1
|
Ghosh K, Huang 黄玉莹 Y, Jin 金道忠 D, Chen 陈少瑞 SR, Pan 潘惠麟 HL. Histone Methyltransferase G9a in Primary Sensory Neurons Promotes Inflammatory Pain and Transcription of Trpa1 and Trpv1 via Bivalent Histone Modifications. J Neurosci 2025; 45:e1790242024. [PMID: 39824634 PMCID: PMC11800753 DOI: 10.1523/jneurosci.1790-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown. G9a (encoded by Ehmt2) catalyzes H3K9me2 and generally represses gene transcription. In this study, we found that intrathecal administration of UNC0638, a specific G9a inhibitor, or G9a-specific siRNA, substantially reduced complete Freund's adjuvant (CFA)-induced pain hypersensitivity. Remarkably, CFA treatment did not induce persistent pain hypersensitivity in male and female mice with conditional Ehmt2 knock-out in dorsal root ganglion (DRG) neurons. RNA sequencing and quantitative PCR analyses showed that CFA treatment caused a sustained increase in mRNA levels of Trpa1 and Trpv1 in the DRG. Ehmt2 knock-out in DRG neurons elevated baseline Trpa1 and Trpv1 mRNA levels but notably reversed CFA-induced increases in their expression. Chromatin immunoprecipitation revealed that CFA treatment reduced G9a and H3K9me2 levels while increasing H3K9ac and H3K4me3-activating histone marks-at Trpa1 and Trpv1 promoters in the DRG. Strikingly, conditional Ehmt2 knock-out in DRG neurons not only diminished H3K9me2 but also reversed CFA-induced increases in H3K9ac and H3K4me3 at Trpa1 and Trpv1 promoters. Our findings suggest that G9a in primary sensory neurons constitutively represses Trpa1 and Trpv1 transcription under normal conditions but paradoxically enhances their transcription during tissue inflammation. This latter action accounts for inflammation-induced TRPA1 and TRPV1 upregulation in the DRG. Thus, G9a could be targeted for alleviating persistent inflammatory pain.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin 金道忠
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
2
|
Jin D, Chen H, Zhou MH, Chen SR, Pan HL. mGluR5 from Primary Sensory Neurons Promotes Opioid-Induced Hyperalgesia and Tolerance by Interacting with and Potentiating Synaptic NMDA Receptors. J Neurosci 2023; 43:5593-5607. [PMID: 37451981 PMCID: PMC10401648 DOI: 10.1523/jneurosci.0601-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with μ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
3
|
Roh SH, Moon JH, Lee JY. Spatial summation of thermal sensitivity is limited to small areas: Comparisons of the forehead, forearm, abdomen, and foot. J Therm Biol 2023; 115:103627. [PMID: 37354635 DOI: 10.1016/j.jtherbio.2023.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The purpose of the present study was to examine if spatial summation in thermal sensitivity exists when stimulating areas larger than about 1% of body surface area (BSA) (approximately 200 cm2). We hypothesized that spatial summation would exist within a limited area and the effect would be insignificant for over the 1%BSA. Fifteen young males participated in this study and we measured their warmth and hot sensation thresholds on the four body regions (the forehead, forearm, abdomen, and instep) using the three sizes of radiant film heaters (10 × 10, 15 × 15, and 20 × 20 cm2 heating film area). The heating panel was kept at a distance of 10 cm from the skin and the surface temperature of the heating panel increased by 1 °C·s-1. The results showed that warmth and hot sensation thresholds were higher for the 100 cm2 condition than the 225 or 400 cm2 conditions (P < 0.05), but no differences were found between the 225 and 400 cm2 conditions. Secondly, the instep was most insensitive to the gradual increase of radiant heat among the four body regions for all three stimulating film sizes, even though the hot threshold was lowest for the instep because the initial foot temperature was lower than other skin temperatures. In summary, spatial summation in thermal sensitivity was found for the 100 and 225 cm 2 conditions, but not for the 225 and 400 cm2 conditions. These results suggest that spatial summation exists but limited to small stimulating areas, smaller than approximately 1% BSA.
Collapse
Affiliation(s)
- Sang-Hyun Roh
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul, South Korea
| | - Ju-Hyun Moon
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul, South Korea
| | - Joo-Young Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul, South Korea; Research Institute for Human Ecology, Seoul National University, Seoul, South Korea; Graphene Research Center for Convergence Technology, Advanced Institute of Convergence Technology, Suwon, South Korea.
| |
Collapse
|
4
|
Puig S, Gutstein HB. Chronic Morphine Modulates PDGFR-β and PDGF-B Expression and Distribution in Dorsal Root Ganglia and Spinal Cord in Male Rats. Neuroscience 2023; 519:147-161. [PMID: 36997020 DOI: 10.1016/j.neuroscience.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The analgesic effect of opioids decreases over time due to the development of analgesic tolerance. We have shown that inhibition of the platelet-derived growth factor beta (PDGFR-β) signaling eliminates morphine analgesic tolerance in rats. Although the PDGFR-β and its ligand, the platelet-derived growth factor type B (PDGF-B), are expressed in the substantia gelatinosa of the spinal cord (SG) and in the dorsal root ganglia (DRG), their precise distribution within different cell types of these structures is unknown. Additionally, the impact of a tolerance-mediating chronic morphine treatment, on the expression and distribution of PDGF-B and PDGFR-β has not yet been studied. Using immunohistochemistry (IHC), we found that in the spinal cord, PDGFR-β and PDGF-B were expressed in neurons and oligodendrocytes and co-localized with the mu-opioid receptor (MOPr) in opioid naïve rats. PDGF-B was also found in microglia and astrocytes. Both PDGFR-β and PDGF-B were detected in DRG neurons but not in spinal primary afferent terminals. Chronic morphine exposure did not change the cellular distribution of PDGFR-β or PDGF-B. However, PDGFR-β expression was downregulated in the SG and upregulated in the DRG. Consistent with our previous finding that morphine caused tolerance by inducing PDGF-B release, PDGF-B was upregulated in the spinal cord. We also found that chronic morphine exposure caused a spinal proliferation of oligodendrocytes. The changes in PDGFR-β and PDGF-B expression induced by chronic morphine treatment suggest potential mechanistic substrates underlying opioid tolerance.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology and Physiology, Boston University School of Medicine, Boston, 02118 MA, USA
| | - Howard B Gutstein
- Department of Anesthesiology, University of Connecticut Health Science Center, Farmington, 06030 CT, USA.
| |
Collapse
|
5
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
6
|
Ghosh K, Zhang GF, Chen H, Chen SR, Pan HL. Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain. J Biol Chem 2022; 298:101999. [PMID: 35500651 PMCID: PMC9168157 DOI: 10.1016/j.jbc.2022.101999] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Type-2 cannabinoid receptors (CB2, encoded by the Cnr2 gene) are mainly expressed in immune cells, and CB2 agonists normally have no analgesic effect. However, nerve injury upregulates CB2 in the dorsal root ganglion (DRG), following which CB2 stimulation reduces neuropathic pain. It is unclear how nerve injury increases CB2 expression or how CB2 activity is transformed in neuropathic pain. In this study, immunoblotting showed that spinal nerve ligation (SNL) induced a delayed and sustained increase in CB2 expression in the DRG and dorsal spinal cord synaptosomes. RNAscope in situ hybridization also showed that SNL substantially increased CB2 mRNA levels, mostly in medium and large DRG neurons. Furthermore, we found that the specific CB2 agonist JWH-133 significantly inhibits the amplitude of dorsal root-evoked glutamatergic excitatory postsynaptic currents in spinal dorsal horn neurons in SNL rats, but not in sham control rats; intrathecal injection of JWH-133 reversed pain hypersensitivity in SNL rats, but had no effect in sham control rats. In addition, chromatin immunoprecipitation-qPCR analysis showed that SNL increased enrichment of two activating histone marks (H3K4me3 and H3K9ac) and diminished occupancy of two repressive histone marks (H3K9me2 and H3K27me3) at the Cnr2 promoter in the DRG. In contrast, SNL had no effect on DNA methylation levels around the Cnr2 promoter. Our findings suggest that peripheral nerve injury promotes CB2 expression in primary sensory neurons via epigenetic bivalent histone modifications and that CB2 activation reduces neuropathic pain by attenuating nociceptive transmission from primary afferent nerves to the spinal cord.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guang-Fen Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
7
|
Nguyen TL, Nam YS, Lee SY, Jang CG. Repeated Morphine Administration Increases TRPV1 mRNA Expression and Autoradiographic Binding at Supraspinal Sites in the Pain Pathway. Biomol Ther (Seoul) 2022; 30:328-333. [PMID: 35616070 PMCID: PMC9252876 DOI: 10.4062/biomolther.2022.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
Repeated morphine administration induces tolerance to its analgesic effects. A previous study reported that repeated morphine treatment activates transient receptor potential vanilloid type 1 (TRPV1) expression in the sciatic nerve, dorsal root ganglion, and spinal cord, contributing to morphine tolerance. In the present study, we analyzed TRPV1 expression and binding sites in supraspinal pain pathways in morphine-tolerant mice. The TRPV1 mRNA levels and binding sites were remarkably increased in the cortex and thalamus of these animals. Our data provide additional insights into the effects of morphine on TRPV1 in the brain and suggest that changes in the expression of, and binding to TRPV1 in the brain are involved in morphine tolerance.
Collapse
Affiliation(s)
- Thi-Lien Nguyen
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Pharmacology Laboratory, National Institute of Drug Quality Control, Ha Noi 100000, Viet Nam
| | - Yun-Son Nam
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Wang X, Bao C, Li Z, Yue L, Hu L. Side Effects of Opioids Are Ameliorated by Regulating TRPV1 Receptors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042387. [PMID: 35206575 PMCID: PMC8872563 DOI: 10.3390/ijerph19042387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022]
Abstract
Humans have used opioids to suppress moderate to severe pain for thousands of years. However, the long-term use of opioids has several adverse effects, such as opioid tolerance, opioid-induced hyperalgesia, and addiction. In addition, the low efficiency of opioids in controlling neuropathic pain limits their clinical applications. Combining nonopioid analgesics with opioids to target multiple sites along the nociceptive pathway may alleviate the side effects of opioids. This study reviews the feasibility of reducing opioid side effects by regulating the transient receptor potential vanilloid 1 (TRPV1) receptors and summarizes the possible underlying mechanisms. Blocking and activating TRPV1 receptors can improve the therapeutic profile of opioids in different manners. TRPV1 and μ-opioid receptors are bidirectionally regulated by β-arrestin2. Thus, drug combinations or developing dual-acting drugs simultaneously targeting μ-opioid and TRPV1 receptors may mitigate opioid tolerance and opioid-induced hyperalgesia. In addition, TRPV1 receptors, especially expressed in the dorsal striatum and nucleus accumbens, participate in mediating opioid reward, and its regulation can reduce the risk of opioid-induced addiction. Finally, co-administration of TRPV1 antagonists and opioids in the primary action sites of the periphery can significantly relieve neuropathic pain. In general, the regulation of TRPV1 may potentially ameliorate the side effects of opioids and enhance their analgesic efficacy in neuropathic pain.
