1
|
Kuhn YA, Taube W. Changes in the Brain with an External Focus of Attention: Neural Correlates. Exerc Sport Sci Rev 2025; 53:49-59. [PMID: 39690510 PMCID: PMC11895819 DOI: 10.1249/jes.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Although it is well established that an external compared to an internal focus of attention enhances motor performance and learning, the underlying neural mechanisms remained relatively underexplored. Recent studies revealed that adopting different attentional strategies results in a differential corticomotor organization. These findings hold great potential for applying attentional strategies for healthy subjects and populations that display motor deficiencies.
Collapse
|
2
|
Knudsen L, Guo F, Sharoh D, Huang J, Blicher JU, Lund TE, Zhou Y, Zhang P, Yang Y. The laminar pattern of proprioceptive activation in human primary motor cortex. Cereb Cortex 2025; 35:bhaf076. [PMID: 40233153 PMCID: PMC11998912 DOI: 10.1093/cercor/bhaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/17/2025] Open
Abstract
The primary motor cortex (M1) is increasingly being recognized for its vital role in proprioceptive somatosensation. However, our current understanding of proprioceptive processing at the laminar scale is limited. Empirical findings in primates and rodents suggest a pronounced role of superficial cortical layers, but the involvement of deep layers has yet to be examined in humans. Submillimeter resolution functional magnetic resonance imaging (fMRI) has emerged in recent years, paving the way for studying layer-dependent activity in humans (laminar fMRI). In the present study, laminar fMRI was employed to investigate the influence of proprioceptive somatosensation on M1 deep layer activation using passive finger movements. Significant M1 deep layer activation was observed in response to proprioceptive stimulation across 10 healthy subjects using a vascular space occupancy (VASO)-sequence at 7 T. For further validation, two additional datasets were included which were obtained using a balanced steady-state free precession sequence with ultrahigh (0.3 mm) in-plane resolution, yielding converging results. These results were interpreted in the light of previous laminar fMRI studies and the active inference account of motor control. We propose that a considerable proportion of M1 deep layer activation is due to proprioceptive influence and that deep layers of M1 constitute a key component in proprioceptive circuits.
Collapse
Affiliation(s)
- Lasse Knudsen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
| | - Fanhua Guo
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
| | - Daniel Sharoh
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Trigon 204, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands
| | - Jiepin Huang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
| | - Jakob U Blicher
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
- Department of Neurology, Aalborg University Hospital, Reberbansgade 15, Aalborg, 9000, Denmark
| | - Torben E Lund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
| | - Yan Zhou
- Department of Neurosurgery, Air Force Medical Center, PLA, 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Peng Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Institute of Artificial Intelligence Hefei Comprehensive National Science Center, No. 5089 Wangjiang West Road, High-Tech Zone, Hefei, Anhui Province, 230088, China
| | - Yan Yang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Institute of Artificial Intelligence Hefei Comprehensive National Science Center, No. 5089 Wangjiang West Road, High-Tech Zone, Hefei, Anhui Province, 230088, China
| |
Collapse
|
3
|
Kunigk NG, Schone HR, Gontier C, Hockeimer W, Tortolani AF, Hatsopoulos NG, Downey JE, Chase SM, Boninger ML, Dekleva BD, Collinger JL. Motor somatotopy impacts imagery strategy success in human intracortical brain-computer interfaces. J Neural Eng 2025; 22:026004. [PMID: 39993333 DOI: 10.1088/1741-2552/adb995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
Objective:The notion of a somatotopically organized motor cortex, with movements of different body parts being controlled by spatially distinct areas of cortex, is well known. However, recent studies have challenged this notion and suggested a more distributed representation of movement control. This shift in perspective has significant implications, particularly when considering the implantation location of electrode arrays for intracortical brain-computer interfaces (iBCIs). We sought to evaluate whether the location of neural recordings from the precentral gyrus, and thus the underlying somatotopy, has any impact on the imagery strategies that can enable successful iBCI control.Approach:Three individuals with a spinal cord injury were enrolled in an ongoing clinical trial of an iBCI. Participants had two intracortical microelectrode arrays implanted in the arm and/or hand areas of the precentral gyrus based on presurgical functional imaging. Neural data were recorded while participants attempted to perform movements of the hand, wrist, elbow, and shoulder.Main results:We found that electrode arrays that were located more medially recorded significantly more activity during attempted proximal arm movements (elbow, shoulder) than did lateral arrays, which captured more activity related to attempted distal arm movements (hand, wrist). We also evaluated the relative contribution from the two arrays implanted in each participant to decoding accuracy during calibration of an iBCI decoder for translation and grasping tasks. For both task types, imagery strategy (e.g. reaching vs wrist movements) had a significant impact on the relative contributions of each array to decoding. Overall, we found some evidence of broad tuning to arm and hand movements; however, there was a clear bias in the amount of information accessible about each movement type in spatially distinct areas of cortex.Significance:These results demonstrate that classical concepts of somatotopy can have real consequences for iBCI use, and highlight the importance of considering somatotopy when planning iBCI implantation.
Collapse
Affiliation(s)
- N G Kunigk
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - H R Schone
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - C Gontier
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - W Hockeimer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - A F Tortolani
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States of America
| | - N G Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States of America
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
- Neuroscience Institute, University of Chicago, Chicago, IL, United States of America
| | - J E Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - S M Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - M L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - B D Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - J L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
4
|
Gambaretti M, Viganò L, Gallo M, Pratelli G, Sciortino T, Gay L, Conti Nibali M, Gallotti AL, Tariciotti L, Mattioli L, Bello L, Cerri G, Rossi M. From non-human to human primates: a translational approach to enhancing resection, safety, and indications in glioma surgery while preserving sensorimotor abilities. Front Integr Neurosci 2025; 19:1500636. [PMID: 40008262 PMCID: PMC11847902 DOI: 10.3389/fnint.2025.1500636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Since the pivotal studies of neurophysiologists in the early 20th century, research on brain functions in non-human primates has provided valuable insights into the neural mechanisms subserving neurological function. By using data acquired on non-human primates as a reference, important progress in knowledge of the human brain and its functions has been achieved. The translational impact allowed by this scientific effort must be recognized in the implementation of the current surgical techniques particularly in support of the neurosurgical approach to brain tumors. In the surgical treatment of brain tumors, the ability to maximally extend the resection allows an improvement in overall survival, progression-free survival, and quality of life of patients. The main goal, and, at the same time, the main challenge, of oncological neurological surgery is to avoid permanent neurological deficit while reaching maximal resection, particularly when the tumor infiltrates the neural network subserving motor functions. Brain mapping techniques were developed using neurophysiological probes to identify the areas and tracts subserving sensorimotor function, ensuring their preservation during the resection. During the last 20 years, starting from the classical "Penfield" technique, brain mapping has been progressively implemented. Among the major advancements was the introduction of high-frequency direct electrical stimulation. Its refinement, along with the complementary use of low-frequency stimulation, allowed a further refinement of stimulation protocols. In this narrative review, we propose an analysis of the process through which the knowledge acquired through experiments on non-human primates influenced and changed the current approach to neurosurgical procedures. We then describe the main brain mapping techniques used in the resection of tumors located within sensorimotor circuits. We also detail how these techniques allowed the acquisition of new data on the properties of areas and tracts underlying sensorimotor control, in turn fostering the design of new tools to navigate within cortical and subcortical areas, that were before deemed to be "sacred and untouchable."
Collapse
Affiliation(s)
- Matteo Gambaretti
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Giovanni Pratelli
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Alberto Luigi Gallotti
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Leonardo Tariciotti
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Perlova K, Schmidt CC, Fink GR, Weiss PH. The role of the left primary motor cortex in apraxia. Neurol Res Pract 2025; 7:2. [PMID: 39780250 PMCID: PMC11716253 DOI: 10.1186/s42466-024-00359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Apraxia is a motor-cognitive disorder that primary sensorimotor deficits cannot solely explain. Previous research in stroke patients has focused on damage to the fronto-parietal praxis networks in the left hemisphere (LH) as the cause of apraxic deficits. In contrast, the potential role of the (left) primary motor cortex (M1) has largely been neglected. However, recent brain stimulation and lesion-mapping studies suggest an involvement of left M1 in motor cognitive processes-over and above its role in motor execution. Therefore, this study explored whether the left M1 plays a specific role in apraxia. METHODS We identified 157 right-handed patients with first-ever unilateral LH stroke in the sub-acute phase (< 90 days post-stroke), for whom apraxia assessments performed with the ipsilesional left hand and lesion maps were available. Utilizing the maximum probability map of Brodmann area 4 (representing M1) provided by the JuBrain Anatomy Toolbox in SPM, patients were subdivided into two groups depending on whether their lesions involved (n = 40) or spared (n = 117) left M1. We applied a mixed model ANCOVA with repeated measures to compare apraxic deficits between the two patient groups, considering the factors "body part" and "gesture meaning". Furthermore, we explored potential differential effects of the anterior (4a) and posterior (4p) parts of Brodmann area 4 by correlation analyses. RESULTS Patients with and without M1 involvement did not differ in age and time post-stroke but in lesion size. When controlling for lesion size, the total apraxia scores did not differ significantly between groups. However, the mixed model ANCOVA showed that LH stroke patients with lesions involving left M1 performed differentially worse when imitating meaningless finger gestures. This effect was primarily driven by lesions affecting Brodmann area 4p. CONCLUSIONS Even though many current definitions of apraxia disregard a relevant role of (left) M1, the observed differential effect of M1 lesions, specifically involving subarea 4p, on the imitation of meaningless finger gestures in the current sample of LH stroke patients suggests a specific role of left M1 in imitation when high amounts of (motor) attention and sensorimotor integration are required.
