1
|
Poleg S, Li BZ, Sergison M, Ridenour M, Hughes EG, Tollin D, Klug A. Age-related myelin deficits in the auditory brain stem contribute to cocktail-party deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605710. [PMID: 39211072 PMCID: PMC11361073 DOI: 10.1101/2024.07.29.605710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Age-related hearing loss consists of both peripheral and central components and is an increasing global health concern. While peripheral hearing loss is well understood, central hearing loss- age-related changes in the central auditory pathways resulting in a listener's inability to process sound correctly -remains poorly understood. In this study, we focus on the pathway from the cochlear nucleus to the medial nucleus of the trapezoid body (MNTB), which depends on heavily myelinated axons for microsecond-level temporal precision required for sound localization. Using a combination of auditory brainstem response recordings (ABR), advanced light and electron microscopy, and behavioral testing with prepulse inhibition of the acoustic startle response (PPI) we identified a correlation between oligodendrocyte loss, abnormal myelination in MNTB afferents, altered ABR wave III morphology indicating MNTB dysfunction, and deficits in spatial hearing behaviors in aging Mongolian gerbils. These findings provide a mechanistic explanation of how demyelination contributes to age-related dysfunction in the auditory brainstem's sound localization pathway.
Collapse
|
2
|
Zacher AC, Hohaus K, Felmy F, Pätz-Warncke C. Developmental profile of microglia distribution in nuclei of the superior olivary complex. J Comp Neurol 2023. [PMID: 37837644 DOI: 10.1002/cne.25547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
In the brain, microglia are involved in immune responses and synaptic maturation. During early development, these cells invade the brain, proliferate, and morphologically mature to achieve coverage of the surrounding tissue with their fine processes. Their developmental proliferation overlaps with the postnatal development of neuronal circuits. Within the superior olivary complex (SOC), an auditory brainstem structure, microglia, and their early postnatal development have been documented. A quantification over the full developmental profile of the arrangement and morphological changes in single microglia cells is missing. Here, we used immunofluorescence labeling to quantify their distribution, morphological changes, and coverage during early and late postnatal development in the SOC of Mongolian gerbils. Microglia distributed rather homogenously within each nucleus with a bias to the nucleus borders at postnatal day (P) 5 and more centrally in the nucleus in mature stages. We found a nucleus-specific transient increase in microglia cell number and density reaching its peak at P17 with a subsequent decline to P55 values. Length and branching of microglia protrusions increased especially after P12. The stronger ramification together with the increase in cell density allows coverage of the surrounding tissue from P5 to mature stages, despite the large developmental increase in nucleus size. The transient increase in density during synaptic refinement in SOC nuclei suggests that microglia are important during the pruning period, compensating for developmental increase in tissue volume, and that in mature stages their main function appears tissue surveillance.
Collapse
Affiliation(s)
- Alina C Zacher
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Hannover, Germany
| | - Kiara Hohaus
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Felix Felmy
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
| | | |
Collapse
|
3
|
McCullagh EA, Peacock J, Lucas A, Poleg S, Greene NT, Gaut A, Lagestee S, Zhang Y, Kaczmarek LK, Park TJ, Tollin DJ, Klug A. Auditory brainstem development of naked mole-rats ( Heterocephalus glaber). Proc Biol Sci 2022; 289:20220878. [PMID: 35946148 PMCID: PMC9363996 DOI: 10.1098/rspb.2022.0878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.
Collapse
Affiliation(s)
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Lucas
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Addison Gaut
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Samantha Lagestee
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Thomas J. Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Chokr SM, Milinkeviciute G, Cramer KS. Synapse Maturation and Developmental Impairment in the Medial Nucleus of the Trapezoid Body. Front Integr Neurosci 2022; 16:804221. [PMID: 35221938 PMCID: PMC8863736 DOI: 10.3389/fnint.2022.804221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Sound localization requires rapid interpretation of signal speed, intensity, and frequency. Precise neurotransmission of auditory signals relies on specialized auditory brainstem synapses including the calyx of Held, the large encapsulating input to principal neurons in the medial nucleus of the trapezoid body (MNTB). During development, synapses in the MNTB are established, eliminated, and strengthened, thereby forming an excitatory/inhibitory (E/I) synapse profile. However, in neurodevelopmental disorders such as autism spectrum disorder (ASD), E/I neurotransmission is altered, and auditory phenotypes emerge anatomically, molecularly, and functionally. Here we review factors required for normal synapse development in this auditory brainstem pathway and discuss how it is affected by mutations in ASD-linked genes.
