1
|
Foster TC, Kumar A. Sex, senescence, senolytics, and cognition. Front Aging Neurosci 2025; 17:1555872. [PMID: 40103928 PMCID: PMC11913825 DOI: 10.3389/fnagi.2025.1555872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
This review focuses on sexual dimorphism in cellular senescence and senolytic treatment in relation to brain health and age-related cognitive decline. The stressors of aging, DNA damage, inflammation, and oxidative stress induce cell senescence, a hallmark of aging. Senescent cells change their function and molecular profile and are primed to release pro-inflammatory cytokines. The functional changes include the activation of cell signals to prevent cell death. The release of pro-inflammatory cytokines from peripheral senescent cells during middle age induces senescence of neighbor cells and heightens the level of systemic inflammation, contributing to neuroinflammation. In response to neuroinflammation and oxidative stress, some neurons alter their physiology, decreasing neuronal excitability and synaptic transmission. Senescent neurophysiology is protective against cell death due to excitotoxicity, at the expense of a loss of normal cell function, contributing to age-related cognitive decline. The level of peripheral cell senescence and systemic inflammation may underlie sexual dimorphism in the prevalence, symptoms, and pathogenesis of age-related diseases, including neurodegenerative diseases. Sex differences have been observed for senescence of astrocytes, microglia, and peripheral cells, including those involved in innate and adaptive immune responses. Interventions that remove senescent cells, such as senolytic drugs, can reduce or ameliorate some of the aging-related loss of function. Similarities and differences in senolytic responses of males and females depend on the system examined, the treatment regimen, the level of senescent cell burden, and the age when treatment is initiated. Estrogen impacts several of these factors and influences the transcription of genes promoting growth, proliferation, and cell survival programs in a manner opposite that of senolytic drugs. In addition, estrogen has anti-aging effects that are independent of cell senescence, including rapidly modifying senescent neurophysiology. Thus, it is important to recognize that, in addition to sex differences in cell senescence, there are other sexually dimorphic mechanisms that contribute to the aging process. The results indicate that senolytics interact with fundamental biology, including sex hormones.
Collapse
Affiliation(s)
- Thomas C Foster
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Dainauskas JJ, Vitale P, Moreno S, Marie H, Migliore M, Saudargiene A. Altered synaptic plasticity at hippocampal CA1-CA3 synapses in Alzheimer's disease: integration of amyloid precursor protein intracellular domain and amyloid beta effects into computational models. Front Comput Neurosci 2023; 17:1305169. [PMID: 38130706 PMCID: PMC10733499 DOI: 10.3389/fncom.2023.1305169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive memory loss and cognitive dysfunction brain disorder brought on by the dysfunctional amyloid precursor protein (APP) processing and clearance of APP peptides. Increased APP levels lead to the production of AD-related peptides including the amyloid APP intracellular domain (AICD) and amyloid beta (Aβ), and consequently modify the intrinsic excitability of the hippocampal CA1 pyramidal neurons, synaptic protein activity, and impair synaptic plasticity at hippocampal CA1-CA3 synapses. The goal of the present study is to build computational models that incorporate the effect of AD-related peptides on CA1 pyramidal neuron and hippocampal synaptic plasticity under the AD conditions and investigate the potential pharmacological treatments that could normalize hippocampal synaptic plasticity and learning in AD. We employ a phenomenological N-methyl-D-aspartate (NMDA) receptor-based voltage-dependent synaptic plasticity model that includes the separate receptor contributions on long-term potentiation (LTP) and long-term depression (LTD) and embed it into the a detailed compartmental model of CA1 pyramidal neuron. Modeling results show that partial blockade of Glu2NB-NMDAR-gated channel restores intrinsic excitability of a CA1 pyramidal neuron and rescues LTP in AICD and Aβ conditions. The model provides insight into the complex interactions in AD pathophysiology and suggests the conditions under which the synchronous activation of a cluster of synaptic inputs targeting the dendritic tree of CA1 pyramidal neuron leads to restored synaptic plasticity.
Collapse
Affiliation(s)
- Justinas J. Dainauskas
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Paola Vitale
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Sebastien Moreno
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Hélène Marie
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Ausra Saudargiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| |
Collapse
|
3
|
Suzuki YI, Shibuya K, Misawa S, Suichi T, Tsuneyama A, Kojima Y, Nakamura K, Kano H, Prado M, Kuwabara S. Fasciculation intensity and limb dominance in amyotrophic lateral sclerosis: a muscle ultrasonographic study. BMC Neurol 2022; 22:85. [PMID: 35277126 PMCID: PMC8915448 DOI: 10.1186/s12883-022-02617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background and purpose Muscle ultrasonography has been increasingly recognized as a useful tool for detection of fasciculations. Separately, concordance between dominant hand and onset side has been reported in amyotrophic lateral sclerosis (ALS). The aim of this study was to reveal the distribution of fasciculations in the whole body, focusing on handedness. Methods In 106 consecutive patients with ALS, muscle ultrasonography was systematically performed in 11 muscles (the tongue, and bilateral biceps brachii, 1st dorsal interosseous [FDI], T10-paraspinalis, vastus lateralis and tibialis anterior muscles). The fasciculation intensity was scored from 0 to 3 for each muscle. Results Fasciculations were more frequently found in the limb muscles than the tongue and paraspinalis. Side and handedness analyses revealed that fasciculation intensity in FDI was significantly more prominent on the right (median [inter-quartile range] 2 [0 - 3]) than left (1.5 [0 - 3]; p = 0.016), and in the dominant hand (2 [1 - 3]) than non-dominant side (1.5 [0 - 3]; p = 0.025). The differences were greater in patients with upper limb onset. There were no side differences in the lower limb muscles. Multivariate analyses showed that male patients had more frequent fasciculations in the dominant FDI (β = 0.22, p < 0.05). Conclusion More intensive fasciculations are present in the FDI in the dominant hand and gender might be associated with fasciculation intensities. This distribution pattern of fasciculations might be associated with pathogenesis of ALS.
Collapse
|
4
|
Soutar CN, Grenier P, Patel A, Kabitsis PP, Olmstead MC, Bailey CDC, Dringenberg HC. Brain-Generated 17β-Estradiol Modulates Long-Term Synaptic Plasticity in the Primary Auditory Cortex of Adult Male Rats. Cereb Cortex 2021; 32:2140-2155. [PMID: 34628498 DOI: 10.1093/cercor/bhab345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuron-derived 17β-estradiol (E2) alters synaptic transmission and plasticity in brain regions with endocrine and non-endocrine functions. Investigations into a modulatory role of E2 in synaptic activity and plasticity have mainly focused on the rodent hippocampal formation. In songbirds, E2 is synthesized by auditory forebrain neurons and promotes auditory signal processing and memory for salient acoustic stimuli; however, the modulatory effects of E2 on memory-related synaptic plasticity mechanisms have not been directly examined in the auditory forebrain. We investigated the effects of bidirectional E2 manipulations on synaptic transmission and long-term potentiation (LTP) in the rat primary auditory cortex (A1). Immunohistochemistry revealed widespread neuronal expression of the E2 biosynthetic enzyme aromatase in multiple regions of the rat sensory and association neocortex, including A1. In A1, E2 application reduced the threshold for in vivo LTP induction at layer IV synapses, whereas pharmacological suppression of E2 production by aromatase inhibition abolished LTP induction at layer II/III synapses. In acute A1 slices, glutamate and γ-aminobutyric acid (GABA) receptor-mediated currents were sensitive to E2 manipulations in a layer-specific manner. These findings demonstrate that locally synthesized E2 modulates synaptic transmission and plasticity in A1 and suggest potential mechanisms by which E2 contributes to auditory signal processing and memory.
Collapse
Affiliation(s)
- Chloe N Soutar
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Patrick Grenier
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ashutosh Patel
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Pauline P Kabitsis
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Mary C Olmstead
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hans C Dringenberg
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
5
|
Baumgartner NE, Black KL, McQuillen SM, Daniel JM. Previous estradiol treatment during midlife maintains transcriptional regulation of memory-related proteins by ERα in the hippocampus in a rat model of menopause. Neurobiol Aging 2021; 105:365-373. [PMID: 34198140 PMCID: PMC8338908 DOI: 10.1016/j.neurobiolaging.2021.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Previous midlife estradiol treatment, like continuous treatment, improves memory and results in lasting increases in hippocampal levels of estrogen receptor (ER) α and ER-dependent transcription in ovariectomized rodents. We hypothesized that previous and continuous midlife estradiol act to specifically increase levels of nuclear ERα, resulting in transcriptional regulation of proteins that mediate estrogen effects on memory. Ovariectomized middle-aged rats received estradiol or vehicle capsule implants. After 40 days, rats initially receiving vehicle received another vehicle capsule (ovariectomized controls). Rats initially receiving estradiol received either another estradiol (continuous estradiol) or a vehicle (previous estradiol) capsule. One month later, hippocampi were dissected and processed. Continuous and previous estradiol increased levels of nuclear, but not membrane or cytosolic ERα and had no effect on Esr1. Continuous and previous estradiol impacted gene expression and/or protein levels of mediators of estrogenic action on memory including ChAT, BDNF, and PSD-95. Findings demonstrate a long-lasting role for hippocampal ERα as a transcriptional regulator of memory following termination of previous estradiol treatment in a rat model of menopause.