Collapse
Affiliation(s)
- Ksenia Perlova
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Claudia C Schmidt
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Peter H Weiss
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| |
Collapse
|
6
|
Kim J, Park S, Yoo K, Kim S. Double dissociation of visuomotor interaction mediated by visual feedback during continuous de novo motor learning. Commun Biol 2024; 7:1117. [PMID: 39261584 PMCID: PMC11391080 DOI: 10.1038/s42003-024-06808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
While the sensorimotor cortices are central neural substrates for motor control and learning, how the interaction between their subregions with visual cortices contributes to acquiring de novo visuomotor skills is poorly understood. We design a continuous visuomotor task in fMRI where participants control a cursor using their fingers while learning an arbitrary finger-to-cursor mapping. To investigate visuomotor interaction in the de novo motor task, we manipulate visual feedback of a cursor such that they learn to control using fingers under two alternating conditions: online cursor feedback is available or unavailable except when a target is reached. As a result, we find double dissociation of fMRI activity in subregions of the sensorimotor and visual cortices. Specifically, motor and late visual cortices are more active with online cursor feedback, and somatosensory and early visual cortices are more active without online cursor feedback. We also find a significant reduction in functional connectivity between somatosensory cortices and early visual cortices, which is highly correlated with performance improvement. These findings support the distinct interaction between subregions of sensorimotor cortices and visual cortices, while the connectivity analysis highlights the critical role of somatosensory cortices during de novo motor learning.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Data Science, Hanyang University, Seoul, Republic of Korea
| | - Sungbeen Park
- Department of Artificial Intelligence, Hanyang University, Seoul, Republic of Korea
| | - Kwangsun Yoo
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, Republic of Korea
- AI Research Center, Data Science Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sungshin Kim
- Department of Data Science, Hanyang University, Seoul, Republic of Korea.
- Department of Artificial Intelligence, Hanyang University, Seoul, Republic of Korea.
- Department of Healthcare Digital Engineering, Hanyang University, Seoul, Republic of Korea.
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.
| |
Collapse
|
7
|
Kunigk NG, Schone HR, Gontier C, Hockeimer W, Tortolani AF, Hatsopoulos NG, Downey JE, Chase SM, Boninger ML, Dekleva BD, Collinger JL. Motor somatotopy impacts imagery strategy success in human intracortical brain-computer interfaces. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.01.24311180. [PMID: 39132484 PMCID: PMC11312650 DOI: 10.1101/2024.08.01.24311180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The notion of a somatotopically organized motor cortex, with movements of different body parts being controlled by spatially distinct areas of cortex, is well known. However, recent studies have challenged this notion and suggested a more distributed representation of movement control. This shift in perspective has significant implications, particularly when considering the implantation location of electrode arrays for intracortical brain-computer interfaces (iBCIs). We sought to evaluate whether the location of neural recordings from the precentral gyrus, and thus the underlying somatotopy, has any impact on the imagery strategies that can enable successful iBCI control. Three individuals with a spinal cord injury were enrolled in an ongoing clinical trial of an iBCI. Participants had two intracortical microelectrode arrays implanted in the arm and/or hand areas of the precentral gyrus based on presurgical functional imaging. Neural data were recorded while participants attempted to perform movements of the hand, wrist, elbow, and shoulder. We found that electrode arrays that were located more medially recorded significantly more activity during attempted proximal arm movements (elbow, shoulder) than did lateral arrays, which captured more activity related to attempted distal arm movements (hand, wrist). We also evaluated the relative contribution from the two arrays implanted in each participant to decoding accuracy during calibration of an iBCI decoder for translation and grasping tasks. For both task types, imagery strategy (e.g., reaching vs. wrist movements) had a significant impact on the relative contributions of each array to decoding. Overall, we found some evidence of broad tuning to arm and hand movements; however, there was a clear bias in the amount of information accessible about each movement type in spatially distinct areas of cortex. These results demonstrate that classical concepts of somatotopy can have real consequences for iBCI use, and highlight the importance of considering somatotopy when planning iBCI implantation.
Collapse
Affiliation(s)
- N G Kunigk
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - H R Schone
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Gontier
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Hockeimer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - A F Tortolani
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - N G Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - J E Downey
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - S M Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - M L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - B D Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - J L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Hirano D, Wada M, Kimura N, Jinnai D, Goto Y, Taniguchi T. Effects of divided attention on movement-related cortical potential in community-dwelling elderly adults: A preliminary study. Heliyon 2024; 10:e34126. [PMID: 39071682 PMCID: PMC11283040 DOI: 10.1016/j.heliyon.2024.e34126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Dual-tasking is defined as performing two or more tasks concurrently. This study aimed to investigate the effect of divided attention on movement-related cortical potential (MRCP) during dual-task performance in 11 community-dwelling elderly individuals while the load of the secondary task was altered. MRCP was recorded during a single task (ST), simple dual task (S-DT), and complex dual task (C-DT) as no-, low-, and high-load divided attention tasks, respectively. The ST involved self-paced tapping with an extended right index finger. In the S-DT and C-DT, the subjects simultaneously performed the ST and a visual number counting task with different levels of load. The coefficient of variation of movement frequency was significantly more variable in the C-DT than in the ST. The MRCP amplitude from electroencephalography electrode C3, contralateral to the moving hand, was significantly higher in the C-DT than in the ST. Higher attention diversion led to a significant reduction in MRCP amplitude in the participants. These results suggest that attention division in dual-task situations plays an important role in movement preparation and execution. We propose that MRCP can serve as a marker for screening the ability of older individuals to perform dual-tasks.
Collapse
Affiliation(s)
- Daisuke Hirano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Misaki Wada
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Naotoshi Kimura
- Department of Occupational Therapy, School of Health Sciences at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Daisuke Jinnai
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Yoshinobu Goto
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Physiology, Faculty of Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
- Department of Occupational Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takamichi Taniguchi
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Occupational Therapy, School of Health Sciences at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| |
Collapse
|
9
|
Feng X, Xu S, Li Y, Liu J. Body size as a metric for the affordable world. eLife 2024; 12:RP90583. [PMID: 38547366 PMCID: PMC10987089 DOI: 10.7554/elife.90583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
The physical body of an organism serves as a vital interface for interactions with its environment. Here, we investigated the impact of human body size on the perception of action possibilities (affordances) offered by the environment. We found that the body size delineated a distinct boundary on affordances, dividing objects of continuous real-world sizes into two discrete categories with each affording distinct action sets. Additionally, the boundary shifted with imagined body sizes, suggesting a causal link between body size and affordance perception. Intriguingly, ChatGPT, a large language model lacking physical embodiment, exhibited a modest yet comparable affordance boundary at the scale of human body size, suggesting the boundary is not exclusively derived from organism-environment interactions. A subsequent fMRI experiment offered preliminary evidence of affordance processing exclusively for objects within the body size range, but not for those beyond. This suggests that only objects capable of being manipulated are the objects capable of offering affordance in the eyes of an organism. In summary, our study suggests a novel definition of object-ness in an affordance-based context, advocating the concept of embodied cognition in understanding the emergence of intelligence constrained by an organism's physical attributes.
Collapse
Affiliation(s)
- Xinran Feng
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua UniversityBeijingChina
| | - Shan Xu
- Faculty of Psychology, Beijing Normal UniversityBeijingChina
| | - Yuannan Li
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua UniversityBeijingChina
| | - Jia Liu
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua UniversityBeijingChina
| |
Collapse
|
10
|
Yang 杨炀 Y, Li 李君君 J, Zhao 赵恺 K, Tam F, Graham SJ, Xu 徐敏 M, Zhou 周可 K. Lateralized Functional Connectivity of the Sensorimotor Cortex and its Variations During Complex Visuomotor Tasks. J Neurosci 2024; 44:e0723232023. [PMID: 38050101 PMCID: PMC10860583 DOI: 10.1523/jneurosci.0723-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Previous studies have shown that the left hemisphere dominates motor function, often observed through homotopic activation measurements. Using a functional connectivity approach, this study investigated the lateralization of the sensorimotor cortex during handwriting and drawing, two complex visuomotor tasks with varying contextual demands. We found that both left- and right-lateralized connectivity in the primary motor cortex (M1), dorsal premotor cortex (PMd), somatosensory cortex, and visual regions were evident in adults (males and females), primarily in an interhemispheric integrative fashion. Critically, these lateralization tendencies remained highly invariant across task contexts, representing a task-invariant neural architecture for encoding fundamental motor programs consistently implemented in different task contexts. Additionally, the PMd exhibited a slight variation in lateralization degree between task contexts, reflecting the ability of the high-order motor system to adapt to varying task demands. However, connectivity-based lateralization of the sensorimotor cortex was not detected in 10-year-old children (males and females), suggesting that the maturation of connectivity-based lateralization requires prolonged development. In summary, this study demonstrates both task-invariant and task-sensitive connectivity lateralization in sensorimotor cortices that support the resilience and adaptability of skilled visuomotor performance. These findings align with the hierarchical organization of the motor system and underscore the significance of the functional connectivity-based approach in studying functional lateralization.
Collapse
Affiliation(s)
- Yang Yang 杨炀
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjun Li 李君君
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao 赵恺
- Institute of Brain Trauma and Neurology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300300, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Min Xu 徐敏
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Ke Zhou 周可
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Syrov N, Yakovlev L, Kaplan A, Lebedev M. Motor cortex activation during visuomotor transformations: evoked potentials during overt and imagined movements. Cereb Cortex 2024; 34:bhad440. [PMID: 37991276 DOI: 10.1093/cercor/bhad440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
Despite the prevalence of visuomotor transformations in our motor skills, their mechanisms remain incompletely understood, especially when imagery actions are considered such as mentally picking up a cup or pressing a button. Here, we used a stimulus-response task to directly compare the visuomotor transformation underlying overt and imagined button presses. Electroencephalographic activity was recorded while participants responded to highlights of the target button while ignoring the second, non-target button. Movement-related potentials (MRPs) and event-related desynchronization occurred for both overt movements and motor imagery (MI), with responses present even for non-target stimuli. Consistent with the activity accumulation model where visual stimuli are evaluated and transformed into the eventual motor response, the timing of MRPs matched the response time on individual trials. Activity-accumulation patterns were observed for MI, as well. Yet, unlike overt movements, MI-related MRPs were not lateralized, which appears to be a neural marker for the distinction between generating a mental image and transforming it into an overt action. Top-down response strategies governing this hemispheric specificity should be accounted for in future research on MI, including basic studies and medical practice.
