1
|
Tsalagradas P, Eke C, Andrews C, MacMillan F. Exploring the Structural Dynamics of LeuT Using EPR Spectroscopy: A Focus on Transmembrane Helix 10. J Neurochem 2025; 169:e70034. [PMID: 40052253 PMCID: PMC11886772 DOI: 10.1111/jnc.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Abstract
The amino-acid transporter LeuT from Aquifex aeolicus is a well-studied bacterial homologue of the neurotransmitter: sodium symporters (NSS), especially the solute carrier 6 (SLC6) family. Within the nervous system, SLC6 transporters play a vital role in the termination of synaptic transmission, and their dysfunction leads to severe neurological conditions, rendering them key pharmacological targets. LeuT was the first SLC6 homologue to be crystallised and remains the main reference transporter to develop transport cycle models for its eukaryotic counterparts. Here, we aim to probe LeuT and investigate mechanistically important conformational changes using a combination of Site-Directed Spin Labelling (SDSL) and Electron Paramagnetic Resonance (EPR) spectroscopic techniques in detergent solubilised micelles and proteoliposomes. We focus, primarily, on 'subtle' structural, molecular motions occurring at the extracellular region of transmembrane helix (TM) 10, which cannot be resolved using conventional high-resolution crystallographic techniques. We observe similar but not identical ion/ligand-dependent conformational changes of LeuT on the extracellular domain of TM10 in detergent micelles and proteoliposomes. Close agreement is also observed between in silico analysis of existing static structural models and the experimental data acquired here in the form of coarse-grained accessibility restraints, demonstrating that such subtle movements can be important for understanding both function and mechanism. The observed differences for the dynamics of LeuT in different environments underpin future work, which aims to explore 'more native' reconstituted proteoliposome conditions more thoroughly using pulsed EPR methods before generalised conclusions can be drawn on the physiological relevance of such structural changes and whether they can provide novel insights on the molecular events underlying the transport cycle of LeuT.
Collapse
Affiliation(s)
- Petros Tsalagradas
- Henry Wellcome Unit for Biological EPR, School of ChemistryUniversity of East AngliaNorwichUK
| | - Callum Eke
- Henry Wellcome Unit for Biological EPR, School of ChemistryUniversity of East AngliaNorwichUK
| | - Courtney Andrews
- Henry Wellcome Unit for Biological EPR, School of ChemistryUniversity of East AngliaNorwichUK
| | - Fraser MacMillan
- Henry Wellcome Unit for Biological EPR, School of ChemistryUniversity of East AngliaNorwichUK
| |
Collapse
|
2
|
An W, Gao Y, Liu L, Bai Q, Zhao J, Zhao Y, Zhang XC. Structural basis of urea transport by Arabidopsis thaliana DUR3. Nat Commun 2025; 16:1782. [PMID: 39972035 PMCID: PMC11840088 DOI: 10.1038/s41467-025-56943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Urea is a primary nitrogen source used as fertilizer in agricultural plant production and a crucial nitrogen metabolite in plants, playing an essential role in modern agriculture. In plants, DUR3 is a proton-driven high-affinity urea transporter located on the plasma membrane. It not only absorbs external low-concentration urea as a nutrient but also facilitates nitrogen transfer by recovering urea from senescent leaves. Despite its importance, the high-affinity urea transport mechanism in plants remains insufficiently understood. In this study, we determine the structures of Arabidopsis thaliana DUR3 in two different conformations: the inward-facing open state of the apo structure and the occluded urea-bound state, with overall resolutions of 2.8 Å and 3.0 Å, respectively. By comparing these structures and analyzing their functional characteristics, we elucidated how urea molecules are specifically recognized. In the urea-bound structure, we identified key titratable amino acid residues and proposed a model for proton involvement in urea transport based on structural and functional data. This study enhances our understanding of proton-driven urea transport mechanisms in DUR3.
Collapse
Affiliation(s)
- Weidong An
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Laihua Liu
- Department of Plant Nutrition, Key Laboratory of Plant and Soil Interactions of MEoC, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qinru Bai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Wu Y, Cai J, Liu H, Li C, Tang Q, Zhang YW. (-)-Syringaresinol Exerts an Antidepressant-like Activity in Mice by Noncompetitive Inhibition of the Serotonin Transporter. Pharmaceuticals (Basel) 2024; 17:1637. [PMID: 39770479 PMCID: PMC11678425 DOI: 10.3390/ph17121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Albizia julibrissin Durazz. is one of the most popular herbs used for depression treatment, but the molecular basis for its mechanism of action has not been fully addressed. Previously, we isolated and identified two lignan glycoside derivatives that were shown to noncompetitively inhibit serotonin transporter (SERT) activity but with a relatively low inhibitory potency compared with those of conventional antidepressants. METHODS We characterized the pharmacological profile of the parental compound of these previously isolated lignan glycosides, (-)-syringaresinol (SYR), in inhibiting SERT by using biochemical, pharmacological, and behavioral approaches. RESULTS SYR, as a potent inhibitor, decreases SERT Vmax but with little change in Km for its fluorescent substrate. SYR was shown to block the conformational conversion essential for substrate transport by stabilizing SERT in an outward-open and inward-closed conformation. In addition, our molecular docking and biochemical validation demonstrated that SYR binds to an allosteric site in SERT and noncompetitively inhibits SERT transport and binding activity. Furthermore, administration of SYR was indicated to exert an antidepressant-like activity and to effectively attenuate chronic unpredictable mild stress (CUMS)-induced abnormalities in behaviors and synaptic protein expression in depressive animal models. CONCLUSIONS This study not only provides molecular insights into the mechanism of action of A. julibrissin in the treatment of depression, but also opens up the possibility of development of a novel class of allosteric site-targeted therapeutic agents with an underlying mechanism of action different from that of conventional antidepressants.
Collapse
Affiliation(s)
- Yingyao Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jianxin Cai
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hanhe Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Licht JA, Berry SP, Gutierrez MA, Gaudet R. They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. Structure 2024; 32:1528-1543.e3. [PMID: 39025067 PMCID: PMC11380583 DOI: 10.1016/j.str.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters, the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.
Collapse
Affiliation(s)
- Jacob A Licht
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Samuel P Berry
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael A Gutierrez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Alves da Silva L, Lazzarin E, Gradisch R, Clarke A, Stockner T. Free energy profile of the substrate-induced occlusion of the human serotonin transporter. J Neurochem 2024; 168:1993-2006. [PMID: 38316690 DOI: 10.1111/jnc.16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
The serotonin transporter (SERT) is a member of the Solute Carrier 6 (SLC6) family and is responsible for maintaining the appropriate level of serotonin in the brain. Dysfunction of SERT has been linked to several neuropsychiatric disorders, including depression, anxiety and obsessive-compulsive disorder. Therefore, an in-depth understanding of the mechanism on an atomistic level, coupled with a quantification of transporter dynamics and the associated free energies is required. Here, we constructed Markov state models (MSMs) from extensive unbiased molecular dynamics simulations to quantify the free energy profile of serotonin (5HT) triggered SERT occlusion and explored the driving forces of the mechanism of occlusion. Our results reveal that SERT occludes via multiple intermediate conformations and show that the motion of occlusion is energetically downhill for the 5HT-bound transporter. Force distribution analyses show that the interactions of 5HT with the bundle domain are crucial. During occlusion, attractive forces steadily increase and pull on the bundle domain, which leads to SERT occlusion. Some interactions become repulsive upon full occlusion, suggesting that SERT creates pressure on 5HT to promote its movement towards the cytosol.