Collapse
|
5
|
Wollet M, Kim JH. Brain-Derived Neurotrophic Factor Is Involved in Activity-Dependent Tonotopic Refinement of MNTB Neurons. Front Neural Circuits 2022; 16:784396. [PMID: 35185479 PMCID: PMC8850952 DOI: 10.3389/fncir.2022.784396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
In the mammalian brain, auditory brainstem nuclei are arranged topographically according to acoustic frequency responsiveness. During postnatal development, the axon initial segment (AIS) of principal neurons undergoes structural refinement depending on location along the tonotopic axis within the medial nucleus of the trapezoid body (MNTB). However, the molecular mechanisms underlying the structural refinement of the AIS along the tonotopic axis in the auditory brainstem have not been explored. We tested the hypothesis that brain-derived neurotrophic factor (BDNF) is a molecular mediator of the structural development of the MNTB in an activity-dependent manner. Using BDNF heterozygous mutant (BDNF+/- ) mice, we examined the impact of global BDNF reduction on structural and functional development of MNTB neurons by assessing AIS structure and associated intrinsic neuronal properties. BDNF reduction inhibits the structural and functional differentiation of principal neurons along the tonotopic axis in the MNTB. Augmented sound input during the critical period of development has been shown to enhance the structural refinement of the AIS of MNTB neurons. However, in BDNF +/- mice, MNTB neurons did not show this activity-dependent structural modification of the AIS following repeated sound stimulation. In addition, BDNF+/- mice lacked a defined isofrequency band of neuronal activity following exposure to 16 kHz sound, suggesting degradation of tonotopy. Taken together, structural development and functional refinement of auditory brainstem neurons require physiological levels of BDNF to establish proper tonotopic gradients.
Collapse
Affiliation(s)
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Lucas A, Poleg S, Klug A, McCullagh EA. Myelination Deficits in the Auditory Brainstem of a Mouse Model of Fragile X Syndrome. Front Neurosci 2021; 15:772943. [PMID: 34858133 PMCID: PMC8632548 DOI: 10.3389/fnins.2021.772943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Auditory symptoms are one of the most frequent sensory issues described in people with Fragile X Syndrome (FXS), the most common genetic form of intellectual disability. However, the mechanisms that lead to these symptoms are under explored. In this study, we examined whether there are defects in myelination in the auditory brainstem circuitry. Specifically, we studied myelinated fibers that terminate in the Calyx of Held, which encode temporally precise sound arrival time, and are some of the most heavily myelinated axons in the brain. We measured anatomical myelination characteristics using coherent anti-stokes Raman spectroscopy (CARS) and electron microscopy (EM) in a FXS mouse model in the medial nucleus of the trapezoid body (MNTB) where the Calyx of Held synapses. We measured number of mature oligodendrocytes (OL) and oligodendrocyte precursor cells (OPCs) to determine if changes in myelination were due to changes in the number of myelinating or immature glial cells. The two microscopy techniques (EM and CARS) showed a decrease in fiber diameter in FXS mice. Additionally, EM results indicated reductions in myelin thickness and axon diameter, and an increase in g-ratio, a measure of structural and functional myelination. Lastly, we showed an increase in both OL and OPCs in MNTB sections of FXS mice suggesting that the myelination phenotype is not due to an overall decrease in number of myelinating OLs. This is the first study to show that a myelination defects in the auditory brainstem that may underly auditory phenotypes in FXS.