Collapse
Affiliation(s)
- Nikolay Syrov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1. Moscow, 121205, Russia
| | - Lev Yakovlev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1. Moscow, 121205, Russia
| | - Alexander Kaplan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1. Moscow, 121205, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| | - Mikhail Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, 119991, Russia
| |
Collapse
|
12
|
Chui K, Ng CT, Chang TT. The visuo-sensorimotor substrate of co-speech gesture processing. Neuropsychologia 2023; 190:108697. [PMID: 37827428 DOI: 10.1016/j.neuropsychologia.2023.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Co-speech gestures are integral to human communication and exhibit diverse forms, each serving a distinct communication function. However, existing literature has focused on individual gesture types, leaving a gap in understanding the comparative neural processing of these diverse forms. To address this, our study investigated the neural processing of two types of iconic gestures: those representing attributes or event knowledge of entity concepts, beat gestures enacting rhythmic manual movements without semantic information, and self-adaptors. During functional magnetic resonance imaging, systematic randomization and attentive observation of video stimuli revealed a general neural substrate for co-speech gesture processing primarily in the bilateral middle temporal and inferior parietal cortices, characterizing visuospatial attention, semantic integration of cross-modal information, and multisensory processing of manual and audiovisual inputs. Specific types of gestures and grooming movements elicited distinct neural responses. Greater activity in the right supramarginal and inferior frontal regions was specific to self-adaptors, and is relevant to the spatiomotor and integrative processing of speech and gestures. The semantic and sensorimotor regions were least active for beat gestures. The processing of attribute gestures was most pronounced in the left posterior middle temporal gyrus upon access to knowledge of entity concepts. This fMRI study illuminated the neural underpinnings of gesture-speech integration and highlighted the differential processing pathways for various co-speech gestures.
Collapse
Affiliation(s)
- Kawai Chui
- Department of English, National Chengchi University, Taipei, Taiwan; Research Centre for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Ting-Ting Chang
- Research Centre for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan; Department of Psychology, National Chengchi University, Taipei, Taiwan.
| |
Collapse
|
13
|
Hu XQ, Shi YD, Chen J, You Z, Pan YC, Ling Q, Wei H, Zou J, Ying P, Liao XL, Su T, Wang YX, Shao Y. Children with strabismus and amblyopia presented abnormal spontaneous brain activities measured through fractional amplitude of low-frequency fluctuation (fALFF). Front Neurol 2022; 13:967794. [PMID: 36034279 PMCID: PMC9413152 DOI: 10.3389/fneur.2022.967794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeBased on fMRI technology, we explored whether children with strabismus and amblyopia (SA) showed significant change in fractional amplitude of low-frequency fluctuation (fALFF) values in specific brain regions compared with healthy controls and whether this change could point to the clinical manifestations and pathogenesis of children with strabismus to a certain extent.MethodsWe enrolled 23 children with SA and the same number matched healthy controls in the ophthalmology department of the First Affiliated Hospital of Nanchang University, and the whole brain was scanned by rs-fMRI. The fALFF value of each brain area was derived to examine whether there is a statistical difference between the two groups. Meanwhile, the ROC curve was made in a view to evaluate whether this difference proves useful as a diagnostic index. Finally, we analyzed whether changes in the fALFF value of some specific brain regions are related to clinical manifestations.ResultsCompared with HCs, children with SA presented decreased fALFF values in the left temporal pole: the superior temporal gyrus, right middle temporal gyrus, right superior frontal gyrus, and right supplementary motor area. Meanwhile, they also showed higher fALFF values in specific brain areas, which included the left precentral gyrus, left inferior parietal, and left precuneus.ConclusionChildren with SA showed abnormal fALFF values in different brain regions. Most of these regions were allocated to the visual formation pathway, the eye movement-related pathway, or other visual-related pathways, suggesting the pathological mechanism of the patient.
Collapse
Affiliation(s)
- Xiao-Qin Hu
- Department of Strabismus and Amblyopia, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yi-Dan Shi
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Zhipeng You
- Department of Strabismus and Amblyopia, Affiliated Eye Hospital of Nanchang University, Nanchang, China
- Zhipeng You
| | - Yi-Cong Pan
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Zou
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Yi-Xin Wang
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yi Shao
| |
Collapse
|
14
|
Liang Q, Li J, Zheng S, Liao J, Huang R. Dynamic Causal Modelling of Hierarchical Planning. Neuroimage 2022; 258:119384. [PMID: 35709949 DOI: 10.1016/j.neuroimage.2022.119384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hierarchical planning (HP) is a strategy that optimizes the planning by storing the steps towards the goal (lower-level planning) into subgoals (higher-level planning). In the framework of model-based reinforcement learning, HP requires the computation through the transition value between higher-level hierarchies. Previous study identified the dmPFC, PMC and SPL were involved in the computation process of HP respectively. However, it is still unclear about how these regions interaction with each other to support the computation in HP, which could deepen our understanding about the implementation of plan algorithm in hierarchical environment. To address this question, we conducted an fMRI experiment using a virtual subway navigation task. We identified the activity of the dmPFC, premotor cortex (PMC) and superior parietal lobe (SPL) with general linear model (GLM) in HP. Then, Dynamic Causal Modelling (DCM) was performed to quantify the influence of the higher- and lower-planning on the connectivity between the brain areas identified by the GLM. The strongest modulation effect of the higher-level planning was found on the dmPFC→right PMC connection. Furthermore, using Parametric Empirical Bayes (PEB), we found the modulation of higher-level planning on the dmPFC→right PMC and right PMC→SPL connections could explain the individual difference of the response time. We conclude that the dmPFC-related connectivity takes the response to the higher-level planning, while the PMC acts as the bridge between the higher-level planning to behavior outcome.
Collapse
Affiliation(s)
- Qunjun Liang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China
| | - Jinhui Li
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China
| | - Senning Zheng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China
| | - Jiajun Liao
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China..
| |
Collapse
|
15
|
McInnes AN, Nguyen AT, Carroll TJ, Lipp OV, Marinovic W. Engagement of the contralateral limb can enhance the facilitation of motor output by loud acoustic stimuli. J Neurophysiol 2022; 127:840-855. [PMID: 35264005 DOI: 10.1152/jn.00235.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When intense sound is presented during light muscle contraction, inhibition of the corticomotoneuronal pathway is observed. During action preparation, this effect is reversed, with sound resulting in excitation of the corticomotoneuronal pathway. We investigated how combined maintenance of a muscle contraction during preparation for a ballistic action impacts the magnitude of the facilitation of motor output by a loud acoustic stimulus (LAS) - a phenomenon known as the StartReact effect. Participants executed ballistic wrist flexion movements and a LAS was presented simultaneously with the imperative signal in a subset of trials. We examined whether the force level or muscle used to maintain a contraction during preparation for the ballistic response impacted reaction time and/or the force of movements triggered by the LAS. These contractions were sustained either ipsilaterally or contralaterally to the ballistic response. The magnitude of facilitation by the LAS was greatest when low force flexion contractions were maintained in the limb contralateral to the ballistic response during preparation. There was little change in facilitation when contractions recruited the contralateral extensor muscle, or when they were sustained in the same limb that executed the ballistic response. We conclude that a larger network of neurons which may be engaged by a contralateral sustained contraction prior to initiation may be recruited by the LAS, further contributing to the motor output of the response. These findings may be particularly applicable in stroke rehabilitation where engagement of the contralesional side may increase the benefits of a LAS to the functional recovery of movement.
Collapse
Affiliation(s)
- Aaron N McInnes
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - An T Nguyen
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia
| | - Timothy John Carroll
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Welber Marinovic
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia
| |
Collapse
|
16
|
Crivelli D, Di Ruocco M, Balena A, Balconi M. The Empowering Effect of Embodied Awareness Practice on Body Structural Map and Sensorimotor Activity: The Case of Feldenkrais Method. Brain Sci 2021; 11:brainsci11121599. [PMID: 34942901 PMCID: PMC8699347 DOI: 10.3390/brainsci11121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
While outcomes of embodied awareness practices in terms of improved posture and flexibility, movement efficiency, and well-being are often reported, systematic investigations of such training effects and of the actual nature, extent, and neurofunctional correlates of learning mechanisms thought to lie at the core of such practices are very limited. The present study focused on the Feldenkrais method (FM), one of the most established embodied awareness practices, and aimed at investigating the neurofunctional outcomes of the somatic learning process at the core of the method by testing the modulations induced by a standardized FM protocol on the complexity of practicers’ body structural map and on the activity of their sensorimotor network during different movement-related tasks (i.e., gestures observation, execution, and imagery). Twenty-five participants were randomly divided into an experimental group—which completed a 28-session FM protocol based on guided group practice—and a control group, and underwent pre-/post-training psychometric and electrophysiological assessment. Data analysis highlighted, at the end of the FM protocol, a significant increase of EEG markers of cortical activation (task-related mu desynchronization) in precentral regions during action observation and in central regions during action execution and imagery. Also, posterior regions of the sensorimotor network showed systematic activation during all the action-related tasks.
Collapse
Affiliation(s)
- Davide Crivelli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, 20123 Milan, Italy;
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
- Correspondence: ; Tel.: +39-(0)272345929
| | | | - Alessandra Balena
- Sesto Senso Feldenkrais Association, 20129 Milan, Italy; (M.D.R.); (A.B.)
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, 20123 Milan, Italy;
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| |
Collapse
|
17
|
Effects of an external compared to an internal focus of attention on the excitability of fast and slow(er) motor pathways. Sci Rep 2021; 11:17910. [PMID: 34504145 PMCID: PMC8429756 DOI: 10.1038/s41598-021-97168-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
The neurophysiological mechanisms underlying the behavioural improvements usually associated with an external (EF) compared with an internal focus of attention (IF) remain poorly investigated. Surround inhibition in the primary cortex has been shown to be more pronounced with an EF, indicating a more spatial restriction of the motor command. However, the influence of different foci on the temporal aspect of the motor command, such as the modulation of fast versus slow(er) motor pathways, remains unknown and was therefore investigated in this study. Fourteen participants were asked to press on a pedal with the right foot to match its position with a target line displayed on a screen. The deviation of the pedal from the target line was used as a behavioural parameter and compared between both foci (EF vs IF). Additionally, conditioned H-reflexes were evoked during the motor task to assess the excitability of fast (direct) and slower (more indirect) motor pathways when adopting an EF or IF. With an EF compared to an IF, the motor performance was enhanced (P = .001; + 24%) and the activation of slow(er) motor pathways was reduced (P < 0.001, − 11.73%). These findings demonstrate for the first time that using different attentional strategies (EF and IF) has an influence on the excitability of slow(er) motor pathways. Together with the increased intracortical inhibition and surround inhibition known from previous studies, the diminished activation in the slow(er) motor pathways further explains why using an EF is a more economic strategy.