Collapse
Affiliation(s)
- Nina E Baumgartner
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA.
| | - Katelyn L Black
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA
| | - Shannon M McQuillen
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA; Psychology Department, Tulane University, New Orleans, LA
| |
Collapse
|
6
|
Sinha P, Rani A, Kumar A, Riva A, Brant JO, Foster TC. Examination of CA1 Hippocampal DNA Methylation as a Mechanism for Closing of Estrogen's Critical Window. Front Aging Neurosci 2021; 13:717032. [PMID: 34421577 PMCID: PMC8371553 DOI: 10.3389/fnagi.2021.717032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/15/2021] [Indexed: 02/01/2023] Open
Abstract
There is a critical window for estrogen replacement therapy, beyond which estradiol (E2) fails to enhance cognition and N-methyl-D-aspartate (NMDA) receptor function, and E2-responsive transcription decreases. Much less attention has been given to the mechanism for closing of the critical window, which is thought to involve the decline in estrogen signaling cascades, possibly involving epigenetic mechanisms, including DNA methylation. This study investigated changes in DNA methylation in region CA1 of the hippocampus of ovariectomized female rats over the course of brain aging and in response to E2-treatment, using whole genome bisulfite sequencing. Differential methylation of CpG and non-CpG (CHG and CHH) sites and associated genes were characterized in aged controls (AC), middle-age controls (MC), and young controls (YC) and differential methylation in response to E2-treatment (T) was examined in each age group (AT-AC, MT-MC, and YT-YC). Possible candidate genes for the closing of the critical window were defined as those that were hypomethylated by E2-treatment in younger animals, but were unresponsive in aged animals. Gene ontology categories for possible critical window genes were linked to response to hormones (Adcyap1, Agtr2, Apob, Ahr, Andpro, Calm2, Cyp4a2, Htr1b, Nr3c2, Pitx2, Pth, Pdk4, Slc2a2, Tnc, and Wnt5a), including G-protein receptor signaling (Gpr22 and Rgs4). Other possible critical window genes were linked to glutamate synapses (Nedd4, Grm1, Grm7, and Grin3a). These results suggest that decreased E2 signaling with advanced age, and/or prolonged E2 deprivation, results in methylation of E2-responsive genes, including those involved in rapid E2 signaling, which may limit subsequent transcription.
Collapse
Affiliation(s)
- Puja Sinha
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jason Orr Brant
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Neural basis for estrous cycle-dependent control of female behaviors. Neurosci Res 2021; 176:1-8. [PMID: 34331974 DOI: 10.1016/j.neures.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/30/2023]
Abstract
Females display changes in distinct behaviors along the estrous cycle. Levels of circulating ovarian sex steroid hormones peak around ovulation, which occur around estrus phase of the cycle. This increase of sex hormones is thought to be important for changes in behaviors, however, neural circuit mechanisms of periodic behavioral changes in females are not understood well. Different lines of research indicate sex hormonal effects on several forms of neuronal plasticity. This review provides an overview of behavioral and plastic changes that occur in an estrous cycle-dependent manner and explores the current research linking these changes to understand neural circuit mechanisms that control female behaviors.
Collapse
|
8
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Pousinha PA, Mouska X, Bianchi D, Temido-Ferreira M, Rajão-Saraiva J, Gomes R, Fernandez SP, Salgueiro-Pereira AR, Gandin C, Raymond EF, Barik J, Goutagny R, Bethus I, Lopes LV, Migliore M, Marie H. The Amyloid Precursor Protein C-Terminal Domain Alters CA1 Neuron Firing, Modifying Hippocampus Oscillations and Impairing Spatial Memory Encoding. Cell Rep 2020; 29:317-331.e5. [PMID: 31597094 DOI: 10.1016/j.celrep.2019.08.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
There is a growing consensus that Alzheimer's disease (AD) involves failure of the homeostatic machinery, which underlies the firing stability of neural circuits. What are the culprits leading to neuron firing instability? The amyloid precursor protein (APP) is central to AD pathogenesis, and we recently showed that its intracellular domain (AICD) could modify synaptic signal integration. We now hypothesize that AICD modifies neuron firing activity, thus contributing to the disruption of memory processes. Using cellular, electrophysiological, and behavioral techniques, we show that pathological AICD levels weaken CA1 neuron firing activity through a gene-transcription-dependent mechanism. Furthermore, increased AICD production in hippocampal neurons modifies oscillatory activity, specifically in the γ-frequency range, and disrupts spatial memory task. Collectively, our data suggest that AICD pathological levels, observed in AD mouse models and in human patients, might contribute to progressive neuron homeostatic failure, driving the shift from normal aging to AD.
Collapse
Affiliation(s)
| | - Xavier Mouska
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Daniela Bianchi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Rajão-Saraiva
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Carine Gandin
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | | | - Jacques Barik
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Romain Goutagny
- Université de Strasbourg, CNRS UMR 7364, LNCA, Strasbourg, France
| | - Ingrid Bethus
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Luisa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Hélène Marie
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| |
Collapse
|
10
|
Calsequestrin Deletion Facilitates Hippocampal Synaptic Plasticity and Spatial Learning in Post-Natal Development. Int J Mol Sci 2020; 21:ijms21155473. [PMID: 32751833 PMCID: PMC7432722 DOI: 10.3390/ijms21155473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Experimental evidence highlights the involvement of the endoplasmic reticulum (ER)-mediated Ca2+ signals in modulating synaptic plasticity and spatial memory formation in the hippocampus. Ca2+ release from the ER mainly occurs through two classes of Ca2+ channels, inositol 1,4,5-trisphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs). Calsequestrin (CASQ) and calreticulin (CR) are the most abundant Ca2+-binding proteins allowing ER Ca2+ storage. The hippocampus is one of the brain regions expressing CASQ, but its role in neuronal activity, plasticity, and the learning processes is poorly investigated. Here, we used knockout mice lacking both CASQ type-1 and type-2 isoforms (double (d)CASQ-null mice) to: a) evaluate in adulthood the neuronal electrophysiological properties and synaptic plasticity in the hippocampal Cornu Ammonis 1 (CA1) field and b) study the performance of knockout mice in spatial learning tasks. The ablation of CASQ increased the CA1 neuron excitability and improved the long-term potentiation (LTP) maintenance. Consistently, (d)CASQ-null mice performed significantly better than controls in the Morris Water Maze task, needing a shorter time to develop a spatial preference for the goal. The Ca2+ handling analysis in CA1 pyramidal cells showed a decrement of Ca2+ transient amplitude in (d)CASQ-null mouse neurons, which is consistent with a decrease in afterhyperpolarization improving LTP. Altogether, our findings suggest that CASQ deletion affects activity-dependent ER Ca2+ release, thus facilitating synaptic plasticity and spatial learning in post-natal development.
Collapse
|
11
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
17α Estradiol promotes plasticity of spared inputs in the adult amblyopic visual cortex. Sci Rep 2019; 9:19040. [PMID: 31836739 PMCID: PMC6910995 DOI: 10.1038/s41598-019-55158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
The promotion of structural and functional plasticity by estrogens is a promising approach to enhance central nervous system function in the aged. However, how the sensitivity to estrogens is regulated across brain regions, age and experience is poorly understood. To ask if estradiol treatment impacts structural and functional plasticity in sensory cortices, we examined the acute effect of 17α-Estradiol in adult Long Evans rats following chronic monocular deprivation, a manipulation that reduces the strength and selectivity of deprived eye vision. Chronic monocular deprivation decreased thalamic input from the deprived eye to the binocular visual cortex and accelerated short-term depression of the deprived eye pathway, but did not change the density of excitatory synapses in primary visual cortex. Importantly, we found that the classical estrogen receptors ERα and ERβ were robustly expressed in the adult visual cortex, and that a single dose of 17α-Estradiol reduced the expression of the calcium-binding protein parvalbumin, decreased the integrity of the extracellular matrix and increased the size of excitatory postsynaptic densities. Furthermore, 17α-Estradiol enhanced experience-dependent plasticity in the amblyopic visual cortex, by promoting response potentiation of the pathway served by the non-deprived eye. The promotion of plasticity at synapses serving the non-deprived eye may reflect selectivity for synapses with an initially low probability of neurotransmitter release, and may inform strategies to remap spared inputs around a scotoma or a cortical infarct.