Collapse
Affiliation(s)
- Alexandra Lucas
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth A McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
7
|
Lujan BJ, Singh M, Singh A, Renden RB. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held. J Neurophysiol 2021; 126:976-996. [PMID: 34432991 PMCID: PMC8560424 DOI: 10.1152/jn.00333.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
A considerable amount of energy is expended following presynaptic activity to regenerate electrical polarization and maintain efficient release and recycling of neurotransmitter. Mitochondria are the major suppliers of neuronal energy, generating ATP via oxidative phosphorylation. However, the specific utilization of energy from cytosolic glycolysis rather than mitochondrial respiration at the presynaptic terminal during synaptic activity remains unclear and controversial. We use a synapse specialized for high-frequency transmission in mice, the calyx of Held, to test the sources of energy used to maintain energy during short activity bursts (<1 s) and sustained neurotransmission (30-150 s). We dissect the role of presynaptic glycolysis versus mitochondrial respiration by acutely and selectively blocking these ATP-generating pathways in a synaptic preparation where mitochondria and synaptic vesicles are prolific, under near-physiological conditions. Surprisingly, if either glycolysis or mitochondrial ATP production is intact, transmission during repetitive short bursts of activity is not affected. In slices from young animals before the onset of hearing, where the synapse is not yet fully specialized, both glycolytic and mitochondrial ATP production are required to support sustained, high-frequency neurotransmission. In mature synapses, sustained transmission relies exclusively on mitochondrial ATP production supported by bath lactate, but not glycolysis. At both ages, we observe that action potential propagation begins to fail before defects in synaptic vesicle recycling. Our data describe a specific metabolic profile to support high-frequency information transmission at the mature calyx of Held, shifting during postnatal synaptic maturation from glycolysis to rely on monocarboxylates as a fuel source.NEW & NOTEWORTHY We dissect the role of presynaptic glycolysis versus mitochondrial respiration in supporting high-frequency neurotransmission, by acutely blocking these ATP-generating pathways at a synapse tuned for high-frequency transmission. We find that massive energy expenditure is required to generate failure when only one pathway is inhibited. Action potential propagation is lost before impaired synaptic vesicle recycling. Synaptic transmission is exclusively dependent on oxidative phosphorylation in mature synapses, indicating presynaptic glycolysis may be dispensable for ATP maintenance.
Collapse
Affiliation(s)
- Brendan J Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware
| | - Robert B Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
8
|
Milinkeviciute G, Chokr SM, Castro EM, Cramer KS. CX3CR1 mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem. J Comp Neurol 2021; 529:3076-3097. [PMID: 33797066 DOI: 10.1002/cne.25150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 01/14/2023]
Abstract
The precise and specialized circuitry in the auditory brainstem develops through adaptations of cellular and molecular signaling. We previously showed that elimination of microglia during development impairs synaptic pruning that leads to maturation of the calyx of Held, a large encapsulating synapse that terminates on neurons of the medial nucleus of the trapezoid body (MNTB). Microglia depletion also led to a decrease in glial fibrillary acidic protein (GFAP), a marker for mature astrocytes. Here, we investigated the role of signaling through the fractalkine receptor (CX3CR1), which is expressed by microglia and mediates communication with neurons. CX3CR1-/- and wild-type mice were studied before and after hearing onset and at 9 weeks of age. Levels of GFAP were significantly increased in the MNTB in mutants at 9 weeks. Pruning was unaffected at the calyx of Held, but we found an increase in expression of glycinergic synaptic marker in mutant mice at P14, suggesting an effect on maturation of inhibitory inputs. We observed disrupted tonotopic gradients of neuron and calyx size in MNTB in mutant mice. Auditory brainstem recording (ABR) revealed that CX3CR1-/- mice had normal thresholds and amplitudes but decreased latencies and interpeak latencies, particularly for the highest frequencies. These results demonstrate that disruption of fractalkine signaling has a significant effect on auditory brainstem development. Our findings highlight the importance of neuron-microglia-astrocyte communication in pruning of inhibitory synapses and establishment of tonotopic gradients early in postnatal development.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Sima M Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Emily M Castro
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| |
Collapse
|
9
|
Karadas M, Olsson C, Winther Hansen N, Perrier JF, Webb JL, Huck A, Andersen UL, Thielscher A. In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study. Front Neurosci 2021; 15:643614. [PMID: 34054404 PMCID: PMC8155532 DOI: 10.3389/fnins.2021.643614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetometry based on nitrogen-vacancy (NV) centers in diamond is a novel technique capable of measuring magnetic fields with high sensitivity and high spatial resolution. With the further advancements of these sensors, they may open up novel approaches for the 2D imaging of neural signals in vitro. In the present study, we investigate the feasibility of NV-based imaging by numerically simulating the magnetic signal from the auditory pathway of a rodent brainstem slice (ventral cochlear nucleus, VCN, to the medial trapezoid body, MNTB) as stimulated by both electric and optic stimulation. The resulting signal from these two stimulation methods are evaluated and compared. A realistic pathway model was created based on published data of the neural morphologies and channel dynamics of the globular bushy cells in the VCN and their axonal projections to the principal cells in the MNTB. The pathway dynamics in response to optic and electric stimulation and the emitted magnetic fields were estimated using the cable equation. For simulating the optic stimulation, the light distribution in brain tissue was numerically estimated and used to model the optogenetic neural excitation based on a four state channelrhodopsin-2 (ChR2) model. The corresponding heating was also estimated, using the bio-heat equation and was found to be low (<2°C) even at excessively strong optic signals. A peak magnetic field strength of ∼0.5 and ∼0.1 nT was calculated from the auditory brainstem pathway after electrical and optical stimulation, respectively. By increasing the stimulating light intensity four-fold (far exceeding commonly used intensities) the peak magnetic signal strength only increased to 0.2 nT. Thus, while optogenetic stimulation would be favorable to avoid artefacts in the recordings, electric stimulation achieves higher peak fields. The present simulation study predicts that high-resolution magnetic imaging of the action potentials traveling along the auditory brainstem pathway will only be possible for next generation NV sensors. However, the existing sensors already have sufficient sensitivity to support the magnetic sensing of cumulated neural signals sampled from larger parts of the pathway, which might be a promising intermediate step toward further maturing this novel technology.
