1
|
Davidson SM, Andreadou I, Antoniades C, Bartunek J, Basso C, Brundel BJJM, Byrne RA, Chiva-Blanch G, da Costa Martins P, Evans PC, Girão H, Giricz Z, Gollmann-Tepeköylü C, Guzik T, Gyöngyösi M, Hübner N, Joner M, Kleinbongard P, Krieg T, Liehn E, Madonna R, Maguy A, Paillard M, Pesce M, Petersen SE, Schiattarella GG, Sluijter JPG, Steffens S, Streckfuss-Bömeke K, Thielmann M, Tucker A, Van Linthout S, Wijns W, Wojta J, Wu JC, Perrino C. Opportunities and challenges for the use of human samples in translational cardiovascular research: a scientific statement of the ESC Working Group on Cellular Biology of the Heart, the ESC Working Group on Cardiovascular Surgery, the ESC Council on Basic Cardiovascular Science, the ESC Scientists of Tomorrow, the European Association of Percutaneous Cardiovascular Interventions of the ESC, and the Heart Failure Association of the ESC. Cardiovasc Res 2025; 121:702-729. [PMID: 40084813 PMCID: PMC12101359 DOI: 10.1093/cvr/cvaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 03/16/2025] Open
Abstract
Animal models offer invaluable insights into disease mechanisms but cannot entirely mimic the variability and heterogeneity of human populations, nor the increasing prevalence of multi-morbidity. Consequently, employing human samples-such as whole blood or fractions, valvular and vascular tissues, myocardium, pericardium, or human-derived cells-is essential for enhancing the translational relevance of cardiovascular research. For instance, myocardial tissue slices, which preserve crucial structural and functional characteristics of the human heart, can be used in vitro to examine drug responses. Human blood serves as a rich source of biomarkers, including extracellular vesicles, various types of RNA (miRNA, lncRNA, and circRNAs), circulating inflammatory cells, and endothelial colony-forming cells, facilitating detailed studies of cardiovascular diseases. Primary cardiomyocytes and vascular cells isolated from human tissues are invaluable for mechanistic investigations in vitro. In cases where these are unavailable, human induced pluripotent stem cells serve as effective substitutes, albeit with specific limitations. However, the use of human samples presents challenges such as ethical approvals, tissue procurement and storage, variability in patient genetics and treatment regimens, and the selection of appropriate control samples. Biobanks are central to the efficient use of these scarce and valuable resources. This scientific statement discusses opportunities to implement the use of human samples for cardiovascular research within specific clinical contexts, offers a practical framework for acquiring and utilizing different human materials, and presents examples of human sample applications for specific cardiovascular diseases, providing a valuable resource for clinicians, translational and basic scientists engaged in cardiovascular research.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Ioanna Andreadou
- School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalambos Antoniades
- RDM Division of Cardiovascular Medicine, Acute Multidisciplinary Imaging and Interventional Centre, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Cardiovascular Pathology, University of Padua, Padua, Italy
| | - Bianca J J M Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Robert A Byrne
- Cardiovascular Research Institute Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gemma Chiva-Blanch
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Obesity and Nutrition Physiopathology, Instituto de Salud Carlos III, Madrid, Spain
| | - Paula da Costa Martins
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paul C Evans
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Henrique Girão
- Center for Innovative Biomedicine and Biotechnology, Clinical Academic Centre of Coimbra, Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Coimbra, Portugal
| | - Zoltan Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Can Gollmann-Tepeköylü
- Department for Cardiac Surgery, Cardiac Regeneration Research, Medical University of Innsbruck, Anichstraße 35 A, 6020 Innsbruck, Austria
| | - Tomasz Guzik
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Norbert Hübner
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Michael Joner
- Department of Cardiology, German Heart Center Munich, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Petra Kleinbongard
- Faculty of Medicine University of Duisburg-Essen, Institute of Pathophysiology, Duisburg-Essen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elisa Liehn
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rosalinda Madonna
- Cardiology Division, Department of Pathology, University of Pisa, Pisa, Italy
| | - Ange Maguy
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Melanie Paillard
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Aerospace and Mechanical Engineering, Politecnico di Torino, Italy
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, UK
- Health Data Research UK, London, UK
- Alan Turing Institute, London, UK
| | - Gabriele G Schiattarella
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
- Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen, Germany and German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Matthias Thielmann
- West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Art Tucker
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité, BIH Center for Regenerative Therapies, Universitätmedizin Berlin, Berlin, Germany
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