Collapse
|
13
|
Sartini S, Lattanzi D, Di Palma M, Savelli D, Eusebi S, Sestili P, Cuppini R, Ambrogini P. Maternal Creatine Supplementation Positively Affects Male Rat Hippocampal Synaptic Plasticity in Adult Offspring. Nutrients 2019; 11:nu11092014. [PMID: 31461895 PMCID: PMC6770830 DOI: 10.3390/nu11092014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023] Open
Abstract
Creatine plays a crucial role in developing the brain, so much that its genetic deficiency results in mental dysfunction and cognitive impairments. Moreover, creatine supplementation is currently under investigation as a preventive measure to protect the fetus against oxidative stress during difficult pregnancies. Although creatine use is considered safe, posing minimal risk to clinical health, we found an alteration in morpho-functional maturation of neurons when male rats were exposed to creatine loads during brain development. In particular, increased excitability and enhanced long-term potentiation (LTP) were observed in the hippocampal pyramidal neurons of weaning pups. Since these effects were observed a long time after creatine treatment had been terminated, long-lasting modifications persisting into adulthood were hypothesized. Such modifications were investigated in the present study using morphological, electrophysiological, and calcium imaging techniques applied to hippocampal Cornu Ammonis 1 (CA1) neurons of adult rats born from dams supplemented with creatine. When compared to age-matched controls, the treated adult offspring were found to retain enhanced neuron excitability and an improved LTP, the best-documented neuronal substrate for memory formation. While translating data from rats to humans does have limitations, our findings suggest that prenatal creatine supplementation could have positive effects on adult cognitive abilities.
Collapse
Affiliation(s)
- Stefano Sartini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy.
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Michael Di Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy
| | - David Savelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Silvia Eusebi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy
| |
Collapse
|
14
|
Foster TC. Senescent neurophysiology: Ca 2+ signaling from the membrane to the nucleus. Neurobiol Learn Mem 2019; 164:107064. [PMID: 31394200 DOI: 10.1016/j.nlm.2019.107064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/16/2022]
Abstract
The current review provides a historical perspective on the evolution of hypothesized mechanisms for senescent neurophysiology, focused on the CA1 region of the hippocampus, and the relationship of senescent neurophysiology to impaired hippocampal-dependent memory. Senescent neurophysiology involves processes linked to calcium (Ca2+) signaling including an increase in the Ca2+-dependent afterhyperpolarization (AHP), decreasing pyramidal cell excitability, hyporesponsiveness of N-methyl-D-aspartate (NMDA) receptor function, and a shift in Ca2+-dependent synaptic plasticity. Dysregulation of intracellular Ca2+ and downstream signaling of kinase and phosphatase activity lies at the core of senescent neurophysiology. Ca2+-dysregulation involves a decrease in Ca2+ influx through NMDA receptors and an increase release of Ca2+ from internal Ca2+ stores. Recent work has identified changes in redox signaling, arising in middle-age, as an initiating factor for senescent neurophysiology. The shift in redox state links processes of aging, oxidative stress and inflammation, with functional changes in mechanisms required for episodic memory. The link between age-related changes in Ca2+ signaling, epigenetics and gene expression is an exciting area of research. Pharmacological and behavioral intervention, initiated in middle-age, can promote memory function by initiating transcription of neuroprotective genes and rejuvenating neurophysiology. However, with more advanced age, or under conditions of neurodegenerative disease, epigenetic changes may weaken the link between environmental influences and transcription, decreasing resilience of memory function.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience and Genetics and Genomics Program, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Lai Y, Zhu B, Sun F, Luo D, Ma Y, Luo B, Tang J, Xiong M, Liu L, Long Y, Hu X, He L, Deng X, Zhang JH, Yang J, Yan Z, Chen G. Estrogen receptor α promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice. Aging Cell 2019; 18:e12961. [PMID: 31012223 PMCID: PMC6612642 DOI: 10.1111/acel.12961] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/10/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cav1.2 is the pore-forming subunit of L-type voltage-gated calcium channel (LTCC) that plays an important role in calcium overload and cell death in Alzheimer's disease. LTCC activity can be regulated by estrogen, a sex steroid hormone that is neuroprotective. Here, we investigated the potential mechanisms in estrogen-mediated regulation of Cav1.2 protein. We found that in cultured primary neurons, 17β-estradiol (E2) reduced Cav1.2 protein through estrogen receptor α (ERα). This effect was offset by a proteasomal inhibitor MG132, indicating that ubiquitin-proteasome system was involved. Consistently, the ubiquitin (UB) mutant at lysine 29 (K29R) or the K29-deubiquitinating enzyme TRAF-binding protein domain (TRABID) attenuated the effect of ERα on Cav1.2. We further identified that the E3 ligase Mdm2 (double minute 2 protein) and the PEST sequence in Cav1.2 protein played a role, as Mdm2 overexpression and the membrane-permeable PEST peptides prevented ERα-mediated Cav1.2 reduction, and Mdm2 overexpression led to the reduced Cav1.2 protein and the increased colocalization of Cav1.2 with ubiquitin in cortical neurons in vivo. In ovariectomized (OVX) APP/PS1 mice, administration of ERα agonist PPT reduced cerebral Cav1.2 protein, increased Cav1.2 ubiquitination, and improved cognitive performances. Taken together, ERα-induced Cav1.2 degradation involved K29-linked UB chains and the E3 ligase Mdm2, which might play a role in cognitive improvement in OVX APP/PS1 mice.
Collapse
Affiliation(s)
- Yu‐Jie Lai
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Neurologythe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bing‐Lin Zhu
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fei Sun
- Department of PhysiologyWayne State University School of MedicineDetroitMichigan
| | - Dong Luo
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuan‐Lin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bio Luo
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jing Tang
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ming‐Jian Xiong
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Liu
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yan Long
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiao‐Tong Hu
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ling He
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiao‐Juan Deng
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - John H. Zhang
- Division of Physiology, School of MedicineLoma Linda UniversityLoma LindaCalifornia
| | - Jian Yang
- Department of Biological SciencesColumbia UniversityNew York CityNew York
| | - Zhen Yan
- Department of Physiology and BiophysicsState University of New York at BuffaloBuffaloNew York
| | - Guo‐Jun Chen
- Department of Neurology, Chongqing Key Laboratory of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
16
|
Yousuf H, Smies CW, Hafenbreidel M, Tuscher JJ, Fortress AM, Frick KM, Mueller D. Infralimbic Estradiol Enhances Neuronal Excitability and Facilitates Extinction of Cocaine Seeking in Female Rats via a BDNF/TrkB Mechanism. Front Behav Neurosci 2019; 13:168. [PMID: 31417375 PMCID: PMC6684748 DOI: 10.3389/fnbeh.2019.00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Women are more susceptible to developing cocaine dependence than men, but paradoxically, are more responsive to treatment. The potent estrogen, 17β-estradiol (E2), mediates these effects by augmenting cocaine seeking but also promoting extinction of cocaine seeking through E2's memory-enhancing functions. Although we have previously shown that E2 facilitates extinction, the neuroanatomical locus of action and underlying mechanisms are unknown. Here we demonstrate that E2 infused directly into the infralimbic-medial prefrontal cortex (IL-mPFC), a region critical for extinction consolidation, enhances extinction of cocaine seeking in ovariectomized (OVX) female rats. Using patch-clamp electrophysiology, we show that E2 may facilitate extinction by potentiating intrinsic excitability of IL-mPFC neurons. Because the mnemonic effects of E2 are known to be regulated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), we examined whether BDNF/TrkB signaling was necessary for E2-induced enhancement of excitability and extinction. We found that E2-mediated increases in excitability of IL-mPFC neurons were abolished by Trk receptor blockade. Moreover, blockade of TrkB signaling impaired E2-facilitated extinction of cocaine seeking in OVX female rats. Thus, E2 enhances IL-mPFC neuronal excitability in a TrkB-dependent manner to support extinction of cocaine seeking. Our findings suggest that pharmacological enhancement of E2 or BDNF/TrkB signaling during extinction-based therapies would improve therapeutic outcome in cocaine-addicted women.
Collapse
Affiliation(s)
- Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Chad W Smies
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Madalyn Hafenbreidel
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
17
|
Clemens AM, Lenschow C, Beed P, Li L, Sammons R, Naumann RK, Wang H, Schmitz D, Brecht M. Estrus-Cycle Regulation of Cortical Inhibition. Curr Biol 2019; 29:605-615.e6. [PMID: 30744972 DOI: 10.1016/j.cub.2019.01.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
Female mammals experience cyclical changes in sexual receptivity known as the estrus cycle. Little is known about how estrus affects the cortex, although alterations in sensation, cognition and the cyclical occurrence of epilepsy suggest brain-wide processing changes. We performed in vivo juxtacellular and whole-cell recordings in somatosensory cortex of female rats and found that the estrus cycle potently altered cortical inhibition. Fast-spiking interneurons were strongly activated with social facial touch and varied their ongoing activity with the estrus cycle and estradiol in ovariectomized females, while regular-spiking excitatory neurons did not change. In situ hybridization for estrogen receptor β (Esr2) showed co-localization with parvalbumin-positive (PV+) interneurons in deep cortical layers, mirroring the laminar distribution of our physiological findings. The fraction of neurons positive for estrogen receptor β (Esr2) and PV co-localization (Esr2+PV+) in cortical layer V was increased in proestrus. In vivo and in vitro experiments confirmed that estrogen acts locally to increase fast-spiking interneuron excitability through an estrogen-receptor-β-dependent mechanism.