Collapse
|
18
|
Abstract
The cytoarchitectonic properties of the primary motor cortex have shown two distinct sub-regions: Anterior Broadmann area 4 (BA4a) and Posterior Broadmann area 4 (BA4p). Some previous studies have suggested that these two sub-regions are functionally different and showed that in few fMRI experiments, these sub-regions may have different roles in brain functions. Resting-state fMRI (rsfMRI) is advanced technique that allows investigating in detail the functional connectivity and provides a greater understanding of the physiological behavior of different brain regions. In this study, 198 healthy subjects were examined using a region-based rsfMRI analysis to investigate whether BA4a and BA4p have similar or different connections to other brain networks. The finding shows that indeed these two sub-regions have distinct connectivity to different brain networks. BA4a has a greater connection to motor-related areas while BA4p has connections to nonmotor-related areas (such as sensory, attentional, and higher order regions), suggesting that these two sub-regions should be considered as two separate regions of interests.
Collapse
|
19
|
Alahmadi AAS, Pardini M, Samson RS, D’Angelo E, Friston KJ, Toosy AT, Gandini Wheeler-Kingshott CAM. Blood Oxygenation Level-Dependent Response to Multiple Grip Forces in Multiple Sclerosis: Going Beyond the Main Effect of Movement in Brodmann Area 4a and 4p. Front Cell Neurosci 2021; 15:616028. [PMID: 33981201 PMCID: PMC8109244 DOI: 10.3389/fncel.2021.616028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
This study highlights the importance of looking beyond the main effect of movement to study alterations in functional response in the presence of central nervous system pathologies such as multiple sclerosis (MS). Data show that MS selectively affects regional BOLD (blood oxygenation level dependent) responses to variable grip forces (GF). It is known that the anterior and posterior BA 4 areas (BA 4a and BA 4p) are anatomically and functionally distinct. It has also been shown in healthy volunteers that there are linear (first order, typical of BA 4a) and nonlinear (second to fourth order, typical of BA 4p) BOLD responses to different levels of GF applied during a dynamic motor paradigm. After modeling the BOLD response with a polynomial expansion of the applied GFs, the particular case of BA 4a and BA 4p were investigated in healthy volunteers (HV) and MS subjects. The main effect of movement (zeroth order) analysis showed that the BOLD signal is greater in MS compared with healthy volunteers within both BA 4 subregions. At higher order, BOLD-GF responses were similar in BA 4a but showed a marked alteration in BA 4p of MS subjects, with those with greatest disability showing the greatest deviations from the healthy response profile. Therefore, the different behaviors in HV and MS could only be uncovered through a polynomial analysis looking beyond the main effect of movement into the two BA 4 subregions. Future studies will investigate the source of this pathophysiology, combining the present fMRI paradigm with blood perfusion and nonlinear neuronal response analysis.
Collapse
Affiliation(s)
- Adnan A. S. Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Matteo Pardini
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rebecca S. Samson
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Egidio D’Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Karl J. Friston
- Wellcome Centre for Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ahmed T. Toosy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Khedr EM, Mohamed KO, Ali AM, Hasan AM. The effect of repetitive transcranial magnetic stimulation on cognitive impairment in Parkinson's disease with dementia: Pilot study. Restor Neurol Neurosci 2021; 38:55-66. [PMID: 31815705 DOI: 10.3233/rnn-190956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The exact mechanism of cognitive impairment in PD is not known. Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a possible treatment for cognitive impairment and to treat the motor symptoms in Parkinson's disease (PD) where its effects seem additive to those of dopaminergic medications. OBJECTIVE In this pilot study we investigated whether repeated sessions of rTMS have an effect on measures of cognitive impairment in patients with PD dementia. METHODS 33 patients with PD dementia were randomly assigned sham or real rTMS (2000 pulses; 20 Hz; 90% RMT; 10 trains of 10 s with 25 s between each train) over the hand area of each motor cortex (5 min between hemispheres) for 10 days (5 days/week) followed by 5 booster sessions every month for 3 months. Assessments included the Unified Parkinson's Disease Rating Scale part III (UPDRS), Montreal Cognitive Assessment (MoCA); Mini Mental State Examination (MMSE), Clinical Dementia Rating Scale (CDR); Memory and Executive Screening (MES) and Instrumental activity of Daily Living (IADL). Event related potentials (P300) and cortical excitability were measured before treatment and after the last session. RESULTS There were no significant differences in the effects of rTMS between groups. Although rTMS improved motor function in the active group it had only a minor effect on two of the dementia rating scores (the MMSE and MoCA) but not the others (CDR and MES). There was also a reduction in the latency of the P300 in the active group. CONCLUSIONS rTMS over M1 is useful for motor function and may have a small positive effect on cognition. However, better approaches for the latter are necessary, may be require multisite rTMS to target both motor and frontal cortical region.
Collapse
Affiliation(s)
- Eman M Khedr
- Department of Neuropsychiatry, Assiut University Hospital, Assiut, Egypt
| | - Khaled O Mohamed
- Department of Neuropsychiatry, Assiut University Hospital, Assiut, Egypt
| | - Anwar M Ali
- Department of Neuropsychiatry, Assiut University Hospital, Assiut, Egypt
| | - Asmaa M Hasan
- Department of Neuropsychiatry, Assiut University Hospital, Assiut, Egypt
| |
Collapse
|
21
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Funck T, Zilles K, Palomero-Gallagher N. Multimodal 3D atlas of the macaque monkey motor and premotor cortex. Neuroimage 2021; 226:117574. [PMID: 33221453 PMCID: PMC8168280 DOI: 10.1016/j.neuroimage.2020.117574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/16/2023] Open
Abstract
In the present study we reevaluated the parcellation scheme of the macaque frontal agranular cortex by implementing quantitative cytoarchitectonic and multireceptor analyses, with the purpose to integrate and reconcile the discrepancies between previously published maps of this region. We applied an observer-independent and statistically testable approach to determine the position of cytoarchitectonic borders. Analysis of the regional and laminar distribution patterns of 13 different transmitter receptors confirmed the position of cytoarchitectonically identified borders. Receptor densities were extracted from each area and visualized as its "receptor fingerprint". Hierarchical and principal components analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their fingerprints. Finally, functional connectivity pattern of each identified area was analyzed with areas of prefrontal, cingulate, somatosensory and lateral parietal cortex and the results were depicted as "connectivity fingerprints" and seed-to-vertex connectivity maps. We identified 16 cyto- and receptor architectonically distinct areas, including novel subdivisions of the primary motor area 4 (i.e. 4a, 4p, 4m) and of premotor areas F4 (i.e. F4s, F4d, F4v), F5 (i.e. F5s, F5d, F5v) and F7 (i.e. F7d, F7i, F7s). Multivariate analyses of receptor fingerprints revealed three clusters, which first segregated the subdivisions of area 4 with F4d and F4s from the remaining premotor areas, then separated ventrolateral from dorsolateral and medial premotor areas. The functional connectivity analysis revealed that medial and dorsolateral premotor and motor areas show stronger functional connectivity with areas involved in visual processing, whereas 4p and ventrolateral premotor areas presented a stronger functional connectivity with areas involved in somatomotor responses. For the first time, we provide a 3D atlas integrating cyto- and multi-receptor architectonic features of the macaque motor and premotor cortex. This atlas constitutes a valuable resource for the analysis of functional experiments carried out with non-human primates, for modeling approaches with realistic synaptic dynamics, as well as to provide insights into how brain functions have developed by changes in the underlying microstructure and encoding strategies during evolution.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, New York
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Hannanu FF, Goundous I, Detante O, Naegele B, Jaillard A. Spatiotemporal patterns of sensorimotor fMRI activity influence hand motor recovery in subacute stroke: A longitudinal task-related fMRI study. Cortex 2020; 129:80-98. [DOI: 10.1016/j.cortex.2020.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/27/2019] [Accepted: 03/13/2020] [Indexed: 01/01/2023]
|
23
|
Casiraghi L, Alahmadi AAS, Monteverdi A, Palesi F, Castellazzi G, Savini G, Friston K, Gandini Wheeler-Kingshott CAM, D'Angelo E. I See Your Effort: Force-Related BOLD Effects in an Extended Action Execution-Observation Network Involving the Cerebellum. Cereb Cortex 2020; 29:1351-1368. [PMID: 30615116 PMCID: PMC6373696 DOI: 10.1093/cercor/bhy322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Action observation (AO) is crucial for motor planning, imitation learning, and social interaction, but it is not clear whether and how an action execution–observation network (AEON) processes the effort of others engaged in performing actions. In this functional magnetic resonance imaging (fMRI) study, we used a “squeeze ball” task involving different grip forces to investigate whether AEON activation showed similar patterns when executing the task or observing others performing it. Both in action execution, AE (subjects performed the visuomotor task) and action observation, AO (subjects watched a video of the task being performed by someone else), the fMRI signal was detected in cerebral and cerebellar regions. These responses showed various relationships with force mapping onto specific areas of the sensorimotor and cognitive systems. Conjunction analysis of AE and AO was repeated for the “0th” order and linear and nonlinear responses, and revealed multiple AEON nodes remapping the detection of actions, and also effort, of another person onto the observer’s own cerebrocerebellar system. This result implies that the AEON exploits the cerebellum, which is known to process sensorimotor predictions and simulations, performing an internal assessment of forces and integrating information into high-level schemes, providing a crucial substrate for action imitation.