Collapse
Affiliation(s)
- Xiaqing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongyu Bao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (L.Y.); (L.H.)
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; (X.W.); (C.B.); (Z.L.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (L.Y.); (L.H.)
| |
Collapse
|
9
|
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel that is intensively expressed in the peripheral nerve system and involved in a variety of physiological and pathophysiological processes in mammals. Its activity is of great significance in transmitting pain or itch signals from peripheral sensory neurons to the central nervous system. The alteration or hypersensitivity of TRPV1 channel is well evidenced under various pathological conditions. Moreover, accumulative studies have revealed that TRPV1-expressing (TRPV1+) sensory neurons mediate the neuroimmune crosstalk by releasing neuropeptides to innervated tissues as well as immune cells. In the central projection, TRPV1+ terminals synapse with the secondary neurons for the transmission of pain and itch signalling. The intense involvement of TRPV1 and TRPV1+ neurons in pain and itch makes it a potential pharmaceutical target. Over decades, the basis of TRPV1 channel structure, the nature of its activity, and its modulation in pathological processes have been broadly studied and well documented. Herein, we highlight the role of TRPV1 and its associated neurons in sensing pain and itch. The fundamental understandings of TRPV1-involved nociception, pruriception, neurogenic inflammation, and cell-specific modulation will help bring out more effective strategies of TRPV1 modulation in treating pain- and itch-related diseases.
Collapse
|
10
|
Zhang 张广芬 GF, Chen 陈少瑞 SR, Jin 金道忠 D, Huang 黄玉莹 Y, Chen 陈红 H, Pan 潘惠麟 HL. α2δ-1 Upregulation in Primary Sensory Neurons Promotes NMDA Receptor-Mediated Glutamatergic Input in Resiniferatoxin-Induced Neuropathy. J Neurosci 2021; 41:5963-5978. [PMID: 34252037 PMCID: PMC8265797 DOI: 10.1523/jneurosci.0303-21.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Systemic treatment with resiniferatoxin (RTX) induces small-fiber sensory neuropathy by damaging TRPV1-expressing primary sensory neurons and causes distinct thermal sensory impairment and tactile allodynia, which resemble the unique clinical features of postherpetic neuralgia. However, the synaptic plasticity associated with RTX-induced tactile allodynia remains unknown. In this study, we found that RTX-induced neuropathy is associated with α2δ-1 upregulation in the dorsal root ganglion (DRG) and increased physical interaction between α2δ-1 and GluN1 in the spinal cord synaptosomes. RNAscope in situ hybridization showed that RTX treatment significantly increased α2δ-1 expression in DRG neurons labeled with calcitonin gene-related peptide, isolectin B4, NF200, and tyrosine hydroxylase. Electrophysiological recordings revealed that RTX treatment augmented the frequency of miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of evoked EPSCs in spinal dorsal horn neurons, and these effects were reversed by blocking NMDA receptors with AP-5. Inhibiting α2δ-1 with gabapentin, genetically ablating α2δ-1, or targeting α2δ-1-bound NMDA receptors with α2δ-1Tat peptide largely normalized the baseline frequency of mEPSCs and the amplitude of evoked EPSCs potentiated by RTX treatment. Furthermore, systemic treatment with memantine or gabapentin and intrathecal injection of AP-5 or Tat-fused α2δ-1 C terminus peptide reversed allodynia in RTX-treated rats and mice. In addition, RTX-induced tactile allodynia was attenuated in α2δ-1 knock-out mice and in mice in which GluN1 was conditionally knocked out in DRG neurons. Collectively, our findings indicate that α2δ-1-bound NMDA receptors at presynaptic terminals of sprouting myelinated afferent nerves contribute to RTX-induced potentiation of nociceptive input to the spinal cord and tactile allodynia.SIGNIFICANCE STATEMENT Postherpetic neuralgia (PHN), associated with shingles, is a distinct form of neuropathic pain commonly seen in elderly and immunocompromised patients. The synaptic plasticity underlying touch-induced pain hypersensitivity in PHN remains unclear. Using a nonviral animal model of PHN, we found that glutamatergic input from primary sensory nerves to the spinal cord is increased via tonic activation of glutamate NMDA receptors. Also, we showed that α2δ-1 (encoded by Cacna2d1), originally considered a calcium channel subunit, serves as an auxiliary protein that promotes activation of presynaptic NMDA receptors and pain hypersensitivity. This new information advances our understanding of the molecular mechanism underlying PHN and suggests new strategies for treating this painful condition.
Collapse
Affiliation(s)
- Guang-Fen Zhang 张广芬
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Department of Anesthesiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin 金道忠
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen 陈红
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
11
|
α2δ-1-Bound N-Methyl-D-aspartate Receptors Mediate Morphine-induced Hyperalgesia and Analgesic Tolerance by Potentiating Glutamatergic Input in Rodents. Anesthesiology 2020; 130:804-819. [PMID: 30839350 DOI: 10.1097/aln.0000000000002648] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic use of μ-opioid receptor agonists paradoxically causes both hyperalgesia and the loss of analgesic efficacy. Opioid treatment increases presynaptic N-methyl-D-aspartate receptor activity to potentiate nociceptive input to spinal dorsal horn neurons. However, the mechanism responsible for this opioid-induced activation of presynaptic N-methyl-D-aspartate receptors remains unclear. α2δ-1, formerly known as a calcium channel subunit, interacts with N-methyl-D-aspartate receptors and is primarily expressed at presynaptic terminals. This study tested the hypothesis that α2δ-1-bound N-methyl-D-aspartate receptors contribute to presynaptic N-methyl-D-aspartate receptor hyperactivity associated with opioid-induced hyperalgesia and analgesic tolerance. METHODS Rats (5 mg/kg) and wild-type and α2δ-1-knockout mice (10 mg/kg) were treated intraperitoneally with morphine twice/day for 8 consecutive days, and nociceptive thresholds were examined. Presynaptic N-methyl-D-aspartate receptor activity was recorded in spinal cord slices. Coimmunoprecipitation was performed to examine protein-protein interactions. RESULTS Chronic morphine treatment in rats increased α2δ-1 protein amounts in the dorsal root ganglion and spinal cord. Chronic morphine exposure also increased the physical interaction between α2δ-1 and N-methyl-D-aspartate receptors by 1.5 ± 0.3 fold (means ± SD, P = 0.009, n = 6) and the prevalence of α2δ-1-bound N-methyl-D-aspartate receptors at spinal cord synapses. Inhibiting α2δ-1 with gabapentin or genetic knockout of α2δ-1 abolished the increase in presynaptic N-methyl-D-aspartate receptor activity in the spinal dorsal horn induced by morphine treatment. Furthermore, uncoupling the α2δ-1-N-methyl-D-aspartate receptor interaction with an α2δ-1 C terminus-interfering peptide fully reversed morphine-induced tonic activation of N-methyl-D-aspartate receptors at the central terminal of primary afferents. Finally, intraperitoneal injection of gabapentin or intrathecal injection of an α2δ-1 C terminus-interfering peptide or α2δ-1 genetic knockout abolished the mechanical and thermal hyperalgesia induced by chronic morphine exposure and largely preserved morphine's analgesic effect during 8 days of morphine treatment. CONCLUSIONS α2δ-1-Bound N-methyl-D-aspartate receptors contribute to opioid-induced hyperalgesia and tolerance by augmenting presynaptic N-methyl-D-aspartate receptor expression and activity at the spinal cord level.