Collapse
Affiliation(s)
- Leticia Alves da Silva
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erika Lazzarin
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Amy Clarke
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Lu X, Huang J. Molecular mechanisms of Na +-driven bile acid transport in human NTCP. Biophys J 2024; 123:1195-1210. [PMID: 38544409 PMCID: PMC11140467 DOI: 10.1016/j.bpj.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Human Na+ taurocholate co-transporting protein (hNTCP) is a key bile salt transporter to maintain enterohepatic circulation and is responsible for the recognition of hepatitis B and D viruses. Despite landmark cryoelectron microscopy studies revealing open-pore and inward-facing states of hNTCP stabilized by antibodies, the transport mechanism remains largely unknown. To address this knowledge gap, we used molecular dynamics and enhanced sampling metadynamics simulations to elucidate the intrinsic mechanism of hNTCP-mediated taurocholate acid (TCA) transport driven by Na+ binding. We uncovered three TCA-binding modes, including one that closely matched the limited cryoelectron microscopy density observed in the open-pore hNTCP. We also captured several key hNTCP conformations in the substrate transport cycle, particularly including an outward-facing, substrate-bound state. Furthermore, we provided thermodynamic evidence supporting that changes in the Na+-binding state drive the TCA transport by exploiting the amphiphilic nature of the substrate and modulating the protein environment, thereby enabling the TCA molecule to flip through. Understanding these mechanistic details of Na+-driven bile acid transport may aid in the development of hNTCP-targeted therapies for liver diseases.
Collapse
Affiliation(s)
- Xiaoli Lu
- Westlake AI Therapeutics Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jing Huang
- Westlake AI Therapeutics Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Vaughan RA, Henry LK, Foster JD, Brown CR. Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:1-33. [PMID: 38467478 DOI: 10.1016/bs.apha.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The availability of monoamine neurotransmitters in the brain is under the control of dopamine, norepinephrine, and serotonin transporters expressed on the plasma membrane of monoaminergic neurons. By regulating transmitter levels these proteins mediate crucial functions including cognition, attention, and reward, and dysregulation of their activity is linked to mood and psychiatric disorders of these systems. Amphetamine-based transporter substrates stimulate non-exocytotic transmitter efflux that induces psychomotor stimulation, addiction, altered mood, hallucinations, and psychosis, thus constituting a major component of drug neurochemical and behavioral outcomes. Efflux is under the control of transporter post-translational modifications that synergize with other regulatory events, and this review will summarize our knowledge of these processes and their role in drug mechanisms.
Collapse
Affiliation(s)
- Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
8
|
Drew D, Boudker O. Ion and lipid orchestration of secondary active transport. Nature 2024; 626:963-974. [PMID: 38418916 DOI: 10.1038/s41586-024-07062-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Collapse
Affiliation(s)
- David Drew
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Licht JA, Berry SP, Gutierrez MA, Gaudet R. They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577062. [PMID: 38352416 PMCID: PMC10862720 DOI: 10.1101/2024.01.24.577062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.
Collapse
Affiliation(s)
- Jacob A. Licht
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Samuel P. Berry
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael A. Gutierrez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Present address: Novartis Biomedical Research, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Lead contact
| |
Collapse
|
10
|
Ruiz Munevar M, Rizzi V, Portioli C, Vidossich P, Cao E, Parrinello M, Cancedda L, De Vivo M. Cation Chloride Cotransporter NKCC1 Operates through a Rocking-Bundle Mechanism. J Am Chem Soc 2024; 146:552-566. [PMID: 38146212 PMCID: PMC10786066 DOI: 10.1021/jacs.3c10258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
The sodium, potassium, and chloride cotransporter 1 (NKCC1) plays a key role in tightly regulating ion shuttling across cell membranes. Lately, its aberrant expression and function have been linked to numerous neurological disorders and cancers, making it a novel and highly promising pharmacological target for therapeutic interventions. A better understanding of how NKCC1 dynamically operates would therefore have broad implications for ongoing efforts toward its exploitation as a therapeutic target through its modulation. Based on recent structural data on NKCC1, we reveal conformational motions that are key to its function. Using extensive deep-learning-guided atomistic simulations of NKCC1 models embedded into the membrane, we captured complex dynamical transitions between alternate open conformations of the inner and outer vestibules of the cotransporter and demonstrated that NKCC1 has water-permeable states. We found that these previously undefined conformational transitions occur via a rocking-bundle mechanism characterized by the cooperative angular motion of transmembrane helices (TM) 4 and 9, with the contribution of the extracellular tip of TM 10. We found these motions to be critical in modulating ion transportation and in regulating NKCC1's water transporting capabilities. Specifically, we identified interhelical dynamical contacts between TM 10 and TM 6, which we functionally validated through mutagenesis experiments of 4 new targeted NKCC1 mutants. We conclude showing that those 4 residues are highly conserved in most Na+-dependent cation chloride cotransporters (CCCs), which highlights their critical mechanistic implications, opening the way to new strategies for NKCC1's function modulation and thus to potential drug action on selected CCCs.
Collapse
Affiliation(s)
- Manuel
José Ruiz Munevar
- Laboratory
of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Valerio Rizzi
- Biomolecular
& Pharmaceutical Modelling Group, Université
de Genève, Rue Michel-Servet 1, Geneva CH-1211 4, Switzerland
| | - Corinne Portioli
- Laboratory
of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Laboratory
of Brain Development and Disease, Istituto
Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory
of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Erhu Cao
- Department
of Biochemistry, University of Utah School
of Medicine, Salt Lake City, Utah 84112-5650, United States
| | - Michele Parrinello
- Laboratory
of Atomistic Simulations, Istituto Italiano
di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Laura Cancedda
- Laboratory
of Brain Development and Disease, Istituto
Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory
of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
11
|
Pyrris Y, Papadaki GF, Mikros E, Diallinas G. The last two transmembrane helices in the APC-type FurE transporter act as an intramolecular chaperone essential for concentrative ER-exit. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:1-15. [PMID: 38225947 PMCID: PMC10788122 DOI: 10.15698/mic2024.01.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
FurE is a H+ symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus Aspergillus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters. APC-type transporters are characterised by a 5+5 inverted repeat fold made of ten transmembrane segments (TMS1-10) and function through the rocking-bundle mechanism. Most APC-type transporters possess two extra C-terminal TMS segments (TMS11-12), the function of which remains elusive. Here we present a systematic mutational analysis of TMS11-12 of FurE and show that two specific aromatic residues in TMS12, Trp473 and Tyr484, are essential for ER-exit and trafficking to the plasma membrane (PM). Molecular modeling shows that Trp473 and Tyr484 might be essential through dynamic interactions with residues in TMS2 (Leu91), TMS3 (Phe111), TMS10 (Val404, Asp406) and other aromatic residues in TMS12. Genetic analysis confirms the essential role of Phe111, Asp406 and TMS12 aromatic residues in FurE ER-exit. We further show that co-expression of FurE-Y484F or FurE-W473A with wild-type FurE leads to a dominant negative phenotype, compatible with the concept that FurE molecules oligomerize or partition in specific microdomains to achieve concentrative ER-exit and traffic to the PM. Importantly, truncated FurE versions lacking TMS11-12 are unable to reproduce a negative effect on the trafficking of co-expressed wild-type FurE. Overall, we show that TMS11-12 acts as an intramolecular chaperone for proper FurE folding, which seems to provide a structural code for FurE partitioning in ER-exit sites.
Collapse
Affiliation(s)
- Yiannis Pyrris
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15784, Greece
| | - Georgia F. Papadaki
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15784, Greece
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15771, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15784, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013, Greece
| |
Collapse
|
12
|
Hiraizumi M, Akashi T, Murasaki K, Kishida H, Kumanomidou T, Torimoto N, Nureki O, Miyaguchi I. Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter. Nat Struct Mol Biol 2024; 31:159-169. [PMID: 38057552 PMCID: PMC10803289 DOI: 10.1038/s41594-023-01134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/22/2023] [Indexed: 12/08/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) is imporant in glucose reabsorption. SGLT2 inhibitors suppress renal glucose reabsorption, therefore reducing blood glucose levels in patients with type 2 diabetes. We and others have developed several SGLT2 inhibitors starting from phlorizin, a natural product. Using cryo-electron microscopy, we present the structures of human (h)SGLT2-MAP17 complexed with five natural or synthetic inhibitors. The four synthetic inhibitors (including canagliflozin) bind the transporter in the outward conformations, while phlorizin binds it in the inward conformation. The phlorizin-hSGLT2 interaction exhibits biphasic kinetics, suggesting that phlorizin alternately binds to the extracellular and intracellular sides. The Na+-bound outward-facing and unbound inward-open structures of hSGLT2-MAP17 suggest that the MAP17-associated bundle domain functions as a scaffold, with the hash domain rotating around the Na+-binding site. Thus, Na+ binding stabilizes the outward-facing conformation, and its release promotes state transition to inward-open conformation, exhibiting a role of Na+ in symport mechanism. These results provide structural evidence for the Na+-coupled alternating-access mechanism proposed for the transporter family.