Collapse
Affiliation(s)
- Ann M Clemens
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany
| | - Constanze Lenschow
- Champalimaud Center for the Unknown, Neurosciences, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Lanxiang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Rosanna Sammons
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Robert K Naumann
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Hong Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
18
|
Kumar A, Foster TC. Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence. Neurochem Res 2018; 44:38-48. [PMID: 30209673 DOI: 10.1007/s11064-018-2634-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in neurons and glia. N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors are major ionotropic glutamate receptors. Glutamatergic neurotransmission is strongly linked with Ca2+ homeostasis. Research has provided ample evidence that brain aging is associated with altered glutamatergic neurotransmission and Ca2+ dysregulation. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review examines Ca2+ regulation with a focus on the NMDA receptors in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in Ca2+ homeostasis and NMDA receptor-mediated glutamatergic neurotransmission will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
- Genetics and Genomics Program, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
19
|
Abstract
SIGNIFICANCE Oxidative stress increases in the brain with aging and neurodegenerative diseases. Previous work emphasized irreversible oxidative damage in relation to cognitive impairment. This research has evolved to consider a continuum of alterations, from redox signaling to oxidative damage, which provides a basis for understanding the onset and progression of cognitive impairment. This review provides an update on research linking redox signaling to altered function of neural circuits involved in information processing and memory. Recent Advances: Starting in middle age, redox signaling triggers changes in nervous system physiology described as senescent physiology. Hippocampal senescent physiology involves decreased cell excitability, altered synaptic plasticity, and decreased synaptic transmission. Recent studies indicate N-methyl-d-aspartate and ryanodine receptors and Ca2+ signaling molecules as molecular substrates of redox-mediated senescent physiology. CRITICAL ISSUES We review redox homeostasis mechanisms and consider the chemical character of reactive oxygen and nitrogen species and their role in regulating different transmitter systems. In this regard, senescent physiology may represent the co-opting of pathways normally responsible for feedback regulation of synaptic transmission. Furthermore, differences across transmitter systems may underlie differential vulnerability of brain regions and neuronal circuits to aging and disease. FUTURE DIRECTIONS It will be important to identify the intrinsic mechanisms for the shift in oxidative/reductive processes. Intrinsic mechanism will depend on the transmitter system, oxidative stressors, and expression/activity of antioxidant enzymes. In addition, it will be important to identify how intrinsic processes interact with other aging factors, including changes in inflammatory or hormonal signals. Antioxid. Redox Signal. 28, 1724-1745.
Collapse
Affiliation(s)
- Ashok Kumar
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Brittney Yegla
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Thomas C Foster
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,2 Genetics and Genomics Program, Genetics Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
20
|
Kow LM, Pfaff DW. Rapid estrogen actions on ion channels: A survey in search for mechanisms. Steroids 2016; 111:46-53. [PMID: 26939826 PMCID: PMC4929851 DOI: 10.1016/j.steroids.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
A survey of nearly two hundred reports shows that rapid estrogenic actions can be detected across a range of kinds of estrogens, a range of doses, on a wide range of tissue, cell and ion channel types. Striking is the fact that preparations of estrogenic agents that do not permeate the cell membrane almost always mimic the actions of the estrogenic agents that do permeate the membrane. All kinds of estrogens, ranging from natural ones, through receptor modulators, endocrine disruptors, phytoestrogens, agonists, and antagonists to novel G-1 and STX, have been reported to be effective. For actions on specific types of ion channels, the possibility of opposing actions, in different cases, is the rule, not the exception. With this variety there is no single, specific action mechanism for estrogens per se, although in some cases estrogens can act directly or via some signaling pathways to affect ion channels. We infer that estrogens can bind a large number of substrates/receptors at the membrane surface. As against the variety of subsequent routes of action, this initial step of the estrogen's binding action is the key.
Collapse
Affiliation(s)
- Lee-Ming Kow
- The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
21
|
Abstract
UNLABELLED A decline in estradiol (E2)-mediated cognitive benefits denotes a critical window for the therapeutic effects of E2, but the mechanism for closing of the critical window is unknown. We hypothesized that upregulating the expression of estrogen receptor α (ERα) or estrogen receptor β (ERβ) in the hippocampus of aged animals would restore the therapeutic potential of E2 treatments and rejuvenate E2-induced hippocampal plasticity. Female rats (15 months) were ovariectomized, and, 14 weeks later, adeno-associated viral vectors were used to express ERα, ERβ, or green fluorescent protein (GFP) in the CA1 region of the dorsal hippocampus. Animals were subsequently treated for 5 weeks with cyclic injections of 17β-estradiol-3-benzoate (EB, 10 μg) or oil vehicle. Spatial memory was examined 48 h after EB/oil treatment. EB treatment in the GFP (GFP + EB) and ERβ (ERβ + EB) groups failed to improve episodic spatial memory relative to oil-treated animals, indicating closing of the critical window. Expression of ERβ failed to improve cognition and was associated with a modest learning impairment. Cognitive benefits were specific to animals expressing ERα that received EB treatment (ERα + EB), such that memory was improved relative to ERα + oil and GFP + EB. Similarly, ERα + EB animals exhibited enhanced NMDAR-mediated synaptic transmission compared with the ERα + oil and GFP + EB groups. This is the first demonstration that the window for E2-mediated benefits on cognition and hippocampal E2 responsiveness can be reinstated by increased expression of ERα. SIGNIFICANCE STATEMENT Estradiol is neuroprotective, promotes synaptic plasticity in the hippocampus, and protects against cognitive decline associated with aging and neurodegenerative diseases. However, animal models and clinical studies indicate a critical window for the therapeutic treatment such that the beneficial effects are lost with advanced age and/or with extended hormone deprivation. We used gene therapy to upregulate expression of the estrogen receptors ERα and ERβ and demonstrate that the window for estradiol's beneficial effects on memory and hippocampal synaptic function can be reinstated by enhancing the expression of ERα. Our findings suggest that the activity of ERα controls the therapeutic window by regulating synaptic plasticity mechanisms involved in memory.
Collapse
|
22
|
Sato SM, Woolley CS. Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model. eLife 2016; 5. [PMID: 27083045 PMCID: PMC4862752 DOI: 10.7554/elife.12917] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Status epilepticus (SE) is a common neurological emergency for which new treatments are needed. In vitro studies suggest a novel approach to controlling seizures in SE: acute inhibition of estrogen synthesis in the brain. Here, we show in rats that systemic administration of an aromatase (estrogen synthase) inhibitor after seizure onset strongly suppresses both electrographic and behavioral seizures induced by kainic acid (KA). We found that KA-induced SE stimulates synthesis of estradiol (E2) in the hippocampus, a brain region commonly involved in seizures and where E2 is known to acutely promote neural activity. Hippocampal E2 levels were higher in rats experiencing more severe seizures. Consistent with a seizure-promoting effect of hippocampal estrogen synthesis, intra-hippocampal aromatase inhibition also suppressed seizures. These results reveal neurosteroid estrogen synthesis as a previously unknown factor in the escalation of seizures and suggest that acute administration of aromatase inhibitors may be an effective treatment for SE. DOI:http://dx.doi.org/10.7554/eLife.12917.001 Seizures occur when connected groups of cells in the brain become over-active and fire together. Current anti-seizure medications work by reducing brain activity generally. Although this is often effective in controlling seizures, it can also lead to negative side effects like drowsiness, dizziness or difficulty concentrating. A better alternative would be to target a factor that promotes activity especially during seizures. Most people think of estrogens as being female sex hormones. However, estrogens are also made in the brain of both sexes, where they could promote activity during seizures. Sato and Woolley therefore set out to test a two-part hypothesis: that seizures stimulate the production of estrogen in the brain, and that inhibiting this production process just as seizures begin would make seizures less severe. Sato and Woolley studied male and female rats and found that in both sexes, seizures stimulate the production of estrogens in the hippocampus – a part of the brain that is often involved in seizures. Because estrogens are known to increase the activity of cells in the hippocampus, this suggested that estrogens that are produced in the brain during seizures could make seizures worse. Sato and Woolley tested this by injecting rats with a drug that inhibits estrogen production, called an aromatase inhibitor, shortly after seizures began. The drug strongly suppressed seizures, whereas control rats that did not receive the injection continued to have seizures. Overall, Sato and Woolley show that the production of estrogen in the brain escalates seizure activity, and suggest that aromatase inhibitors may be useful for controlling seizures. Several questions remain that require further study. How does seizure activity lead to estrogen being made in the brain? How do estrogen levels go back down after a seizure? What circumstances other than seizures stimulate brain estrogen production, and what roles does this production process play in activity that is not related to seizures? DOI:http://dx.doi.org/10.7554/eLife.12917.002
Collapse
Affiliation(s)
- Satoru M Sato
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Catherine S Woolley
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
23
|
Kempsell AT, Fieber LA. Habituation in the Tail Withdrawal Reflex Circuit is Impaired During Aging in Aplysia californica. Front Aging Neurosci 2016; 8:24. [PMID: 26903863 PMCID: PMC4751345 DOI: 10.3389/fnagi.2016.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
The relevance of putative contributors to age-related memory loss are poorly understood. The tail withdrawal circuit of the sea hare, a straightforward neural model, was used to investigate the aging characteristics of rudimentary learning. The simplicity of this neuronal circuit permits attribution of declines in the function of specific neurons to aging declines. Memory was impaired in advanced age animals compared to their performance at the peak of sexual maturity, with habituation training failing to attenuate the tail withdrawal response or to reduce tail motoneuron excitability, as occurred in peak maturity siblings. Baseline motoneuron excitability of aged animals was significantly lower, perhaps contributing to a smaller scope for attenuation. Conduction velocity in afferent fibers to tail sensory neurons (SN) decreased during aging. The findings suggest that age-related changes in tail sensory and motor neurons result in deterioration of a simple form of learning in Aplysia.