Collapse
|
12
|
Fotio Y, Palese F, Guaman Tipan P, Ahmed F, Piomelli D. Inhibition of fatty acid amide hydrolase in the CNS prevents and reverses morphine tolerance in male and female mice. Br J Pharmacol 2020; 177:3024-3035. [PMID: 32077093 DOI: 10.1111/bph.15031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Fatty acid amide hydrolase (FAAH) is an intracellular serine amidase that terminates the signalling of various lipid messengers involved in pain regulation, including anandamide and palmitoylethanolamide. Here, we investigated the effects of pharmacological or genetic FAAH removal on tolerance to the anti-nociceptive effects of morphine. EXPERIMENTAL APPROACH We induced tolerance in male and female mice by administering twice-daily morphine for 7 days while monitoring nociceptive thresholds by the tail immersion test. The globally active FAAH inhibitor URB597 (1 and 3 mg·kg-1 , i.p.) or the peripherally restricted FAAH inhibitor URB937 (3 mg·kg-1 , i.p.) were administered daily 30 min prior to morphine, alone or in combination with the cannabinoid CB1 receptor antagonist AM251 (3 mg·kg-1 , i.p.), the CB2 receptor antagonist AM630 (3 mg·kg-1 , i.p.), or the PPAR-α antagonist GW6471 (4 mg·kg-1 , i.p.). Spinal levels of FAAH-regulated lipids were quantified by LC/MS-MS. Gene transcription was assessed by RT-qPCR. KEY RESULTS URB597 prevented and reversed morphine tolerance in both male and female mice. This effect was mimicked by genetic FAAH deletion, but not by URB937. Treatment with AM630 suppressed, whereas treatment with AM251 or GW6471, attenuated the effects of URB597. Anandamide mobilization was enhanced in the spinal cord of morphine-tolerant mice. mRNA levels of the anandamide-producing enzyme N-acyl-phosphatidylethanolamine PLD (NAPE-PLD) and the palmitoylethanolamide receptor PPAR-α, but not those for CB2 , CB1 receptors or FAAH, were elevated in spinal cord CONCLUSION AND IMPLICATIONS: FAAH-regulated lipid signalling in the CNS modulated opiate tolerance, suggesting FAAH as a potential target for opiate-sparing medications.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Francesca Palese
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Pablo Guaman Tipan
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| |
Collapse
|
13
|
Uniyal A, Gadepalli A, Akhilesh, Tiwari V. Underpinning the Neurobiological Intricacies Associated with Opioid Tolerance. ACS Chem Neurosci 2020; 11:830-839. [PMID: 32083459 DOI: 10.1021/acschemneuro.0c00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The opioid crisis is a major threat of the 21st century, with a remarkable juxtaposition of use and abuse. Opioids are the most potent and efficacious class of analgesics, but despite their proven therapeutic efficacy, they have recently been degraded to third-line therapy for the management of chronic pain in clinics. The reason behind this is the development of potential side effects and tolerance after repeated dosing. Opioid tolerance is the major limiting factor leading to the withdrawal of treatment, severe side effects due to dose escalation, and sometimes even death of the patients. Every day more than 90 people die due to opioids overdose in America, and a similar trend has been seen across the globe. Over the past two decades, researchers have been trying to dissect the neurobiological mechanism of opioid tolerance. Research on opioid tolerance shifted toward central nervous system-based adaptations because tolerance is much more than just a cellular phenomenon. Thus, neurobiological adaptations associated with opioid tolerance are important to understand in order to find newer pain therapeutics. These adaptations are associated with alterations in ascending and descending pain pathways, reward circuitry modulations, receptor desensitization and down-regulation, receptor internalization, heterodimerization, and altered epigenetic regulation. The present Review is focused on novel circuitries associated with opioid tolerance in different areas of the brain, such as periaqueductal gray, rostral ventromedial medulla, dorsal raphe nucleus, ventral tegmental area, and nucleus accumbens. Understanding the neurobiological modulations associated with chronic opioid exposure and tolerance will pave the way for the development of novel pharmacological tools for safer and better management of chronic pain in patients.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
14
|
μ-Opioid receptors in primary sensory neurons are involved in supraspinal opioid analgesia. Brain Res 2019; 1729:146623. [PMID: 31881186 DOI: 10.1016/j.brainres.2019.146623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
Abstract
Both inhibiting ascending nociceptive transmission and activating descending inhibition are involved in the opioid analgesic effect. The spinal dorsal horn is a critical site for modulating nociceptive transmission by descending pathways elicited by opioids in the brain. μ-Opioid receptors (MORs, encoded by Oprm1) are highly expressed in primary sensory neurons and their central terminals in the spinal cord. In the present study, we tested the hypothesis that MORs expressed in primary sensory neurons contribute to the descending inhibition and supraspinal analgesic effect induced by centrally administered opioids. We generated Oprm1 conditional knockout (Oprm1-cKO) mice by crossing AdvillinCre/+ mice with Oprm1flox/flox mice. Immunocytochemical labeling in Oprm1-cKO mice showed that MORs are completely ablated from primary sensory neurons and are profoundly reduced in the superficial spinal dorsal horn. Intracerebroventricular injection of morphine or fentanyl produced a potent analgesic effect in wild-type mice, but such an effect was significantly attenuated in Oprm1-cKO mice. Furthermore, the analgesic effect produced by morphine or fentanyl microinjected into the periaqueductal gray was significantly greater in wild-type mice than in Oprm1-cKO mice. Blocking MORs at the spinal cord level diminished the analgesic effect of morphine and fentanyl microinjected into the periaqueductal gray in both groups of mice. Our findings indicate that MORs expressed at primary afferent terminals in the spinal cord contribute to the supraspinal opioid analgesic effect. These presynaptic MORs in the spinal cord may serve as an interface between ascending inhibition and descending modulation that are involved in opioid analgesia.
Collapse
|
15
|
Li HP, Su W, Shu Y, Yuan XC, Lin LX, Hou TF, Xiang HC, Zhu H, Hu XF, Pan L, Wu JN, Meng XF, Pan HL, Wu CH, Li M. Electroacupuncture decreases Netrin-1-induced myelinated afferent fiber sprouting and neuropathic pain through μ-opioid receptors. J Pain Res 2019; 12:1259-1268. [PMID: 31118749 PMCID: PMC6499485 DOI: 10.2147/jpr.s191900] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: We determined whether electroacupuncture (EA) reduces Netrin-1-induced myelinated primary afferent nerve fiber sprouting in the spinal cord and pain hypersensitivity associated with postherpetic neuralgia (PHN) through activation of μ-opioid receptors. Methods: PHN was induced by systemic injection of resiniferatoxin (RTX) in rats. Thirty-six days after RTX injection, a μ-opioid receptor antagonist, beta-funaltrexamine (β-FNA) or a κ-opioid receptor antagonist, nor Binaltorphimine (nor-BNI), was injected intrathecally 30 mins before EA, once every other day for 4 times. Mechanical allodynia was tested with von Frey filaments. The protein expression level of Netrin-1 and its receptors (DCC and UNC5H2) were quantified by using western blotting. The myelinated primary afferent nerve fiber sprouting was mapped with the transganglionic tracer cholera toxin B-subunit (CTB). Results: Treatment with 2 Hz EA at “Huantiao” (GB30) and “Yanglingquan” (GB34) decreased the mechanical allodynia at 22 days and the myelinated primary afferent nerve fiber preternatural sprouting into the lamina II of the spinal dorsal horn at 42 days after RTX injection. Also, treatment with 2 Hz EA reduced the protein levels of DCC and Netrin-1 and promoted the expression of UNC5H2 in the spinal dorsal horn 42 days after RTX injection. Furthermore, the μ-opioid receptor antagonist β-FNA, but not the κ-opioid receptor antagonist nor-BNI, reversed the effect of EA on neuropathic pain caused by RTX. In addition, morphine inhibited the Netrin-1 protein level induced by RTX in SH-SY5Y cells. Conclusions: Through activation of μ-opioid receptors, treatment with EA reduces the expression level of DCC and Netrin-1 and changes a growth-permissive environment in spinal dorsal horn into an inhibitory environment by increasing UNC5H2, thus decreasing RTX-caused primary afferent nerve sprouting in the spinal dorsal horn and neuropathic pain.
Collapse
Affiliation(s)
- Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wen Su
- Department of Acupuncture, Wuhan First Hospital, Wuhan, People's Republic of China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, People's Republic of China
| | - Xiao-Cui Yuan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Teng-Fei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Pan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing-Nan Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cai-Hua Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Acupuncture, Wuhan First Hospital, Wuhan, People's Republic of China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Basso L, Aboushousha R, Fan CY, Iftinca M, Melo H, Flynn R, Agosti F, Hollenberg MD, Thompson R, Bourinet E, Trang T, Altier C. TRPV1 promotes opioid analgesia during inflammation. Sci Signal 2019; 12:12/575/eaav0711. [PMID: 30940767 DOI: 10.1126/scisignal.aav0711] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pain and inflammation are inherently linked responses to injury, infection, or chronic diseases. Given that acute inflammation in humans or mice enhances the analgesic properties of opioids, there is much interest in determining the inflammatory transducers that prime opioid receptor signaling in primary afferent nociceptors. Here, we found that activation of the transient receptor potential vanilloid type 1 (TRPV1) channel stimulated a mitogen-activated protein kinase (MAPK) signaling pathway that was accompanied by the shuttling of the scaffold protein β-arrestin2 to the nucleus. The nuclear translocation of β-arrestin2 in turn prevented its recruitment to the μ-opioid receptor (MOR), the subsequent internalization of agonist-bound MOR, and the suppression of MOR activity that occurs upon receptor desensitization. Using the complete Freund's adjuvant (CFA) inflammatory pain model to examine the role of TRPV1 in regulating endogenous opioid analgesia in mice, we found that naloxone methiodide (Nal-M), a peripherally restricted, nonselective, and competitive opioid receptor antagonist, slowed the recovery from CFA-induced hypersensitivity in wild-type, but not TRPV1-deficient, mice. Furthermore, we showed that inflammation prolonged morphine-induced antinociception in a mouse model of opioid receptor desensitization, a process that depended on TRPV1. Together, our data reveal a TRPV1-mediated signaling pathway that serves as an endogenous pain-resolution mechanism by promoting the nuclear translocation of β-arrestin2 to minimize MOR desensitization. This previously uncharacterized mechanism may underlie the peripheral opioid control of inflammatory pain. Dysregulation of the TRPV1-β-arrestin2 axis may thus contribute to the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Lilian Basso
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Reem Aboushousha
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Churmy Yong Fan
- Hotchkiss Brain Institute, Cumming School of Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Helvira Melo
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Robyn Flynn
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Francina Agosti
- Institute for Functional Genomics, CNRS UMR5203, INSERM U1191, University of Montpellier, LABEX ICST, Montpellier, France
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Roger Thompson
- Hotchkiss Brain Institute, Cumming School of Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Emmanuel Bourinet
- Institute for Functional Genomics, CNRS UMR5203, INSERM U1191, University of Montpellier, LABEX ICST, Montpellier, France
| | - Tuan Trang
- Hotchkiss Brain Institute, Cumming School of Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada.