Collapse
Affiliation(s)
- Masahiro Hiraizumi
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Tomoya Akashi
- DMPK Research Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Kouta Murasaki
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Hiroyuki Kishida
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Taichi Kumanomidou
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Nao Torimoto
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Ikuko Miyaguchi
- Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.
| |
Collapse
|
13
|
Paul A, Shukla D. Oligomerization of Monoamine Transporters. Subcell Biochem 2024; 104:119-137. [PMID: 38963486 DOI: 10.1007/978-3-031-58843-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Transporters of the monoamine transporter (MAT) family regulate the uptake of important neurotransmitters like dopamine, serotonin, and norepinephrine. The MAT family functions using the electrochemical gradient of ions across the membrane and comprises three transporters, dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). MAT transporters have been observed to exist in monomeric states to higher-order oligomeric states. Structural features, allosteric modulation, and lipid environment regulate the oligomerization of MAT transporters. NET and SERT oligomerization are regulated by levels of PIP2 present in the membrane. The kink present in TM12 in the MAT family is crucial for dimer interface formation. Allosteric modulation in the dimer interface hinders dimer formation. Oligomerization also influences the transporters' function, trafficking, and regulation. This chapter will focus on recent studies on monoamine transporters and discuss the factors affecting their oligomerization and its impact on their function.
Collapse
Affiliation(s)
- Arnav Paul
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Center for Biophysics and Quantitative Biology, Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
14
|
Cellier MFM. Slc11 Synapomorphy: A Conserved 3D Framework Articulating Carrier Conformation Switch. Int J Mol Sci 2023; 24:15076. [PMID: 37894758 PMCID: PMC10606218 DOI: 10.3390/ijms242015076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Transmembrane carriers of the Slc11 family catalyze proton (H+)-dependent uptake of divalent metal ions (Me2+) such as manganese and iron-vital elements coveted during infection. The Slc11 mechanism of high-affinity Me2+ cell import is selective and conserved between prokaryotic (MntH) and eukaryotic (Nramp) homologs, though processes coupling the use of the proton motive force to Me2+ uptake evolved repeatedly. Adding bacterial piracy of Nramp genes spread in distinct environmental niches suggests selective gain of function that may benefit opportunistic pathogens. To better understand Slc11 evolution, Alphafold (AF2)/Colabfold (CF) 3D predictions for bacterial sequences from sister clades of eukaryotic descent (MCb and MCg) were compared using both native and mutant templates. AF2/CF model an array of native MCb intermediates spanning the transition from outwardly open (OO) to inwardly open (IO) carriers. In silico mutagenesis targeting (i) a set of (evolutionarily coupled) sites that may define Slc11 function (putative synapomorphy) and (ii) residues from networked communities evolving during MCb transition indicates that Slc11 synapomorphy primarily instructs a Me2+-selective conformation switch which unlocks carrier inner gate and contributes to Me2+ binding site occlusion and outer gate locking. Inner gate opening apparently proceeds from interaction between transmembrane helix (h) h5, h8 and h1a. MCg1 xenologs revealed marked differences in carrier shape and plasticity, owing partly to an altered intramolecular H+ network. Yet, targeting Slc11 synapomorphy also converted MCg1 IO models to an OO state, apparently mobilizing the same residues to control gates. But MCg1 response to mutagenesis differed, with extensive divergence within this clade correlating with MCb-like modeling properties. Notably, MCg1 divergent epistasis marks the emergence of the genus Bordetella-Achromobacter. Slc11 synapomorphy localizes to the 3D areas that deviate least among MCb and MCg1 models (either IO or OO) implying that it constitutes a 3D network of residues articulating a Me2+-selective carrier conformation switch which is maintained in fast-evolving clades at the cost of divergent epistatic interactions impacting carrier shape and dynamics.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC H7V 1B7, Canada
| |
Collapse
|
15
|
Sever M, Merzel F. Influence of SGLT1 Sugar Uptake Inhibitors on Water Transport. Molecules 2023; 28:5295. [PMID: 37513169 PMCID: PMC10385929 DOI: 10.3390/molecules28145295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Sodium glucose cotransporters (SGLTs) are cotransporters located in the cell membrane of various epithelia that uptake glucose or galactose and sodium into the cell. Its founding member, SGLT1, represents a major pharmaceutically relevant target protein for development of new antidiabetic drugs, in addition to being the target protein of the oral rehydration therapy. Previous studies focused primarily on the transport of substrates and ions, while our study focuses on the effect of water transport. SGLT1 is implicated in the absorption of water, yet the exact mechanism of how the water absorption occurs or how inhibitors of SGLT1, such as phlorizin, are able to inhibit it is still unclear. Here we present a comprehensive study based on molecular dynamics simulations with the aim of determining the influence of the energetic and dynamic properties of SGLT1, which are influenced by selected sugar uptake inhibitors on water permeation.
Collapse
Affiliation(s)
- Marko Sever
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Sever M, Merzel F. Collective Domain Motion Facilitates Water Transport in SGLT1. Int J Mol Sci 2023; 24:10528. [PMID: 37445706 DOI: 10.3390/ijms241310528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The human sodium-glucose cotransporter protein (SGLT1) is an important representative of the sodium solute symporters belonging to the secondary active transporters that are critical to the homeostasis of sugar, sodium, and water in the cell. The underlying transport mechanism of SGLT1 is based on switching between inward- and outward-facing conformations, known as the alternating access model, which is crucial for substrate transport, and has also been postulated for water permeation. However, the nature of water transport remains unclear and is disputed along the passive and active transport, with the latter postulating the presence of the pumping effect. To better examine the water transport in SGLT1, we performed a series of equilibrium all-atom molecular dynamics simulations, totaling over 6 μs of sample representative conformational states of SGLT1 and its complexes, with the natural substrates, ions, and inhibitors. In addition to elucidating the basic physical factors influencing water permeation, such as channel openings and energetics, we focus on dynamic flexibility and its relationship with domain motion. Our results clearly demonstrate a dependence of instantaneous water flux on the channel opening and local water diffusion in the channel, strongly supporting the existence of a passive water transport in SGLT1. In addition, a strong correlation found between the local water diffusion and protein domain motion, resembling the "rocking-bundle" motion, reveals its facilitating role in the water transport.
Collapse
Affiliation(s)
- Marko Sever
- Theory Departnemt, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Franci Merzel
- Theory Departnemt, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Cui W, Niu Y, Sun Z, Liu R, Chen L. Structures of human SGLT in the occluded state reveal conformational changes during sugar transport. Nat Commun 2023; 14:2920. [PMID: 37217492 DOI: 10.1038/s41467-023-38720-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Sodium-Glucose Cotransporters (SGLT) mediate the uphill uptake of extracellular sugars and play fundamental roles in sugar metabolism. Although their structures in inward-open and outward-open conformations are emerging from structural studies, the trajectory of how SGLTs transit from the outward-facing to the inward-facing conformation remains unknown. Here, we present the cryo-EM structures of human SGLT1 and SGLT2 in the substrate-bound state. Both structures show an occluded conformation, with not only the extracellular gate but also the intracellular gate tightly sealed. The sugar substrate are caged inside a cavity surrounded by TM1, TM2, TM3, TM6, TM7, and TM10. Further structural analysis reveals the conformational changes associated with the binding and release of substrates. These structures fill a gap in our understanding of the structural mechanisms of SGLT transporters.
Collapse
Affiliation(s)
- Wenhao Cui
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Yange Niu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Zejian Sun
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.
