1
|
Li BZ, Ridenour M, Poleg S, Kuruppath P, McCullagh EA, Lei T, Klug A. In-vivo optogenetic manipulation approach for gerbil medial nucleus of trapezoid body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642510. [PMID: 40161594 PMCID: PMC11952377 DOI: 10.1101/2025.03.10.642510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purpose This study introduces an in-vivo optogenetic manipulation approach for the medial nucleus of the trapezoid body (MNTB) in Mongolian gerbils, a species with a hearing range similar to humans. The MNTB is crucial for sound localization, but traditional methods lack temporal precision and reversibility. The aim of this study is to develop a specific, reversible method for controlling MNTB activity with fast and precise temporal control, an approach vital for studying sound localization. Methods We stereotactically injected adeno-associated viral vectors encoding opsins into the gerbil MNTB. Precise targeting was achieved despite the MNTB's location in a deep, heavily myelinated area of the brainstem. Opsin expression was confirmed via confocal microscopy. In-vivo electrophysiology combined with optical stimulation was used to test optical activation and suppression of MNTB activity during sound stimuli. Results Opsin expression was strong and stable in MNTB neurons over weeks and months. Laser stimulation during in-vivo recordings successfully induced both activation and suppression of MNTB neurons, demonstrating fast and precise control over neural activity. Conclusion This in-vivo optogenetic method provides specific, reversible control of MNTB activity in gerbils with rapid, real-time modulation. It offers a powerful tool for investigating sound localization and auditory processing with high temporal precision.
Collapse
|
2
|
Alemu RZ, Gorodensky J, Gill S, Cushing SL, Papsin BC, Gordon KA. Binaural responses to a speech syllable are altered in children with hearing loss: Evidence from the frequency-following response. Hear Res 2024; 450:109068. [PMID: 38936172 DOI: 10.1016/j.heares.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND & RATIONALE In prior work using non-speech stimuli, children with hearing loss show impaired perception of binaural cues and no significant change in cortical responses to bilateral versus unilateral stimulation. Aims of the present study were to: 1) identify bilateral responses to envelope and spectral components of a speech syllable using the frequency-following response (FFR), 2) determine if abnormalities in the bilateral FFR occur in children with hearing loss, and 3) assess functional consequences of abnormal bilateral FFR responses on perception of binaural timing cues. METHODS A single-syllable speech stimulus (/dα/) was presented to each ear individually and bilaterally. Participants were 9 children with normal hearing (MAge = 12.1 ± 2.5 years) and 6 children with bilateral hearing loss who were experienced bilateral hearing aid users (MAge = 14.0 ± 2.6 years). FFR temporal and spectral peak amplitudes were compared between listening conditions and groups using linear mixed model regression analyses. Behavioral sensitivity to binaural cues were measured by lateralization responses as coming from the right or left side of the head. RESULTS Both temporal and spectral peaks in FFR responses increased in amplitude in the bilateral compared to unilateral listening conditions in children with normal hearing. These measures of "bilateral advantage" were reduced in the group of children with bilateral hearing loss and associated with decreased sensitivity to interaural timing differences. CONCLUSION This study is the first to show that bilateral responses in both temporal and spectral domains can be measured in children using the FFR and is altered in children with hearing loss with consequences to binaural hearing.
Collapse
Affiliation(s)
- R Z Alemu
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - J Gorodensky
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Gill
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
| | - S L Cushing
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - B C Papsin
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - K A Gordon
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Sierksma MC, Borst JGG. Developmental fine-tuning of medial superior olive neurons mitigates their predisposition to contralateral sound sources. PLoS Biol 2024; 22:e3002586. [PMID: 38683852 PMCID: PMC11081505 DOI: 10.1371/journal.pbio.3002586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Having two ears enables us to localize sound sources by exploiting interaural time differences (ITDs) in sound arrival. Principal neurons of the medial superior olive (MSO) are sensitive to ITD, and each MSO neuron responds optimally to a best ITD (bITD). In many cells, especially those tuned to low sound frequencies, these bITDs correspond to ITDs for which the contralateral ear leads, and are often larger than the ecologically relevant range, defined by the ratio of the interaural distance and the speed of sound. Using in vivo recordings in gerbils, we found that shortly after hearing onset the bITDs were even more contralaterally leading than found in adult gerbils, and travel latencies for contralateral sound-evoked activity clearly exceeded those for ipsilateral sounds. During the following weeks, both these latencies and their interaural difference decreased. A computational model indicated that spike timing-dependent plasticity can underlie this fine-tuning. Our results suggest that MSO neurons start out with a strong predisposition toward contralateral sounds due to their longer neural travel latencies, but that, especially in high-frequency neurons, this predisposition is subsequently mitigated by differential developmental fine-tuning of the travel latencies.
Collapse
Affiliation(s)
- Martijn C. Sierksma
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Nabel AL, Teich L, Wohlfrom H, Alexandrova O, Heß M, Pecka M, Grothe B. Development of myelination and axon diameter for fast and precise action potential conductance. Glia 2024; 72:794-808. [PMID: 38174817 DOI: 10.1002/glia.24504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Axons of globular bushy cells in the cochlear nucleus convey hyper-accurate signals to the superior olivary complex, the initial site of binaural processing via comparably thick axons and the calyx of the Held synapse. Bushy cell fibers involved in hyper-accurate binaural processing of low-frequency sounds are known to have an unusual internode length-to-axon caliber ratio (L/d) correlating with higher conduction velocity and superior temporal precision of action potentials. How the L/d-ratio develops and what determines this unusual myelination pattern is unclear. Here we describe a gradual developmental transition from very simple to complex, mature nodes of Ranvier on globular bushy cell axons during a 2-week period starting at postnatal day P6/7. The molecular composition of nodes matured successively along the axons from somata to synaptic terminals with morphologically and molecularly mature nodes appearing almost exclusively after hearing onset. Internodal distances are initially coherent with the canonical L/d-ratio of ~100. Several days after hearing onset, however, an over-proportional increase in axon caliber occurs in cells signaling low-frequency sounds which alters their L/d ratio to ~60. Hence, oligodendrocytes initially myelinating axons according to their transient axon caliber but a subsequent differential axon thickening after hearing onset results in the unusual myelination pattern.
Collapse
Affiliation(s)
- Alisha L Nabel
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Laurin Teich
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
- Division of Neurobiology, Faculty of Biology, Munich Cluster for Systems Neurology (SyNergy), Martinsried, Germany
| | - Hilde Wohlfrom
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Olga Alexandrova
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Martin Heß
- Division of Systematic Zoology, Faculty of Biology, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Michael Pecka
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
- Division of Neurobiology, Faculty of Biology, Munich Cluster for Systems Neurology (SyNergy), Martinsried, Germany
| |
Collapse
|
5
|
Stancu M, Wohlfrom H, Heß M, Grothe B, Leibold C, Kopp-Scheinpflug C. Ambient sound stimulation tunes axonal conduction velocity by regulating radial growth of myelin on an individual, axon-by-axon basis. Proc Natl Acad Sci U S A 2024; 121:e2316439121. [PMID: 38442165 PMCID: PMC10945791 DOI: 10.1073/pnas.2316439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.
Collapse
Affiliation(s)
- Mihai Stancu
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
- Graduate School of Systemic Neurosciences, Planegg-Martinsried82152, Germany
| | - Hilde Wohlfrom
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| | - Martin Heß
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Christian Leibold
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau79110, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| |
Collapse
|
6
|
Carr CE, Wang T, Kraemer I, Capshaw G, Ashida G, Köppl C, Kempter R, Kuokkanen PT. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl. J Neurosci 2024; 44:e0940232023. [PMID: 37989591 PMCID: PMC10851688 DOI: 10.1523/jneurosci.0940-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Interaural time differences (ITDs) are a major cue for sound localization and change with increasing head size. Since the barn owl's head width more than doubles in the month after hatching, we hypothesized that the development of their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, and then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adults. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Thus, experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. As a result, altered auditory input during development leads to long-lasting changes in the representation of ITD.Significance Statement The early life of barn owls is marked by increasing sensitivity to sound, and by increasing ITDs. Their prolonged post-hatch development allowed us to examine the role of altered auditory experience in the development of ITD detection circuits. We raised owls with a unilateral ear insert and found that their maps of ITD were altered by experience, but only in those tonotopic regions ipsilateral to the occluded ear that had not experienced auditory stimulation prior to insertion. This experience-induced plasticity allows the sound localization circuits to be customized to individual characteristics, such as the size of the head, and potentially to compensate for imbalanced hearing sensitivities between the left and right ears.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Tiffany Wang
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Ira Kraemer
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
| | - Go Ashida
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence "Hearing4all" Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence "Hearing4all" Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Paula T Kuokkanen
- Department of Biology, University of Maryland College Park, College Park, MD 20742
| |
Collapse
|
7
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Carr CE, Wang T, Kraemer I, Capshaw G, Ashida G, Koeppl C, Kempter R, Kuokkanen PT. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526884. [PMID: 36778252 PMCID: PMC9915572 DOI: 10.1101/2023.02.02.526884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Barn owls experience increasing interaural time differences (ITDs) during development, because their head width more than doubles in the month after hatching. We therefore hypothesized that their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adult. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. Thus, altered auditory input during development leads to long-lasting changes in the representation of ITD.