| |
Collapse
|
17
|
Huang Y, Chen SR, Chen H, Pan HL. Endogenous transient receptor potential ankyrin 1 and vanilloid 1 activity potentiates glutamatergic input to spinal lamina I neurons in inflammatory pain. J Neurochem 2019; 149:381-398. [PMID: 30716174 DOI: 10.1111/jnc.14677] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/31/2018] [Accepted: 01/30/2019] [Indexed: 01/21/2023]
Abstract
Inflammatory pain is associated with peripheral and central sensitization, but the underlying synaptic plasticity at the spinal cord level is poorly understood. Transient receptor potential (TRP) channels expressed at peripheral nerve endings, including TRP subtypes ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), can detect nociceptive stimuli. In this study, we determined the contribution of presynaptic TRPA1 and TRPV1 at the spinal cord level to regulating nociceptive drive in chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in rats. CFA treatment caused a large increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in lamina I, but not lamina II outer zone, dorsal horn neurons. However, blocking NMDA receptors had no effect on spontaneous EPSCs in lamina I neurons of CFA-treated rats. Application of a specific TRPA1 antagonist, AM-0902, or of a specific TRPV1 antagonist, 5'-iodoresiniferatoxin, significantly attenuated the elevated frequency of spontaneous EPSCs and miniature EPSCs, the amplitude of monosynaptic EPSCs evoked from the dorsal root in lamina I neurons of CFA-treated rats. AM-0902 and 5'-iodoresiniferatoxin had no effect on evoked or miniature EPSCs in lamina I neurons of vehicle-treated rats. In addition, intrathecal injection of AM-0902 or 5'-iodoresiniferatoxin significantly reduced pain hypersensitivity in CFA-treated rats but had no effect on acute nociception in vehicle-treated rats. Therefore, unlike neuropathic pain, chronic inflammatory pain is associated with NMDA receptor-independent potentiation in glutamatergic drive to spinal lamina I neurons. Endogenous presynaptic TRPA1 and TRPV1 activity at the spinal level contributes to increased nociceptive input from primary sensory nerves to dorsal horn neurons in inflammatory pain. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
18
|
Sun J, Chen SR, Chen H, Pan HL. μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia. J Physiol 2019; 597:1661-1675. [PMID: 30578671 DOI: 10.1113/jp277428] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS μ-Opioid receptors (MORs) are expressed peripherally and centrally, but the loci of MORs responsible for clinically relevant opioid analgesia are uncertain. Crossing Oprm1flox/flox and AdvillinCre/+ mice completely ablates MORs in dorsal root ganglion neurons and reduces the MOR expression level in the spinal cord. Presynaptic MORs expressed at primary afferent central terminals are essential for synaptic inhibition and potentiation of sensory input by opioids. MOR ablation in primary sensory neurons diminishes analgesic effects produced by systemic and intrathecal opioid agonists and abolishes chronic opioid treatment-induced hyperalgesia. These findings demonstrate a critical role of MORs expressed in primary sensory neurons in opioid analgesia and suggest new strategies to increase the efficacy and reduce adverse effects of opioids. ABSTRACT The pain and analgesic systems are complex, and the actions of systemically administered opioids may be mediated by simultaneous activation of μ-opioid receptors (MORs, encoded by the Oprm1 gene) at multiple, interacting sites. The loci of MORs and circuits responsible for systemic opioid-induced analgesia and hyperalgesia remain unclear. Previous studies using mice in which MORs are removed from Nav1.8- or TRPV1-expressing neurons provided only an incomplete and erroneous view about the role of peripheral MORs in opioid actions in vivo. In the present study, we determined the specific role of MORs expressed in primary sensory neurons in the analgesic and hyperalgesic effects produced by systemic opioid administration. We generated Oprm1 conditional knockout (Oprm1-cKO) mice in which MOR expression is completely deleted from dorsal root ganglion neurons and substantially reduced in the spinal cord, which was confirmed by immunoblotting and immunocytochemical labelling. Both opioid-induced inhibition and potentiation of primary sensory input were abrogated in Oprm1-cKO mice. Remarkably, systemically administered morphine potently inhibited acute thermal and mechanical nociception and persistent inflammatory pain in control mice but had little effect in Oprm1-cKO mice. The analgesic effect of intrathecally administered morphine was also profoundly reduced in Oprm1-cKO mice. Additionally, chronic morphine treatment-induced hyperalgesia was absent in Oprm1-cKO mice. Our findings directly challenge the notion that clinically relevant opioid analgesia is mediated mostly by centrally expressed MORs. MORs in primary sensory neurons, particularly those expressed presynaptically at the first sensory synapse in the spinal cord, are crucial for both opioid analgesia and opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Jie Sun
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Anesthesiology, The First Affiliated Hospital/Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Chen Y, Chen SR, Chen H, Zhang J, Pan HL. Increased α2δ-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain. J Neurochem 2018; 148:252-274. [PMID: 30431158 DOI: 10.1111/jnc.14627] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Painful peripheral neuropathy is a severe and difficult-to-treat neurological complication associated with cancer chemotherapy. Although chemotherapeutic drugs such as paclitaxel are known to cause tonic activation of presynaptic NMDA receptors (NMDARs) to potentiate nociceptive input, the molecular mechanism involved in this effect is unclear. α2δ-1, commonly known as a voltage-activated calcium channel subunit, is a newly discovered NMDAR-interacting protein and plays a critical role in NMDAR-mediated synaptic plasticity. Here we show that paclitaxel treatment in rats increases the α2δ-1 expression level in the dorsal root ganglion and spinal cord and the mRNA levels of GluN1, GluN2A, and GluN2B in the spinal cord. Paclitaxel treatment also potentiates the α2δ-1-NMDAR interaction and synaptic trafficking in the spinal cord. Strikingly, inhibiting α2δ-1 trafficking with pregabalin, disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus-interfering peptide, or α2δ-1 genetic ablation fully reverses paclitaxel treatment-induced presynaptic NMDAR-mediated glutamate release from primary afferent terminals to spinal dorsal horn neurons. In addition, intrathecal injection of pregabalin or α2δ-1 C-terminus-interfering peptide and α2δ-1 knockout in mice markedly attenuate paclitaxel-induced pain hypersensitivity. Our findings indicate that α2δ-1 is required for paclitaxel-induced tonic activation of presynaptic NMDARs at the spinal cord level. Targeting α2δ-1-bound NMDARs, not the physiological α2δ-1-free NMDARs, may be a new strategy for treating chemotherapy-induced neuropathic pain. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Youfang Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Deng M, Chen SR, Chen H, Luo Y, Dong Y, Pan HL. Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance. J Neurochem 2018; 148:275-290. [PMID: 30444263 DOI: 10.1111/jnc.14628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
Abstract
Opioid-induced hyperalgesia and analgesic tolerance can lead to dose escalation and inadequate pain treatment with μ-opioid receptor agonists. Opioids cause tonic activation of glutamate NMDA receptors (NMDARs) at primary afferent terminals, increasing nociceptive input. However, the signaling mechanisms responsible for opioid-induced activation of pre-synaptic NMDARs in the spinal dorsal horn remain unclear. In this study, we determined the role of MAPK signaling in opioid-induced pre-synaptic NMDAR activation caused by chronic morphine administration. Whole-cell recordings of excitatory post-synaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine administration markedly increased the frequency of miniature EPSCs, increased the amplitude of monosynaptic EPSCs evoked from the dorsal root, and reduced the paired-pulse ratio of evoked EPSCs. These changes were fully reversed by an NMDAR antagonist and normalized by inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2), p38, or c-Jun N-terminal kinase (JNK). Furthermore, intrathecal injection of a selective ERK1/2, p38, or JNK inhibitor blocked pain hypersensitivity induced by chronic morphine treatment. These inhibitors also similarly attenuated a reduction in morphine's analgesic effect in rats. In addition, co-immunoprecipitation assays revealed that NMDARs formed a protein complex with ERK1/2, p38, and JNK in the spinal cord and that chronic morphine treatment increased physical interactions of NMDARs with these three MAPKs. Our findings suggest that opioid-induced hyperalgesia and analgesic tolerance are mediated by tonic activation of pre-synaptic NMDARs via three functionally interrelated MAPKs at the spinal cord level. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Meichun Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Luo
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingchun Dong
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Santos FM, Silva JT, Rocha IRC, Martins DO, Chacur M. Non-pharmacological treatment affects neuropeptide expression in neuropathic pain model. Brain Res 2018; 1687:60-65. [PMID: 29496478 DOI: 10.1016/j.brainres.2018.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/02/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
Chronic constriction injury (CCI) of the sciatic nerve elicits changes in neuropeptide expression on the dorsal root ganglia (DRG). The neural mobilization (NM) technique is a noninvasive method that has been proven clinically effective in reducing pain. The aim of this study was to analyze the expression of substance P, transient receptor potential vanilloid 1 (TRPV1) and opioid receptors in the DRG of rats with chronic constriction injury and to compare it to animals that received NM treatment. CCI was performed on adult male rats. Each animal was submitted to 10 sessions of neural mobilization every other day, starting 14 days after the CCI injury. At the end of the sessions, the DRG (L4-L6) were analyzed using Western blot assays for substance P, TRPV1 and opioid receptors (µ-opioid receptor, δ-opioid receptor and κ-opioid receptor). We observed a decreased substance P and TRPV1 expression (48% and 35%, respectively) and an important increase of µ-opioid receptor expression (200%) in the DRG after NM treatment compared to control animals. The data provide evidence that NM promotes substantial changes in neuropeptide expression in the DRG; these results may provide new options for treating neuropathic pain.
Collapse
Affiliation(s)
- Fabio Martinez Santos
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil; Department of Health Sciences, University Nove de Julho, SP, Brazil.
| | - Joyce Teixeira Silva
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Baltimore, MD, USA.
| | - Igor Rafael Correia Rocha
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| | - Daniel Oliveira Martins
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| | - Marucia Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Exploring Nonopioid Analgesic Agents for Intrathecal Use. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Abstract
Opioids are powerful analgesics, but also carry significant side effects and abuse potential. Here we describe a modulator of the μ-opioid receptor (MOR1), the transient receptor potential channel subfamily vanilloid member 1 (TRPV1). We show that TRPV1 binds MOR1 and blocks opioid-dependent phosphorylation of MOR1 while leaving G protein signaling intact. Phosphorylation of MOR1 initiates recruitment and activation of the β-arrestin pathway, which is responsible for numerous opioid-induced adverse effects, including the development of tolerance and respiratory depression. Phosphorylation stands in contrast to G protein signaling, which is responsible for the analgesic effect of opioids. Calcium influx through TRPV1 causes a calcium/calmodulin-dependent translocation of G protein-coupled receptor kinase 5 (GRK5) away from the plasma membrane, thereby blocking its ability to phosphorylate MOR1. Using TRPV1 to block phosphorylation of MOR1 without affecting G protein signaling is a potential strategy to improve the therapeutic profile of opioids.