- National Biomedical Imaging Center, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
18
|
Sauve S, Williamson J, Polasa A, Moradi M. Ins and Outs of Rocker Switch Mechanism in Major Facilitator Superfamily of Transporters. MEMBRANES 2023; 13:membranes13050462. [PMID: 37233523 DOI: 10.3390/membranes13050462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
The major facilitator superfamily (MFS) of transporters consists of three classes of membrane transporters: symporters, uniporters, and antiporters. Despite such diverse functions, MFS transporters are believed to undergo similar conformational changes within their distinct transport cycles, known as the rocker-switch mechanism. While the similarities between conformational changes are noteworthy, the differences are also important since they could potentially explain the distinct functions of symporters, uniporters, and antiporters of the MFS superfamily. We reviewed a variety of experimental and computational structural data on a select number of antiporters, symporters, and uniporters from the MFS family to compare the similarities and differences of the conformational dynamics of three different classes of transporters.
Collapse
Affiliation(s)
- Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Joseph Williamson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
19
|
Yue Z, Li C, Voth GA. The role of conformational change and key glutamic acid residues in the ClC-ec1 antiporter. Biophys J 2023; 122:1068-1085. [PMID: 36698313 PMCID: PMC10111279 DOI: 10.1016/j.bpj.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The triple glutamine (Q) mutant (QQQ) structure of a Cl-/H+ antiporter from Escherichia coli (ClC-ec1) displaying a novel backbone arrangement has been used to challenge the long-held notion that Cl-/H+ antiporters do not operate through large conformational motions. The QQQ mutant substitutes the glutamine residue for an external glutamate E148, an internal glutamate E203, and a third glutamate E113 that hydrogen-bonds with E203. However, it is unknown if QQQ represents a physiologically relevant state, as well as how the protonation of the wild-type glutamates relates to the global dynamics. We herein apply continuous constant-pH molecular dynamics to investigate the H+-coupled dynamics of ClC-ec1. Although any large-scale conformational rearrangement upon acidification would be due to the accumulation of excess charge within the protein, protonation of the glutamates significantly impacts mainly the local structure and dynamics. Despite the fact that the extracellular pore enlarges at acidic pHs, an occluded ClC-ec1 within the active pH range of 3.5-7.5 requires a protonated E148 to facilitate extracellular Cl- release. E203 is also involved in the intracellular H+ transfer as an H+ acceptor. The water wire connection of E148 with the intracellular solution is regulated by the charge states of the E113/E203 dyad with coupled proton titration. However, the dynamics extracted from our simulations are not QQQ-like, indicating that the QQQ mutant does not represent the behavior of the wild-type ClC-ec1. These findings reinforce the necessity of having a protonatable residue at the E203 position in ClC-ec1 and suggest that a higher level of complexity exists for the intracellular H+ transfer in Cl-/H+ antiporters.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Bazzone A, Zerlotti R, Barthmes M, Fertig N. Functional characterization of SGLT1 using SSM-based electrophysiology: Kinetics of sugar binding and translocation. Front Physiol 2023; 14:1058583. [PMID: 36824475 PMCID: PMC9941201 DOI: 10.3389/fphys.2023.1058583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Beside the ongoing efforts to determine structural information, detailed functional studies on transporters are essential to entirely understand the underlying transport mechanisms. We recently found that solid supported membrane-based electrophysiology (SSME) enables the measurement of both sugar binding and transport in the Na+/sugar cotransporter SGLT1 (Bazzone et al, 2022a). Here, we continued with a detailed kinetic characterization of SGLT1 using SSME, determining KM and KD app for different sugars, kobs values for sugar-induced conformational transitions and the effects of Na+, Li+, H+ and Cl- on sugar binding and transport. We found that the sugar-induced pre-steady-state (PSS) charge translocation varies with the bound ion (Na+, Li+, H+ or Cl-), but not with the sugar species, indicating that the conformational state upon sugar binding depends on the ion. Rate constants for the sugar-induced conformational transitions upon binding to the Na+-bound carrier range from 208 s-1 for D-glucose to 95 s-1 for 3-OMG. In the absence of Na+, rate constants are decreased, but all sugars bind to the empty carrier. From the steady-state transport current, we found a sequence for sugar specificity (Vmax/KM): D-glucose > MDG > D-galactose > 3-OMG > D-xylose. While KM differs 160-fold across tested substrates and plays a major role in substrate specificity, Vmax only varies by a factor of 1.9. Interestingly, D-glucose has the lowest Vmax across all tested substrates, indicating a rate limiting step in the sugar translocation pathway following the fast sugar-induced electrogenic conformational transition. SGLT1 specificity for D-glucose is achieved by optimizing two ratios: the sugar affinity of the empty carrier for D-glucose is similarly low as for all tested sugars (KD,K app = 210 mM). Affinity for D-glucose increases 14-fold (KD,Na app = 15 mM) in the presence of sodium as a result of cooperativity. Apparent affinity for D-glucose during transport increases 8-fold (KM = 1.9 mM) compared to KD,Na app due to optimized kinetics. In contrast, KM and KD app values for 3-OMG and D-xylose are of similar magnitude. Based on our findings we propose an 11-state kinetic model, introducing a random binding order and intermediate states corresponding to the electrogenic transitions detected via SSME upon substrate binding.
Collapse
Affiliation(s)
- Andre Bazzone
- Nanion Technologies GmbH, Munich, Germany,*Correspondence: Andre Bazzone,
| | - Rocco Zerlotti
- Nanion Technologies GmbH, Munich, Germany,Department of Structural Biology, Faculty of Biology and Pre-Clinics, Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
21
|
Niu Y, Cui W, Liu R, Wang S, Ke H, Lei X, Chen L. Structural mechanism of SGLT1 inhibitors. Nat Commun 2022; 13:6440. [PMID: 36307403 PMCID: PMC9616851 DOI: 10.1038/s41467-022-33421-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022] Open
Abstract
Sodium glucose co-transporters (SGLT) harness the electrochemical gradient of sodium to drive the uphill transport of glucose across the plasma membrane. Human SGLT1 (hSGLT1) plays a key role in sugar uptake from food and its inhibitors show promise in the treatment of several diseases. However, the inhibition mechanism for hSGLT1 remains elusive. Here, we present the cryo-EM structure of the hSGLT1-MAP17 hetero-dimeric complex in the presence of the high-affinity inhibitor LX2761. LX2761 locks the transporter in an outward-open conformation by wedging inside the substrate-binding site and the extracellular vestibule of hSGLT1. LX2761 blocks the putative water permeation pathway of hSGLT1. The structure also uncovers the conformational changes of hSGLT1 during transitions from outward-open to inward-open states.
Collapse
Affiliation(s)
- Yange Niu
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, Beijing, China
| | - Wenhao Cui
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, Beijing, China ,grid.27255.370000 0004 1761 1174Taishan College, Shandong University, Qingdao, China
| | - Rui Liu
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, Beijing, China
| | - Sanshan Wang
- grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China ,grid.454727.7Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing, China
| | - Han Ke
- grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China ,grid.454727.7Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing, China
| | - Xiaoguang Lei
- grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China ,grid.454727.7Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing, China
| | - Lei Chen
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
22
|
Neumann C, Rosenbæk LL, Flygaard RK, Habeck M, Karlsen JL, Wang Y, Lindorff‐Larsen K, Gad HH, Hartmann R, Lyons JA, Fenton RA, Nissen P. Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity. EMBO J 2022; 41:e110169. [PMID: 36239040 PMCID: PMC9713717 DOI: 10.15252/embj.2021110169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
The sodium-potassium-chloride transporter NKCC1 of the SLC12 family performs Na+ -dependent Cl- - and K+ -ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the central nervous system. Here, we present a 2.6 Å resolution cryo-electron microscopy structure of human NKCC1 in the substrate-loaded (Na+ , K+ , and 2 Cl- ) and occluded, inward-facing state that has also been observed for the SLC6-type transporters MhsT and LeuT. Cl- binding at the Cl1 site together with the nearby K+ ion provides a crucial bridge between the LeuT-fold scaffold and bundle domains. Cl- -ion binding at the Cl2 site seems to undertake a structural role similar to conserved glutamate of SLC6 transporters and may allow for Cl- -sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations, we describe a putative Na+ release pathway along transmembrane helix 5 coupled to the Cl2 site. The results provide insight into the structure-function relationship of NKCC1 with broader implications for other SLC12 family members.
