coupling affects the firing patterns induced by sustained current injections. MCCs express SK1-3 channels whose tonic currents are responsible for the slow irregular firing observed at rest. Percentage of frequency increase induced by apamin was found inversely correlated to basal firing frequency. Upon stimulation, MCCs build-up Ca(v)1.3-dependent SK currents during the interspike intervals that lead to a notable degree of spike frequency adaptation (SFA). The major contribution of Ca(v)1.3 to the subthreshold Ca(2+) charge during an AP-train rather than a specific molecular coupling to SK channels accounts for the reduced SFA of Ca(v)1.3(-/-) MCCs. Low adaptation ratios due to reduced SK activation associated with Ca(v)1.3 deficiency prevent the efficient recovery of Na(V) channels from inactivation. This promotes a rapid decline of AP amplitudes and facilitates early onset of depolarization block following prolonged stimulation. Thus, besides serving as pacemaker, Ca(v)1.3 slows down MCC firing by activating SK channels that maintain Na(V) channel availability high enough to preserve stable AP waveforms, even upon high-frequency stimulation of chromaffin cells during stress responses.
Collapse
|
47
|
Carter BC, Giessel AJ, Sabatini BL, Bean BP. Transient sodium current at subthreshold voltages: activation by EPSP waveforms. Neuron 2012; 75:1081-93. [PMID: 22998875 DOI: 10.1016/j.neuron.2012.08.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also "persistent" sodium current, a noninactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37°C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo.
Collapse
Affiliation(s)
- Brett C Carter
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
48
|
Genetic activation of BK currents in vivo generates bidirectional effects on neuronal excitability. Proc Natl Acad Sci U S A 2012; 109:18997-9002. [PMID: 23112153 DOI: 10.1073/pnas.1205573109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-conductance calcium-activated potassium channels (BK) are potent negative regulators of excitability in neurons and muscle, and increasing BK current is a novel therapeutic strategy for neuro- and cardioprotection, disorders of smooth muscle hyperactivity, and several psychiatric diseases. However, in some neurons, enhanced BK current is linked with seizures and paradoxical increases in excitability, potentially complicating the clinical use of agonists. The mechanisms that switch BK influence from inhibitory to excitatory are not well defined. Here we investigate this dichotomy using a gain-of-function subunit (BK(R207Q)) to enhance BK currents. Heterologous expression of BK(R207Q) generated currents that activated at physiologically relevant voltages in lower intracellular Ca(2+), activated faster, and deactivated slower than wild-type currents. We then used BK(R207Q) expression to broadly augment endogenous BK currents in vivo, generating a transgenic mouse from a circadian clock-controlled Period1 gene fragment (Tg-BK(R207Q)). The specific impact on excitability was assessed in neurons of the suprachiasmatic nucleus (SCN) in the hypothalamus, a cell type where BK currents regulate spontaneous firing under distinct day and night conditions that are defined by different complements of ionic currents. In the SCN, Tg-BK(R207Q) expression converted the endogenous BK current to fast-activating, while maintaining similar current-voltage properties between day and night. Alteration of BK currents in Tg-BK(R207Q) SCN neurons increased firing at night but decreased firing during the day, demonstrating that BK currents generate bidirectional effects on neuronal firing under distinct conditions.
Collapse
|
49
|
Pedroarena CM. BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity. THE CEREBELLUM 2012; 10:647-58. [PMID: 21750937 DOI: 10.1007/s12311-011-0279-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deep cerebellar nuclear neurons (DCNs) display characteristic electrical properties, including spontaneous spiking and the ability to discharge narrow spikes at high frequency. These properties are thought to be relevant to processing inhibitory Purkinje cell input and transferring well-timed signals to cerebellar targets. Yet, the underlying ionic mechanisms are not completely understood. BK and Kv3.1 potassium channels subserve similar functions in spike repolarization and fast firing in many neurons and are both highly expressed in DCNs. Here, their role in the abovementioned spiking characteristics was addressed using whole-cell recordings of large and small putative-glutamatergic DCNs. Selective BK channel block depolarized DCNs of both groups and increased spontaneous firing rate but scarcely affected evoked activity. After adjusting the membrane potential to control levels, the spike waveforms under BK channel block were indistinguishable from control ones, indicating no significant BK channel involvement in spike repolarization. The increased firing rate suggests that lack of DCN-BK channels may have contributed to the ataxic phenotype previously found in BK channel-deficient mice. On the other hand, block of Kv3.1 channels with low doses of 4-aminopyridine (20 μM) hindered spike repolarization and severely depressed evoked fast firing. Therefore, I propose that despite similar characteristics of BK and Kv3.1 channels, they play different roles in DCNs: BK channels control almost exclusively spontaneous firing rate, whereas DCN-Kv3.1 channels dominate the spike repolarization and enable fast firing. Interestingly, after Kv3.1 channel block, BK channels gained a role in spike repolarization, demonstrating how the different function of each of the two channels is determined in part by their co-expression and interplay.
Collapse
Affiliation(s)
- Christine M Pedroarena
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Systems Neurophysiology, CIN, University of Tübingen, Otfried Müller Strasse 27, Tübingen, Germany.
| |
Collapse
|
50
|
Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning. J Neurosci 2012; 32:7819-31. [PMID: 22674258 DOI: 10.1523/jneurosci.0543-12.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identification of marker genes expressed in specific cell types is essential for the genetic dissection of neural circuits. Here we report a new strategy for classifying heterogeneous populations of neurons into functionally distinct types and for identifying associated marker genes. Quantitative single-cell expression profiling of genes related to neurotransmitters and ion channels enables functional classification of neurons; transcript profiles for marker gene candidates identify molecular handles for manipulating each cell type. We apply this strategy to the mouse medial vestibular nucleus (MVN), which comprises several types of neurons subserving cerebellar-dependent learning in the vestibulo-ocular reflex. Ion channel gene expression differed both qualitatively and quantitatively across cell types and could distinguish subtle differences in intrinsic electrophysiology. Single-cell transcript profiling of MVN neurons established six functionally distinct cell types and associated marker genes. This strategy is applicable throughout the nervous system and could facilitate the use of molecular genetic tools to examine the behavioral roles of distinct neuronal populations.
Collapse
|