Collapse
|
24
|
Pecze L, Viskolcz B, Oláh Z. Molecular Surgery Concept from Bench to Bedside: A Focus on TRPV1+ Pain-Sensing Neurons. Front Physiol 2017. [PMID: 28626428 PMCID: PMC5455100 DOI: 10.3389/fphys.2017.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
"Molecular neurosurgery" is emerging as a new medical concept, and is the combination of two partners: (i) a molecular neurosurgery agent, and (ii) the cognate receptor whose activation results in the selective elimination of a specific subset of neurons in which this receptor is endogenously expressed. In general, a molecular surgery agent is a selective and potent ligand, and the target is a specific cell type whose elimination is desired through the molecular surgery procedure. These target cells have the highest innate sensitivity to the molecular surgery agent usually due to the highest receptor density being in their plasma membrane. The interaction between the ligand and its receptor evokes an overactivity of the receptor. If the receptor is a ligand-activated non-selective cation channel, the overactivity of receptor leads to excess Ca2+ and Na+ influx into the cell and finally cell death. One of the best known examples of such an interaction is the effect of ultrapotent vanilloids on TRPV1-expressing pain-sensing neurons. One intrathecal resiniferatoxin (RTX) dose allows for the receptor-mediated removal of TRPV1+ neurons from the peripheral nervous system. The TRPV1 receptor-mediated ion influx induces necrotic processes, but only in pain-sensing neurons, and usually within an hour. Besides that, target-specific apoptotic processes are also induced. Thus, as a nano-surgery scalpel, RTX removes the neurons responsible for generating pain and inflammation from the peripheral nervous system providing an option in clinical management for the treatment of morphine-insensitive pain conditions. In the future, the molecular surgery concept can also be exploited in cancer research for selectively targeting the specific tumor cell.
Collapse
Affiliation(s)
- László Pecze
- Unit of Anatomy, Department of Medicine, University of FribourgFribourg, Switzerland
| | - Béla Viskolcz
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of MiskolcMiskolc, Hungary
| | - Zoltán Oláh
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of MiskolcMiskolc, Hungary.,Acheuron Ltd.Szeged, Hungary
| |
Collapse
|
25
|
Sun W, Yang F, Wang Y, Fu H, Yang Y, Li CL, Wang XL, Lin Q, Chen J. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade. Neuropharmacology 2016; 113:217-230. [PMID: 27743933 DOI: 10.1016/j.neuropharm.2016.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022]
Abstract
Under physiological state, small- and medium-sized dorsal root ganglia (DRG) neurons are believed to mediate nociceptive behavioral responses to painful stimuli. However, recently it has been found that a number of large-sized neurons are also involved in nociceptive transmission under neuropathic conditions. Nonetheless, the underlying mechanisms that large-sized DRG neurons mediate nociception are poorly understood. In the present study, the role of large-sized neurons in bee venom (BV)-induced mechanical allodynia and the underlying mechanisms were investigated. Behaviorally, it was found that mechanical allodynia was still evoked by BV injection in rats in which the transient receptor potential vanilloid 1-positive DRG neurons were chemically deleted. Electrophysiologically, in vitro patch clamp recordings of large-sized neurons showed hyperexcitability in these neurons. Interestingly, the firing pattern of these neurons was changed from phasic to tonic under BV-inflamed state. It has been suggested that hyperpolarization-activated cyclic nucleotide gated channels (HCN) expressed in large-sized DRG neurons contribute importantly to repeatedly firing. So we examined the roles of HCNs in BV-induced mechanical allodynia. Consistent with the overexpression of HCN1/2 detected by immunofluorescence, HCNs-mediated hyperpolarization activated cation current (Ih) was significantly increased in the BV treated samples. Pharmacological experiments demonstrated that the hyperexcitability and upregulation of Ih in large-sized neurons were mediated by cyclooxygenase-1 (COX-1)-prostaglandin E2 pathway. This is evident by the fact that the COX-1 inhibitor significantly attenuated the BV-induced mechanical allodynia. These results suggest that BV can excite the large-sized DRG neurons at least in part by increasing Ih through activation of COX-1.
Collapse
Affiliation(s)
- Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Fei Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Qing Lin
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China; Beijing Institute for Brain Disorders, Beijing 100069, PR China.
| |
Collapse
|
26
|
Melkes B, Hejnova L, Novotny J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1289-1300. [PMID: 27600870 DOI: 10.1007/s00210-016-1293-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
There are some indications that biased μ-opioid ligands may diversely affect μ-opioid receptor (MOR) properties. Here, we used confocal fluorescence recovery after photobleaching (FRAP) to study the regulation by different MOR agonists of receptor movement within the plasma membrane of HEK293 cells stably expressing a functional yellow fluorescent protein (YFP)-tagged μ-opioid receptor (MOR-YFP). We found that the lateral mobility of MOR-YFP was increased by (D-Ala2,N-MePhe4,Gly5-ol)-enkephalin (DAMGO) and to a lesser extent also by morphine but decreased by endomorphin-2. Interestingly, cholesterol depletion strongly enhanced the ability of morphine to elevate receptor mobility but significantly reduced or even eliminated the effect of DAMGO and endomorphin-2, respectively. Moreover, the ability of DAMGO and endomorphin-2 to influence MOR-YFP movement was diminished by pertussis toxin treatment. The results obtained by agonist-stimulated [35S]GTPγS binding assays indicated that DAMGO exhibited higher efficacy than morphine and endomorphin-2 did and that the efficacy of DAMGO, contrary to the latter agonists, was enhanced by cholesterol depletion. Overall, our study provides clear evidence that biased MOR agonists diversely affect receptor mobility in plasma membranes as well as MOR/G protein coupling and that the regulatory effect of different ligands depends on the membrane cholesterol content. These findings help to delineate the fundamental properties of MOR regarding their interaction with biased MOR ligands and cognate G proteins.
Collapse
Affiliation(s)
- Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
27
|
Gazerani S, Zaringhalam J, Manaheji H, Golabi S. The Role of C Fibers in Spinal Microglia Induction and Possible Relation with TRPV3 Expression During Chronic Inflammatory Arthritis in Rats. Basic Clin Neurosci 2016; 7:231-40. [PMID: 27563416 PMCID: PMC4981835 DOI: 10.15412/j.bcn.03070308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Stimulation of peptidergic fibers activates microglia in the dorsal horn. Microglia activation causes fractalkine (FKN) release, a neuron-glia signal, which enhances pain. The transient vanilloid receptor 1 (TRPV1) mediates the release of neuropeptides, which can subsequently activate glia. TRPV1 and TRPV2 are generally expressed on C and Aδ fibers, respectively. Expression of both proteins is upregulated during inflammation, but expression of TRPV3 after induction of inflammation is unclear. Methods: Adult male Wistar rats were used in all experiments. Arthritis was induced in them by single subcutaneous injection of complete Freund’s adjuvant (CFA) in their right hindpaws. Resiniferatoxin (RTX) was used to eliminate peptidergic fibers. We examined the relation between FKN and TRPV3 expression by administration of anti-FKN antibody. Results: Our study findings indicated that 1) spinal TRPV3 was mostly expressed on nonpeptidergic fibers, 2) expression of spinal TRPV3 increased following inflammation, 3) elimination of peptidergic fibers decreased spinal TRPV3 expression, 4) alteration of hyperalgesia was compatible with TRPV3 changes in RTX-treated rat, and 5) anti-FKN antibody reduced spinal TRPV3 expression. Discussion: It seems that the hyperalgesia variation during different phases of CFA-induced arthritis correlates with spinal TRPV3 expression variation on peptidergic fibers. Moreover, spinal microglial activation during CFA inflammation is involved in TRPV3 expression changes via FKN signaling.
Collapse
Affiliation(s)
- Sasan Gazerani
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Golabi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Prohormone convertase 2 (PC2) null mice have increased mu opioid receptor levels accompanied by altered morphine-induced antinociception, tolerance and dependence. Neuroscience 2016; 329:318-25. [PMID: 27208618 DOI: 10.1016/j.neuroscience.2016.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022]
Abstract
Chronic morphine treatment increases the levels of prohormone convertase 2 (PC2) in brain regions involved in nociception, tolerance and dependence. Thus, we tested if PC2 null mice exhibit altered morphine-induced antinociception, tolerance and dependence. PC2 null mice and their wild-type controls were tested for baseline hot plate latency, injected with morphine (1.25-10mg/kg) and tested for antinociception 30min later. For tolerance studies, mice were tested in the hot plate test before and 30min following morphine (5mg/kg) on day 1. Mice then received an additional dose so that the final dose of morphine was 10mg/kg on this day. On days 2-4, mice received additional doses of morphine (20, 40 and 80mg/kg on days 1, 2, 3, and 4, respectively). On day 5, mice were tested in the hot plate test before and 30min following morphine (5mg/kg). For withdrawal studies, mice were treated with the escalating doses of morphine (10, 20, 40 and 80mg/kg) for 4days, implanted with a morphine pellet on day 5 and 3 days later injected with naloxone (1mg/kg) and signs of withdrawal were recorded. Morphine dose-dependently induced antinociception and the magnitude of this response was greater in PC2 null mice. Tolerance to morphine was observed in wild-type mice and this phenomenon was blunted in PC2 null mice. Withdrawal signs were also reduced in PC2 null mice. Immunohistochemical studies showed up-regulation of the mu opioid receptor (MOP) protein expression in the periaqueductal gray area, ventral tegmental area, lateral hypothalamus, medial hypothalamus, nucleus accumbens, and somatosensory cortex in PC2 null mice. Likewise, naloxone specific binding was increased in the brains of these mice compared to their wild-type controls. The results suggest that the PC2-derived peptides may play a functional role in morphine-induced antinociception, tolerance and dependence. Alternatively, lack of opioid peptides led to up-regulation of the MOP and altered morphine-induced antinociception, tolerance and dependence.