Collapse
Affiliation(s)
- Letizia Casiraghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Adnan A S Alahmadi
- Diagnostic Radiography Technology Department, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah 80200-21589, Saudi Arabia.,NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Brain MRI 3T Center, Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, PV, Italy
| | - Gloria Castellazzi
- NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Giovanni Savini
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Physics, University of Milan, Milan, Italy
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London (UCL), London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK.,Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
24
|
Peyre I, Hanna-Boutros B, Lackmy-Vallee A, Kemlin C, Bayen E, Pradat-Diehl P, Marchand-Pauvert V. Music Restores Propriospinal Excitation During Stroke Locomotion. Front Syst Neurosci 2020; 14:17. [PMID: 32327977 PMCID: PMC7161673 DOI: 10.3389/fnsys.2020.00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/10/2020] [Indexed: 11/24/2022] Open
Abstract
Music-based therapy for rehabilitation induces neuromodulation at the brain level and improves the functional recovery. In line with this, musical rhythmicity improves post-stroke gait. Moreover, an external distractor also helps stroke patients to improve locomotion. We raised the question whether music with irregular tempo (arrhythmic music), and its possible influence on attention would induce neuromodulation and improve the post-stroke gait. We tested music-induced neuromodulation at the level of a propriospinal reflex, known to be particularly involved in the control of stabilized locomotion; after stroke, the reflex is enhanced on the hemiparetic side. The study was conducted in 12 post-stroke patients and 12 controls. Quadriceps EMG was conditioned by electrical stimulation of the common peroneal nerve, which produces a biphasic facilitation on EMG, reflecting the level of activity of the propriospinal reflex between ankle dorsiflexors and quadriceps (CPQ reflex). The CPQ reflex was tested during treadmill locomotion at the preferred speed of each individual, in 3 conditions randomly alternated: without music vs. 2 arrhythmic music tracks, including a pleasant melody and unpleasant aleatory electronic sounds (AES); biomechanical and physiological parameters were also investigated. The CPQ reflex was significantly larger in patients during walking without sound, compared to controls. During walking with music, irrespective of the theme, there was no more difference between groups. In controls, music had no influence on the size of CPQ reflex. In patients, CPQ reflex was significantly larger during walking without sound than when listening to the melody or AES. No significant differences have been revealed concerning the biomechanical and the physiological parameters in both groups. Arrhythmic music listening modulates the spinal excitability during post-stroke walking, restoring the CPQ reflex activity to normality. The plasticity was not accompanied by any clear improvement of gait parameters, but the patients reported to prefer walking with music than without. The role of music as external focus of attention is discussed. This study has shown that music can modulate propriospinal neural network particularly involved in the gait control during the first training session. It is speculated that repetition may help to consolidate plasticity and would contribute to gait recovery after stroke.
Collapse
Affiliation(s)
- Iseline Peyre
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France.,Sorbonne Université, CNRS, Institut de Recherche et de Coordination en Acoustique Musique (IRCAM), UMR Sciences et Technologies de la Musique et du Son (STMS), Paris, France
| | | | | | - Claire Kemlin
- Sorbonne Université, AP-HP, GRC n°24, Handicap Moteur et Cognitif & Réadaptation (HaMCRe), Paris, France
| | - Eléonore Bayen
- Sorbonne Université, AP-HP, GRC n°24, Handicap Moteur et Cognitif & Réadaptation (HaMCRe), Paris, France
| | - Pascale Pradat-Diehl
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France.,Sorbonne Université, AP-HP, GRC n°24, Handicap Moteur et Cognitif & Réadaptation (HaMCRe), Paris, France
| | | |
Collapse
|
25
|
Bhattacharjee S, Kashyap R, Abualait T, Annabel Chen SH, Yoo WK, Bashir S. The Role of Primary Motor Cortex: More Than Movement Execution. J Mot Behav 2020; 53:258-274. [PMID: 32194004 DOI: 10.1080/00222895.2020.1738992] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The predominant role of the primary motor cortex (M1) in motor execution is well acknowledged. However, additional roles of M1 are getting evident in humans owing to advances in noninvasive brain stimulation (NIBS) techniques. This review collates such studies in humans and proposes that M1 also plays a key role in higher cognitive processes. The review commences with the studies that have investigated the nature of connectivity of M1 with other cortical regions in light of studies based on NIBS. The review then moves on to discuss the studies that have demonstrated the role of M1 in higher cognitive processes such as attention, motor learning, motor consolidation, movement inhibition, somatomotor response, and movement imagery. Overall, the purpose of the review is to highlight the additional role of M1 in motor cognition besides motor control, which remains unexplored.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Center for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore
| | - Turki Abualait
- Physical Therapy Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shen-Hsing Annabel Chen
- Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore.,Office of Educational Research, National Institute of Education, Nanyang Technological University, Singapore
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Morales-Quezada L, Martinez D, El-Hagrassy MM, Kaptchuk TJ, Sterman MB, Yeh GY. Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. Epilepsy Behav 2019; 101:106570. [PMID: 31707107 PMCID: PMC7203763 DOI: 10.1016/j.yebeh.2019.106570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Children with epilepsy experience cognitive deficits and well-being issues that have detrimental effects on their development. Pharmacotherapy is the standard of care in epilepsy; however, few interventions exist to promote cognitive development and to mitigate disease burden. We aimed to examine the impact of two different modalities of neurofeedback (NFB) on cognitive functioning and quality-of-life (QOL) measurements in children and adolescents with controlled focal epilepsy. The study also explored the effects of NFB on clinical outcomes and electroencephalography (EEG) quantitative analysis. METHODS Participants (n = 44) with controlled focal epilepsy were randomized to one of three arms: sensorimotor rhythm (SMR) NFB (n = 15), slow cortical potentials (SCP) NFB (n = 16), or sham NFB (n = 13). All participants received 25 sessions of intervention. The attention switching task (AST), Liverpool Seizure Severity Scale (LSSS), seizure frequency (SF), EEG power spectrum, and coherence were measured at baseline, postintervention, and at 3-month follow-up. RESULTS In children and adolescents with controlled focal epilepsy, SMR training significantly reduced reaction time in the AST (p = 0.006), and this was correlated with the difference of change for theta power on EEG (p = 0.03); only the SMR group showed a significant decrease in beta coherence (p = 0.03). All groups exhibited improvement in QOL (p = <0.05). CONCLUSIONS This study provides the first data on two NFB modalities (SMR and SCP) including cognitive, neurophysiological, and clinical outcomes in pediatric epilepsy. Sensorimotor rhythm NFB improved cognitive functioning, while all the interventions showed improvements in QOL, demonstrating a powerful placebo effect in the sham group.
Collapse
Affiliation(s)
- Leon Morales-Quezada
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Diana Martinez
- Boston Neurodynamics, Brookline, MA, USA; Neocemod, Centro de Neuromodulacion, Aguascalientes, Mexico
| | - Mirret M El-Hagrassy
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ted J Kaptchuk
- Program in Placebo Studies and Therapeutic Encounter, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - M Barry Sterman
- Department of Neurobiology, UCLA School of Medicine, USA; Department of Biobehavioral Psychiatry, UCLA School of Medicine, USA
| | - Gloria Y Yeh
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Osher Center for Integrative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Hill VB, Cankurtaran CZ, Liu BP, Hijaz TA, Naidich M, Nemeth AJ, Gastala J, Krumpelman C, McComb EN, Korutz AW. A Practical Review of Functional MRI Anatomy of the Language and Motor Systems. AJNR Am J Neuroradiol 2019; 40:1084-1090. [PMID: 31196862 DOI: 10.3174/ajnr.a6089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/07/2022]
Abstract
Functional MR imaging is being performed with increasing frequency in the typical neuroradiology practice; however, many readers of these studies have only a limited knowledge of the functional anatomy of the brain. This text will delineate the locations, anatomic boundaries, and functions of the cortical regions of the brain most commonly encountered in clinical practice-specifically, the regions involved in movement and language.
Collapse
Affiliation(s)
- V B Hill
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - C Z Cankurtaran
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - B P Liu
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.).,Radiation Oncology (B.P.L.), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - T A Hijaz
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - M Naidich
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - A J Nemeth
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.).,Neurology (A.J.N.)
| | - J Gastala
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - C Krumpelman
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - E N McComb
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - A W Korutz
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| |
Collapse
|
28
|
The effects of conditioning startling acoustic stimulation (SAS) on the corticospinal motor system: a SAS-TMS study. Exp Brain Res 2019; 237:1973-1980. [PMID: 31143970 DOI: 10.1007/s00221-019-05569-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/27/2019] [Indexed: 12/25/2022]
Abstract
A startling acoustic stimulus (SAS) could cause transient effects on the primary motor cortex and its descending tracts after habituation of reflex responses. In the literature, there is evidence that the effects of SAS depend on the status of M1 excitability and delivery time of SAS. In this study, we aimed to comprehensively investigate the effects of SAS on the excitability of primary motor cortex. Eleven healthy subjects participated in this study. Transcranial magnetic stimulation (TMS) was delivered to the hot spot for left biceps at rest and during isometric right elbow flexion (10, 30, and 60% of their maximum voluntary contraction, MVC). There were three SAS conditions: (1) No SAS; (2) SAS was delivered 50 ms prior to TMS (SAS50); (3) SAS 90 ms prior to TMS (SAS90). For each subject, the induced MEP amplitude was normalized to the largest response at rest with No SAS. Two-way ANOVAs (4 force levels × 3 SAS conditions) with repeated measures were used to determine the differences under different conditions. For the MEP amplitude, there were significant force level effect and FORCE LEVEL × SAS interactions. Specifically, the MEP amplitude increased with force level. Furthermore, post hoc analysis showed that the MEP amplitude reduced during SAS50 and SAS90 compared to No SAS only at rest. Our results provide evidence that a conditioning SAS causes a transient suppression of the corticospinal excitability at rest when it is delivered 50 ms and 90 ms prior to TMS. However, a conditioning SAS has no effect when the corticospinal excitability is already elevated with an external visual target.
Collapse
|
29
|
Viganò L, Fornia L, Rossi M, Howells H, Leonetti A, Puglisi G, Conti Nibali M, Bellacicca A, Grimaldi M, Bello L, Cerri G. Anatomo-functional characterisation of the human “hand-knob”: A direct electrophysiological study. Cortex 2019; 113:239-254. [DOI: 10.1016/j.cortex.2018.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 12/01/2022]
|
30
|
Effects of ketamine on brain function during response inhibition. Psychopharmacology (Berl) 2018; 235:3559-3571. [PMID: 30357437 DOI: 10.1007/s00213-018-5081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The uncompetitive N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist ketamine has been proposed to model symptoms of psychosis. Inhibitory deficits in the schizophrenia spectrum have been reliably reported using the antisaccade task. Interestingly, although similar antisaccade deficits have been reported following ketamine in non-human primates, ketamine-induced deficits have not been observed in healthy human volunteers. METHODS To investigate the effects of ketamine on brain function during an antisaccade task, we conducted a double-blind, placebo-controlled, within-subjects study on n = 15 healthy males. We measured the blood oxygen level dependent (BOLD) response and eye movements during a mixed antisaccade/prosaccade task while participants received a subanesthetic dose of intravenous ketamine (target plasma level 100 ng/ml) on one occasion and placebo on the other occasion. RESULTS While ketamine significantly increased self-ratings of psychosis-like experiences, it did not induce antisaccade or prosaccade performance deficits. At the level of BOLD, we observed an interaction between treatment and task condition in somatosensory cortex, suggesting recruitment of additional neural resources in the antisaccade condition under NMDAR blockage. DISCUSSION Given the robust evidence of antisaccade deficits in schizophrenia spectrum populations, the current findings suggest that ketamine may not mimic all features of psychosis at the dose used in this study. Our findings underline the importance of a more detailed research to further understand and define effects of NMDAR hypofunction on human brain function and behavior, with a view to applying ketamine administration as a model system of psychosis. Future studies with varying doses will be of importance in this context.