Collapse
Affiliation(s)
- Andrew T Kempsell
- Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| | - Lynne A Fieber
- Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| |
Collapse
|
24
|
Underwood EL, Thompson LT. High-fat diet impairs spatial memory and hippocampal intrinsic excitability and sex-dependently alters circulating insulin and hippocampal insulin sensitivity. Biol Sex Differ 2016; 7:9. [PMID: 26823968 PMCID: PMC4730722 DOI: 10.1186/s13293-016-0060-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-fat diets promoting obesity/type-2 diabetes can impair physiology and cognitive performance, although sex-dependent comparisons of these impairments are rarely made. Transient reductions in Ca(2+)-dependent afterhyperpolarizations (AHPs) occur during memory consolidation, enhancing intrinsic excitability of hippocampal CA1 pyramidal neurons. In rats fed standard diets, insulin can enhance memory and reduce amplitude and duration of AHPs. METHODS Effects of chronic high-fat diet (HFD) on memory, circulating insulin, and neuronal physiology were compared between young adult male and female Long-Evans rats. Rats fed for 12 weeks (from weaning) a HFD or a control diet (CD) were then tested in vivo prior to in vitro recordings from CA1 pyramidal neurons. RESULTS The HFD significantly impaired spatial memory in both males and females. Significant sex differences occurred in circulating insulin and in the insulin sensitivity of hippocampal neurons. Circulating insulin significantly increased in HFD males but decreased in HFD females. While the HFD significantly reduced hippocampal intrinsic excitability in both sexes, CA1 neurons from HFD females remained insulin-sensitive but those from HFD males became insulin-insensitive. CONCLUSIONS Findings consistent with these have been characterized previously in HFD or senescent males, but the effects observed here in young females are unique. Loss of CA1 neuronal excitability, and sex-dependent loss of insulin sensitivity, can have significant cognitive consequences, over both the short term and the life span. These findings highlight needs for more research into sex-dependent differences, relating systemic and neural plasticity mechanisms in metabolic disorders.
Collapse
Affiliation(s)
- Erica L. Underwood
- Cognition & Neuroscience Program, School of Behavioral & Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 USA
| | - Lucien T. Thompson
- Cognition & Neuroscience Program, School of Behavioral & Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 USA
| |
Collapse
|
25
|
Smith CC, Smith LA, Bredemann TM, McMahon LL. 17β estradiol recruits GluN2B-containing NMDARs and ERK during induction of long-term potentiation at temporoammonic-CA1 synapses. Hippocampus 2015; 26:110-7. [PMID: 26190171 DOI: 10.1002/hipo.22495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 11/06/2022]
Abstract
When circulating 17β estradiol (E2) is elevated to proestrous levels, hippocampus-dependent learning and memory is enhanced in female rodents, nonhuman primates, and women due to heightened synaptic function at hippocampal synapses. We previously reported that proestrous-like levels of E2 administered to young adult ovariectomized (OVX) female rats increases the magnitude of LTP at CA3 Schaffer collateral (SC)-CA1 synapses only when dendritic spine density, the NMDAR/AMPAR ratio, and current mediated by GluN2B-containing NMDA receptors (NMDARs) are simultaneously increased. We also reported that this increase in GluN2B-mediated NMDAR current in area CA1 is causally related to the E2-induced increase in novel object recognition, tying together heightened synaptic function with improved learning and memory. In addition to SC inputs, innervation from the entorhinal cortex in the temporoammonic (TA) pathway onto CA1 distal dendrites in stratum lacunosum-moleculare is critical for spatial memory formation and retrieval. It is not known whether E2 modulates TA-CA1 synapses similarly to SC-CA1 synapses. Here, we report that 24 hours post-E2 injection, dendritic spine density on CA1 pyramidal cell distal dendrites and current mediated by GluN2B-containing NMDARs at TA-CA1 synapses is increased, similarly to our previous findings at SC-CA1 synapses. However, in contrast to SC-CA1 synapses, AMPAR transmission at TA-CA1 synapses is significantly increased, and there is no effect on the LTP magnitude. Pharmacological blockade of GluN2B-containing NMDARs or ERK activation, which occurs downstream of synaptic but not extrasynaptic GluN2B-containing NMDARs, attenuates the LTP magnitude only in slices from E2-treated rats. These data show that E2 recruits a causal role for GluN2B-containing NMDARs and ERK signaling in the induction of LTP, cellular mechanisms not required for LTP induction at TA-CA1 synapses in vehicle-treated OVX female rats.
Collapse
Affiliation(s)
- Caroline C Smith
- Departments of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lindsey A Smith
- Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Teruko M Bredemann
- Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lori L McMahon
- Departments of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama.,Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Gogos A, Sbisa AM, Sun J, Gibbons A, Udawela M, Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int J Endocrinol 2015; 2015:615356. [PMID: 26491441 PMCID: PMC4600562 DOI: 10.1155/2015/615356] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/30/2022] Open
Abstract
Gender differences in schizophrenia have been extensively researched and it is being increasingly accepted that gonadal steroids are strongly attributed to this phenomenon. Of the various hormones implicated, the estrogen hypothesis has been the most widely researched one and it postulates that estrogen exerts a protective effect by buffering females against the development and severity of the illness. In this review, we comprehensively analyse studies that have investigated the effects of estrogen, in particular 17β-estradiol, in clinical, animal, and molecular research with relevance to schizophrenia. Specifically, we discuss the current evidence on estrogen dysfunction in schizophrenia patients and review the clinical findings on the use of estradiol as an adjunctive treatment in schizophrenia patients. Preclinical research that has used animal models and molecular probes to investigate estradiol's underlying protective mechanisms is also substantially discussed, with particular focus on estradiol's impact on the major neurotransmitter systems implicated in schizophrenia, namely, the dopamine, serotonin, and glutamate systems.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alyssa M. Sbisa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jeehae Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Andrew Gibbons
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Madhara Udawela
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
27
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
28
|
Alterations in CA1 pyramidal neuronal intrinsic excitability mediated by Ih channel currents in a rat model of amyloid beta pathology. Neuroscience 2015; 305:279-92. [PMID: 26254243 DOI: 10.1016/j.neuroscience.2015.07.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/05/2023]
Abstract
Amyloid beta (Aβ) accumulation plays an important role in the pathogenesis of Alzheimer's disease (AD) by changing the neuronal excitability. However, the cellular mechanisms by which accumulation of Aβ affects intrinsic neuronal properties are not well understood. The effect of bilateral intra-frontal cortex Aβ (1-42) peptide injection on the intrinsic excitability of hippocampal CA1 pyramidal neurons with particular focus on the contribution of hyperpolarization-activated (Ih) channel currents was examined using whole-cell patch-clamp recording. Passive avoidance memory impairment and morphological changes in rats receiving intra-frontal Aβ treatment were observed, which was associated with significant changes both in passive and active intrinsic electrical membrane properties of CA1 pyramidal neurons. Electrophysiological recording showed a significant decrease in neuronal excitability associated with an augmentation in the first spike after-hyperpolarization (AHP) amplitude. In addition, the depolarizing sag voltage was altered in neurons recorded from Aβ-treated group. In voltage-clamp condition, a hyperpolarizing activated inward current sensitive to ZD7288 and capsaicin was significantly increased in neurons from Aβ-treated rats. The Ih current density was increased and the activation curve was shifted toward less negative potential in the Aβ-treated group as compared to control group. The enhancing effect of Aβ treatment on Ih current was confirmed by showing upregulation of the mRNA of HCN1 channel in the CA1 pyramidal layer of hippocampi. These findings suggest the contribution of Ih and possibly TRPV1 channel currents to the changes induced by Aβ treatment in the intrinsic membrane properties, which, in turn, may provide therapeutic targets for treatment of AD.