Collapse
|
29
|
Zhang Y, Chen SR, Laumet G, Chen H, Pan HL. Nerve Injury Diminishes Opioid Analgesia through Lysine Methyltransferase-mediated Transcriptional Repression of μ-Opioid Receptors in Primary Sensory Neurons. J Biol Chem 2016; 291:8475-85. [PMID: 26917724 DOI: 10.1074/jbc.m115.711812] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 12/21/2022] Open
Abstract
The μ-opioid receptor (MOR, encoded by Oprm1) agonists are the mainstay analgesics for treating moderate to severe pain. Nerve injury causes down-regulation of MORs in the dorsal root ganglion (DRG) and diminishes the opioid effect on neuropathic pain. However, the epigenetic mechanisms underlying the diminished MOR expression caused by nerve injury are not clear. G9a (encoded by Ehmt2), a histone 3 at lysine 9 methyltransferase, is a key chromatin regulator responsible for gene silencing. In this study, we determined the role of G9a in diminished MOR expression and opioid analgesic effects in animal models of neuropathic pain. We found that nerve injury in rats induced a long-lasting reduction in the expression level of MORs in the DRG but not in the spinal cord. Nerve injury consistently increased the enrichment of the G9a product histone 3 at lysine 9 dimethylation in the promoter of Oprm1 in the DRG. G9a inhibition or siRNA knockdown fully reversed MOR expression in the injured DRG and potentiated the morphine effect on pain hypersensitivity induced by nerve injury. In mice lacking Ehmt2 in DRG neurons, nerve injury failed to reduce the expression level of MORs and the morphine effect. In addition, G9a inhibition or Ehmt2 knockout in DRG neurons normalized nerve injury-induced reduction in the inhibitory effect of the opioid on synaptic glutamate release from primary afferent nerves. Our findings indicate that G9a contributes critically to transcriptional repression of MORs in primary sensory neurons in neuropathic pain. G9a inhibitors may be used to enhance the opioid analgesic effect in the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Yuhao Zhang
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Geoffroy Laumet
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
30
|
Zhu Y, Chen SR, Pan HL. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons. J Neurochem 2016; 137:226-39. [PMID: 26823384 DOI: 10.1111/jnc.13554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/11/2016] [Accepted: 01/21/2016] [Indexed: 11/30/2022]
Abstract
Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We found that activation of pre-synaptic M2 muscarinic receptors inhibit glutamatergic input from vestibular primary afferents, whereas stimulation of post-synaptic M3 muscarinic receptors increases the firing activity of cerebellum-projecting MVN neurons. This new information advances our understanding of the cholinergic mechanism regulating the vestibular system.
Collapse
Affiliation(s)
- Yun Zhu
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
31
|
Zádor F, Wollemann M. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors. Pharmacol Res 2015; 102:254-63. [PMID: 26520391 DOI: 10.1016/j.phrs.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Maria Wollemann
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
32
|
Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain. Mol Neurobiol 2015; 53:5640-51. [DOI: 10.1007/s12035-015-9482-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022]
|
33
|
Opioids and TRPV1 in the peripheral control of neuropathic pain--Defining a target site in the injured nerve. Neuropharmacology 2015; 101:330-40. [PMID: 26453963 DOI: 10.1016/j.neuropharm.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
Abstract
Targeting peripheral neuropathic pain at its origin may prevent the development of hypersensitivity. Recently we showed this can be mediated by opioid receptors at the injured nerve trunk. Here, we searched for the most relevant peripheral site to block transient receptor potential vanilloid 1 (TRPV1), and investigated analgesic interactions between TRPV1 and opioids in neuropathy. In a chronic constriction injury (CCI) of the sciatic nerve in mice, we assessed the effects of μ-, δ- and κ-opioid receptor agonists and TRPV1 antagonist (SB366791) injected at the CCI site or into the injured nerve-innervated paw on spontaneous paw lifting, heat and mechanical sensitivity. We also examined TRPV1 expression in total membrane and plasma membrane fractions from nerves and paws. We found that opioids and SB366791 co-injected in per se nonanalgesic doses at the CCI site or into the paw diminished heat and mechanical sensitivity. SB366791 alone dose-dependently alleviated heat and mechanical sensitivity. TRPV1 blockade in the paw was more effective than at the CCI site. None of the treatments diminished spontaneous paw lifting. TRPV1 expression analysis suggests that the levels of functional TRPV1 do not critically determine the TRPV1 antagonist-mediated analgesia. Together, the identification of the primary action site in damaged nerves is crucial for effective pain control. Contrary to opioids, the TRPV1 blockade in the injured nerve peripheral terminals, rather than at the nerve trunk, appears promising against heat pain. Opioid/TRPV1 antagonist combinations at both locations partially reduced neuropathy-triggered heat and mechanical pain.
Collapse
|
34
|
Bao Y, Gao Y, Yang L, Kong X, Yu J, Hou W, Hua B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin) 2015; 9:235-43. [PMID: 26176938 DOI: 10.1080/19336950.2015.1069450] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence.
Collapse
Affiliation(s)
- Yanju Bao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Yebo Gao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China.,b Beijing University of Chinese Medicine ; Beijing , P. R. China
| | - Liping Yang
- c Department of Nephrology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Xiangying Kong
- d Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Jing Yu
- e Department of Oncology ; Beijing Friendship Hospital, Capital Medical University ; Beijing , China
| | - Wei Hou
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Baojin Hua
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| |
Collapse
|
35
|
Chen Y, Kong S, Tang X, Fu Y, Wang B, Zhang S, Wang H. Preimplantation Mouse Embryo Is a Target for Opioid Ligand-Receptor Signaling1. Biol Reprod 2014; 91:4. [DOI: 10.1095/biolreprod.114.118083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
36
|
Gendron L, Mittal N, Beaudry H, Walwyn W. Recent advances on the δ opioid receptor: from trafficking to function. Br J Pharmacol 2014; 172:403-19. [PMID: 24665909 DOI: 10.1111/bph.12706] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Within the opioid family of receptors, δ (DOPrs) and μ opioid receptors (MOPrs) are typical GPCRs that activate canonical second-messenger signalling cascades to influence diverse cellular functions in neuronal and non-neuronal cell types. These receptors activate well-known pathways to influence ion channel function and pathways such as the map kinase cascade, AC and PI3K. In addition new information regarding opioid receptor-interacting proteins, downstream signalling pathways and resultant functional effects has recently come to light. In this review, we will examine these novel findings focusing on the DOPr and, in doing so, will contrast and compare DOPrs with MOPrs in terms of differences and similarities in function, signalling pathways, distribution and interactions. We will also discuss and clarify issues that have recently surfaced regarding the expression and function of DOPrs in different cell types and analgesia. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Louis Gendron
- Département de physiologie et biophysique, Institut de pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
37
|
Hu YM, Chen SR, Chen H, Pan HL. Casein kinase II inhibition reverses pain hypersensitivity and potentiated spinal N-methyl-D-aspartate receptor activity caused by calcineurin inhibitor. J Pharmacol Exp Ther 2014; 349:239-47. [PMID: 24610957 PMCID: PMC3989802 DOI: 10.1124/jpet.113.212563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/05/2014] [Indexed: 12/25/2022] Open
Abstract
Clinically used calcineurin inhibitors, including tacrolimus (FK506) and cyclosporine A, can induce calcineurin inhibitor-induced pain syndrome (CIPS), which is characterized as severe pain and pain hypersensitivity. Increased synaptic N-methyl-D-aspartate receptor (NMDAR) activity in the spinal dorsal horn plays a critical role in the development of CIPS. Casein kinase II (CK2), a serine/threonine protein kinase, can regulate synaptic NMDAR activity in the brain. In this study, we determined whether spinal CK2 is involved in increased NMDAR activity and pain hypersensitivity caused by systemic administration of FK506 in rats. FK506 treatment caused a large increase in the amplitude of NMDAR-mediated excitatory postsynaptic currents (EPSCs) evoked by primary afferent stimulation and in the frequency of miniature EPSCs of spinal dorsal horn neurons. CK2 inhibition with either 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) or 4,5,6,7-tetrabromobenzotriazole (TBB) completely normalized the amplitude of evoked NMDAR-EPSCs of dorsal horn neurons in FK506-treated rats. In addition, DRB or TBB significantly attenuated the amplitude of NMDAR currents elicited by puff application of N-methyl-D-aspartate to dorsal horn neurons in FK506-treated rats. Furthermore, treatment with DRB or TBB significantly reduced the frequency of miniature EPSCs of spinal dorsal horn neurons increased by FK506 treatment. In addition, intrathecal injection of DRB or TBB dose-dependently reversed tactile allodynia and mechanical hyperalgesia in FK506-treated rats. Collectively, our findings indicate that CK2 inhibition abrogates pain hypersensitivity and increased pre- and postsynaptic NMDAR activity in the spinal cord caused by calcineurin inhibitors. CK2 inhibitors may represent a new therapeutic option for the treatment of CIPS.
Collapse
Affiliation(s)
- Yi-Min Hu
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine (Y.-M.H., S.-R.C., H.C., H.-L.P.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Anesthesiology (Y.-M.H.), Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, Peoples Republic of China
| | | | | | | |
Collapse
|
38
|
The effects of juvenile capsaicin desensitization in rats: Behavioral impairments. Physiol Behav 2014; 125:38-44. [DOI: 10.1016/j.physbeh.2013.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/19/2013] [Indexed: 01/30/2023]
|
39
|
Resiniferatoxin (RTX) causes a uniquely protracted musculoskeletal hyperalgesia in mice by activation of TRPV1 receptors. THE JOURNAL OF PAIN 2013; 14:1629-41. [PMID: 24188863 DOI: 10.1016/j.jpain.2013.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 11/20/2022]
Abstract
UNLABELLED Inactivation of transient receptor potential vanilloid-1 (TRPV1) receptors is one approach to analgesic drug development. However, TRPV1 receptors exert different effects on each modality of pain. Because muscle pain is clinically important, we compared the effect of TRPV1 ligands on musculoskeletal nociception to that on thermal and tactile nociception. Injected parenterally, capsaicin had no effect on von Frey fiber responses (tactile) but induced a transient hypothermia and hyperalgesia in both the tail flick (thermal) and grip force (musculoskeletal) assays, presumably by its agonistic action at TRPV1 sites. In contrast, resiniferatoxin (RTX) produced a chronic (>58 days) thermal antinociception, consistent with its reported ability to desensitize TRPV1 sites. In the same mice, RTX produced a transient hypothermia (7 hours) and a protracted (28-day) musculoskeletal hyperalgesia in spite of a 35.5% reduction in TRPV1 receptor immunoreactivity in muscle afferents. Once musculoskeletal hyperalgesia subsided, mice were tolerant to the hyperalgesic effects of either capsaicin or RTX whereas tolerance to hypothermia did not develop until after 3 injections. Musculoskeletal hyperalgesia was prevented but not reversed by SB-366791, a TRPV1 antagonist, indicating that TRPV1 receptors initiate but do not maintain hyperalgesia. Injected intrathecally, RTX produced only a brief musculoskeletal hyperalgesia (2 days), after which mice were tolerant to this effect. PERSPECTIVE The effect of TRPV1 receptors varies depending on modality and tissue type, such that RTX causes thermal antinociception, musculoskeletal hyperalgesia, and no effect on tactile nociception in healthy mice. Spinal TRPV1 receptors are a potential target for pain relief as they induce only a short musculoskeletal hyperalgesia followed by desensitization.