Collapse
|
9
|
Müller M, Hu H, Dietz M, Beiderbeck B, Ferreiro DN, Pecka M. Temporal hyper-precision of brainstem neurons alters spatial sensitivity of binaural auditory processing with cochlear implants. Front Neurosci 2023; 16:1021541. [PMID: 36685222 PMCID: PMC9846145 DOI: 10.3389/fnins.2022.1021541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
The ability to localize a sound source in complex environments is essential for communication and navigation. Spatial hearing relies predominantly on the comparison of differences in the arrival time of sound between the two ears, the interaural time differences (ITDs). Hearing impairments are highly detrimental to sound localization. While cochlear implants (CIs) have been successful in restoring many crucial hearing capabilities, sound localization via ITD detection with bilateral CIs remains poor. The underlying reasons are not well understood. Neuronally, ITD sensitivity is generated by coincidence detection between excitatory and inhibitory inputs from the two ears performed by specialized brainstem neurons. Due to the lack of electrophysiological brainstem recordings during CI stimulation, it is unclear to what extent the apparent deficits are caused by the binaural comparator neurons or arise already on the input level. Here, we use a bottom-up approach to compare response features between electric and acoustic stimulation in an animal model of CI hearing. Conducting extracellular single neuron recordings in gerbils, we find severe hyper-precision and moderate hyper-entrainment of both the excitatory and inhibitory brainstem inputs to the binaural comparator neurons during electrical pulse-train stimulation. This finding establishes conclusively that the binaural processing stage must cope with highly altered input statistics during CI stimulation. To estimate the consequences of these effects on ITD sensitivity, we used a computational model of the auditory brainstem. After tuning the model parameters to match its response properties to our physiological data during either stimulation type, the model predicted that ITD sensitivity to electrical pulses is maintained even for the hyper-precise inputs. However, the model exhibits severely altered spatial sensitivity during electrical stimulation compared to acoustic: while resolution of ITDs near midline was increased, more lateralized adjacent source locations became inseparable. These results directly resemble recent findings in rodent and human CI listeners. Notably, decreasing the phase-locking precision of inputs during electrical stimulation recovered a wider range of separable ITDs. Together, our findings suggest that a central problem underlying the diminished ITD sensitivity in CI users might be the temporal hyper-precision of inputs to the binaural comparator stage induced by electrical stimulation.
Collapse
Affiliation(s)
- Michaela Müller
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hongmei Hu
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,Cluster of Excellence “Hearing4All”, Universität Oldenburg, Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,Cluster of Excellence “Hearing4All”, Universität Oldenburg, Oldenburg, Germany
| | - Barbara Beiderbeck
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Dardo N. Ferreiro
- Section of Neurobiology, Faculty of Biology, LMU Biocenter, Ludwig-Maximilians-Universität, Munich, Germany,Department of General Psychology and Education, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Pecka
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany,Section of Neurobiology, Faculty of Biology, LMU Biocenter, Ludwig-Maximilians-Universität, Munich, Germany,*Correspondence: Michael Pecka,
| |
Collapse
|
10
|
Anderson SR, Jocewicz R, Kan A, Zhu J, Tzeng S, Litovsky RY. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. PLoS One 2022; 17:e0263516. [PMID: 35134072 PMCID: PMC8824335 DOI: 10.1371/journal.pone.0263516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to determine a sound’s location is critical in everyday life. However, sound source localization is severely compromised for patients with hearing loss who receive bilateral cochlear implants (BiCIs). Several patient factors relate to poorer performance in listeners with BiCIs, associated with auditory deprivation, experience, and age. Critically, characteristic errors are made by patients with BiCIs (e.g., medial responses at lateral target locations), and the relationship between patient factors and the type of errors made by patients has seldom been investigated across individuals. In the present study, several different types of analysis were used to understand localization errors and their relationship with patient-dependent factors (selected based on their robustness of prediction). Binaural hearing experience is required for developing accurate localization skills, auditory deprivation is associated with degradation of the auditory periphery, and aging leads to poorer temporal resolution. Therefore, it was hypothesized that earlier onsets of deafness would be associated with poorer localization acuity and longer periods without BiCI stimulation or older age would lead to greater amounts of variability in localization responses. A novel machine learning approach was introduced to characterize the types of errors made by listeners with BiCIs, making them simple to interpret and generalizable to everyday experience. Sound localization performance was measured in 48 listeners with BiCIs using pink noise trains presented in free-field. Our results suggest that older age at testing and earlier onset of deafness are associated with greater average error, particularly for sound sources near the center of the head, consistent with previous research. The machine learning analysis revealed that variability of localization responses tended to be greater for individuals with earlier compared to later onsets of deafness. These results suggest that early bilateral hearing is essential for best sound source localization outcomes in listeners with BiCIs.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rachael Jocewicz
- Department of Audiology, Stanford University, Stanford, California, United States of America
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales, Australia
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - ShengLi Tzeng
- Department of Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Li K, Rajendran VG, Mishra AP, Chan CHK, Schnupp JWH. Interaural time difference tuning in the rat inferior colliculus is predictive of behavioral sensitivity. Hear Res 2021; 409:108331. [PMID: 34416492 DOI: 10.1016/j.heares.2021.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022]
Abstract
While a large body of literature has examined the encoding of binaural spatial cues in the auditory midbrain, studies that ask how quantitative measures of spatial tuning in midbrain neurons compare with an animal's psychoacoustic performance remain rare. Researchers have tried to explain deficits in spatial hearing in certain patient groups, such as binaural cochlear implant users, in terms of declines in apparent reductions in spatial tuning of midbrain neurons of animal models. However, the quality of spatial tuning can be quantified in many different ways, and in the absence of evidence that a given neural tuning measure correlates with psychoacoustic performance, the interpretation of such finding remains very tentative. Here, we characterize ITD tuning in the rat inferior colliculus (IC) to acoustic pulse train stimuli with varying envelopes and at varying rates, and explore whether quality of tuning correlates behavioral performance. We quantified both mutual information (MI) and neural d' as measures of ITD sensitivity. Neural d' values paralleled behavioral ones, declining with increasing click rates or when envelopes changed from rectangular to Hanning windows, and they correlated much better with behavioral performance than MI. Meanwhile, MI values were larger in an older, more experienced cohort of animals than in naive animals, but neural d' did not differ between cohorts. However, the results obtained with neural d' and MI were highly correlated when ITD values were coded simply as left or right ear leading, rather than specific ITD values. Thus, neural measures of lateralization ability (e.g. d' or left/right MI) appear to be highly predictive of psychoacoustic performance in a two-alternative forced choice task.
Collapse
Affiliation(s)
- Kongyan Li
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Vani G Rajendran
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, Paris 75005, France
| | - Ambika Prasad Mishra
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Chloe H K Chan
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Jan W H Schnupp
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
12
|
Sensitivity to interaural time differences in the inferior colliculus of cochlear implanted rats with or without hearing experience. Hear Res 2021; 408:108305. [PMID: 34315027 DOI: 10.1016/j.heares.2021.108305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/11/2023]
Abstract
For deaf patients cochlear implants (CIs) can restore substantial amounts of functional hearing. However, binaural hearing, and in particular, the perception of interaural time differences (ITDs) with current CIs has been found to be notoriously poor, especially in the event of early hearing loss. One popular hypothesis for these deficits posits that a lack of early binaural experience may be a principal cause of poor ITD perception in pre-lingually deaf CI patients. This is supported by previous electrophysiological studies done in neonatally deafened, bilateral CI-stimulated animals showing reduced ITD sensitivity. However, we have recently demonstrated that neonatally deafened CI rats can quickly learn to discriminate microsecond ITDs under optimized stimulation conditions which suggests that the inability of human CI users to make use of ITDs is not due to lack of binaural hearing experience during development. In the study presented here, we characterized ITD sensitivity and tuning of inferior colliculus neurons under bilateral CI stimulation of neonatally deafened and hearing experienced rats. The hearing experienced rats were not deafened prior to implantation. Both cohorts were implanted bilaterally between postnatal days 64-77 and recorded immediately following surgery. Both groups showed comparably large proportions of ITD sensitive multi-units in the inferior colliculus (Deaf: 84.8%, Hearing: 82.5%), and the strength of ITD tuning, quantified as mutual information between response and stimulus ITD, was independent of hearing experience. However, the shapes of tuning curves differed substantially between both groups. We observed four main clusters of tuning curves - trough, contralateral, central, and ipsilateral tuning. Interestingly, over 90% of multi-units for hearing experienced rats showed predominantly contralateral tuning, whereas as many as 50% of multi-units in neonatally deafened rats were centrally tuned. However, when we computed neural d' scores to predict likely limits on performance in sound lateralization tasks, we did not find that these differences in tuning shapes predicted worse psychoacoustic performance for the neonatally deafened animals. We conclude that, at least in rats, substantial amounts of highly precise, "innate" ITD sensitivity can be found even after profound hearing loss throughout infancy. However, ITD tuning curve shapes appear to be strongly influenced by auditory experience although substantial lateralization encoding is present even in its absence.