Collapse
|
29
|
Frick KM. Molecular mechanisms underlying the memory-enhancing effects of estradiol. Horm Behav 2015; 74:4-18. [PMID: 25960081 PMCID: PMC4573242 DOI: 10.1016/j.yhbeh.2015.05.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/25/2015] [Accepted: 05/01/2015] [Indexed: 11/18/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Since the publication of the 1998 special issue of Hormones and Behavior on estrogens and cognition, substantial progress has been made towards understanding the molecular mechanisms through which 17β-estradiol (E2) regulates hippocampal plasticity and memory. Recent research has demonstrated that rapid effects of E2 on hippocampal cell signaling, epigenetic processes, and local protein synthesis are necessary for E2 to facilitate the consolidation of object recognition and spatial memories in ovariectomized female rodents. These effects appear to be mediated by non-classical actions of the intracellular estrogen receptors ERα and ERβ, and possibly by membrane-bound ERs such as the G-protein-coupled estrogen receptor (GPER). New findings also suggest a key role of hippocampally-synthesized E2 in regulating hippocampal memory formation. The present review discusses these findings in detail and suggests avenues for future study.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA.
| |
Collapse
|
30
|
D'Amour J, Magagna-Poveda A, Moretto J, Friedman D, LaFrancois JJ, Pearce P, Fenton AA, MacLusky NJ, Scharfman HE. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy. Exp Neurol 2015; 269:102-19. [PMID: 25864929 PMCID: PMC4446145 DOI: 10.1016/j.expneurol.2015.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/27/2014] [Accepted: 04/02/2015] [Indexed: 01/31/2023]
Abstract
In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility.
Collapse
Affiliation(s)
- James D'Amour
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Cantonal Hospital of Basel, Land Institute of Pathology, Mühlemattstrasse 11, CH-4410 Liestal, Switzerland; Sackler Program in Biomedical Sciences, New York University Langone Medical Center, 550 First Ave., New York, NY 10016, USA
| | - Alejandra Magagna-Poveda
- Cantonal Hospital of Basel, Land Institute of Pathology, Mühlemattstrasse 11, CH-4410 Liestal, Switzerland
| | - Jillian Moretto
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA
| | - Daniel Friedman
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Comprehensive Epilepsy Center, New York University Langone Medical Center, 334 34th St., New York, NY 10016, USA
| | - John J LaFrancois
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA
| | - Patrice Pearce
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andre A Fenton
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd, Guelph, ON N1G 2W1, Canada
| | - Helen E Scharfman
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Physiology & Neuroscience, and Psychiatry, New York University Langone Medical Center, One Park Ave, New York, NY 10016, USA.
| |
Collapse
|
31
|
Chronic high-frequency repetitive transcranial magnetic stimulation improves age-related cognitive impairment in parallel with alterations in neuronal excitability and the voltage-dependent Ca2+ current in female mice. Neurobiol Learn Mem 2015; 118:1-7. [DOI: 10.1016/j.nlm.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 01/03/2023]
|
32
|
Wilmott LA, Thompson LT. Sex- and dose-dependent effects of post-trial calcium channel blockade by magnesium chloride on memory for inhibitory avoidance conditioning. Behav Brain Res 2013; 257:49-53. [PMID: 24095881 DOI: 10.1016/j.bbr.2013.09.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 11/28/2022]
Abstract
Calcium influx through voltage-dependent Ca(2+) channels is critical for many neuronal processes required for learning and memory. Persistent increases in cytosolic intracellular Ca(2+) concentrations in aging neurons are associated with learning impairments, while small transient subcellular changes in intracellular calcium concentrations play critical roles in neural plasticity in young neurons. In the present study, young male and female Fisher 344 × Brown Norway (FBN) hybrid rats were administered different doses of magnesium chloride (0.0, 100.0, or 200.0mg/kg, i.p.) following a single inhibitory avoidance training trial. Extracellular magnesium ions can non-specifically block voltage-gated calcium channels, and/or reduce the calcium conductance gated via glutamate and serine's activation of neuronal NMDA receptors. In our study, magnesium chloride dose-dependently enhanced memory compared to controls (significantly increased latency to enter a dark compartment previously paired with an aversive stimulus) when tested 48 h later as compared to controls. A leftward shift in the dose response curve for memory enhancement by magnesium chloride was observed for male compared to female rats. These findings provide further insights into calcium-dependent modulation of aversive memory, and should be considered when assessing the design of effective treatment options for both male and female patients with dementia or other memory problems.
Collapse
Affiliation(s)
- Lynda A Wilmott
- The University of Texas at Dallas, Cognition & Neuroscience Program, School of Behavioral & Brain Sciences, 800 West Campbell Road, GR4.1, Richardson, TX 75080, USA
| | | |
Collapse
|
33
|
Sehgal M, Song C, Ehlers VL, Moyer JR. Learning to learn - intrinsic plasticity as a metaplasticity mechanism for memory formation. Neurobiol Learn Mem 2013; 105:186-99. [PMID: 23871744 DOI: 10.1016/j.nlm.2013.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
"Use it or lose it" is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity - a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability - this can prevent or provide treatment for cognitive decline not only in patients with clinical disorders but also in the aging population.
Collapse
Affiliation(s)
- Megha Sehgal
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
34
|
Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, Beckett TL, Murphy MP, Chen KC, Blalock EM, Landfield PW, Porter NM, Thibault O. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J Alzheimers Dis 2013; 30:943-61. [PMID: 22495349 DOI: 10.3233/jad-2012-111661] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-β (Aβ) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-β and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.
Collapse
Affiliation(s)
- James L Searcy
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brim BL, Haskell R, Awedikian R, Ellinwood N, Jin L, Kumar A, Foster T, Magnusson K. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor. Behav Brain Res 2013; 238:211-26. [PMID: 23103326 PMCID: PMC3540206 DOI: 10.1016/j.bbr.2012.10.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 11/26/2022]
Abstract
The GluN2B subunit of the N-methyl-d-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced green fluorescent protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines.
Collapse
Affiliation(s)
- B. L. Brim
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
- Healthy Aging Program, Linus Pauling Institute, Oregon State University, Corvallis, OR; 97331, U.S.A
| | - R. Haskell
- ViraQuest, Inc., North Liberty, IA; 52317, U.S.A
| | - R. Awedikian
- Department of Animal Sciences, Iowa State University, Ames, IA, 50011, U.S.A
| | - N.M. Ellinwood
- Department of Animal Sciences, Iowa State University, Ames, IA, 50011, U.S.A
| | - L. Jin
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
| | - A. Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, U.S.A
| | - T.C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, U.S.A
| | - K. Magnusson
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
- Healthy Aging Program, Linus Pauling Institute, Oregon State University, Corvallis, OR; 97331, U.S.A
| |
Collapse
|
36
|
Randall AD, Booth C, Brown JT. Age-related changes to Na+ channel gating contribute to modified intrinsic neuronal excitability. Neurobiol Aging 2012; 33:2715-20. [DOI: 10.1016/j.neurobiolaging.2011.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/12/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
|
37
|
Luebke JI, Amatrudo JM. Age-related increase of sI(AHP) in prefrontal pyramidal cells of monkeys: relationship to cognition. Neurobiol Aging 2012; 33:1085-95. [PMID: 20727620 PMCID: PMC2992607 DOI: 10.1016/j.neurobiolaging.2010.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 01/26/2023]
Abstract
Reduced excitability, due to an increase in the slow afterhyperpolarization (and its underlying current sI(AHP)), occurs in CA1 pyramidal cells in aged cognitively-impaired, but not cognitively-unimpaired, rodents. We sought to determine whether similar age-related changes in the sI(AHP) occur in pyramidal cells in the rhesus monkey dorsolateral prefrontal cortex (dlPFC). Whole-cell patch-clamp recordings were obtained from layer 3 and layer 5 pyramidal cells in dlPFC slices prepared from young (9.6 ± 0.7 years old) and aged (22.3 ± 0.7 years old) behaviorally characterized subjects. The amplitude of the sI(AHP) was significantly greater in layer 3 (but not layer 5) cells from aged-impaired compared with both aged-unimpaired and young monkeys, which did not differ. Aged layer 3, but not layer 5, cells exhibited significantly increased action potential firing rates, but there was no relationship between sI(AHP) and firing rate. Thus, in monkey dlPFC layer 3 cells, an increase in sI(AHP) is associated with age-related cognitive decline; however, this increase is not associated with a reduction in excitability.