Collapse
|
40
|
Chen SR, Hu YM, Chen H, Pan HL. Calcineurin inhibitor induces pain hypersensitivity by potentiating pre- and postsynaptic NMDA receptor activity in spinal cords. J Physiol 2013; 592:215-27. [PMID: 24081160 DOI: 10.1113/jphysiol.2013.263814] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcineurin inhibitors, such as cyclosporin A and tacrolimus (FK506), have played a pivotal role in the preservation of allograft function. However, these drugs can cause unexplained severe pain in patients, often referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin can regulate NMDA receptor (NMDAR) activity, the causal relationship between spinal synaptic plasticity and CIPS remains unknown. In this study, we showed that systemic administration of FK506 (1.5 mg kg(-1) day(-1)) for 7 days in rats led to long-lasting nociceptive and mechanical hypersensitivity. Whole-cell patch-clamp recordings in spinal cord slices revealed that FK506 treatment caused a large increase in the amplitude of NMDAR-mediated excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation. The amplitude of NMDAR currents elicited by puff NMDA application to dorsal horn neurons was also significantly greater in FK506-treated than in vehicle-treated rats. The frequency of spontaneous and miniature EPSCs in most dorsal horn neurons was profoundly increased in FK506-treated rats and was reduced by blocking NMDARs. Furthermore, blocking GluN2A or GluN2B subunits similarly reduced the amplitude of evoked EPSCs and the frequency of miniature EPSCs in dorsal horn neurons of FK506-treated rats. In addition, intrathecal injection of an NMDAR antagonist or systemic administration of memantine effectively reversed nociceptive and mechanical hypersensitivity in FK506-treated rats. Our findings indicate that calcineurin inhibition increases glutamate-mediated nociceptive input by potentiating presynaptic and postsynaptic NMDAR activity in spinal cords. NMDAR antagonists may represent a new therapeutic option for the treatment of CIPS.
Collapse
Affiliation(s)
- Shao-Rui Chen
- H.-L. Pan: Department of Anesthesiology and Perioperative Medicine, Unit 110, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA.
| | | | | | | |
Collapse
|
41
|
Weibel R, Reiss D, Karchewski L, Gardon O, Matifas A, Filliol D, Becker JAJ, Wood JN, Kieffer BL, Gaveriaux-Ruff C. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice. PLoS One 2013; 8:e74706. [PMID: 24069332 PMCID: PMC3771900 DOI: 10.1371/journal.pone.0074706] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/05/2013] [Indexed: 12/26/2022] Open
Abstract
Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.
Collapse
Affiliation(s)
- Raphaël Weibel
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - David Reiss
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Laurie Karchewski
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Olivier Gardon
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Audrey Matifas
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Dominique Filliol
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Jérôme A. J. Becker
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical research, University College London, London, United Kingdom
| | - Brigitte L. Kieffer
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Claire Gaveriaux-Ruff
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
- ESBS, École Supérieure de Biotechnologie de Strasbourg, UdS Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
42
|
Normandin A, Luccarini P, Molat JL, Gendron L, Dallel R. Spinal μ and δ opioids inhibit both thermal and mechanical pain in rats. J Neurosci 2013; 33:11703-14. [PMID: 23843537 PMCID: PMC3855450 DOI: 10.1523/jneurosci.1631-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/21/2022] Open
Abstract
The expression and contribution of μ (MOPR) and δ opioid receptors (DOPR) in polymodal nociceptors have been recently challenged. Indeed, MOPR and DOPR were shown to be expressed in distinct subpopulation of nociceptors where they inhibit pain induced by noxious heat and mechanical stimuli, respectively. In the present study, we used electrophysiological measurements to assess the effect of spinal MOPR and DOPR activation on heat-induced and mechanically induced diffuse noxious inhibitory controls (DNICs). We recorded from wide dynamic range neurons in the spinal trigeminal nucleus of anesthetized rats. Trains of 105 electrical shocks were delivered to the excitatory cutaneous receptive field. DNICs were triggered either by immersion of the hindpaw in 49°C water or application of 300 g of mechanical pressure. To study the involvement of peptidergic primary afferents in the activation of DNIC by noxious heat and mechanical stimulations, substance P release was measured in the spinal cord by visualizing neurokinin type 1 receptor internalization. We found that the activation of spinal MOPR and DOPR similarly attenuates the DNIC and neurokinin type 1 receptor internalization induced either by heat or mechanical stimuli. Our results therefore reveal that the activation of spinal MOPR and DOPR relieves both heat-induced and mechanically induced pain with similar potency and suggest that these receptors are expressed on polymodal, substance P-expressing neurons.
Collapse
Affiliation(s)
- Audrey Normandin
- Département de physiologie et biophysique, Faculté de médecine et des sciences de la santé
| | - Philippe Luccarini
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| | - Jean-Louis Molat
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| | - Louis Gendron
- Département de physiologie et biophysique, Faculté de médecine et des sciences de la santé
- Institut de pharmacologie de Sherbrooke, and
- Centre de recherche clinique Étienne-Le Bel, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada, and
| | - Radhouane Dallel
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| |
Collapse
|
43
|
Mannari T, Morita S, Furube E, Tominaga M, Miyata S. Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains. Glia 2013; 61:957-71. [PMID: 23468425 DOI: 10.1002/glia.22488] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/02/2013] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
Abstract
The circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP) sense a variety of blood-borne molecules because they lack typical blood-brain barrier. Though a few signaling pathways are known, it is not known how endogenous ligands for transient receptor potential vanilloid receptor 1 ion channel (TRPV1) are sensed in the CVOs. In this study, we aimed to examine whether or not astrocytic TRPV1 senses directly blood-borne molecules in the OVLT, SFO, and AP of adult mice. The reverse transcription-polymerase chain reaction and Western analysis revealed the expression of TRPV1 in the CVOs. Confocal microscopic immunohistochemistry further showed that TRPV1 was localized prominently at thick cellular processes of astrocytes rather than fine cellular processes and cell bodies. TRPV1-expressing cellular processes of astrocytes surrounded the vasculature to constitute dense networks. The expression of TRPV1 was also found at neuronal dendrites but not somata in the CVOs. The intravenous administration of a TRPV1 agonist resiniferatoxin (RTX) prominently induced Fos expression at astrocytes in the OVLT, SFO, and AP and neurons in adjacent related nuclei of the median preoptic nuclei (MnPO) and nucleus of the solitary tract (Sol) of wild-type but not TRPV1-knockout mice. The intracerebroventricular infusion of RTX induced Fos expression at both astrocytes and neurons in the CVOs, MnPO, and Sol. Thus, this study demonstrates that blood-borne molecules are sensed directly by astrocytic TRPV1 of the CVOs in adult mammalians.
Collapse
Affiliation(s)
- Tetsuya Mannari
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | | | | | | | | |
Collapse
|
44
|
Trevisan G, Rossato MF, Walker CIB, Klafke JZ, Rosa F, Oliveira SM, Tonello R, Guerra GP, Boligon AA, Zanon RB, Athayde ML, Ferreira J. Identification of the plant steroid α-spinasterol as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive properties. J Pharmacol Exp Ther 2012; 343:258-69. [PMID: 22837009 DOI: 10.1124/jpet.112.195909] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) receptor is relevant to the perception of noxious information and has been studied as a therapeutic target for the development of new analgesics. The goal of this study was to perform in vivo and in vitro screens to identify novel, efficacious, and safe TRPV1 antagonists isolated from leaves of the medicinal plant Vernonia tweedieana Baker. All of the fractions and the hydroalcoholic extract produced antinociception in mice during the capsaicin test, but the dichloromethane fraction also had antioedematogenic effect. Among the compounds isolated from the dichloromethane fraction, only α-spinasterol reduced the nociception and edema induced by capsaicin injection. Moreover, α-spinasterol demonstrated good oral absorption and high penetration into the brain and spinal cord of mice. α-Spinasterol was able to displace [3H]resiniferatoxin binding and diminish calcium influx mediated by capsaicin. Oral administration of the dichloromethane fraction and α-spinasterol also produced antinociceptive effect in the noxious heat-induced nociception test; however, they did not change the mechanical threshold of naive mice. The treatment with α-spinasterol did not produce antinociceptive effect in mice systemically pretreated with resiniferatoxin. In addition, α-spinasterol and the dichloromethane fraction reduced the edema, mechanical, and heat hyperalgesia elicited by complete Freund's adjuvant paw injection. The dichloromethane fraction and α-spinasterol did not affect body temperature or locomotor activity. In conclusion, α-spinasterol is a novel efficacious and safe antagonist of the TRPV1 receptor with antinociceptive effect.