Collapse
|
13
|
Provision of interaural time difference information in chronic intracochlear electrical stimulation enhances neural sensitivity to these differences in neonatally deafened cats. Hear Res 2021; 406:108253. [PMID: 33971428 DOI: 10.1016/j.heares.2021.108253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
Although performance with bilateral cochlear implants is superior to that with a unilateral implant, bilateral implantees have poor performance in sound localisation and in speech discrimination in noise compared to normal hearing subjects. Studies of the neural processing of interaural time differences (ITDs) in the inferior colliculus (IC) of long-term deaf animals, show substantial degradation compared to that in normal hearing animals. It is not known whether this degradation can be ameliorated by chronic cochlear electrical stimulation, but such amelioration is unlikely to be achieved using current clinical speech processors and cochlear implants, which do not provide good ITD cues. We therefore developed a custom sound processor to deliver salient ITDs for chronic bilateral intra-cochlear electrical stimulation in a cat model of neonatal deafness, to determine if long-term exposure to salient ITDs would prevent degradation of ITD processing. We compared the sensitivity to ITDs in cochlear electrical stimuli of neurons in the IC of cats chronically stimulated with our custom ITD-aware sound processor with sensitivity in acutely deafened cats with normal hearing development and in cats chronically stimulated with a clinical stimulator and sound processor. Animals that experienced stimulation with our custom ITD-aware sound processor had significantly higher neural sensitivity to ITDs than those that received stimulation from clinical sound processors. There was no significant difference between animals received no stimulation and those that received stimulation from clinical sound processors, consistent with findings from clinical cochlear implant users. This result suggests that development and use of clinical ITD-aware sound processing strategies from a young age may promote ITD sensitivity in the clinical population.
Collapse
|
14
|
Rosskothen-Kuhl N, Buck AN, Li K, Schnupp JW. Microsecond interaural time difference discrimination restored by cochlear implants after neonatal deafness. eLife 2021; 10:59300. [PMID: 33427644 PMCID: PMC7815311 DOI: 10.7554/elife.59300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023] Open
Abstract
Spatial hearing in cochlear implant (CI) patients remains a major challenge, with many early deaf users reported to have no measurable sensitivity to interaural time differences (ITDs). Deprivation of binaural experience during an early critical period is often hypothesized to be the cause of this shortcoming. However, we show that neonatally deafened (ND) rats provided with precisely synchronized CI stimulation in adulthood can be trained to lateralize ITDs with essentially normal behavioral thresholds near 50 μs. Furthermore, comparable ND rats show high physiological sensitivity to ITDs immediately after binaural implantation in adulthood. Our result that ND-CI rats achieved very good behavioral ITD thresholds, while prelingually deaf human CI patients often fail to develop a useful sensitivity to ITD raises urgent questions concerning the possibility that shortcomings in technology or treatment, rather than missing input during early development, may be behind the usually poor binaural outcomes for current CI patients.
Collapse
Affiliation(s)
- Nicole Rosskothen-Kuhl
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Alexa N Buck
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kongyan Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jan Wh Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,CityU Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
15
|
Chaunsali L, Tewari BP, Gallucci A, Thompson EG, Savoia A, Feld N, Campbell SL. Glioma-induced peritumoral hyperexcitability in a pediatric glioma model. Physiol Rep 2020; 8:e14567. [PMID: 33026196 PMCID: PMC7539466 DOI: 10.14814/phy2.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022] Open
Abstract
Epileptic seizures are among the most common presenting symptom in patients with glioma. The etiology of glioma-related seizures is complex and not completely understood. Studies using adult glioma patient tissue and adult glioma mouse models, show that neurons adjacent to the tumor mass, peritumoral neurons, are hyperexcitable and contribute to seizures. Although it is established that there are phenotypic and genotypic distinctions in gliomas from adult and pediatric patients, it is unknown whether these established differences in pediatric glioma biology and the microenvironment in which these glioma cells harbor, the developing brain, differentially impacts surrounding neurons. In the present study, we examine the effect of patient-derived pediatric glioma cells on the function of peritumoral neurons using two pediatric glioma models. Pediatric glioma cells were intracranially injected into the cerebrum of postnatal days 2 and 3 (p2/3) mouse pups for 7 days. Electrophysiological recordings showed that cortical layer 2/3 peritumoral neurons exhibited significant differences in their intrinsic properties compared to those of sham control neurons. Peritumoral neurons fired significantly more action potentials in response to smaller current injection and exhibited a depolarization block in response to higher current injection. The threshold for eliciting an action potential and pharmacologically induced epileptiform activity was lower in peritumoral neurons compared to sham. Our findings suggest that pediatric glioma cells increase excitability in the developing peritumoral neurons by exhibiting early onset of depolarization block, which was not previously observed in adult glioma peritumoral neurons.
Collapse
Affiliation(s)
- Lata Chaunsali
- Molecular and Cellular Biology Graduate ProgramSchool of NeuroscienceVirginia TechBlacksburgVAUSA
| | - Bhanu P. Tewari
- Fralin Biomedical Research InstituteGlial Biology in HealthDisease and CancerVirginia TechRoanokeVAUSA
| | - Allison Gallucci
- Fralin Biomedical Research InstituteTranslational Biology, Medicine and HealthVirginia TechRoanokeVAUSA
| | | | - Andrew Savoia
- Animal and Poultry SciencesVirginia TechBlacksburgVAUSA
| | - Noah Feld
- School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Susan L. Campbell
- Molecular and Cellular Biology Graduate ProgramSchool of NeuroscienceVirginia TechBlacksburgVAUSA
- Fralin Biomedical Research InstituteGlial Biology in HealthDisease and CancerVirginia TechRoanokeVAUSA
- Animal and Poultry SciencesVirginia TechBlacksburgVAUSA
| |
Collapse
|
16
|
Activity-Dependent Calcium Signaling in Neurons of the Medial Superior Olive during Late Postnatal Development. J Neurosci 2020; 40:1689-1700. [PMID: 31949105 DOI: 10.1523/jneurosci.1545-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 02/01/2023] Open
Abstract
The development of sensory circuits is partially guided by sensory experience. In the medial superior olive (MSO), these refinements generate precise coincidence detection to localize sounds in the azimuthal plane. Glycinergic inhibitory inputs to the MSO, which tune the sensitivity to interaural time differences, undergo substantial structural and functional refinements after hearing onset. Whether excitation and calcium signaling in the MSO are similarly affected by the onset of acoustic experience is unresolved. To assess the time window and mechanism of excitatory and calcium-dependent refinements during late postnatal development, we quantified EPSCs and calcium entry in MSO neurons of Mongolian gerbils of either sex raised in a normal and in an activity altered, omnidirectional white noise environment. Global dendritic calcium transients elicited by action potentials disappeared rapidly after hearing onset. Local synaptic calcium transients decreased, leaving a GluR2 lacking AMPAR-mediated influx as the only activity-dependent source in adulthood. Exposure to omnidirectional white noise accelerated the decrease in calcium entry, leaving membrane properties unaffected. Thus, sound-driven activity accelerates the excitatory refinement and shortens the period of activity-dependent calcium signaling around hearing onset. Together with earlier reports, our findings highlight that excitation, inhibition, and biophysical properties are differentially sensitive to distinct features of sensory experience.SIGNIFICANCE STATEMENT Neurons in the medial superior olive, an ultra-fast coincidence detector for sound source localization, acquire their specialized function through refinements during late postnatal development. The refinement of inhibitory inputs that convey sensitivity to relevant interaural time differences is instructed by the experience of sound localization cues. Which cues instruct the refinement of excitatory inputs, calcium signaling, and biophysical properties is unknown. Here we demonstrate a time window for activity- and calcium-dependent refinements limited to shortly after hearing onset. Exposure to omnidirectional white noise, which suppresses sound localization cues but increases overall activity, accelerates the refinement of calcium signaling and excitatory inputs without affecting biophysical membrane properties. Thus, the refinement of excitation, inhibition, and intrinsic properties is instructed by distinct cues.