Collapse
Affiliation(s)
- Caroline Neumann
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Rasmus Kock Flygaard
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Michael Habeck
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Yong Wang
- Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark,Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Kresten Lindorff‐Larsen
- Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Hans Henrik Gad
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Rune Hartmann
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Joseph Anthony Lyons
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark,Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | | | - Poul Nissen
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
23
|
del Alamo D, DeSousa L, Nair RM, Rahman S, Meiler J, Mchaourab HS. Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter. Proc Natl Acad Sci U S A 2022; 119:e2206129119. [PMID: 35969794 PMCID: PMC9407458 DOI: 10.1073/pnas.2206129119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
The Amino Acid-Polyamine-Organocation (APC) transporter GadC contributes to the survival of pathogenic bacteria under extreme acid stress by exchanging extracellular glutamate for intracellular γ-aminobutyric acid (GABA). Its structure, determined in an inward-facing conformation at alkaline pH, consists of the canonical LeuT-fold with a conserved five-helix inverted repeat, thereby resembling functionally divergent transporters such as the serotonin transporter SERT and the glucose-sodium symporter SGLT1. However, despite this structural similarity, it is unclear if the conformational dynamics of antiporters such as GadC follow the blueprint of these or other LeuT-fold transporters. Here, we used double electron-electron resonance (DEER) spectroscopy to monitor the conformational dynamics of GadC in lipid bilayers in response to acidification and substrate binding. To guide experimental design and facilitate the interpretation of the DEER data, we generated an ensemble of structural models in multiple conformations using a recently introduced modification of AlphaFold2 . Our experimental results reveal acid-induced conformational changes that dislodge the Cterminus from the permeation pathway coupled with rearrangement of helices that enables isomerization between inward- and outward-facing states. The substrate glutamate, but not GABA, modulates the dynamics of an extracellular thin gate without shifting the equilibrium between inward- and outward-facing conformations. In addition to introducing an integrated methodology for probing transporter conformational dynamics, the congruence of the DEER data with patterns of structural rearrangements deduced from ensembles of AlphaFold2 models illuminates the conformational cycle of GadC underpinning transport and exposes yet another example of the divergence between the dynamics of different families in the LeuT-fold.
Collapse
Affiliation(s)
- Diego del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212
| | - Lillian DeSousa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Rahul M. Nair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Suhaila Rahman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany 04109
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| |
Collapse
|
24
|
Sharma P, Parakh SK, Singh SP, Parra-Saldívar R, Kim SH, Varjani S, Tong YW. A critical review on microbes-based treatment strategies for mitigation of toxic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155444. [PMID: 35461941 DOI: 10.1016/j.scitotenv.2022.155444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Contamination of the environment through toxic pollutants poses a key risk to the environment due to irreversible environmental damage(s). Industrialization and urbanization produced harmful elements such as petrochemicals, agrochemicals, pharmaceuticals, nanomaterials, and herbicides that are intentionally or unintentionally released into the water system, threatening biodiversity, the health of animals, and humans. Heavy metals (HMs) in water, for example, can exist in a variety of forms that are inclined by climate features like the presence of various types of organic matter, pH, water system hardness, transformation, and bioavailability. Biological treatment is an important tool for removing toxic contaminants from the ecosystem, and it has piqued the concern of investigators over the centuries. In situ bioremediation such as biosparging, bioventing, biostimulation, bioaugmentation, and phytoremediation and ex-situ bioremediation includes composting, land farming, biopiles, and bioreactors. In the last few years, scientific understanding of microbial relations with particular chemicals has aided in the protection of the environment. Despite intensive studies being carried out on the mitigation of toxic pollutants, there have been limited efforts performed to discuss the solutions to tackle the limitations and approaches for the remediation of heavy metals holistically. This paper summarizes the risk assessment of HMs on aquatic creatures, the environment, humans, and animals. The content of this paper highlights the principles and limitations of microbial remediation to address the technological challenges. The coming prospect and tasks of evaluating the impact of different treatment skills for pollutant remediation have been reviewed in detail. Moreover, genetically engineered microbes have emerged as powerful bioremediation capabilities with significant potential for expelling toxic elements. With appropriate examples, current challenging issues and boundaries related to the deployment of genetically engineered microbes as bioremediation on polluted soils are emphasized.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India
| | - Roberto Parra-Saldívar
- Escuela de Ingeniería y Ciencias-Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
25
|
Del Alamo D, Meiler J, Mchaourab HS. Principles of Alternating Access in LeuT-fold Transporters: Commonalities and Divergences. J Mol Biol 2022; 434:167746. [PMID: 35843285 DOI: 10.1016/j.jmb.2022.167746] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Found in all domains of life, transporters belonging to the LeuT-fold class mediate the import and exchange of hydrophilic and charged compounds such as amino acids, metals, and sugar molecules. Nearly two decades of investigations on the eponymous bacterial transporter LeuT have yielded a library of high-resolution snapshots of its conformational cycle linked by solution-state experimental data obtained from multiple techniques. In parallel, its topology has been observed in symporters and antiporters characterized by a spectrum of substrate specificities and coupled to gradients of distinct ions. Here we review and compare mechanistic models of transport for LeuT, its well-studied homologs, as well as functionally distant members of the fold, emphasizing the commonalities and divergences in alternating access and the corresponding energy landscapes. Our integrated summary illustrates how fold conservation, a hallmark of the LeuT fold, coincides with divergent choreographies of alternating access that nevertheless capitalize on recurrent structural motifs. In addition, it highlights the knowledge gap that hinders the leveraging of the current body of research into detailed mechanisms of transport for this important class of membrane proteins.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA. https://twitter.com/DdelAlamo
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, DE, USA. https://twitter.com/MeilerLab
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
26
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
27
|
Rullo-Tubau J, Bartoccioni P, Llorca O, Errasti-Murugarren E, Palacín M. HATs meet structural biology. Curr Opin Struct Biol 2022; 74:102389. [DOI: 10.1016/j.sbi.2022.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
|
28
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
29
|
Beckstein O, Naughton F. General principles of secondary active transporter function. BIOPHYSICS REVIEWS 2022; 3:011307. [PMID: 35434715 PMCID: PMC8984959 DOI: 10.1063/5.0047967] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/23/2022] [Indexed: 04/13/2023]
Abstract
Transport of ions and small molecules across the cell membrane against electrochemical gradients is catalyzed by integral membrane proteins that use a source of free energy to drive the energetically uphill flux of the transported substrate. Secondary active transporters couple the spontaneous influx of a "driving" ion such as Na+ or H+ to the flux of the substrate. The thermodynamics of such cyclical non-equilibrium systems are well understood, and recent work has focused on the molecular mechanism of secondary active transport. The fact that these transporters change their conformation between an inward-facing and outward-facing conformation in a cyclical fashion, called the alternating access model, is broadly recognized as the molecular framework in which to describe transporter function. However, only with the advent of high resolution crystal structures and detailed computer simulations, it has become possible to recognize common molecular-level principles between disparate transporter families. Inverted repeat symmetry in secondary active transporters has shed light onto how protein structures can encode a bi-stable two-state system. Based on structural data, three broad classes of alternating access transitions have been described as rocker-switch, rocking-bundle, and elevator mechanisms. More detailed analysis indicates that transporters can be understood as gated pores with at least two coupled gates. These gates are not just a convenient cartoon element to illustrate a putative mechanism but map to distinct parts of the transporter protein. Enumerating all distinct gate states naturally includes occluded states in the alternating access picture and also suggests what kind of protein conformations might be observable. By connecting the possible conformational states and ion/substrate bound states in a kinetic model, a unified picture emerges in which the symporter, antiporter, and uniporter functions are extremes in a continuum of functionality. As usual with biological systems, few principles and rules are absolute and exceptions are discussed as well as how biological complexity may be integrated in quantitative kinetic models that may provide a bridge from the structure to function.