Collapse
Affiliation(s)
- Mürsel Karadas
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer Olsson
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nikolaj Winther Hansen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James Luke Webb
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alexander Huck
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrik Lund Andersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Axel Thielscher
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
10
|
Kim EJ, Feng C, Santamaria F, Kim JH. Impact of Auditory Experience on the Structural Plasticity of the AIS in the Mouse Brainstem Throughout the Lifespan. Front Cell Neurosci 2019; 13:456. [PMID: 31680869 PMCID: PMC6813928 DOI: 10.3389/fncel.2019.00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
Sound input critically influences the development and maintenance of neuronal circuits in the mammalian brain throughout life. We investigate the structural and functional plasticity of auditory neurons in response to various auditory experiences during development, adulthood, and aging. Using electrophysiology, computer simulation, and immunohistochemistry, we study the structural plasticity of the axon initial segment (AIS) in the medial nucleus of the trapezoid body (MNTB) from the auditory brainstem of the mice (either sex), in different ages and auditory environments. The structure and spatial location of the AIS of MNTB neurons depend on their functional topographic location along the tonotopic axis, aligning high- to low-frequency sound-responding neurons (HF or LF neurons). HF neurons dramatically undergo structural remodeling of the AIS throughout life. The AIS progressively shortens during development, is stabilized in adulthood, and becomes longer in aging. Sound inputs are critically associated with setting and maintaining AIS plasticity and tonotopy at various ages. Sound stimulation increases the excitability of auditory neurons. Computer simulation shows that modification of the AIS length, location, and diameter can affect firing properties of MNTB neurons in the developing brainstem. The adaptive capability of axonal structure in response to various auditory experiences at different ages suggests that sound input is important for the development and maintenance of the structural and functional properties of the auditory brain throughout life.
Collapse
Affiliation(s)
- Eun Jung Kim
- The Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| | - Chenling Feng
- The Department of Biology, University of Texas, San Antonio, TX, United States
| | - Fidel Santamaria
- The Department of Biology, University of Texas, San Antonio, TX, United States
| | - Jun Hee Kim
- The Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Milinkeviciute G, Henningfield CM, Muniak MA, Chokr SM, Green KN, Cramer KS. Microglia Regulate Pruning of Specialized Synapses in the Auditory Brainstem. Front Neural Circuits 2019; 13:55. [PMID: 31555101 PMCID: PMC6722190 DOI: 10.3389/fncir.2019.00055] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
The assembly of uniquely organized sound localization circuits in the brainstem requires precise developmental mechanisms. Glial cells have been shown to shape synaptic connections in the retinogeniculate system during development, but their contributions to specialized auditory synapses have not been identified. Here we investigated the role of microglia in auditory brainstem circuit assembly, focusing on the formation and pruning of the calyx of Held in the medial nucleus of the trapezoid body (MNTB). Microglia were pharmacologically depleted in mice early in development using subcutaneous injections of an inhibitor of colony stimulating factor 1 receptor, which is essential for microglia survival. Brainstems were examined prior to and just after hearing onset, at postnatal days (P) 8 and P13, respectively. We found that at P13 there were significantly more polyinnervated MNTB neurons when microglia were depleted, consistent with a defect in pruning. Expression of glial fibrillary acidic protein (GFAP), a mature astrocyte marker that normally appears in the MNTB late in development, was significantly decreased in microglia-depleted mice at P13, suggesting a delay in astrocyte maturation. Our results demonstrate that monoinnervation of MNTB neurons by the calyx of Held is significantly disrupted or delayed in the absence of microglia. This finding may reflect a direct role for microglia in synaptic pruning. A secondary role for microglia may be in the maturation of astrocytes in MNTB. These findings highlight the significant function of glia in pruning during calyx of Held development.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Caden M. Henningfield
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Michael A. Muniak
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Sima M. Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
12
|
Zorio DAR, Monsma S, Sanes DH, Golding NL, Rubel EW, Wang Y. De novo sequencing and initial annotation of the Mongolian gerbil (Meriones unguiculatus) genome. Genomics 2019; 111:441-449. [PMID: 29526484 PMCID: PMC6129228 DOI: 10.1016/j.ygeno.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022]