Collapse
|
17
|
Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils. J Neurosci 2018; 38:6949-6966. [PMID: 29959238 DOI: 10.1523/jneurosci.3328-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Bilateral cochlear implants (CIs) provide benefits for speech perception in noise and directional hearing, but users typically show poor sensitivity to interaural time differences (ITDs). Possible explanations for this deficit are deafness-induced degradations in neural ITD sensitivity, between-ear mismatches in electrode positions or activation sites, or differences in binaural brain circuits activated by electric versus acoustic stimulation. To identify potential limitations of electric ITD coding in the normal-hearing system, responses of single neurons in the dorsal nucleus of the lateral lemniscus and in the inferior colliculus to ITDs of electric (biphasic pulses) and acoustic (noise, clicks, chirps, and tones) stimuli were recorded in normal-hearing gerbils of either sex. To maintain acoustic sensitivity, electric stimuli were delivered to the round window. ITD tuning metrics (e.g., best ITD) and ITD discrimination thresholds for electric versus transient acoustic stimuli (clicks, chirps) obtained from the same neurons were not significantly correlated. Across populations of neurons with similar characteristic frequencies, however, ITD tuning metrics and ITD discrimination thresholds were similar for electric and acoustic stimuli and largely independent of the spectrotemporal properties of the acoustic stimuli when measured in the central range of ITDs. The similarity of acoustic and electric ITD coding on the population level in animals with normal hearing experience suggests that poorer ITD sensitivity in bilateral CI users compared with normal-hearing listeners is likely due to deprivation-induced changes in neural ITD coding rather than to differences in the binaural brain circuits involved in the processing of electric and acoustic ITDs.SIGNIFICANCE STATEMENT Small differences in the arrival time of sound at the two ears (interaural time differences, ITDs) provide important cues for speech understanding in noise and directional hearing. Deaf subjects with bilateral cochlear implants obtain only little benefit from ITDs. It is unclear whether these limitations are due to between-ear mismatches in activation sites, differences in binaural brain circuits activated by electric versus acoustic stimulation, or deafness-induced degradations in neural ITD processing. This study is the first to directly compare electric and acoustic ITD coding in neurons of known characteristic frequencies. In animals with normal hearing, populations of auditory brainstem and midbrain neurons demonstrate general similarities in electric and acoustic ITD coding, suggesting similar underlying central auditory processing mechanisms.
Collapse
|
18
|
|
19
|
Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise. Neural Plast 2017; 2017:3026749. [PMID: 28589040 PMCID: PMC5446865 DOI: 10.1155/2017/3026749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.
Collapse
|
20
|
Jovanovic S, Radulovic T, Coddou C, Dietz B, Nerlich J, Stojilkovic SS, Rübsamen R, Milenkovic I. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP. J Physiol 2016; 595:1315-1337. [PMID: 28030754 DOI: 10.1113/jp273272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/02/2016] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Following the genetically controlled formation of neuronal circuits, early firing activity guides the development of sensory maps in the auditory, visual and somatosensory system. However, it is not clear whether the activity of central auditory neurons is specifically regulated depending on the position within the sensory map. In the ventral cochlear nucleus, the first central station along the auditory pathway, we describe a mechanism through which paracrine ATP signalling enhances firing in a cell-specific and tonotopically-determined manner. Developmental down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, suggesting a high-to-low frequency maturation pattern. Facilitated action potential (AP) generation, measured as higher firing rate, shorter EPSP-AP delay in vivo and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. The long lasting change in intrinsic neuronal excitability is mediated by the heteromeric P2X2/3 receptors. ABSTRACT Synaptic refinement and strengthening are activity-dependent processes that establish orderly arranged cochleotopic maps throughout the central auditory system. The maturation of auditory brainstem circuits is guided by action potentials (APs) arising from the inner hair cells in the developing cochlea. The AP firing of developing central auditory neurons can be modulated by paracrine ATP signalling, as shown for the cochlear nucleus bushy cells and principal neurons in the medial nucleus of the trapezoid body. However, it is not clear whether neuronal activity may be specifically regulated with respect to the nuclear tonotopic position (i.e. sound frequency selectivity). Using slice recordings before hearing onset and in vivo recordings with iontophoretic drug applications after hearing onset, we show that cell-specific purinergic modulation follows a precise tonotopic pattern in the ventral cochlear nucleus of developing gerbils. In high-frequency regions, ATP responsiveness diminished before hearing onset. In low-to-mid frequency regions, ATP modulation persisted after hearing onset in a subset of low-frequency bushy cells (characteristic frequency< 10 kHz). Down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, thus suggesting a high-to-low frequency maturation pattern. Facilitated AP generation, measured as higher firing frequency, shorter EPSP-AP delay in vivo, and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. Finally, by combining recordings and pharmacology in vivo, in slices, and in human embryonic kidney 293 cells, it was shown that the long lasting change in intrinsic neuronal excitability is mediated by the P2X2/3R.
Collapse
Affiliation(s)
- Saša Jovanovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Tamara Radulovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Beatrice Dietz
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Jana Nerlich
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Ivan Milenkovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Fischl MJ, Burger RM, Schmidt-Pauly M, Alexandrova O, Sinclair JL, Grothe B, Forsythe ID, Kopp-Scheinpflug C. Physiology and anatomy of neurons in the medial superior olive of the mouse. J Neurophysiol 2016; 116:2676-2688. [PMID: 27655966 PMCID: PMC5133312 DOI: 10.1152/jn.00523.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022] Open
Abstract
In mammals with good low-frequency hearing, the medial superior olive (MSO) computes sound location by comparing differences in the arrival time of a sound at each ear, called interaural time disparities (ITDs). Low-frequency sounds are not reflected by the head, and therefore level differences and spectral cues are minimal or absent, leaving ITDs as the only cue for sound localization. Although mammals with high-frequency hearing and small heads (e.g., bats, mice) barely experience ITDs, the MSO is still present in these animals. Yet, aside from studies in specialized bats, in which the MSO appears to serve functions other than ITD processing, it has not been studied in small mammals that do not hear low frequencies. Here we describe neurons in the mouse brain stem that share prominent anatomical, morphological, and physiological properties with the MSO in species known to use ITDs for sound localization. However, these neurons also deviate in some important aspects from the typical MSO, including a less refined arrangement of cell bodies, dendrites, and synaptic inputs. In vitro, the vast majority of neurons exhibited a single, onset action potential in response to suprathreshold depolarization. This spiking pattern is typical of MSO neurons in other species and is generated from a complement of Kv1, Kv3, and IH currents. In vivo, mouse MSO neurons show bilateral excitatory and inhibitory tuning as well as an improvement in temporal acuity of spiking during bilateral acoustic stimulation. The combination of classical MSO features like those observed in gerbils with more unique features similar to those observed in bats and opossums make the mouse MSO an interesting model for exploiting genetic tools to test hypotheses about the molecular mechanisms and evolution of ITD processing.
Collapse
Affiliation(s)
- Matthew J Fischl
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania; and
| | - Myriam Schmidt-Pauly
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Olga Alexandrova
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - James L Sinclair
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Ian D Forsythe
- Department of Neuroscience, Psychology, and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany;
| |
Collapse
|
22
|
Seidl AH, Rubel EW. Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia 2016; 64:487-94. [PMID: 26556176 PMCID: PMC4752408 DOI: 10.1002/glia.22941] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022]
Abstract
A brainstem circuit for encoding the spatial location of sounds involves neurons in the cochlear nucleus that project to medial superior olivary (MSO) neurons on both sides of the brain via a single bifurcating axon. Neurons in MSO act as coincidence detectors, responding optimally when signals from the two ears arrive within a few microseconds. To achieve this, transmission of signals along the contralateral collateral must be faster than transmission of the same signals along the ipsilateral collateral. We demonstrate that this is achieved by differential regulation of myelination and axon caliber along the ipsilateral and contralateral branches of single axons; ipsilateral axon branches have shorter internode lengths and smaller caliber than contralateral branches. The myelination difference is established prior to the onset of hearing. We conclude that this differential myelination and axon caliber requires local interactions between axon collaterals and surrounding oligodendrocytes on the two sides of the brainstem.