Collapse
Affiliation(s)
- Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
30
|
Sauer DB, Wang B, Sudar JC, Song J, Marden J, Rice WJ, Wang DN. The ups and downs of elevator-type di-/tricarboxylate membrane transporters. FEBS J 2022; 289:1515-1523. [PMID: 34403567 PMCID: PMC9832446 DOI: 10.1111/febs.16158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023]
Abstract
The divalent anion sodium symporter (DASS) family contains both sodium-driven anion cotransporters and anion/anion exchangers. The family belongs to a broader ion transporter superfamily (ITS), which comprises 24 families of transporters, including those of AbgT antibiotic efflux transporters. The human proteins in the DASS family play major physiological roles and are drug targets. We recently determined multiple structures of the human sodium-dependent citrate transporter (NaCT) and the succinate/dicarboxylate transporter from Lactobacillus acidophilus (LaINDY). Structures of both proteins show high degrees of structural similarity to the previously determined VcINDY fold. Conservation between these DASS protein structures and those from the AbgT family indicates that the VcINDY fold represents the overall protein structure for the entire ITS. The new structures of NaCT and LaINDY are captured in the inward- or outward-facing conformations, respectively. The domain arrangements in these structures agree with a rigid body elevator-type transport mechanism for substrate translocation across the membrane. Two separate NaCT structures in complex with a substrate or an inhibitor allowed us to explain the inhibition mechanism and propose a detailed classification scheme for grouping disease-causing mutations in the human protein. Structural understanding of multiple kinetic states of DASS proteins is a first step toward the detailed characterization of their entire transport cycle.
Collapse
Affiliation(s)
- David B. Sauer
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY 10016, USA
| | - Joseph C. Sudar
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jinmei Song
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jennifer Marden
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - William J. Rice
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY 10016, USA
| | - Da-Neng Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Gradisch R, Szöllősi D, Niello M, Lazzarin E, Sitte HH, Stockner T. Occlusion of the human serotonin transporter is mediated by serotonin-induced conformational changes in the bundle domain. J Biol Chem 2022; 298:101613. [PMID: 35065961 PMCID: PMC8867121 DOI: 10.1016/j.jbc.2022.101613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
The human serotonin transporter (hSERT) terminates neurotransmission by removing serotonin (5HT) from the synaptic cleft, an essential process for proper functioning of serotonergic neurons. Structures of the hSERT have revealed its molecular architecture in four conformations, including the outward-open and occluded states, and show the transporter's engagement with co-transported ions and the binding mode of inhibitors. In this study, we investigated the molecular mechanism by which the hSERT occludes and sequesters the substrate 5HT. This first step of substrate uptake into cells is a structural change consisting of the transition from the outward-open to the occluded state. Inhibitors such as the antidepressants citalopram, fluoxetine, and sertraline inhibit this step of the transport cycle. Using molecular dynamics simulations, we reached a fully occluded state, in which the transporter-bound 5HT becomes fully shielded from both sides of the membrane by two closed hydrophobic gates. Analysis of 5HT-triggered occlusion showed that bound 5HT serves as an essential trigger for transporter occlusion. Moreover, simulations revealed a complex sequence of steps and showed that movements of bundle domain helices are only partially correlated. 5HT-triggered occlusion is initially dominated by movements of transmembrane helix 1b, while in the final step, only transmembrane helix 6a moves and relaxes an intermediate change in its secondary structure.
Collapse
Affiliation(s)
- Ralph Gradisch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erika Lazzarin
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Berlaga A, Kolomeisky AB. Theoretical study of active secondary transport: Unexpected differences in molecular mechanisms for antiporters and symporters. J Chem Phys 2022; 156:085102. [DOI: 10.1063/5.0082589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Successful functioning of biological cells relies on efficient translocation of different materials across cellular membranes. An important part of this transportation system is membrane channels that are known as antiporters and symporters. They exploit the energy stored as a trans-membrane gradient of one type of molecules to transport the other types of molecules against their gradients. For symporters, the directions of both fluxes for driving and driven species coincide, while for antiporters, the fluxes move in opposite directions. There are surprising experimental observations that despite differing only by the direction of transport fluxes, the molecular mechanisms of translocation adopted by antiporters and symporters seem to be drastically different. We present chemical-kinetic models to quantitatively investigate this phenomenon. Our theoretical approach allows us to explain why antiporters mostly utilize a single-site transportation when only one molecule of any type might be associated with the channel. At the same time, the transport in symporters requires two molecules of different types to be simultaneously associated with the channel. In addition, we investigate the kinetic constraints and efficiency of symporters and compare them with the same properties of antiporters. Our theoretical analysis clarifies some important physical–chemical features of cellular trans-membrane transport.
Collapse
Affiliation(s)
- Alex Berlaga
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Anatoly B. Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
33
|
Meinke C, Quinlan MA, Paffenroth KC, Harrison FE, Fenollar-Ferrer C, Katamish RM, Stillman I, Ramamoorthy S, Blakely RD. Serotonin Transporter Ala276 Mouse: Novel Model to Assess the Neurochemical and Behavioral Impact of Thr276 Phosphorylation In Vivo. Neurochem Res 2022; 47:37-60. [PMID: 33830406 PMCID: PMC11574550 DOI: 10.1007/s11064-021-03299-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
The serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressants and psychostimulants. Human SERT coding variants have been identified in subjects with obsessive-compulsive disorder (OCD) and autism spectrum disorder (ASD) that impact transporter phosphorylation, cell surface trafficking and/or conformational dynamics. Prior to an initial description of a novel mouse line expressing the non-phosphorylatable SERT substitution Thr276Ala, we review efforts made to elucidate the structure and conformational dynamics of SERT with a focus on research implicating phosphorylation at Thr276 as a determinant of SERT conformational dynamics. Using the high-resolution structure of human SERT in inward- and outward-open conformations, we explore the conformation dependence of SERT Thr276 exposure, with results suggesting that phosphorylation is likely restricted to an inward-open conformation, consistent with prior biochemical studies. Assessment of genotypes from SERT/Ala276 heterozygous matings revealed a deviation from Mendelian expectations, with reduced numbers of Ala276 offspring, though no genotype differences were seen in growth or physical appearance. Similarly, no genotype differences were evident in midbrain or hippocampal 5-HT levels, midbrain and hippocampal SERT mRNA or midbrain protein levels, nor in midbrain synaptosomal 5-HT uptake kinetics. Behaviorally, SERT Ala276 homozygotes appeared normal in measures of anxiety and antidepressant-sensitive stress coping behavior. However, these mice displayed sex-dependent alterations in repetitive and social interactions, consistent with circuit-dependent requirements for Thr276 phosphorylation underlying these behaviors. Our findings indicate the utility of SERT Ala276 mice in evaluation of developmental, functional and behavioral consequences of regulatory SERT phosphorylation in vivo.
Collapse
Affiliation(s)
- Carina Meinke
- International Max Planck Research School for Brain and Behavior, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Meagan A Quinlan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Fiona E Harrison
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cristina Fenollar-Ferrer
- Laboratories of Molecular Genetics and Molecular Biology, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rania M Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Isabel Stillman
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | | | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA.
- Florida Atlantic University Brain Institute, Rm 109, MC-17, 5353 Parkside Dr, Jupiter, FL, 35348, USA.
| |
Collapse
|
34
|
Niu Y, Liu R, Guan C, Zhang Y, Chen Z, Hoerer S, Nar H, Chen L. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature 2022; 601:280-284. [PMID: 34880493 DOI: 10.1038/s41586-021-04212-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/03/2021] [Indexed: 01/01/2023]
Abstract
Human sodium-glucose cotransporter 2 (hSGLT2) mediates the reabsorption of the majority of filtrated glucose in the kidney1. Pharmacological inhibition of hSGLT2 by oral small-molecule inhibitors, such as empagliflozin, leads to enhanced excretion of glucose and is widely used in the clinic to manage blood glucose levels for the treatment of type 2 diabetes1. Here we determined the cryogenic electron microscopy structure of the hSGLT2-MAP17 complex in the empagliflozin-bound state to an overall resolution of 2.95 Å. Our structure shows eukaryotic SGLT-specific structural features. MAP17 interacts with transmembrane helix 13 of hSGLT2. Empagliflozin occupies both the sugar-substrate-binding site and the external vestibule to lock hSGLT2 in an outward-open conformation, thus inhibiting the transport cycle. Our work provides a framework for understanding the mechanism of SLC5A family glucose transporters and also develops a foundation for the future rational design and optimization of new inhibitors targeting these transporters.