Collapse
|
31
|
Effects of longer vs. shorter timed movement sequences on alpha motor inhibition when combining contractions and relaxations. Exp Brain Res 2018; 237:101-109. [PMID: 30341465 DOI: 10.1007/s00221-018-5401-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
Alpha inhibitory processes reflect motor stimuli by either increasing or decreasing amplitude (i.e., power). However, the functional role and interplay of event-related alpha oscillations remains a regulatory domain that has not been sufficiently addressed, particularly with respect to different muscle activation types and durations in consecutive movement (i.e., motor) tasks. The aim of this study was to investigate alpha-band activity (7-13 Hz) in longer vs. shorter timed isometric muscle activations at distinct torques (20% and 40% of maximum voluntary contraction, MVC) when combined in one motor task sequence. In a randomized and controlled design, 18 healthy males volunteered to perform 40 longer (i.e., 6 s) and 40 shorter (i.e., 3 s) motor task sequences, each comprising isometric contractions (i.e., palmar flexion) from baseline to 20% and 40% MVC subsequent to relaxations from 40% and 20% MVC to baseline. Continuous, synchronized EEG, EMG and torque recordings served to determine alpha-band activity over task-relevant motor areas at distinct torques. Main findings revealed increases in alpha activity during subsequent progressive muscle relaxation (from 20% MVC in long and short: p < .001; from 40% MVC in short: p < .05), whereas modulations in relevant motor areas were not significant (p = .84). It may be suggested that an active task-relevant inhibitory process indicates motor task sequence-related relaxation mirrored by an increasing alpha activity.
Collapse
|
32
|
Visual Attention Affects the Amplitude of the Transcranial Magnetic Stimulation-associated Motor-evoked Potential: A Preliminary Study With Clinical Utility. J Psychiatr Pract 2018; 24:220-229. [PMID: 30427805 PMCID: PMC6530802 DOI: 10.1097/pra.0000000000000321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The transcranial magnetic stimulation (TMS)-elicited motor-evoked potential (MEP) is a valuable measure for clinical evaluations of various neurological disorders and is used to determine resting motor threshold for repetitive TMS dosing. Although MEP amplitude is primarily associated with motor system function, there is evidence that nonmotor factors may also influence amplitude. This experiment tested the hypotheses that manipulation of 2 factors (visual attention, cognitive regulation) in human participants would significantly affect MEP amplitude. METHODS Blocks of MEPs were recorded from the dominant right hand as participants (N=20) were instructed to shift their visual attention (toward and away from the hand) and cognitively regulate the MEPs (rest, attenuate MEP amplitude, potentiate MEP amplitude) using their thoughts (6 blocks, 20 pulses/block, randomized, 110% resting motor threshold). RESULTS MEP amplitude was significantly affected by the direction of visual attention; looking away from the hand led to higher amplitudes (P=0.003). The relationship with cognitive regulation was nonsignificant. CONCLUSIONS The significant effect of visual attention on MEP suggests that this should be a standardized parameter in clinical and research studies. These data underscore the importance of rigorous reporting of methods and use of standardized practices for MEP acquisition and TMS dosing to ensure consistent clinical measurement and treatment.
Collapse
|
33
|
Min YL, Su T, Shu YQ, Liu WF, Chen LL, Shi WQ, Jiang N, Zhu PW, Yuan Q, Xu XW, Ye L, Shao Y. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat 2018; 14:2351-2359. [PMID: 30275692 PMCID: PMC6157537 DOI: 10.2147/ndt.s171462] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Previous studies have demonstrated that strabismus or amblyopia can result in markedly brain function and anatomical alterations. However, the differences in spontaneous brain activities of strabismus with amblyopia (SA) patients still remain unclear. This current study intended to use the amplitude of low-frequency fluctuation (ALFF) technique to investigate the intrinsic brain activity changes in SA subjects. PATIENTS AND METHODS A total of 16 patients with SA (6 males and 10 females) and 16 healthy controls (HCs; 6 males and 10 females) similarly matched in age, gender, and education status were recruited and examined with the resting-state functional MRI. The spontaneous brain activity changes were investigated using the ALFF technique. The receiver operating characteristic curve was performed to classify the mean ALFF signal values of the SA patients from HCs. The correlations between the ALFF values of distinct brain regions and the clinical manifestations in SA patients were evaluated in terms of the Pearson's correlation analysis. RESULTS Compared with HCs, SA patients had significantly decreased ALFF in the left cerebellum posterior lobe, left middle frontal gyrus, and bilateral thalamus. In contrast, SA patients showed increased ALFF values in the right superior frontal gyrus, right precuneus, left cuneus, and bilateral precentral gyrus. Nonetheless, there was no linear correlation between the mean ALFF values in brain regions and clinical features. CONCLUSION Diverse brain regions including vision-related and motion-related areas exhibited aberrant intrinsic brain activity patterns, which imply the neuropathologic mechanisms of oculomotor disorder and vision deficit in the SA patients.
Collapse
Affiliation(s)
- You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Ting Su
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian, China
| | - Yong-Qiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006 Jiangxi, China
| | - Wen-Feng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Ling-Long Chen
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006 Jiangxi, China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Nan Jiang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Xiao-Wei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| |
Collapse
|
34
|
van de Ruit M, Grey MJ. The TMS Motor Map Does Not Change Following a Single Session of Mirror Training Either with Or without Motor Imagery. Front Hum Neurosci 2017; 11:601. [PMID: 29311869 PMCID: PMC5732933 DOI: 10.3389/fnhum.2017.00601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022] Open
Abstract
Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities.
Collapse
Affiliation(s)
- Mark van de Ruit
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Michael J Grey
- Acquired Brain Injury Rehabilitation Alliance, School of Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
35
|
Fu CH, Li KS, Ning YZ, Tan ZJ, Zhang Y, Liu HW, Han X, Zou YH. Altered effective connectivity of resting state networks by acupuncture stimulation in stroke patients with left hemiplegia: A multivariate granger analysis. Medicine (Baltimore) 2017; 96:e8897. [PMID: 29382021 PMCID: PMC5709020 DOI: 10.1097/md.0000000000008897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to explore the response feature of resting-state networks (RSNs) of stroke patients with left hemiplegia by acupuncture stimulation.Nineteen stroke patients with left hemiplegia and 17 controls were recruited in this study. Resting-state functional magnetic resonance imaging data before and after acupuncture were acquired using magnetic scanning. The independent component analysis (ICA) was employed to extract RSNs related to motion, sensation, cognition, and execution, including sensorimotor network (SMN), left and right frontoparietal network (LFPN and RFPN), anterior and posterior default mode network (aDMN, pDMN), visual network (VN), and salience network (SN). Granger causality method was used to explore how acupuncture stimulation affects the causality between intrinsic RSNs in stroke patients. Compared with healthy subjects, stroke patients presented the more complex effective connectivity. Before acupuncture stimulation, LFPN inputted most information from other networks while DMN outputted most information to other networks; however, the above results were reversal by acupuncture. In addition, we found aDMN reside in between SMN and LFPN after acupuncture.The finding suggested that acupuncture probably integrated the effective connectivity internetwork by modulating multiple networks and transferring information between LFPN and SMN by DMN as the relay station.
Collapse
Affiliation(s)
- Cai-Hong Fu
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- Shunyi Hospital Affiliated to Beijing Hospital of Traditional Chinese Medicine
| | - Kuang-Shi Li
- Department of Emergency, Beijing GuLou Hospital of Traditional Chinese Medicine
| | - Yan-Zhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
| | - Zhong-Jian Tan
- Department of Radiology, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yong Zhang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Wei Liu
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- Shunyi Hospital Affiliated to Beijing Hospital of Traditional Chinese Medicine
| | - Xiao Han
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Huai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Kuhn YA, Keller M, Ruffieux J, Taube W. Intracortical Inhibition Within the Primary Motor Cortex Can Be Modulated by Changing the Focus of Attention. J Vis Exp 2017:55771. [PMID: 28930973 PMCID: PMC5752204 DOI: 10.3791/55771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well recognized that an external focus (EF) compared with an internal focus (IF) of attention improves motor learning and performance. Studies have indicated benefits in accuracy, balance, force production, jumping performance, movement speed, oxygen consumption, and fatiguing task. Although behavioral outcomes of using an EF strategy are well explored, the underlying neural mechanisms remain unknown. A recent TMS study compared the activity of the primary motor cortex (M1) between an EF and an IF. More precisely, this study showed that, when adopting an EF, the activity of intracortical inhibitory circuits is enhanced. On the behavioral level, the present protocol tests the influence of attentional foci on the time to task failure (TTF) when performing submaximal contractions of the first dorsal interosseous (FDI). Additionally, the current paper describes two TMS protocols to assess the influence of attentional conditions on the activity of cortical inhibitory circuits within the M1. Thus, the present article describes how to use single-pulse TMS at intensities below the motor threshold (subTMS) and paired-pulse TMS, inducing short-interval intracortical inhibition (SICI) when applied to the M1. As these methods are assumed to reflect the responsiveness of GABAergic inhibitory neurons, without being affected by spinal reflex circuitries, they are well suited to measuring the activity of intracortical inhibitory circuits within the M1. The results show that directing attention externally improves motor performance, as participants were able to prolong the time to task failure. Moreover, the results were accompanied by a larger subTMS-induced electromyography suppression and SICI when adopting an EF compared to an IF. As the level of cortical inhibition within the M1 was previously demonstrated to influence motor performance, the enhanced inhibition with an EF might contribute to the better movement efficiency observed in the behavioral task, indicated by a prolonged TTF with an EF.