Collapse
Affiliation(s)
- Armin H. Seidl
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA
- Department of Neurology, University of Washington, Seattle, WA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA
- Department of Otolaryngology – Head & Neck Surgery, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Keating P, Rosenior-Patten O, Dahmen JC, Bell O, King AJ. Behavioral training promotes multiple adaptive processes following acute hearing loss. eLife 2016; 5:e12264. [PMID: 27008181 PMCID: PMC4841776 DOI: 10.7554/elife.12264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/23/2016] [Indexed: 11/13/2022] Open
Abstract
The brain possesses a remarkable capacity to compensate for changes in inputs resulting from a range of sensory impairments. Developmental studies of sound localization have shown that adaptation to asymmetric hearing loss can be achieved either by reinterpreting altered spatial cues or by relying more on those cues that remain intact. Adaptation to monaural deprivation in adulthood is also possible, but appears to lack such flexibility. Here we show, however, that appropriate behavioral training enables monaurally-deprived adult humans to exploit both of these adaptive processes. Moreover, cortical recordings in ferrets reared with asymmetric hearing loss suggest that these forms of plasticity have distinct neural substrates. An ability to adapt to asymmetric hearing loss using multiple adaptive processes is therefore shared by different species and may persist throughout the lifespan. This highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders. DOI:http://dx.doi.org/10.7554/eLife.12264.001 The brain normally compares the timing and intensity of the sounds that reach each ear to work out a sound’s origin. Hearing loss in one ear disrupts these between-ear comparisons, which causes listeners to make errors in this process. With time, however, the brain adapts to this hearing loss and once again learns to localize sounds accurately. Previous research has shown that young ferrets can adapt to hearing loss in one ear in two distinct ways. The ferrets either learn to remap the altered between-ear comparisons, caused by losing hearing in one ear, onto their new locations. Alternatively, the ferrets learn to locate sounds using only their good ear. Each strategy is suited to localizing different types of sound, but it was not known how this adaptive flexibility unfolds over time, whether it persists throughout the lifespan, or whether it is shared by other species. Now, Keating et al. show that, with some coaching, adult humans also adapt to temporary loss of hearing in one ear using the same two strategies. In the experiments, adult humans were trained to localize different kinds of sounds while wearing an earplug in one ear. These sounds were presented from 12 loudspeakers arranged in a horizontal circle around the person being tested. The experiments showed that short periods of behavioral training enable adult humans to adapt to a hearing loss in one ear and recover their ability to localize sounds. Just like the ferrets, adult humans learned to correctly associate altered between-ear comparisons with their new locations and to rely more on the cues from the unplugged ear to locate sound. Which of these adaptive strategies the participants used depended on the frequencies present in the sounds. The cells in the ear and brain that detect and make sense of sound typically respond best to a limited range of frequencies, and so this suggests that each strategy relies on a distinct set of cells. Keating et al. confirmed in ferrets that different brain cells are indeed used to bring about adaptation to hearing loss in one ear using each strategy. These insights may aid the development of new therapies to treat hearing loss. DOI:http://dx.doi.org/10.7554/eLife.12264.002
Collapse
Affiliation(s)
- Peter Keating
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Onayomi Rosenior-Patten
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Olivia Bell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Benichoux V, Fontaine B, Franken TP, Karino S, Joris PX, Brette R. Neural tuning matches frequency-dependent time differences between the ears. eLife 2015; 4. [PMID: 25915620 PMCID: PMC4439524 DOI: 10.7554/elife.06072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/25/2015] [Indexed: 11/15/2022] Open
Abstract
The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency. DOI:http://dx.doi.org/10.7554/eLife.06072.001 When you hear a sound, such as someone calling your name, it is often possible to make a good estimate of where that sound came from. If the sound came from the left, it would reach your left ear before your right ear, and vice versa if the sound originated from your right. The time that passes between the sound reaching each ear is known as the ‘interaural time difference’. Previous research has suggested that specific neurons in the brain respond to specific interaural time differences, and the brain then uses this interaural time difference to locate the sound. Sounds come in various frequencies from high-pitched alarms to low bass tones, and how a neuron responds to interaural time differences appears to change according to the frequency of the sound being played. For example, a given neuron may respond to a 200- microsecond interaural time difference when a tone is played at a high frequency, but show no response to this time difference when the tone is played at a low frequency. To date, researchers had been unable to explain why this occurs. Here, Benichoux et al. investigated this topic by playing a variety of sounds to anaesthetized cats. Electrodes were used to record the responses of individual neurons in the cats' brains, and the properties of the sound waves that reached the cats' ears were also recorded. These experiments revealed that the time it took a sound to travel from a location to each of the cats' ears, and consequently the interaural time difference, depended on whether it was a high-pitched or a low-pitched sound. This happened because different properties of the environment, such as the angle of the cat's head, affected specific frequencies in different ways. As expected, the neurons' responses were also affected by sound frequency. Indeed, the neurons' behaviour mirrored that of the sound waves themselves. This shows that neurons do not, as previously thought, simply react to specific interaural differences. Instead, these neurons use both sound frequency and interaural time differences to produce a thorough approximation of the sound's location. The precise mechanisms that generate this brain adaptation to the animal's environment remain to be determined. DOI:http://dx.doi.org/10.7554/eLife.06072.002
Collapse
Affiliation(s)
- Victor Benichoux
- Institut d'Etudes de la Cognition, Ecole Normale Supérieure, Paris, France
| | - Bertrand Fontaine
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Tom P Franken
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | - Shotaro Karino
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | - Romain Brette
- Institut d'Etudes de la Cognition, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
25
|
Wang Y, Sakano H, Beebe K, Brown MR, de Laat R, Bothwell M, Kulesza RJ, Rubel EW. Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human. J Comp Neurol 2015; 522:2107-28. [PMID: 24318628 DOI: 10.1002/cne.23520] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/09/2022]
Abstract
Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders.
Collapse
Affiliation(s)
- Yuan Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, 98195-7923
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Asp F, Mäki-Torkko E, Karltorp E, Harder H, Hergils L, Eskilsson G, Stenfelt S. A longitudinal study of the bilateral benefit in children with bilateral cochlear implants. Int J Audiol 2014; 54:77-88. [DOI: 10.3109/14992027.2014.973536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Kan A, Litovsky RY. Binaural hearing with electrical stimulation. Hear Res 2014; 322:127-37. [PMID: 25193553 DOI: 10.1016/j.heares.2014.08.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022]
Abstract
Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Alan Kan
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| | - Ruth Y Litovsky
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| |
Collapse
|
28
|
Keating P, Nodal FR, King AJ. Behavioural sensitivity to binaural spatial cues in ferrets: evidence for plasticity in the duplex theory of sound localization. Eur J Neurosci 2014; 39:197-206. [PMID: 24256073 PMCID: PMC4063341 DOI: 10.1111/ejn.12402] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/05/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
For over a century, the duplex theory has guided our understanding of human sound localization in the horizontal plane. According to this theory, the auditory system uses interaural time differences (ITDs) and interaural level differences (ILDs) to localize low-frequency and high-frequency sounds, respectively. Whilst this theory successfully accounts for the localization of tones by humans, some species show very different behaviour. Ferrets are widely used for studying both clinical and fundamental aspects of spatial hearing, but it is not known whether the duplex theory applies to this species or, if so, to what extent the frequency range over which each binaural cue is used depends on acoustical or neurophysiological factors. To address these issues, we trained ferrets to lateralize tones presented over earphones and found that the frequency dependence of ITD and ILD sensitivity broadly paralleled that observed in humans. Compared with humans, however, the transition between ITD and ILD sensitivity was shifted toward higher frequencies. We found that the frequency dependence of ITD sensitivity in ferrets can partially be accounted for by acoustical factors, although neurophysiological mechanisms are also likely to be involved. Moreover, we show that binaural cue sensitivity can be shaped by experience, as training ferrets on a 1-kHz ILD task resulted in significant improvements in thresholds that were specific to the trained cue and frequency. Our results provide new insights into the factors limiting the use of different sound localization cues and highlight the importance of sensory experience in shaping the underlying neural mechanisms.
Collapse
Affiliation(s)
- Peter Keating
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | | | |
Collapse
|
29
|
Keating P, King AJ. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications. Front Syst Neurosci 2013; 7:123. [PMID: 24409125 PMCID: PMC3873525 DOI: 10.3389/fnsys.2013.00123] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022] Open
Abstract
Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this.
Collapse
Affiliation(s)
- Peter Keating
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
30
|
Seidl AH. Regulation of conduction time along axons. Neuroscience 2013; 276:126-34. [PMID: 23820043 DOI: 10.1016/j.neuroscience.2013.06.047] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Timely delivery of information is essential for proper functioning of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies on the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the speed of signal propagation, i.e. the speed at which an action potential travels. Conduction time refers to the time it takes for a specific signal to travel from its origin to its target, i.e. neuronal cell body to axonal terminal.