Collapse
Affiliation(s)
- Yange Niu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Chengcheng Guan
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Zhixing Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Stefan Hoerer
- Boehringer-Ingelheim Pharma, GmbH & Co KG, Biberach, Germany
| | - Herbert Nar
- Boehringer-Ingelheim Pharma, GmbH & Co KG, Biberach, Germany
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
35
|
Huttunen J, Agami M, Tampio J, Montaser AB, Huttunen KM. Comparison of Experimental Strategies to Study l-Type Amino Acid Transporter 1 (LAT1) Utilization by Ligands. Molecules 2021; 27:molecules27010037. [PMID: 35011270 PMCID: PMC8746705 DOI: 10.3390/molecules27010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
l-Type amino acid transporter 1 (LAT1), expressed abundantly in the brain and placenta and overexpressed in several cancer cell types, has gained a lot of interest in drug research and development, as it can be utilized for brain-targeted drug delivery, as well as inhibiting the essential amino acid supply to cancer cells. The structure of LAT1 is today very well-known and the interactions of ligands at the binding site of LAT1 can be modeled and explained. However, less is known of LAT1′s life cycle within the cells. Moreover, the functionality of LAT1 can be measured by several different methods, which may vary between the laboratories and make the comparison of the results challenging. In the present study, the usefulness of indirect cis-inhibition methods and direct cellular uptake methods and their variations to interpret the interactions of LAT1-ligands were evaluated. Moreover, this study also highlights the importance of understanding the intracellular kinetics of LAT1-ligands, and how they can affect the regular function of LAT1 in critical tissues, such as the brain. Hence, it is discussed herein how the selected methodology influences the outcome and created knowledge of LAT1-utilizing compounds.
Collapse
|
36
|
Parker JL, Deme JC, Kolokouris D, Kuteyi G, Biggin PC, Lea SM, Newstead S. Molecular basis for redox control by the human cystine/glutamate antiporter system xc . Nat Commun 2021; 12:7147. [PMID: 34880232 PMCID: PMC8654953 DOI: 10.1038/s41467-021-27414-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Cysteine plays an essential role in cellular redox homoeostasis as a key constituent of the tripeptide glutathione (GSH). A rate limiting step in cellular GSH synthesis is the availability of cysteine. However, circulating cysteine exists in the blood as the oxidised di-peptide cystine, requiring specialised transport systems for its import into the cell. System xc- is a dedicated cystine transporter, importing cystine in exchange for intracellular glutamate. To counteract elevated levels of reactive oxygen species in cancerous cells system xc- is frequently upregulated, making it an attractive target for anticancer therapies. However, the molecular basis for ligand recognition remains elusive, hampering efforts to specifically target this transport system. Here we present the cryo-EM structure of system xc- in both the apo and glutamate bound states. Structural comparisons reveal an allosteric mechanism for ligand discrimination, supported by molecular dynamics and cell-based assays, establishing a mechanism for cystine transport in human cells.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| | - Justin C Deme
- Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Susan M Lea
- Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
37
|
Frangos ZJ, Cantwell Chater RP, Vandenberg RJ. Glycine Transporter 2: Mechanism and Allosteric Modulation. Front Mol Biosci 2021; 8:734427. [PMID: 34805268 PMCID: PMC8602798 DOI: 10.3389/fmolb.2021.734427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotransmitter sodium symporters (NSS) are a subfamily of SLC6 transporters responsible for regulating neurotransmitter signalling. They are a major target for psychoactive substances including antidepressants and drugs of abuse, prompting substantial research into their modulation and structure-function dynamics. Recently, a series of allosteric transport inhibitors have been identified, which may reduce side effect profiles, compared to orthosteric inhibitors. Allosteric inhibitors are also likely to provide different clearance kinetics compared to competitive inhibitors and potentially better clinical outcomes. Crystal structures and homology models have identified several allosteric modulatory sites on NSS including the vestibule allosteric site (VAS), lipid allosteric site (LAS) and cholesterol binding site (CHOL1). Whilst the architecture of eukaryotic NSS is generally well conserved there are differences in regions that form the VAS, LAS, and CHOL1. Here, we describe ligand-protein interactions that stabilize binding in each allosteric site and explore how differences between transporters could be exploited to generate NSS specific compounds with an emphasis on GlyT2 modulation.
Collapse
Affiliation(s)
- Zachary J Frangos
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ryan P Cantwell Chater
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Robert J Vandenberg
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
39
|
Berlaga A, Kolomeisky AB. Molecular Mechanisms of Active Transport in Antiporters: Kinetic Constraints and Efficiency. J Phys Chem Lett 2021; 12:9588-9594. [PMID: 34582210 DOI: 10.1021/acs.jpclett.1c02846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A vital role in supporting successful functioning of biological cells is played by membrane channels called antiporters. These channel proteins utilize the concentration gradient of one type of species to move another type of species in the opposite direction and against their concentration gradient. It is believed that antiporters operate via alternating conformational transitions that expose these proteins to different sides of the membrane, and that only thermodynamics controls the activation of these channels. Here we explicitly investigate a chemical-kinetic model of antiporters to argue that there are additional kinetic constraints that need to be satisfied for these channels to be operational. This implies that kinetics and not thermodynamics governs the functioning of antiporters. In addition, the efficiency of antiporters is analyzed and the most optimal operating conditions are discussed. Our theoretical analysis clarifies some important aspects of the molecular mechanisms of biological membrane transport.
Collapse
Affiliation(s)
- Alex Berlaga
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
40
|
Ye. M. Makogonenko RYM, Hrabovskyi OO, Bereznytskyj GK, Pyrogova LV, Gogolinskaya GK, Makogonenko YM. Chlorine-binding structures: role and organization in different proteins. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The review focuses on chloride-binding structures in the proteins of bacteria, plants, viruses and animals. The structure and amino acid composition of the chloride-binding site and its role in the functioning of structural, regulatory, transport, receptor, channel proteins, transcription factors and enzymes are considered. Data on the important role of chloride-binding structures and chloride anions in the polymerization of fibrin are presented.
Collapse
|
41
|
Bartels K, Lasitza‐Male T, Hofmann H, Löw C. Single-Molecule FRET of Membrane Transport Proteins. Chembiochem 2021; 22:2657-2671. [PMID: 33945656 PMCID: PMC8453700 DOI: 10.1002/cbic.202100106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Indexed: 12/31/2022]
Abstract
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
Collapse
Affiliation(s)
- Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| |
Collapse
|
42
|
Diallinas G. Transporter Specificity: A Tale of Loosened Elevator-Sliding. Trends Biochem Sci 2021; 46:708-717. [PMID: 33903007 DOI: 10.1016/j.tibs.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Elevator-type transporters are a group of proteins translocating nutrients and metabolites across cell membranes. Despite structural and functional differences, elevator-type transporters use a common mechanism of substrate translocation via reversible movements of a mobile core domain (the elevator), which includes the substrate binding site, along a rigid scaffold domain, stably anchored in the plasma membrane. How substrate specificity is determined in elevator transporters remains elusive. Here, I discuss how a recent report on the sliding elevator mechanism, seen under the context of genetic analysis of a prototype fungal transporter, sheds light on how specificity might be genetically modified. I propose that flexible specificity alterations might occur by 'loosening' of the sliding mechanism from tight coupling to substrate binding.
Collapse
Affiliation(s)
- George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece.
| |
Collapse
|
43
|
Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc Natl Acad Sci U S A 2021; 118:2017431118. [PMID: 33658361 DOI: 10.1073/pnas.2017431118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human GlyT1 glycine transporter requires chloride for its function. However, the mechanism by which Cl- exerts its influence is unknown. To examine the role that Cl- plays in the transport cycle, we measured the effect of Cl- on both glycine binding and conformational changes. The ability of glycine to displace the high-affinity radioligand [3H]CHIBA-3007 required Na+ and was potentiated over 1,000-fold by Cl- We generated GlyT1b mutants containing reactive cysteine residues in either the extracellular or cytoplasmic permeation pathways and measured changes in the reactivity of those cysteine residues as indicators of conformational changes in response to ions and substrate. Na+ increased accessibility in the extracellular pathway and decreased it in the cytoplasmic pathway, consistent with stabilizing an outward-open conformation as observed in other members of this transporter family. In the presence of Na+, both glycine and Cl- independently shifted the conformation of GlyT1b toward an outward-closed conformation. Together, Na+, glycine, and Cl- stabilized an inward-open conformation of GlyT1b. We then examined whether Cl- acts by interacting with a conserved glutamine to allow formation of an ion pair that stabilizes the closed state of the extracellular pathway. Molecular dynamics simulations of a GlyT1 homolog indicated that this ion pair is formed more frequently as that pathway closes. Mutation of the glutamine blocked the effect of Cl-, and substituting it with glutamate or lysine resulted in outward- or inward-facing transporter conformations, respectively. These results provide an unexpected insight into the role of Cl- in this family of transporters.