Collapse
Affiliation(s)
- J I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St, Boston, MA 02118, USA.
| | | |
Collapse
|
38
|
Stelly CE, Cronin J, Daniel JM, Schrader LA. Long-term oestradiol treatment enhances hippocampal synaptic plasticity that is dependent on muscarinic acetylcholine receptors in ovariectomised female rats. J Neuroendocrinol 2012; 24:887-96. [PMID: 22313316 DOI: 10.1111/j.1365-2826.2012.02287.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Short-term oestradiol treatment modulates hippocampus-dependent memory and synaptic plasticity in the hippocampus. Long-term oestradiol treatment can also enhance hippocampus- dependent memory, although the effects of long-term oestradiol treatment on synaptic plasticity are unknown. We investigated the effects of long-term oestradiol treatment on synaptic plasticity at the Schaeffer Collateral/CA1 synapse in 8-month-old female rats. In addition, we determined the role of endogenous activation of muscarinic acetylcholine receptors (mAChRs) in synaptic transmission and plasticity using scopolamine (1 μm), an antagonist of mAChRs. Hippocampus slices from ovariectomised rats that were treated with oestradiol-containing capsules for 5 months were compared with slices from ovariectomised rats that received cholesterol-containing capsules. Unexpectedly, scopolamine application significantly increased the baseline field excitatory postsynaptic potentials (fEPSP) and decreased paired pulse facilitation (PPF) in slices from cholesterol-treated rats. Baseline fEPSPs and PPF were not significantly modulated in slices from oestradiol-treated rats by scopolamine. Slices from oestradiol-treated rats showed enhanced long-term potentiation relative to slices from cholesterol-treated rats. Scopolamine significantly reduced the magnitude of plasticity in slices from oestradiol-treated rats. Taken together, these results suggest that mAChRs have a significant effect on baseline synaptic transmission through a decrease in the probability of glutamate release in slices from cholesterol-treated rats. Long-term oestradiol treatment blocks this effect and enhances theta-burst stimulation-induced synaptic plasticity in the middle-aged female rat, and this effect is mediated by activation of mAChRs.
Collapse
Affiliation(s)
- C E Stelly
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | | | | | | |
Collapse
|
39
|
Foster TC. Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus 2012; 22:656-69. [PMID: 21538657 PMCID: PMC3704216 DOI: 10.1002/hipo.20935] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/24/2022]
Abstract
This review presents evidence for the idea that the expression of estrogen receptor alpha and beta (ERα and ERβ) interacts with the level of estradiol (E2) to influence the etiology of age-related cognitive decline and responsiveness to E2 treatments. There is a nonmonotonic dose response curve for E2 influences on behavior and transcription. Evidence is mounting to indicate that the dose response curve is shifted according to the relative expression of ERα and ERβ. Recent work characterizing age-related changes in the expression of ERα and ERβ in the hippocampus, as well as studies using mutant mice, and viral mediated delivery of estrogen receptors indicate that an age-related shift in ERα/ERβ expression, combined with declining gonadal E2 can impact transcription, cell signaling, neuroprotection, and neuronal growth. Finally, the role of ERα/ERβ on rapid E2 signaling and synaptogenesis as it relates to hippocampal aging is discussed.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
40
|
Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC. Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging 2011; 33:828.e1-17. [PMID: 21820213 DOI: 10.1016/j.neurobiolaging.2011.06.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/13/2011] [Accepted: 06/23/2011] [Indexed: 01/11/2023]
Abstract
Aged (20-22 months) male Fischer 344 rats were randomly assigned to sedentary (A-SED), environmentally-enriched (A-ENR), or exercise (A-EX) conditions. After 10-12 weeks of differential experience, the 3 groups of aged rats and young sedentary controls were tested for physical and cognitive function. Spatial discrimination learning and memory consolidation, tested on the water maze, were enhanced in environmentally-enriched compared with sedentary. A-EX exhibited improved and impaired performance on the cue and spatial task, respectively. Impaired spatial learning in A-EX was likely due to a bias in response selection associated with exercise training, as object recognition memory improved for A-EX rats. An examination of senescent hippocampal physiology revealed that enrichment and exercise reversed age-related changes in long-term depression (LTD) and long-term potentiation (LTP). Rats in the enrichment group exhibited an increase in cell excitability compared with the other 2 groups of aged animals. The results indicate that differential experience biased the selection of a spatial or a response strategy and factors common across the 2 conditions, such as increased hippocampal activity associated with locomotion, contribute to reversal of senescent synaptic plasticity.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | | | | | | | | |
Collapse
|
41
|
Ghasemi Z, Hassanpour-Ezatti M, Kamalinejad M, Janahmadi M. Functional involvement of Ca2+ and Ca2+-activated K+ channels in anethol-induced changes in Ca2+ dependent excitability of F1 neurons in Helix aspersa. Fitoterapia 2011; 82:750-6. [DOI: 10.1016/j.fitote.2011.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 11/16/2022]
|
42
|
Aenlle KK, Foster TC. Aging alters the expression of genes for neuroprotection and synaptic function following acute estradiol treatment. Hippocampus 2011; 20:1047-60. [PMID: 19790252 DOI: 10.1002/hipo.20703] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study used microarray analysis to examine age-related changes in gene expression 6 and 12 h following a single estradiol injection in ovariectomized mice. Estradiol-responsive gene expression at the 6 h time point was reduced in aged (18 months) animals compared with young (4 months) and middle-aged (MA, 12 months) mice. Examination of gene clustering within biological and functional pathways indicated that young and MA mice exhibited increased expression of genes for cellular components of the synapse and decreased expression of genes related to oxidative phosphorylation and mitochondrial dysfunction. At the 12 h time point, estradiol-responsive gene expression increased in aged animals and decreased in young and MA mice compared with the 6 h time point. Gene clustering analysis indicated that aged mice exhibited increased expression of genes for signaling pathways that are rapidly influenced by estradiol. The age differences in gene expression for rapid signaling pathways may relate to disparity in basal pathway activity and estradiol mediated activation of rapid signaling cascades.
Collapse
Affiliation(s)
- Kristina K Aenlle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
43
|
The mouse primary visual cortex is a site of production and sensitivity to estrogens. PLoS One 2011; 6:e20400. [PMID: 21647225 PMCID: PMC3101258 DOI: 10.1371/journal.pone.0020400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/25/2011] [Indexed: 12/21/2022] Open
Abstract
The classic female estrogen, 17β-estradiol (E2), has been repeatedly shown to affect the perceptual processing of visual cues. Although gonadal E2 has often been thought to influence these processes, the possibility that central visual processing may be modulated by brain-generated hormone has not been explored. Here we show that estrogen-associated circuits are highly prevalent in the mouse primary visual cortex (V1). Specifically, we cloned aromatase, a marker for estrogen-producing neurons, and the classic estrogen receptors (ERs) ERα and ERβ, as markers for estrogen-responsive neurons, and conducted a detailed expression analysis via in-situ hybridization. We found that both monocular and binocular V1 are highly enriched in aromatase- and ER-positive neurons, indicating that V1 is a site of production and sensitivity to estrogens. Using double-fluorescence in-situ hybridization, we reveal the neurochemical identity of estrogen-producing and -sensitive cells in V1, and demonstrate that they constitute a heterogeneous neuronal population. We further show that visual experience engages a large population of aromatase-positive neurons and, to a lesser extent, ER-expressing neurons, suggesting that E2 levels may be locally regulated by visual input in V1. Interestingly, acute episodes of visual experience do not affect the density or distribution of estrogen-associated circuits. Finally, we show that adult mice dark-reared from birth also exhibit normal distribution of aromatase and ERs throughout V1, suggesting that the implementation and maintenance of estrogen-associated circuits is independent of visual experience. Our findings demonstrate that the adult V1 is a site of production and sensitivity to estrogens, and suggest that locally-produced E2 may shape visual cortical processing.
Collapse
|
44
|
Wu WW, Adelman JP, Maylie J. Ovarian hormone deficiency reduces intrinsic excitability and abolishes acute estrogen sensitivity in hippocampal CA1 pyramidal neurons. J Neurosci 2011; 31:2638-48. [PMID: 21325532 PMCID: PMC3080129 DOI: 10.1523/jneurosci.6081-10.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/06/2010] [Accepted: 12/17/2010] [Indexed: 11/21/2022] Open
Abstract
Premature and uncompensated loss of ovarian hormones following ovariectomy (OVX) elevates the risks of cognitive impairment and dementia. These risks are prevented with estrogen (E(2))-containing hormone replacement therapy initiated shortly following OVX but not after substantial delay. Currently, the cellular bases underlying these clinical findings are unknown. At the cellular level, intrinsic membrane properties regulate the efficiency of synaptic inputs to initiate output action potentials (APs), thereby affecting neuronal communication, hence cognitive processing. This study tested the hypothesis that in CA1 pyramidal neurons, intrinsic membrane properties and their acute regulation by E(2) require ovarian hormones for maintenance. Whole-cell current-clamp recordings were performed on neurons from ∼ 7-month-old OVX rats that experienced either short-term (10 d, control OVX) or long-term (5 months, OVX(LT)) ovarian hormone deficiency. The results reveal that long-term hormone deficiency reduced intrinsic membrane excitability (IE) as measured by the number of evoked APs and firing duration for a given current injection. This was accompanied by AP broadening, an increased slow afterhyperpolarization (sAHP), and faster accumulation of Na(V) channel inactivation during repetitive firing. In the control OVX neurons, E(2) acutely increased IE and reduced the sAHP. In contrast, acute regulation of IE by E(2) was absent in the OVX(LT) neurons. Since the degree of IE of hippocampal pyramidal neurons is positively related with hippocampus-dependent learning ability, and modulation of IE is observed following successful learning, these findings provide a framework for understanding hormone deficiency-related cognitive impairment and the critical window for therapy initiation.