Collapse
Affiliation(s)
- A H Seidl
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Department of Otolaryngology - Head & Neck Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Trattner B, Gravot CM, Grothe B, Kunz L. Metabolic Maturation of Auditory Neurones in the Superior Olivary Complex. PLoS One 2013; 8:e67351. [PMID: 23826275 PMCID: PMC3694961 DOI: 10.1371/journal.pone.0067351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/16/2013] [Indexed: 11/25/2022] Open
Abstract
Neuronal activity is energetically costly, but despite its importance, energy production and consumption have been studied in only a few neurone types. Neuroenergetics is of special importance in auditory brainstem nuclei, where neurones exhibit various biophysical adaptations for extraordinary temporal precision and show particularly high firing rates. We have studied the development of energy metabolism in three principal nuclei of the superior olivary complex (SOC) involved in precise binaural processing in the Mongolian gerbil (Meriones unguiculatus). We used immunohistochemistry to quantify metabolic markers for energy consumption (Na+/K+-ATPase) and production (mitochondria, cytochrome c oxidase activity and glucose transporter 3 (GLUT3)). In addition, we calculated neuronal ATP consumption for different postnatal ages (P0–90) based upon published electrophysiological and morphological data. Our calculations relate neuronal processes to the regeneration of Na+ gradients perturbed by neuronal firing, and thus to ATP consumption by Na+/K+-ATPase. The developmental changes of calculated energy consumption closely resemble those of metabolic markers. Both increase before and after hearing onset occurring at P12–13 and reach a plateau thereafter. The increase in Na+/K+-ATPase and mitochondria precedes the rise in GLUT3 levels and is already substantial before hearing onset, whilst GLUT3 levels are scarcely detectable at this age. Based on these findings we assume that auditory inputs crucially contribute to metabolic maturation. In one nucleus, the medial nucleus of the trapezoid body (MNTB), the initial rise in marker levels and calculated ATP consumption occurs distinctly earlier than in the other nuclei investigated, and is almost completed by hearing onset. Our study shows that the mathematical model used is applicable to brainstem neurones. Energy consumption varies markedly between SOC nuclei with their different neuronal properties. Especially for the medial superior olive (MSO), we propose that temporally precise input integration is energetically more costly than the high firing frequencies typical for all SOC nuclei.
Collapse
Affiliation(s)
- Barbara Trattner
- Department of Biology II, Division of Neurobiology, Ludwig Maximilians University Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Martinsried, Germany
- * E-mail: (BT); (LK)
| | - Céline Marie Gravot
- Department of Biology II, Division of Neurobiology, Ludwig Maximilians University Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Benedikt Grothe
- Department of Biology II, Division of Neurobiology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Lars Kunz
- Department of Biology II, Division of Neurobiology, Ludwig Maximilians University Munich, Martinsried, Germany
- * E-mail: (BT); (LK)
| |
Collapse
|
32
|
Hancock KE, Chung Y, Delgutte B. Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. J Assoc Res Otolaryngol 2013; 14:393-411. [PMID: 23462803 PMCID: PMC3642270 DOI: 10.1007/s10162-013-0380-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 10/27/2022] Open
Abstract
Bilateral cochlear implant (CI) users perform poorly on tasks involving interaural time differences (ITD), which are critical for sound localization and speech reception in noise by normal-hearing listeners. ITD perception with bilateral CI is influenced by age at onset of deafness and duration of deafness. We previously showed that ITD coding in the auditory midbrain is degraded in congenitally deaf white cats (DWC) compared to acutely deafened cats (ADC) with normal auditory development (Hancock et al., J. Neurosci, 30:14068). To determine the relative importance of early onset of deafness and prolonged duration of deafness for abnormal ITD coding in DWC, we recorded from single units in the inferior colliculus of cats deafened as adults 6 months prior to experimentation (long-term deafened cats, LTDC) and compared neural ITD coding between the three deafness models. The incidence of ITD-sensitive neurons was similar in both groups with normal auditory development (LTDC and ADC), but significantly diminished in DWC. In contrast, both groups that experienced prolonged deafness (LTDC and DWC) had broad distributions of best ITDs around the midline, unlike the more focused distributions biased toward contralateral-leading ITDs present in both ADC and normal-hearing animals. The lack of contralateral bias in LTDC and DWC results in reduced sensitivity to changes in ITD within the natural range. The finding that early onset of deafness more severely degrades neural ITD coding than prolonged duration of deafness argues for the importance of fitting deaf children with sound processors that provide reliable ITD cues at an early age.
Collapse
Affiliation(s)
- Kenneth E. Hancock
- />Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114 USA
- />Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115 USA
| | - Yoojin Chung
- />Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114 USA
- />Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115 USA
| | - Bertrand Delgutte
- />Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114 USA
- />Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115 USA
- />Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
33
|
Spatial acuity in 2-to-3-year-old children with normal acoustic hearing, unilateral cochlear implants, and bilateral cochlear implants. Ear Hear 2013; 33:561-72. [PMID: 22517185 DOI: 10.1097/aud.0b013e31824c7801] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES : To measure spatial acuity on a right-left discrimination task in 2-to-3-year-old children who use a unilateral cochlear implant (UCI) or bilateral cochlear implants (BICIs); to test the hypothesis that BICI users perform significantly better when they use two CIs than when using a single CI, and that they perform better than the children in the UCI group; to determine how well children with CIs perform compared with children who have normal acoustic hearing (NH); to determine the effect of intensity roving on spatial acuity. DESIGN : Three groups of children between 26 and 36 months of age participated in this study: 8 children with NH (mean age: 30.9 months), 12 children who use a UCI (mean age: 31.9 months), and 27 children who use BICIs (mean age: 30.7 months). Testing was conducted in a large sound-treated booth with loudspeakers positioned in a horizontal arc with a radius of 1.2 m. The observer-based psychophysical procedure was used to measure the children's ability to identify the hemifield containing the sound source (right versus left). Two methods were used for quantifying spatial acuity, an adaptive-tracking method and a fixed-angle method. In Experiment 1 an adaptive tracking algorithm was used to vary source angle, and the minimum audible angle (MAA), the smallest angle at which right-left discrimination performance is better than chance, was estimated. All three groups participated in Experiment 1. In Experiment 2 source angles were fixed at ±50 degrees, and performance was evaluated by computing the number of SDs above chance. Children in the UCI and BICI groups participated in Experiment 2. RESULTS : In Experiment 1, when stimulus intensity was roved by 8 dB, MAA thresholds were 3.3 degrees to 30.2 degrees (mean = 14.5 degrees) and 5.7 degrees to 69.6 degrees (mean = 30.9 degrees) in the NH group and in the BICI group, respectively. When the intensity level was fixed for the BICI group, performance did not improve. Within the BICI group, 5 out of 27 children obtained MAA thresholds within one SD of their peers who have NH; all five had >12 months of bilateral listening experience. In Experiment 2, BICIs provided some advantages when the intensity level was fixed. First, the BICI group outperformed the UCI group. Second, children in the BICI group who repeated the task with their 1st CI alone had statistically significantly better performance when using both devices. In addition, when intensity roving was introduced, a larger percentage of children who had 12 or more months of BICI experience continued to perform above chance than children who had <12 months of BICI experience. Taken together, the results suggest that children with BICIs have spatial acuity that is better than when using their first CI alone and than that of their peers who use UCIs. In addition, longer durations of BICI use tend to result in better performance, although this cannot be generalized to all participants. CONCLUSION : This report is consistent with a growing body of evidence that spatial-hearing skills can emerge in young children who use BICIs. The observation that these skills are not concomitantly emerging in age- and experience-matched children who use UCIs suggests that BICIs provide cues that are necessary for these spatial-hearing skills that UCIs do not provide.
Collapse
|
34
|
Carr C, Shah S, Ashida G, McColgan T, Wagner H, Kuokkanen PT, Kempter R, Köppl C. Maps of ITD in the nucleus laminaris of the barn owl. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 787:215-22. [PMID: 23716226 DOI: 10.1007/978-1-4614-1590-9_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Axons from the nucleus magnocellularis (NM) and their targets in nucleus laminaris (NL) form the circuit responsible for encoding interaural time differences (ITDs). In barn owls, NL receives bilateral inputs from NM such that axons from the ipsilateral NM enter NL dorsally, while contralateral axons enter from the ventral side. These afferents and their synapses on NL neurons generate a tone-induced local field potential, or neurophonic, that varies systematically with position in NL. From dorsal to ventral within the nucleus, the best interaural time difference (ITD) of the neurophonic shifts from contralateral space to best ITDs around 0 µs. Earlier recordings suggested that in NL, iso-delay contours ran parallel to the dorsal and ventral borders of NL (Sullivan WE, Konishi M. Proc Natl Acad Sci U S A 83:8400-8404, 1986). This axis is orthogonal to that seen in chicken NL, where a single map of ITD runs from around 0 µs ITD medially to contralateral space laterally (Köppl C, Carr CE. Biol Cyber 98:541-559, 2008). Yet the trajectories of the NM axons are similar in owl and chicken (Seidl AH, Rubel EW, Harris DM, J Neurosci 30:70-80, 2010). We therefore used clicks to measure conduction time in NL and made lesions to mark the 0 µs iso-delay contour in multiple penetrations along an isofrequency slab. Iso-delay contours were not parallel to the dorsal and ventral borders of NL; instead the 0 µs iso-delay contour shifted systematically from a dorsal position in medial NL to a ventral position in lateral NL. Could different conduction delays account for the mediolateral shift in the representation of 0 µs ITD? We measured conduction delays using the neurophonic potential and developed a simple linear model of the delay-line conduction velocity. We then raised young owls with time-delaying earplugs in one ear (Gold JI, Knudsen EI, J Neurophysiol 82:2197-2209, 1999) to examine map plasticity.