Collapse
|
44
|
Nicolàs-Aragó A, Fort J, Palacín M, Errasti-Murugarren E. Rush Hour of LATs towards Their Transport Cycle. MEMBRANES 2021; 11:602. [PMID: 34436365 PMCID: PMC8399266 DOI: 10.3390/membranes11080602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
The mammalian SLC7 family comprises the L-amino acid transporters (LATs) and the cationic amino acid transporters (CATs). The relevance of these transporters is highlighted by their involvement in several human pathologies, including inherited rare diseases and acquired diseases, such as cancer. In the last four years, several crystal or cryo-EM structures of LATs and CATs have been solved. These structures have started to fill our knowledge gap that previously was based on the structural biology of remote homologs of the amino acid-polyamine-organocation (APC) transporters. This review recovers this structural and functional information to start generating the molecular bases of the transport cycle of LATs. Special attention is given to the known transporter conformations within the transport cycle and the molecular bases for substrate interaction and translocation, including the asymmetric interaction of substrates at both sides of the plasma membrane.
Collapse
Affiliation(s)
- Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
| | - Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
| |
Collapse
|
45
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
46
|
Yan R, Li Y, Müller J, Zhang Y, Singer S, Xia L, Zhong X, Gertsch J, Altmann KH, Zhou Q. Mechanism of substrate transport and inhibition of the human LAT1-4F2hc amino acid transporter. Cell Discov 2021; 7:16. [PMID: 33758168 PMCID: PMC7988154 DOI: 10.1038/s41421-021-00247-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/30/2021] [Indexed: 12/20/2022] Open
Abstract
LAT1 (SLC7A5) is one of the representative light chain proteins of heteromeric amino acid transporters, forming a heterodimer with its heavy chain partner 4F2hc (SLC3A2). LAT1 is overexpressed in many types of tumors and mediates the transfer of drugs and hormones across the blood-brain barrier. Thus, LAT1 is considered as a drug target for cancer treatment and may be exploited for drug delivery into the brain. Here, we synthesized three potent inhibitors of human LAT1, which inhibit transport of leucine with IC50 values between 100 and 250 nM, and solved the cryo-EM structures of the corresponding LAT1-4F2hc complexes with these inhibitors bound at resolution of up to 2.7 or 2.8 Å. The protein assumes an outward-facing occluded conformation, with the inhibitors bound in the classical substrate binding pocket, but with their tails wedged between the substrate binding site and TM10 of LAT1. We also solved the complex structure of LAT1-4F2hc with 3,5-diiodo-l-tyrosine (Diiodo-Tyr) at 3.4 Å overall resolution, which revealed a different inhibition mechanism and might represent an intermediate conformation between the outward-facing occluded state mentioned above and the outward-open state. To our knowledge, this is the first time that the outward-facing conformation is revealed for the HAT family. Our results unveil more important insights into the working mechanisms of HATs and provide a structural basis for future drug design.
Collapse
Affiliation(s)
- Renhong Yan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100085, China
| | - Jennifer Müller
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1- 5/10, 8093, Zurich, Switzerland
| | - Yuanyuan Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Simon Singer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28 3012, Bern, Switzerland
| | - Lu Xia
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xinyue Zhong
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28 3012, Bern, Switzerland
| | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1- 5/10, 8093, Zurich, Switzerland.
| | - Qiang Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
47
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
48
|
Masrati G, Mondal R, Rimon A, Kessel A, Padan E, Lindahl E, Ben-Tal N. An angular motion of a conserved four-helix bundle facilitates alternating access transport in the TtNapA and EcNhaA transporters. Proc Natl Acad Sci U S A 2020; 117:31850-31860. [PMID: 33257549 PMCID: PMC7749304 DOI: 10.1073/pnas.2002710117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is ongoing debate regarding the mechanism through which cation/proton antiporters (CPAs), like Thermus thermophilus NapA (TtNapA) and Escherichia coli NapA (EcNhaA), alternate between their outward- and inward-facing conformations in the membrane. CPAs comprise two domains, and it is unclear whether the transition is driven by their rocking-bundle or elevator motion with respect to each other. Here we address this question using metadynamics simulations of TtNapA, where we bias conformational sampling along two axes characterizing the two proposed mechanisms: angular and translational motions, respectively. By applying the bias potential for the two axes simultaneously, as well as to the angular, but not the translational, axis alone, we manage to reproduce each of the two known states of TtNapA when starting from the opposite state, in support of the rocking-bundle mechanism as the driver of conformational change. Next, starting from the inward-facing conformation of EcNhaA, we sample what could be its long-sought-after outward-facing conformation and verify it using cross-linking experiments.
Collapse
Affiliation(s)
- Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ramakanta Mondal
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Abraham Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Etana Padan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Erik Lindahl
- Science for Life Laboratory, Stockholm University & KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel;
| |
Collapse
|
49
|
Jayaraman K, Das AK, Luethi D, Szöllősi D, Schütz GJ, Reith MEA, Sitte HH, Stockner T. SLC6 transporter oligomerization. J Neurochem 2020; 157:919-929. [PMID: 32767560 PMCID: PMC8247324 DOI: 10.1111/jnc.15145] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Transporters of the solute carrier 6 (SLC6) family mediate the reuptake of neurotransmitters such as dopamine, norepinephrine, serotonin, GABA, and glycine. SLC6 family members are 12 transmembrane helix‐spanning proteins that operate using the transmembrane sodium gradient for transport. These transporters assume various quaternary arrangements ranging from monomers to complex stoichiometries with multiple subunits. Dopamine and serotonin transporter oligomerization has been implicated in trafficking of newly formed proteins from the endoplasmic reticulum to the plasma membrane with a pre‐fixed assembly. Once at the plasma membrane, oligomers are kept fixed in their quaternary assembly by interaction with phosphoinositides. While it remains unclear how oligomer formation precisely affects physiological transporter function, it has been shown that oligomerization supports the activity of release‐type psychostimulants. Most recently, single molecule microscopy experiments unveiled that the stoichiometry differs between individual members of the SLC6 family. The present overview summarizes our understanding of the influence of plasma membrane constituents on transporter oligomerization, describes the known interfaces between protomers and discusses open questions. ![]()
Collapse
Affiliation(s)
- Kumaresan Jayaraman
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anand K Das
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Dino Luethi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Colas C. Toward a Systematic Structural and Functional Annotation of Solute Carriers Transporters-Example of the SLC6 and SLC7 Families. Front Pharmacol 2020; 11:1229. [PMID: 32973497 PMCID: PMC7466448 DOI: 10.3389/fphar.2020.01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
SLC transporters are emerging key drug targets. One important step for drug development is the profound understanding of the structural determinants defining the substrate selectivity of each transporter. Recently, the improvement of computational power and experimental methods such as X-ray and cryo-EM crystallography permitted to conduct structure-based studies on specific transporters having important pharmacological impact. However, a lot remains to be discovered regarding their dynamics, transport modulation and ligand recognition. A detailed functional characterization of transporters would provide opportunities to develop new compounds targeting these key drug targets. Here, we are giving an overview of two major human LeuT-fold families, SLC6 and SLC7, with an emphasis on the most relevant members of each family for drug development. We gather the most recent understanding on the structural determinants of selectivity within and across the two families. We then use this information to discuss the benefits of a more generalized structural and functional annotation of the LeuT fold and the implications of such mapping for drug discovery.
Collapse
Affiliation(s)
- Claire Colas
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| |
Collapse
|