Collapse
Affiliation(s)
- Gabriela Trevisan
- Departamento de Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Camobi, 97105-900, Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhou HY, Chen SR, Byun HS, Chen H, Li L, Han HD, Lopez-Berestein G, Sood AK, Pan HL. N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl- cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain. J Biol Chem 2012; 287:33853-64. [PMID: 22854961 PMCID: PMC3460480 DOI: 10.1074/jbc.m112.395830] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/31/2012] [Indexed: 12/31/2022] Open
Abstract
Loss of synaptic inhibition by γ-aminobutyric acid and glycine due to potassium chloride cotransporter-2 (KCC2) down-regulation in the spinal cord is a critical mechanism of synaptic plasticity in neuropathic pain. Here we present novel evidence that peripheral nerve injury diminishes glycine-mediated inhibition and induces a depolarizing shift in the reversal potential of glycine-mediated currents (E(glycine)) in spinal dorsal horn neurons. Blocking glutamate N-methyl-D-aspartate (NMDA) receptors normalizes synaptic inhibition, E(glycine), and KCC2 by nerve injury. Strikingly, nerve injury increases calcium-dependent calpain activity in the spinal cord that in turn causes KCC2 cleavage at the C terminus. Inhibiting calpain blocks KCC2 cleavage induced by nerve injury and NMDA, thereby normalizing E(glycine). Furthermore, calpain inhibition or silencing of μ-calpain at the spinal level reduces neuropathic pain. Thus, nerve injury promotes proteolytic cleavage of KCC2 through NMDA receptor-calpain activation, resulting in disruption of chloride homeostasis and diminished synaptic inhibition in the spinal cord. Targeting calpain may represent a new strategy for restoring KCC2 levels and tonic synaptic inhibition and for treating chronic neuropathic pain.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Hee-Sun Byun
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Hong Chen
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Li Li
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Hee-Dong Han
- Department of Experimental Therapeutics
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Anil K. Sood
- Department of Gynecologic Oncology, and
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
46
|
Mechanism of capsaicin receptor TRPV1-mediated toxicity in pain-sensing neurons focusing on the effects of Na(+)/Ca(2+) fluxes and the Ca(2+)-binding protein calretinin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1680-91. [PMID: 22982061 DOI: 10.1016/j.bbamcr.2012.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 11/23/2022]
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) receptor is a pain-sensing, ligand-gated, non-selective cation channel expressed in peripheral sensory neurons. Prolonged activation of TRPV1 by capsaicin leads to cell swelling and formation of membrane blebs in rat dorsal root ganglion (DRG) neurons. Similar results were obtained in NIH3T3 fibroblast cells stably expressing TRPV1. Here, we assessed the contribution of Ca(2+) and Na(+) ions to TRPV1-mediated changes. Cell swelling was caused by a substantial influx of extracellular Na(+) via TRPV1 channels, causing concomitant transport of water. In the absence of extracellular Na(+), the membrane blebbing was completely inhibited, but Ca(2+) influx did not change under these conditions. Na(+) influx was modulated by the intracellular Ca(2+) concentration ([Ca(2+)]i). Elevation of [Ca(2+)]i by ionomycin sensitized/activated TRPV1 channels causing cell swelling in TRPV1-positive cells. In the absence of extracellular Ca(2+), capsaicin caused only little increase in [Ca(2+)]i indicating that the increase in [Ca(2+)]i observed after capsaicin application is derived essentially from extracellular Ca(2+) and not from internal Ca(2+) stores. In the absence of extracellular Ca(2+) also the process of cell swelling was considerably slower. Calretinin is a Ca(2+) buffer protein, which is expressed in a subset of TRPV1-positive neurons. Calretinin decreased the amplitude, but slowed down the decay of Ca(2+) signals evoked by ionomycin. Cells co-expressing TRPV1 and calretinin were less sensitive to TRPV1-mediated, capsaicin-induced volume increases. In TRPV1-expressing NIH3T3 cells, calretinin decreased the capsaicin-induced Ca(2+) and Na(+) influx. Swelling and formation of membrane blebs resulted in impaired plasma membrane integrity finally leading to cell death. Our results hint towards a mechanistic explanation for the apoptosis-independent capsaicin-evoked neuronal loss and additionally reveal a protective effect of calretinin; we propose that the Ca(2+)-buffering capacity of calretinin reduces the susceptibility of calretinin-expressing DRG neurons against cell swelling/death caused by overstimulation of TRPV1 channels. This article is part of a Special Issue entitled:12th European Symposium on Calcium.
Collapse
|
47
|
Zhao YL, Chen SR, Chen H, Pan HL. Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-D-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance. J Biol Chem 2012; 287:25073-85. [PMID: 22679016 DOI: 10.1074/jbc.m112.378737] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Opioids are the most effective analgesics for the treatment of moderate to severe pain. However, chronic opioid treatment can cause both hyperalgesia and analgesic tolerance, which limit their clinical efficacy. In this study, we determined the role of pre- and postsynaptic NMDA receptors (NMDARs) in controlling increased glutamatergic input in the spinal cord induced by chronic systemic morphine administration. Whole-cell voltage clamp recordings of excitatory postsynaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine significantly increased the amplitude of monosynaptic EPSCs evoked from the dorsal root and the frequency of spontaneous EPSCs, and these changes were largely attenuated by blocking NMDARs and by inhibiting PKC, but not PKA. Also, blocking NR2A- or NR2B-containing NMDARs significantly reduced the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs in morphine-treated rats. Strikingly, morphine treatment largely decreased the amplitude of evoked NMDAR-EPSCs and NMDAR currents of dorsal horn neurons elicited by puff NMDA application. The reduction in postsynaptic NMDAR currents caused by morphine was prevented by resiniferatoxin pretreatment to ablate TRPV1-expressing primary afferents. Furthermore, intrathecal injection of the NMDAR antagonist significantly attenuated the development of analgesic tolerance and the reduction in nociceptive thresholds induced by chronic morphine. Collectively, our findings indicate that chronic opioid treatment potentiates presynaptic, but impairs postsynaptic, NMDAR activity in the spinal cord. PKC-mediated increases in NMDAR activity at nociceptive primary afferent terminals in the spinal cord contribute critically to the development of opioid hyperalgesia and analgesic tolerance.
Collapse
Affiliation(s)
- Yi-Lin Zhao
- Center for Pain and Neuroscience Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
48
|
Davis MP. Drug management of visceral pain: concepts from basic research. PAIN RESEARCH AND TREATMENT 2012; 2012:265605. [PMID: 22619712 PMCID: PMC3348642 DOI: 10.1155/2012/265605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Visceral pain is experienced by 40% of the population, and 28% of cancer patients suffer from pain arising from intra- abdominal metastasis or from treatment. Neuroanatomy of visceral nociception and neurotransmitters, receptors, and ion channels that modulate visceral pain are qualitatively or quantitatively different from those that modulate somatic and neuropathic pain. Visceral pain should be recognized as distinct pain phenotype. TRPV1, Na 1.8, and ASIC3 ion channels and peripheral kappa opioid receptors are important mediators of visceral pain. Mu agonists, gabapentinoids, and GABAB agonists reduce pain by binding to central receptors and channels. Combinations of analgesics and adjuvants in animal models have supra-additive antinociception and should be considered in clinical trials. This paper will discuss the neuroanatomy, receptors, ion channels, and neurotransmitters important to visceral pain and provide a basic science rationale for analgesic trials and management.
Collapse
Affiliation(s)
- Mellar P. Davis
- Cleveland Clinic Lerner School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Solid Tumor Division, Harry R. Horvitz Center for Palliative Medicine, Taussig Cancer Institute, USA
| |
Collapse
|
49
|
Kishimoto E, Naito Y, Handa O, Okada H, Mizushima K, Hirai Y, Nakabe N, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Yoshida N, Yoshikawa T. Oxidative stress-induced posttranslational modification of TRPV1 expressed in esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G230-8. [PMID: 21636531 DOI: 10.1152/ajpgi.00436.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human esophageal epithelium is continuously exposed to physical stimuli or to gastric acid that sometimes causes inflammation of the mucosa. Transient receptor potential vanilloid 1 (TRPV1) is a nociceptive, Ca(2+)-selective ion channel activated by capsaicin, heat, and protons. It has been reported that activation of TRPV1 expressed in esophageal mucosa is involved in gastroesophageal reflux disease (GERD) or in nonerosive GERD symptoms. In this study, we examined the expression and function of TRPV1 in the human esophageal epithelial cell line Het1A, focusing in particular on the role of oxidative stress. Interleukin-8 (IL-8) secreted by Het1A cells upon stimulation by capsaicin or acid with/without 4-hydroxy-2-nonenal (HNE) was measured by ELISA. Following capsaicin stimulation, the intracellular production of reactive oxygen species (ROS) was determined using a redox-sensitive fluorogenic probe, and ROS- and HNE-modified proteins were determined by Western blotting using biotinylated cysteine and anti-HNE antibody, respectively. HNE modification of TRPV1 proteins was further investigated by immunoprecipitation after treatment with synthetic HNE. Capsaicin and acid induced IL-8 production in Het1A cells, and this production was diminished by antagonists of TRPV1. Capsaicin also significantly increased the production of intracellular ROS and ROS- or HNE-modified proteins in Het1A cells. Moreover, IL-8 production in capsaicin-stimulated Het1A cells was enhanced by synthetic HNE treatment. Immunoprecipitation studies revealed that TRPV1 was modified by HNE in synthetic HNE-stimulated Het1A cells. We concluded that TRPV1 functions in chemokine production in esophageal epithelial cells, and this function may be regulated by ROS via posttranslational modification of TRPV1.
Collapse
Affiliation(s)
- Etsuko Kishimoto
- Department of Inflammation and Immunology, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bishnoi M, Bosgraaf CA, Premkumar LS. Preservation of acute pain and efferent functions following intrathecal resiniferatoxin-induced analgesia in rats. THE JOURNAL OF PAIN 2011; 12:991-1003. [PMID: 21680254 DOI: 10.1016/j.jpain.2011.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/25/2011] [Accepted: 03/16/2011] [Indexed: 01/29/2023]
Abstract
UNLABELLED Resiniferatoxin (RTX) is a potent agonist of TRPV1, which possesses unique properties that can be utilized to treat certain modalities of pain. In the present study, systemic intraperitoneal (i.p.) administration of RTX resulted in a significant decrease in acute thermal pain sensitivity, whereas localized intrathecal (i.t.) administration had no effect on acute thermal pain sensitivity. Both i.p. and i.t. administration of RTX prevented TRPV1-induced nocifensive behavior and inflammatory thermal hypersensitivity. There were no alterations in mechanical sensitivity either by i.p. or i.t. administration of RTX. In spinal dorsal horn (L4-L6), TRPV1 and substance P immunoreactivity were abolished following i.p. and i.t. administration of RTX. In dorsal root ganglia (DRG), TRPV1 immunoreactivity was diminished following i.p. administration, but was unaffected following i.t. administration of RTX. Following i.p. administration, basal and evoked calcitonin gene-related peptide release were reduced both in the spinal cord and peripheral tissues. However, following i.t. administration, basal and evoked calcitonin gene-related peptide release were reduced in spinal cord (L4-L6), but were unaffected in peripheral tissues. Both i.p. and i.t. RTX administration lowered the body temperature acutely, but this effect reversed with time. Targeting TRPV1-expressing nerve terminals at the spinal cord can selectively abolish inflammatory thermal hypersensitivity without affecting acute thermal sensitivity and can preserve the efferent functions of DRG neurons at the peripheral nerve terminals. I.t. administration of RTX can be considered as a strategy for treating certain chronic and debilitating pain conditions. PERSPECTIVE Localized administration of RTX in spinal cord could be a useful strategy to treat chronic debilitating pain arising from certain conditions such as cancer and at the same time could maintain normal physiological peripheral efferent functions mediated by TRPV1.
Collapse
Affiliation(s)
- Mahendra Bishnoi
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| | | | | |
Collapse
|