Collapse
Affiliation(s)
- Catherine Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Interaural differences in stimulus intensity and timing are major cues for sound localization. In mammals, these cues are first processed in the lateral and medial superior olive by interaction of excitatory and inhibitory synaptic inputs from ipsi- and contralateral cochlear nucleus neurons. To preserve sound localization acuity following changes in the acoustic environment, the processing of these binaural cues needs neuronal adaptation. Recent studies have shown that binaural sensitivity adapts to stimulation history within milliseconds, but the actual extent of binaural adaptation is unknown. In the current study, we investigated long-term effects on binaural sensitivity using extracellular in vivo recordings from single neurons in the dorsal nucleus of the lateral lemniscus that inherit their binaural properties directly from the lateral and medial superior olives. In contrast to most previous studies, we used a noninvasive approach to influence this processing. Adult gerbils were exposed for 2 weeks to moderate noise with no stable binaural cue. We found monaural response properties to be unaffected by this measure. However, neuronal sensitivity to binaural cues was reversibly altered for a few days. Computational models of sensitivity to interaural time and level differences suggest that upregulation of inhibition in the superior olivary complex can explain the electrophysiological data.
Collapse
|
36
|
Guo F, Zhang J, Zhu X, Cai R, Zhou X, Sun X. Auditory discrimination training rescues developmentally degraded directional selectivity and restores mature expression of GABA(A) and AMPA receptor subunits in rat auditory cortex. Behav Brain Res 2012; 229:301-7. [PMID: 22306199 DOI: 10.1016/j.bbr.2011.12.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 11/25/2022]
Abstract
Auditory frequency discrimination training can remediate deteriorated frequency representations and temporal information processing in the adult primary auditory cortex induced by early post-natal pulsed noise exposure. In this study, we investigated the neural mechanisms underlying the restoration of directional selectivity by auditory spatial discrimination training. Rats exposed to pulsed noise during a post-natal critical period demonstrated reduced auditory directional selectivity but could be successfully trained to identify a target sound stimulus at a specific azimuth angle using a reward-contingent auditory discrimination task (EXP rats). In contrast, rats passively exposed to the training procedure but no reward for correct identification of the azimuth angle (PNR rats) showed no improvement and behavioral performance remained significantly below EXP rats and control (CON) rats reared under a normal sonic environment. The expression levels of GABA(A) receptor subunits α1, α3, β2, and β3, and the AMPA GluR2 subunit were significantly altered in the auditory cortex of untrained noise-raised (NR and PNR) rats compared to age-matched CON rats, while trained noise-raised (EXP) rats exhibited levels of expression not significantly different from CON rats. Thus, reward-contingent sound-azimuth discrimination training may remediate directional selectivity by restoring the proper expression profile of neurotransmitter receptor subunits in the auditory cortex, allowing for normal spatial selectivity by cortical neurons. The development of auditory directional selectivity depends on the regulated expression of these excitatory and inhibitory neurotransmitter receptor subunits; early pulsed noise may disrupt the normal development of directional selectivity by interfering with receptor expression.
Collapse
Affiliation(s)
- Fei Guo
- School of Life Science, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
37
|
Ammer JJ, Grothe B, Felmy F. Late postnatal development of intrinsic and synaptic properties promotes fast and precise signaling in the dorsal nucleus of the lateral lemniscus. J Neurophysiol 2011; 107:1172-85. [PMID: 22131371 DOI: 10.1152/jn.00585.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dorsal nucleus of the lateral lemniscus (DNLL) is an auditory brain stem structure that generates a long-lasting GABAergic output, which is important for binaural processing. Despite its importance in binaural processing, little is known about the cellular physiology and the synaptic input kinetics of DNLL neurons. To assess the relevant physiological parameters of DNLL neurons, their late postnatal developmental profile was analyzed in acute brain slices of 9- to 26-day-old Mongolian gerbils. The observed developmental changes in passive membrane and action potential (AP) properties all point toward an improvement of fast and precise signal integration in these neurons. Accordingly, synaptic glutamatergic and GABAergic current kinetics accelerate with age. The changes in intrinsic and synaptic properties contribute nearly equally to reduce the latency and jitter in AP generation and thus enhance the temporal precision of DNLL neurons. Furthermore, the size of the synaptic NMDA current is developmentally downregulated. Despite this developmental reduction, DNLL neurons display an NMDA-dependent postsynaptic amplification of AP generation, known to support high firing rates, throughout this developmental period. Taken together, our findings indicate that during late postnatal development DNLL neurons are optimized for high firing rates with high temporal precision.
Collapse
Affiliation(s)
- J J Ammer
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians University Munich, Martinsried, Germany
| | | | | |
Collapse
|
38
|
Day ML, Semple MN. Frequency-dependent interaural delays in the medial superior olive: implications for interaural cochlear delays. J Neurophysiol 2011; 106:1985-99. [DOI: 10.1152/jn.00131.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the medial superior olive (MSO) are tuned to the interaural time difference (ITD) of sound arriving at the two ears. MSO neurons evoke a strongest response at their best delay (BD), at which the internal delay between bilateral inputs to MSO matches the external ITD. We performed extracellular recordings in the superior olivary complex of the anesthetized gerbil and found a majority of single units localized to the MSO to exhibit BDs that shifted with tone frequency. The relation of best interaural phase difference to tone frequency revealed nonlinearities in some MSO units and others with linear relations with characteristic phase between 0.4 and 0.6 cycles. The latter is usually associated with the interaction of ipsilateral excitation and contralateral inhibition, as in the lateral superior olive, yet all MSO units exhibited evidence of bilateral excitation. Interaural cochlear delays and phase-locked contralateral inhibition are two mechanisms of internal delay that have been suggested to create frequency-dependent delays. Best interaural phase-frequency relations were compared with a cross-correlation model of MSO that incorporated interaural cochlear delays and an additional frequency-independent delay component. The model with interaural cochlear delay fit phase-frequency relations exhibiting frequency-dependent delays with precision. Another model of MSO incorporating inhibition based on realistic biophysical parameters could not reproduce observed frequency-dependent delays.
Collapse
Affiliation(s)
- Mitchell L. Day
- Center for Neural Science, New York University, New York, New York
| | | |
Collapse
|
39
|
Friauf E, Rust MB, Schulenborg T, Hirtz JJ. Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system. Hear Res 2011; 279:96-110. [PMID: 21683130 DOI: 10.1016/j.heares.2011.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 01/24/2023]
Abstract
The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5).
Collapse
Affiliation(s)
- Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
40
|
Developmentally degraded directional selectivity of the auditory cortex can be restored by auditory discrimination training in adults. Behav Brain Res 2011; 225:596-602. [PMID: 21893102 DOI: 10.1016/j.bbr.2011.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/20/2011] [Accepted: 08/23/2011] [Indexed: 11/24/2022]
Abstract
Sound localization is one of the most important tasks performed by the auditory system. Studies have shown that intensive training can remediate deteriorated frequency representations and temporal information processing in the adult primary auditory cortex (A1) induced by early post-natal pulsed noise exposure. Here we demonstrate that intensive sound location discrimination training improved the dysfunctional sound azimuth selectivity degraded by early post-natal pulsed noise exposure. Rats exposed to pulsed white noise during a post-natal critical period were successfully trained to identify a target sound stimulus with specific azimuth angle that changed daily on a random schedule. Consistent with recovery of behavioral accuracy for sound-azimuth discriminations, we found that the average angular range (AR) of A1 neuronal azimuth selective curves in trained noise-raised rats was not significantly different from that measured in control rats, while the average AR of A1 neurons in untrained noise-raised rats was significantly higher, indicating that these neurons were less direction selective. Directional selectivity of A1 neurons was normalized by training, thus demonstrating the benefits of sensory discrimination training as a strategy for restoring auditory function in adult mammals damaged by sensory disruption during critical periods of cortical development.
Collapse
|
41
|
A critical period for auditory thalamocortical connectivity. Nat Neurosci 2011; 14:1189-94. [PMID: 21804538 PMCID: PMC3419581 DOI: 10.1038/nn.2882] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/06/2011] [Indexed: 11/08/2022]
Abstract
Neural circuits are shaped by experience during periods of heightened brain plasticity in early postnatal life. Exposure to acoustic features produces age-dependent changes through largely unresolved cellular mechanisms and sites of origin. We isolated the refinement of auditory thalamocortical connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene-targeted deletion of a forebrain-specific cell-adhesion molecule (Icam5) accelerated plasticity in this critical period. Consistent with its normal role of slowing spinogenesis, loss of Icam5 induced precocious stubby spine maturation on pyramidal cell dendrites in neocortical layer 4 (L4), identifying a primary locus of change for the tonotopic plasticity. The evolving postnatal connectivity between thalamus and cortex in the days following hearing onset may therefore determine a critical period for auditory processing.