Collapse
Affiliation(s)
- Yves-Alain Kuhn
- Department of Medicine, Movement and Sport Sciences, University of Fribourg;
| | - Martin Keller
- Department of Medicine, Movement and Sport Sciences, University of Fribourg
| | - Jan Ruffieux
- Department of Medicine, Movement and Sport Sciences, University of Fribourg
| | - Wolfgang Taube
- Department of Medicine, Movement and Sport Sciences, University of Fribourg
| |
Collapse
|
37
|
Functional topography of the primary motor cortex during motor execution and motor imagery as revealed by functional MRI. Neuroreport 2017; 28:731-738. [DOI: 10.1097/wnr.0000000000000825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Kuhn Y, Keller M, Ruffieux J, Taube W. Adopting an external focus of attention alters intracortical inhibition within the primary motor cortex. Acta Physiol (Oxf) 2017; 220:289-299. [PMID: 27653020 PMCID: PMC5484339 DOI: 10.1111/apha.12807] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/20/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023]
Abstract
AIM Although it is well established that an external (EF) compared to an internal (IF) or neutral focus of attention enhances motor performance, little is known about the underlying neural mechanisms. This study aimed to clarify whether the focus of attention influences not only motor performance but also activity of the primary motor cortex (M1) when executing identical fatiguing tasks of the right index finger (first dorsal interosseous). Transcranial magnetic stimulation (TMS) at intensities below motor threshold was applied over M1 to assess and compare the excitability of intracortical inhibitory circuits. METHODS In session 1, 14 subjects performed an isometric finger abduction at 30% of their maximal force to measure the time to task failure (TTF) with either an IF or EF. In session 2, the same task was performed with the other focus. In sessions 3 and 4, subthreshold TMS (subTMS) and paired-pulse TMS were applied to the contralateral M1 to compare the activity of cortical inhibitory circuits within M1 during EF and IF. RESULTS With an EF, TTF was significantly prolonged (P = 0.01), subTMS-induced electromyographical suppression enhanced (P = 0.001) and short-interval intracortical inhibition (SICI) increased (P = 0.004). CONCLUSION The level of intracortical inhibition was previously shown to influence motor performance. Our data shed new light on the ability to instantly modulate the activity of inhibitory circuits within M1 by changing the type of attentional focus. The increased inhibition with EF might contribute to the better movement efficiency, which is generally associated with focusing externally.
Collapse
Affiliation(s)
- Y.‐A. Kuhn
- Movement and Sport SciencesDepartment of MedicineUniversity of FribourgFribourgSwitzerland
| | - M. Keller
- Movement and Sport SciencesDepartment of MedicineUniversity of FribourgFribourgSwitzerland
| | - J. Ruffieux
- Movement and Sport SciencesDepartment of MedicineUniversity of FribourgFribourgSwitzerland
| | - W. Taube
- Movement and Sport SciencesDepartment of MedicineUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
39
|
Dynamic cortical participation during bilateral, cyclical ankle movements: effects of aging. Sci Rep 2017; 7:44658. [PMID: 28300175 PMCID: PMC5353607 DOI: 10.1038/srep44658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 12/05/2022] Open
Abstract
The precise role of the human primary motor cortex in walking is unknown. Our previous study showed that the primary motor cortex may contribute to specific requirements of walking (i.e., maintaining a constant movement frequency and bilaterally coordinating the feet). Because aging can impair (i) the ability to fulfill the aforementioned requirements and (ii) corticomuscular communication, we hypothesized that aging would impair the motoneuronal recruitment by the primary motor cortex during bilateral cyclical movements. Here, we used corticomuscular coherence (i.e., coherence between the primary motor cortex and the active muscles) to examine whether corticomuscular communication is affected in older individuals during cyclical movements that shared some functional requirements with walking. Fifteen young men and 9 older men performed cyclical, anti-phasic dorsiflexion and plantarflexion of the feet while seated. Coherence between the midline primary motor cortex and contracting leg muscles cyclically increased in both age groups. However, the coherence of older participants was characterized by (i) lower magnitude and (ii) mediolaterally broader and more rostrally centered cortical distributions. These characteristics suggest that aging changes how the primary motor cortex participates in the cyclical movements, and such change may extend to walking.
Collapse
|
40
|
Silva LDCD, Pereira-Monfredini CF, Teixeira LA. Improved children's motor learning of the basketball free shooting pattern by associating subjective error estimation and extrinsic feedback. J Sports Sci 2016; 35:1-6. [PMID: 27710197 DOI: 10.1080/02640414.2016.1239025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed at assessing the interaction between subjective error estimation and frequency of extrinsic feedback in the learning of the basketball free shooting pattern by children. 10- to 12-year olds were assigned to 1 of 4 groups combining subjective error estimation and relative frequency of extrinsic feedback (33% × 100%). Analysis of performance was based on quality of movement pattern. Analysis showed superior learning of the group combining error estimation and 100% feedback frequency, both groups receiving feedback on 33% of trials achieved intermediate results, and the group combining no requirement of error estimation and 100% feedback frequency had the poorest learning. Our results show the benefit of subjective error estimation in association with high frequency of extrinsic feedback in children's motor learning of a sport motor pattern.
Collapse
|
41
|
Fong SS, Chung JW, Cheng YT, Yam TT, Chiu HC, Fong DY, Cheung C, Yuen L, Yu EY, Hung YS, Macfarlane DJ, Ng SS. Attention during functional tasks is associated with motor performance in children with developmental coordination disorder: A cross-sectional study. Medicine (Baltimore) 2016; 95:e4935. [PMID: 27631272 PMCID: PMC5402615 DOI: 10.1097/md.0000000000004935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This cross-sectional and exploratory study aimed to compare motor performance and electroencephalographic (EEG) attention levels in children with developmental coordination disorder (DCD) and those with typical development, and determine the relationship between motor performance and the real-time EEG attention level in children with DCD.Eighty-six children with DCD [DCD: n = 57; DCD and attention deficit hyperactivity disorder (ADHD): n = 29] and 99 children with typical development were recruited. Their motor performance was assessed with the Movement Assessment Battery for Children (MABC) and attention during the tasks of the MABC was evaluated by EEG.All children with DCD had higher MABC impairment scores and lower EEG attention scores than their peers (P < 0.05). After accounting for age, sex, body mass index, and physical activity level, the attention index remained significantly associated with the MABC total impairment score and explained 14.1% of the variance in children who had DCD but not ADHD (P = 0.009) and 17.5% of the variance in children with both DCD and ADHD (P = 0.007). Children with DCD had poorer motor performance and were less attentive to movements than their peers. Their poor motor performance may be explained by inattention.
Collapse
Affiliation(s)
- Shirley S.M. Fong
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
- Correspondence: Shirley S.M. Fong, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong (e-mail: )
| | - Joanne W.Y. Chung
- Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Yoyo T.Y. Cheng
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Timothy T.T. Yam
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hsiu-Ching Chiu
- Department of Physical Therapy, I-Shou University, Kaohsiung City, Taiwan
| | - Daniel Y.T. Fong
- School of Nursing, The University of Hong Kong, Pokfulam, Hong Kong
| | - C.Y. Cheung
- Department of Social Work and Social Administration, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lily Yuen
- Heep Hong Society, Ngau Tau Kok, Hong Kong
| | - Esther Y.T. Yu
- Department of Family Medicine and Primary Care, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yeung Sam Hung
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Duncan J. Macfarlane
- Centre for Sports and Exercise, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shamay S.M. Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
42
|
Carey LM, Seitz RJ. Functional Neuroimaging in Stroke Recovery and Neurorehabilitation: Conceptual Issues and Perspectives. Int J Stroke 2016; 2:245-64. [DOI: 10.1111/j.1747-4949.2007.00164.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background In stroke, functional neuroimaging has become a potent diagnostic tool; opened new insights into the pathophysiology of ischaemic damage in the human brain; and made possible the assessment of functional–structural relationships in postlesion recovery. Summary of review Here, we give a critical account on the potential and limitation of functional neuroimaging and discuss concepts related to the use of neuroimaging for exploring the neurobiological and neuroanatomical mechanisms of poststroke recovery and neurorehabilitation. We identify and provide evidence for five hypotheses that functional neuroimaging can provide new insights into: adaptation occurs at the level of functional brain systems; the brain–behaviour relationship varies with recovery and over time; functional neuroimaging can improve our ability to predict recovery and select individuals for rehabilitation; mechanisms of recovery reflect different pathophysiological phases; and brain adaptation may be modulated by experience and specific rehabilitation. The significance and application of this new evidence is discussed, and recommendations made for investigations in the field. Conclusion Functional neuroimaging is an important tool to explore the mechanisms underlying brain plasticity and, thereby, to guide clinical research in neurorehabilitation.
Collapse
Affiliation(s)
- Leeanne M. Carey
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- School of Occupational Therapy, LaTrobe University, Bundoora, Vic., Australia
| | - Rüdiger J. Seitz
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- Institute of Advanced Study, La Trobe University, Bundoora, Vic., Australia
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
43
|
Abstract
The primary motor cortex (M1) is traditionally implicated in voluntary movement control. In order to test the hypothesis that there is a functional topography of M1 activation in studies where it has been implicated in higher cognitive tasks we performed activation-likelihood-estimation (ALE) meta-analyses of functional neuroimaging experiments reporting M1 activation in relation to six cognitive functional categories for which there was a sufficient number of studies to include, namely motor imagery, working memory, mental rotation, social/emotion/empathy, language, and auditory processing. The six categories activated different sub-sectors of M1, either bilaterally or lateralized to one hemisphere. Notably, the activations found in the M1 of the left or right hemisphere detected in our study were unlikely due to button presses. In fact, all contrasts were selected in order to eliminate M1 activation due to activity related to the finger button press. In addition, we identified the M1 sub-region of Area 4a commonly activated by 4/6 categories, namely motor imagery and working memory, emotion/empathy, and language. Overall, our findings lend support to the idea that there is a functional topography of M1 activation in studies where it has been found activated in higher cognitive tasks and that the left Area 4a can be involved in a number of cognitive processes, likely as a product of implicit mental simulation processing.
Collapse
|
44
|
Common neural correlates of real and imagined movements contributing to the performance of brain-machine interfaces. Sci Rep 2016; 6:24663. [PMID: 27090735 PMCID: PMC4835797 DOI: 10.1038/srep24663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/04/2016] [Indexed: 02/06/2023] Open
Abstract
The relationship between M1 activity representing motor information in real and imagined movements have not been investigated with high spatiotemporal resolution using non-invasive measurements. We examined the similarities and differences in M1 activity during real and imagined movements. Ten subjects performed or imagined three types of right upper limb movements. To infer the movement type, we used 40 virtual channels in the M1 contralateral to the movement side (cM1) using a beamforming approach. For both real and imagined movements, cM1 activities increased around response onset, after which their intensities were significantly different. Similarly, although decoding accuracies surpassed the chance level in both real and imagined movements, these were significantly different after the onset. Single virtual channel-based analysis showed that decoding accuracy significantly increased around the hand and arm areas during real and imagined movements and that these are spatially correlated. The temporal correlation of decoding accuracy significantly increased around the hand and arm areas, except for the period immediately after response onset. Our results suggest that cM1 is involved in similar neural activities related to the representation of motor information during real and imagined movements, except for presence or absence of sensory-motor integration induced by sensory feedback.