Abstract
The Mongolian gerbil (Meriones unguiculatus) is a member of the rodent family that displays several features not found in mice or rats, including sensory specializations and social patterns more similar to those in humans. These features have made gerbils a valuable animal for research studies of auditory and visual processing, brain development, learning and memory, and neurological disorders. Here, we report the whole gerbil annotated genome sequence, and identify important similarities and differences to the human and mouse genomes. We further analyze the chromosomal structure of eight genes with high relevance for controlling neural signaling and demonstrate a high degree of homology between these genes in mouse and gerbil. This homology increases the likelihood that individual genes can be rapidly identified in gerbil and used for genetic manipulations. The availability of the gerbil genome provides a foundation for advancing our knowledge towards understanding evolution, behavior and neural function in mammals. ACCESSION NUMBER: The Whole Genome Shotgun sequence data from this project has been deposited at DDBJ/ENA/GenBank under the accession NHTI00000000. The version described in this paper is version NHTI01000000. The fragment reads, and mate pair reads have been deposited in the Sequence Read Archive under BioSample accession SAMN06897401.
Collapse
Affiliation(s)
- Diego A R Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | | | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY, USA
| | - Nace L Golding
- University of Texas at Austin, Department of Neuroscience, Center for Learning and Memory, Austin, TX, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
13
|
Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice. eNeuro 2017; 4:eN-NWR-0264-17. [PMID: 29291238 PMCID: PMC5744645 DOI: 10.1523/eneuro.0264-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development.
Collapse
|
14
|
Ebbers L, Weber M, Nothwang HG. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice. BMC Neurosci 2017; 18:75. [PMID: 29073893 PMCID: PMC5659004 DOI: 10.1186/s12868-017-0393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. RESULTS Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. CONCLUSIONS Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular factors involved in activity-dependent developmental processes in the auditory system. This would provide an important step forward concerning improved auditory rehabilitation in cases of congenital deafness.
Collapse
Affiliation(s)
- Lena Ebbers
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Maren Weber
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
15
|
Kopp-Scheinpflug C. Your genes decide what you are listening to. Channels (Austin) 2017; 11:355-356. [PMID: 28662361 PMCID: PMC5626367 DOI: 10.1080/19336950.2017.1348870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Conny Kopp-Scheinpflug
- a Division of Neurobiology, Department Biology II , Ludwig-Maximilians-University Munich , Planegg-Martinsried , Germany
| |
Collapse
|
16
|
Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem. Proc Natl Acad Sci U S A 2017; 114:E4851-E4858. [PMID: 28559325 DOI: 10.1073/pnas.1702290114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Precise timing of synaptic inputs is a fundamental principle of neural circuit processing. The temporal precision of postsynaptic input integration is known to vary with the computational requirements of a circuit, yet how the timing of action potentials is tuned presynaptically to match these processing demands is not well understood. In particular, action potential timing is shaped by the axonal conduction velocity and the duration of synaptic transmission delays within a pathway. However, it is not known to what extent these factors are adapted to the functional constraints of the respective circuit. Here, we report the finding of activity-invariant synaptic transmission delays as a functional adaptation for input timing adjustment in a brainstem sound localization circuit. We compared axonal and synaptic properties of the same pathway between two species with dissimilar timing requirements (gerbil and mouse): In gerbils (like humans), neuronal processing of sound source location requires exceptionally high input precision in the range of microseconds, but not in mice. Activity-invariant synaptic transmission and conduction delays were present exclusively in fast conducting axons of gerbils that also exhibited unusual structural adaptations in axon myelination for increased conduction velocity. In contrast, synaptic transmission delays in mice varied depending on activity levels, and axonal myelination and conduction velocity exhibited no adaptations. Thus, the specializations in gerbils and their absence in mice suggest an optimization of axonal and synaptic properties to the specific demands of sound localization. These findings significantly advance our understanding of structural and functional adaptations for circuit processing.
Collapse
|