Collapse
|
42
|
|
43
|
Efrati A, Gutfreund Y. Early life exposure to noise alters the representation of auditory localization cues in the auditory space map of the barn owl. J Neurophysiol 2011; 105:2522-35. [PMID: 21368005 DOI: 10.1152/jn.00078.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The auditory space map in the optic tectum (OT) (also known as superior colliculus in mammals) relies on the tuning of neurons to auditory localization cues that correspond to specific sound source locations. This study investigates the effects of early auditory experiences on the neural representation of binaural auditory localization cues. Young barn owls were raised in continuous omnidirectional broadband noise from before hearing onset to the age of ∼ 65 days. Data from these birds were compared with data from age-matched control owls and from normal adult owls (>200 days). In noise-reared owls, the tuning of tectal neurons for interaural level differences and interaural time differences was broader than in control owls. Moreover, in neurons from noise-reared owls, the interaural level differences tuning was biased towards sounds louder in the contralateral ear. A similar bias appeared, but to a much lesser extent, in age-matched control owls and was absent in adult owls. To follow the recovery process from noise exposure, we continued to survey the neural representations in the OT for an extended period of up to several months after removal of the noise. We report that all the noise-rearing effects tended to recover gradually following exposure to a normal acoustic environment. The results suggest that deprivation from experiencing normal acoustic localization cues disrupts the maturation of the auditory space map in the OT.
Collapse
Affiliation(s)
- Adi Efrati
- Department of Physiology and Biophysics, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | | |
Collapse
|
44
|
Oswald AMM, Reyes AD. Development of inhibitory timescales in auditory cortex. ACTA ACUST UNITED AC 2010; 21:1351-61. [PMID: 21068186 DOI: 10.1093/cercor/bhq214] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The time course of inhibition plays an important role in cortical sensitivity, tuning, and temporal response properties. We investigated the development of L2/3 inhibitory circuitry between fast-spiking (FS) interneurons and pyramidal cells (PCs) in auditory thalamocortical slices from mice between postnatal day 10 (P10) and P29. We found that the maturation of the intrinsic and synaptic properties of both FS cells and their connected PCs influence the timescales of inhibition. FS cell firing rates increased with age owing to decreased membrane time constants, shorter afterhyperpolarizations, and narrower action potentials. Between FS-PC pairs, excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) changed with age. The latencies, rise, and peak times of the IPSPs, as well as the decay constants of both EPSPs and IPSPs decreased between P10 and P29. In addition, decreases in short-term depression at excitatory PC-FS synapses resulted in more sustained synaptic responses during repetitive stimulation. Finally, we show that during early development, the temporal properties that influence the recruitment of inhibition lag those of excitation. Taken together, our results suggest that the changes in the timescales of inhibitory recruitment coincide with the development of the tuning and temporal response properties of auditory cortical networks.
Collapse
|
45
|
Cai R, Zhou X, Guo F, Xu J, Zhang J, Sun X. Maintenance of enriched environment-induced changes of auditory spatial sensitivity and expression of GABAA, NMDA, and AMPA receptor subunits in rat auditory cortex. Neurobiol Learn Mem 2010; 94:452-60. [DOI: 10.1016/j.nlm.2010.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
|
46
|
Hancock KE, Noel V, Ryugo DK, Delgutte B. Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J Neurosci 2010; 30:14068-79. [PMID: 20962228 PMCID: PMC3025489 DOI: 10.1523/jneurosci.3213-10.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 11/21/2022] Open
Abstract
Human bilateral cochlear implant users do poorly on tasks involving interaural time differences (ITD), a cue that provides important benefits to the normal hearing, especially in challenging acoustic environments, yet the precision of neural ITD coding in acutely deafened, bilaterally implanted cats is essentially normal (Smith and Delgutte, 2007a). One explanation for this discrepancy is that the extended periods of binaural deprivation typically experienced by cochlear implant users degrades neural ITD sensitivity, by either impeding normal maturation of the neural circuitry or altering it later in life. To test this hypothesis, we recorded from single units in inferior colliculus of two groups of bilaterally implanted, anesthetized cats that contrast maximally in binaural experience: acutely deafened cats, which had normal binaural hearing until experimentation, and congenitally deaf white cats, which received no auditory inputs until the experiment. Rate responses of only half as many neurons showed significant ITD sensitivity to low-rate pulse trains in congenitally deaf cats compared with acutely deafened cats. For neurons that were ITD sensitive, ITD tuning was broader and best ITDs were more variable in congenitally deaf cats, leading to poorer ITD coding within the naturally occurring range. A signal detection model constrained by the observed physiology supports the idea that the degraded neural ITD coding resulting from deprivation of binaural experience contributes to poor ITD discrimination by human implantees.
Collapse
Affiliation(s)
- Kenneth E Hancock
- Eaton-Peabody Laboratory and Cochlear Implant Research Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
The ability to determine the location of a sound source is fundamental to hearing. However, auditory space is not represented in any systematic manner on the basilar membrane of the cochlea, the sensory surface of the receptor organ for hearing. Understanding the means by which sensitivity to spatial cues is computed in central neurons can therefore contribute to our understanding of the basic nature of complex neural representations. We review recent evidence concerning the nature of the neural representation of auditory space in the mammalian brain and elaborate on recent advances in the understanding of mammalian subcortical processing of auditory spatial cues that challenge the “textbook” version of sound localization, in particular brain mechanisms contributing to binaural hearing.
Collapse
Affiliation(s)
- Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| | - Michael Pecka
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| | - David McAlpine
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| |
Collapse
|
48
|
Rautenberg PL, Grothe B, Felmy F. Quantification of the three-dimensional morphology of coincidence detector neurons in the medial superior olive of gerbils during late postnatal development. J Comp Neurol 2010; 517:385-96. [PMID: 19760600 DOI: 10.1002/cne.22166] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the mammalian medial superior olive (MSO), neurons compute the azimuthal location of sound sources by temporally precise coincidence detection. It is assumed that the dendritic morphology of MSO neurons plays a crucial role in this computational process. However, few quantitative data about the morphology of these neuronal coincidence detectors are available, limiting theoretical approaches. Such a quantitative morphological description of neurons of the mammalian MSO would also allow a comparative analysis with its avian analog, the nucleus laminaris. We used single-cell electroporation, microscopic reconstruction, and compartmentalization to extract anatomical parameters of MSO neurons and quantitatively describe their morphology and development between postnatal day 9 and 36. We found that developmental refinement occurs until P27, generating morphologically compact, cylinder-like cells with axons originating from the soma. The complexity of higher order dendrites decreases between postnatal days 9 and 21. This decrease in dendritic complexity is judged from counting and analyzing the location of dendritic branches and determining the distribution of the surface area and total length of neurons. During this developmental period, the average length of terminal branches increases about twofold, indicating an elimination of predominantly small branches. The cell volume increases more than 1.5-fold between P9 and P27, a change that can be attributed to an increase in dendritic diameter during this developmental period. The developmental profile of the morphology of MSO neurons obtained indicates that maturation is reached 2 weeks after hearing onset.
Collapse
Affiliation(s)
- Philipp L Rautenberg
- Biology II, Department of Neurobiology, Ludwig Maximilian University, Martinsried 82152, Germany
| | | | | |
Collapse
|
49
|
Tillein J, Hubka P, Syed E, Hartmann R, Engel A, Kral A. Cortical Representation of Interaural Time Difference in Congenital Deafness. Cereb Cortex 2009; 20:492-506. [DOI: 10.1093/cercor/bhp222] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Zhang H, Cai R, Zhang J, Pan Y, Sun X. Environmental enrichment enhances directional selectivity of primary auditory cortical neurons in rats. Neurosci Lett 2009; 463:162-5. [PMID: 19631723 DOI: 10.1016/j.neulet.2009.07.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/14/2009] [Accepted: 07/17/2009] [Indexed: 11/25/2022]
Abstract
Environment enrichment (EE) has an important role in brain plasticity. Previous research has shown that EE increases the response strength of auditory cortical neurons, but it remains unknown whether EE can affect the directional selectivity of auditory neurons. In this study, rats were exposed to EE conditions during the developmental critical period (EE1) or after the critical period (EE2). By in vivo extracellular recording, we found that EE enhanced the directional selectivity of primary auditory cortical neurons in EE1 rats, which showed a sharper azimuth selectivity curve of auditory cortical neurons compared with normal rats. However, there was no significant difference in directional selectivity between the EE2 rats and age-matched control rats. Our findings indicate that early exposure to EE enhances the directional sensitivity of primary auditory cortical neurons. These results provide an insight into developmental plasticity in the auditory system.
Collapse
Affiliation(s)
- Hao Zhang
- School of Life Science, Institute of Cognitive Neuroscience, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | | | |
Collapse
|