Collapse
Affiliation(s)
- Wendy W Wu
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
45
|
Bodhinathan K, Kumar A, Foster TC. Redox sensitive calcium stores underlie enhanced after hyperpolarization of aged neurons: role for ryanodine receptor mediated calcium signaling. J Neurophysiol 2010; 104:2586-93. [PMID: 20884759 PMCID: PMC2997029 DOI: 10.1152/jn.00577.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/02/2010] [Indexed: 12/15/2022] Open
Abstract
A decrease in the excitability of CA1 pyramidal neurons contributes to the age related decrease in hippocampal function and memory decline. Decreased neuronal excitability in aged neurons can be observed as an increase in the Ca(2+)- activated K(+)- mediated post burst afterhyperpolarization (AHP). In this study, we demonstrate that the slow component of AHP (sAHP) in aged CA1 neurons (aged-sAHP) is decreased ∼50% by application of the reducing agent dithiothreitol (DTT). The DTT-mediated decrease in the sAHP was age specific, such that it was observed in CA1 pyramidal neurons of aged (20-25 mo), but not young (6-9 mo) F344 rats. The effect of DTT on the aged-sAHP was blocked following depletion of intracellular Ca(2+) stores (ICS) by thapsigargin or blockade of ryanodine receptors (RyRs) by ryanodine, suggesting that the age-related increase in the sAHP was due to release of Ca(2+) from ICS through redox sensitive RyRs. The DTT-mediated decrease in the aged-sAHP was not blocked by inhibition of L-type voltage gated Ca(2+) channels (L-type VGCC), inhibition of Ser/Thr kinases, or inhibition of the large conductance BK potassium channels. The results add support to the idea that a shift in the intracellular redox state contributes to Ca(2+) dysregulation during aging.
Collapse
Affiliation(s)
- Karthik Bodhinathan
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | | | | |
Collapse
|
46
|
Oh MM, Oliveira FA, Disterhoft JF. Learning and aging related changes in intrinsic neuronal excitability. Front Aging Neurosci 2010; 2:2. [PMID: 20552042 PMCID: PMC2874400 DOI: 10.3389/neuro.24.002.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/11/2010] [Indexed: 11/16/2022] Open
Abstract
A goal of many laboratories that study aging is to find a key cellular change(s) that can be manipulated and restored to a young-like state, and thus, reverse the age-related cognitive deficits. We have chosen to focus our efforts on the alteration of intrinsic excitability (as reflected by the postburst afterhyperpolarization, AHP) during the learning process in hippocampal pyramidal neurons. We have consistently found that the postburst AHP is significantly reduced in hippocampal pyramidal neurons from young adults that have successfully learned a hippocampus-dependent task. In the context of aging, the baseline intrinsic excitability of hippocampal neurons is decreased and therefore cognitive learning is impaired. In aging animals that are able to learn, neuron changes in excitability similar to those seen in young neurons during learning occur. Our challenge, then, is to understand how and why excitability changes occur in neurons from aging brains and cause age-associated learning impairments. After understanding the changes, we should be able to formulate strategies for reversing them, thus making old neurons function more as they did when they were young. Such a reversal should rescue the age-related cognitive deficits.
Collapse
Affiliation(s)
- M. Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Fernando A. Oliveira
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - John F. Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| |
Collapse
|
47
|
Wójtowicz T, Mozrzymas JW. Estradiol and GABAergic transmission in the hippocampus. VITAMINS AND HORMONES 2010; 82:279-300. [PMID: 20472144 DOI: 10.1016/s0083-6729(10)82015-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estradiol is synthesized in the hippocampus and is known to increase intrinsic hippocampal excitability and capacity for synaptic plasticity. A picture emerges that at least part of these effects are due to a complex modulation of GABAergic system in developing and adult hippocampus. During development, GABAergic system undergoes profound alterations and is particularly prone to modulation. During this period, estradiol could modulate both phasic and tonic GABAergic currents and promote excitatory GABA actions. In contrast, in adult hippocampus, estradiol-induced formation of new dendritic spines in pyramidal cells is paralleled with a reduction in GABAergic drive to these neurons. Such estradiol actions could be mediated primarily through interneurons expressing estrogen receptors. In this chapter, we provide an overview of the in vitro and in vivo studies addressing the role of estradiol in regulating the GABAergic system in the hippocampal formation during development and in the adulthood. Although the mechanisms underlying such a regulation remain largely unknown, we make an attempt to present the major hypotheses and concepts related to this issue.
Collapse
Affiliation(s)
- Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
48
|
Gant JC, Thibault O. Action potential throughput in aged rat hippocampal neurons: regulation by selective forms of hyperpolarization. Neurobiol Aging 2009; 30:2053-64. [PMID: 18367293 PMCID: PMC2776637 DOI: 10.1016/j.neurobiolaging.2008.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/07/2008] [Accepted: 02/14/2008] [Indexed: 01/23/2023]
Abstract
At hippocampal synapses, repetitive synaptic stimulation (RSS) in the theta frequency range (3-12Hz) is associated with robust EPSP frequency facilitation (FF) and consequently, enhanced action potential (spike) generation and throughput. A complex, synaptically induced hyperpolarization (SIHP) is also triggered by synaptic activation, and a Ca(2+)-dependent afterhyperpolarization (AHP) is triggered above spike threshold. With aging, the AHP is increased and impairs intracellular spike generation, at least in accommodation protocols. However, little is known about how these aging changes interact to affect spike generation at physiological frequencies of RSS, or if the SIHP also is modified in aging. Here we performed the first tests of the net impact of these excitatory and inhibitory aging changes on spike generation during RSS. We report that during RSS at spike threshold (1) spike throughput is well sustained at theta frequencies in young and aged neurons; (2) an interposed AHP dampens spike generation, particularly in aged neurons and at higher frequencies; (3) compared to the AHP, the SIHP does not exert an equivalent inhibitory effect on spike throughput; and (4) in contrast to the AHP, the SIHP is reduced with aging. Together, these results are consistent with a model in which the source of the hyperpolarization is important in determining hippocampal spike throughput within the theta frequency range.
Collapse
Affiliation(s)
- John C. Gant
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center (UKMC), MS320, Lexington, KY, 40503
| | - Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center (UKMC), MS320, Lexington, KY, 40503
| |
Collapse
|
49
|
Kumar A, Bodhinathan K, Foster TC. Susceptibility to Calcium Dysregulation during Brain Aging. Front Aging Neurosci 2009; 1:2. [PMID: 20552053 PMCID: PMC2874411 DOI: 10.3389/neuro.24.002.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/27/2009] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca(2+)) is a highly versatile intracellular signaling molecule that is essential for regulating a variety of cellular and physiological processes ranging from fertilization to programmed cell death. Research has provided ample evidence that brain aging is associated with altered Ca(2+) homeostasis. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review takes a broader perspective, assessing age-related changes in Ca(2+) sources, Ca(2+) sequestration, and Ca(2+) binding proteins throughout the nervous system. The nature of altered Ca(2+) homeostasis is cell specific and may represent a deficit or a compensatory mechanism, producing complex patterns of impaired cellular function. Incorporating the knowledge of the complexity of age-related alterations in Ca(2+) homeostasis will positively shape the development of highly effective therapeutics to treat brain disorders.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
50
|
Kaczorowski CC, Disterhoft JF. Memory deficits are associated with impaired ability to modulate neuronal excitability in middle-aged mice. Learn Mem 2009; 16:362-6. [PMID: 19470651 PMCID: PMC2704100 DOI: 10.1101/lm.1365609] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/25/2009] [Indexed: 11/24/2022]
Abstract
Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the post-burst afterhyperpolarization (AHP)--a general mechanism engaged during learning--was impaired in CA1 neurons from middle-aged weak learners. Thus, modulation of neuronal excitability is critical for retention of context fear in middle-aged mice. Disruption of AHP plasticity may contribute to contextual fear deficits in middle-aged mice--a model of age-associated cognitive decline (AACD).
Collapse
Affiliation(s)
- Catherine C Kaczorowski
- Northwestern University Interdepartmental Neuroscience Program, Chicago, Illinois 60611, USA.
| | | |
Collapse
|