Collapse
|
45
|
Klingner CM, Brodoehl S, Volk GF, Guntinas-Lichius O, Witte OW. Adaptive and Maladaptive Neural Plasticity Due to Facial Nerve Palsy. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2016. [DOI: 10.1027/2151-2604/a000244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract. This paper reviews adaptive and maladaptive mechanisms of cortical plasticity in patients suffering from peripheral facial palsy. As the peripheral facial nerve is a pure motor nerve, a facial nerve lesion is causing an exclusive deefferentation without deafferentation. We focus on the question of how the investigation of pure deefferentation adds to our current understanding of brain plasticity which derives from studies on learning and studies on brain lesions. The importance of efference and afference as drivers for cortical plasticity is discussed in addition to the crossmodal influence of different competitive sensory inputs. We make the attempt to integrate the experimental findings of the effects of pure deefferentation within the theoretical framework of cortical responses and predictive coding. We show that the available experimental data can be explained within this theoretical framework which also clarifies the necessity for maladaptive plasticity. Finally, we propose rehabilitation approaches for directing cortical reorganization in the appropriate direction and highlight some challenging questions that are yet unexplored in the field.
Collapse
Affiliation(s)
- Carsten M. Klingner
- Hans Berger Department of Neurology, Jena University Hospital – Friedrich Schiller University Jena, Germany
- Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital – Friedrich Schiller University Jena, Germany
- Facial Nerve Center Jena, Jena University Hospital – Friedrich Schiller University Jena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital – Friedrich Schiller University Jena, Germany
- Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital – Friedrich Schiller University Jena, Germany
| | - Gerd F. Volk
- Department of Otorhinolaryngology, Jena University Hospital – Friedrich Schiller University Jena, Germany
- Facial Nerve Center Jena, Jena University Hospital – Friedrich Schiller University Jena, Germany
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Jena University Hospital – Friedrich Schiller University Jena, Germany
- Facial Nerve Center Jena, Jena University Hospital – Friedrich Schiller University Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital – Friedrich Schiller University Jena, Germany
- Facial Nerve Center Jena, Jena University Hospital – Friedrich Schiller University Jena, Germany
| |
Collapse
|
46
|
Alahmadi AAS, Pardini M, Samson RS, D'Angelo E, Friston KJ, Toosy AT, Gandini Wheeler-Kingshott CAM. Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: An FMRI study. Hum Brain Mapp 2015; 36:5079-100. [PMID: 26415818 PMCID: PMC4737094 DOI: 10.1002/hbm.22997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/09/2015] [Accepted: 09/06/2015] [Indexed: 12/26/2022] Open
Abstract
Motor fMRI studies, comparing dominant (DH) and nondominant (NDH) hand activations have reported mixed findings, especially for the extent of ipsilateral (IL) activations and their relationship with task complexity. To date, no study has directly compared DH and NDH activations using an event-related visually guided dynamic power-grip paradigm with parametric (three) forces (GF) in healthy right-handed subjects. We implemented a hierarchical statistical approach aimed to: (i) identify the main effect networks engaged when using either hand; (ii) characterise DH/NDH responses at different GFs; (iii) assess contralateral (CL)/IL-specific and hemisphere-specific activations. Beyond confirming previously reported results, this study demonstrated that increasing GF has an effect on motor response that is contextualised also by the use of DH or NDH. Linear analysis revealed increased activations in sensorimotor areas, with additional increased recruitments of subcortical and cerebellar areas when using the NDH. When looking at CL/IL-specific activations, CL sensorimotor areas and IL cerebellum were activated with both hands. When performing the task with the NDH, several areas were also recruited including the CL cerebellum. Finally, there were hand-side-independent activations of nonmotor-specific areas in the right and left hemispheres, with the right hemisphere being involved more extensively in sensori-motor integration through associative areas while the left hemisphere showing greater activation at higher GF. This study shows that the functional networks subtending DH/NDH power-grip visuomotor functions are qualitatively and quantitatively distinct and this should be taken into consideration when performing fMRI studies, particularly when planning interventions in patients with specific impairments.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, University College London (UCL), Institute of Neurology, London, United Kingdom
| | - Matteo Pardini
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Rebecca S Samson
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Karl J Friston
- Wellcome Centre for Imaging Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Ahmed T Toosy
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- NMR Research Unit, Department of Brain Repair and Rehabilitation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
47
|
Decreased Regional Homogeneity in Patients With Acute Mild Traumatic Brain Injury: A Resting-State fMRI Study. J Nerv Ment Dis 2015; 203:786-91. [PMID: 26348589 DOI: 10.1097/nmd.0000000000000368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is characterized by structural disconnection and large-scale neural network dysfunction in the resting state. However, little is known concerning the intrinsic changes in local spontaneous brain activity in patients with mTBI. The aim of the current study was to assess regional synchronization in acute mTBI patients. Fifteen acute mTBI patients and 15 sex-, age-, and education-matched healthy controls (HCs) were studied. We used the regional homogeneity (ReHo) method to map local connectivity across the whole brain and performed a two-sample t-test between the two groups. Compared with HCs, patients with acute mTBI showed significantly decreased ReHo in the left insula, left precentral/postcentral gyrus, and left supramarginal gyrus (p < 0.05, AlphaSim corrected). The ReHo index of the left insula showed a positive correlation with the Mini-Mental State Examination (MMSE) scores across all acute mTBI patients (p < 0.05, uncorrected). The ReHo method may provide an objective biomarker for evaluating the functional abnormity of mTBI in the acute setting.
Collapse
|
48
|
Li X, Liu Y, Luo S, Wu B, Wu X, Han S. Mortality salience enhances racial in-group bias in empathic neural responses to others' suffering. Neuroimage 2015; 118:376-85. [PMID: 26074201 DOI: 10.1016/j.neuroimage.2015.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
Behavioral research suggests that mortality salience (MS) leads to increased in-group identification and in-group favoritism in prosocial behavior. What remains unknown is whether and how MS influences brain activity that mediates emotional resonance with in-group and out-group members and is associated with in-group favoritism in helping behavior. The current work investigated MS effects on empathic neural responses to racial in-group and out-group members' suffering. Experiments 1 and 2 respectively recorded event related potentials (ERPs) and blood oxygen level dependent signals to pain/neutral expressions of Asian and Caucasian faces from Chinese adults who had been primed with MS or negative affect (NA). Experiment 1 found that an early frontal/central activity (P2) was more strongly modulated by pain vs. neutral expressions of Asian than Caucasian faces, but this effect was not affected by MS vs. NA priming. However, MS relative to NA priming enhanced racial in-group bias in long-latency neural response to pain expressions over the central/parietal regions (P3). Experiment 2 found that MS vs. NA priming increased racial in-group bias in empathic neural responses to pain expression in the anterior and mid-cingulate cortex. Our findings indicate that reminding mortality enhances brain activity that differentiates between racial in-group and out-group members' emotional states and suggest a neural basis of in-group favoritism under mortality threat.
Collapse
Affiliation(s)
- Xiaoyang Li
- Beijing Key Laboratory of Behavior and Mental Health, Peking University; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University
| | - Yi Liu
- Department of Psychology, Peking University, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University
| | - Siyang Luo
- Department of Psychology, Peking University, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University
| | - Bing Wu
- Department of Radiology, Beijing Military General Hospital, Beijing, China
| | - Xinhuai Wu
- Department of Radiology, Beijing Military General Hospital, Beijing, China.
| | - Shihui Han
- Department of Psychology, Peking University, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University.
| |
Collapse
|
49
|
Alahmadi AAS, Samson RS, Gasston D, Pardini M, Friston KJ, D'Angelo E, Toosy AT, Wheeler-Kingshott CAM. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum. Brain Struct Funct 2015; 221:2443-58. [PMID: 25921976 PMCID: PMC4884204 DOI: 10.1007/s00429-015-1048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/18/2015] [Indexed: 01/13/2023]
Abstract
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF–neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. Major findings: (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK. .,Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David Gasston
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Matteo Pardini
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Karl J Friston
- Wellcome Centre for Imaging Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Egidio D'Angelo
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Ahmed T Toosy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London, UK
| | - Claudia A M Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
50
|
Li Q, Song M, Fan L, Liu Y, Jiang T. Parcellation of the primary cerebral cortices based on local connectivity profiles. Front Neuroanat 2015; 9:50. [PMID: 25964743 PMCID: PMC4410601 DOI: 10.3389/fnana.2015.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/09/2015] [Indexed: 11/13/2022] Open
Abstract
Connectivity-based parcellation using diffusion MRI has been extensively used to parcellate subcortical areas and the association cortex. Connectivity profiles are vital for connectivity-based parcellation. Two categories of connectivity profiles are generally utilized, including global connectivity profiles, in which the connectivity information is from the seed to the whole brain, and long connectivity profiles, in which the connectivity information is from the seed to other brain regions after excluding the seed. However, whether global or long connectivity profiles should be applied in parcellating the primary cortex utilizing connectivity-based parcellation is unclear. Many sources of evidence have indicated that the primary cerebral cortices are composed of structurally and functionally distinct subregions. Because the primary cerebral cortices are rich in local anatomic hierarchical connections and possess high degree of local functional connectivity profiles, we proposed that local connectivity profiles, that is the connectivity information within a seed region of interest, might be used for parcellating the primary cerebral cortices. In this study, the global, long, and local connectivity profiles were separately used to parcellate the bilateral M1, A1, S1, and V1. We found that results using the three profiles were all quite consistent with reported cytoarchitectonic evidence. More importantly, the results using local connectivity profiles showed less inter-subject variability than the results using the other two, a finding which suggests that local connectivity profiles are superior to global and long connectivity profiles for parcellating the primary cerebral cortices. This also implies that, depending on the characteristics of specific areas of the cerebral cortex, different connectivity profiles may need to be adopted to parcellate different areas.
Collapse
Affiliation(s)
- Qiaojun Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences Beijing, China ; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences Beijing, China ; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences Beijing, China ; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences Beijing, China ; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences Beijing, China ; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China ; CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of Sciences Beijing, China ; The Queensland Brain Institute, University of Queensland, Brisbane QLD, Australia
| |
Collapse
|