| | - William Wijns
- The Lambe Institute for Translational Research and Curam, University of Galway, Galway, Ireland
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Core Facilities, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2025; 39:435-458. [PMID: 37702834 PMCID: PMC11954709 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Meng S, Chen X, Zhao J, Huang X, Huang Y, Huang T, Zhou Z, Ren W, Hong T, Duan J, Yu L, Wang H. Reduced FNDC5-AMPK signaling in diabetic atrium increases the susceptibility of atrial fibrillation by impairing mitochondrial dynamics and activating NLRP3 inflammasome. Biochem Pharmacol 2024; 229:116476. [PMID: 39128588 DOI: 10.1016/j.bcp.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) exerts potential anti-arrhythmic effects. However, the function and mechanism of FNDC5 in diabetes-associated atrial fibrillation (AF) remain unknown. In this study, bioinformatics analysis, in vivo and in vitro experiments were conducted to explore the alteration and role of FNDC5 in diabetes-related atrial remodeling and AF susceptibility. RNA sequencing data from atrial samples of permanent AF patients and diabetic mice exhibited significantly decreased FNDC5 at the transcriptional level, which was in line with the protein expression in diabetic mice as well as high glucose and palmitic acid (HG+PA) injured atrial myocytes. Diabetic mice exhibited adverse atrial remodeling and increased AF inducibility. Moreover, reduced atrial FNDC5 was accompanied with exacerbated NOD-like receptor pyrin domain containing 3 (NLRP3) activation and disturbed mitochondrial fission and fusion processes, as evidenced by decreased expressions of optic atrophy 1 (OPA-1), mitofusin (MFN-1, MFN-2) and increased phosphorylation of dynamin-related protein 1 (Ser616). These effects were validated in HG+PA-treated atrial myocytes. Critically, FNDC5 overexpression remarkably enhanced cellular antioxidant capacity by upregulating the expressions of superoxide dismutase (SOD1, SOD2) level. In addition, HG+PA-induced mitochondrial dysfunction was ameliorated by FNDC5 overexpression as evidenced by improved mitochondrial dynamics and membrane potential. Moreover, NLRP3 inflammasome-mediated inflammation was reduced by FNDC5 overexpression, and AMPK signaling might serve as the key down-stream effector. The present study demonstrated that reduced atrial FNDC5-AMPK signaling contributed to the pathogenesis of diabetes- associated AF by impairing mitochondrial dynamics and activating the NLRP3 inflammasome. These findings provide promising therapeutic avenues for diabetes-associated AF.
Collapse
Affiliation(s)
- Shan Meng
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xin Chen
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xinyi Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Wenpu Ren
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Postgraduate College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China
| | - Tao Hong
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Postgraduate College, Dalian Medical University, Dalian, Liaoning, 116000, PR China
| | - Jinfeng Duan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Postgraduate College, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Huishan Wang
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
4
|
Fagone P, Mangano K, Basile MS, Munoz-Valle JF, Perciavalle V, Nicoletti F, Bendtzen K. Evaluation of Toll-like Receptor 4 (TLR4) Involvement in Human Atrial Fibrillation: A Computational Study. Genes (Basel) 2024; 15:634. [PMID: 38790263 PMCID: PMC11121426 DOI: 10.3390/genes15050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In the present study, we have explored the involvement of Toll-like Receptor 4 (TLR4) in atrial fibrillation (AF), by using a meta-analysis of publicly available human transcriptomic data. The meta-analysis revealed 565 upregulated and 267 downregulated differentially expressed genes associated with AF. Pathway enrichment analysis highlighted a significant overrepresentation in immune-related pathways for the upregulated genes. A significant overlap between AF differentially expressed genes and TLR4-modulated genes was also identified, suggesting the potential role of TLR4 in AF-related transcriptional changes. Additionally, the analysis of other Toll-like receptors (TLRs) revealed a significant association with TLR2 and TLR3 in AF-related gene expression patterns. The examination of MYD88 and TICAM1, genes associated with TLR4 signalling pathways, indicated a significant yet nonspecific enrichment of AF differentially expressed genes. In summary, this study offers novel insights into the molecular aspects of AF, suggesting a pathophysiological role of TLR4 and other TLRs. By targeting these specific receptors, new treatments might be designed to better manage AF, offering hope for improved outcomes in affected patients.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | | | - José Francisco Munoz-Valle
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara 44100, Jalisco, Mexico
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Klaus Bendtzen
- Institute for Inflammation Research, Rigshospitalet University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Todorova VK, Bauer MA, Azhar G, Wei JY. RNA sequencing of formalin fixed paraffin-embedded heart tissue provides transcriptomic information about chemotherapy-induced cardiotoxicity. Pathol Res Pract 2024; 257:155309. [PMID: 38678848 DOI: 10.1016/j.prp.2024.155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Gene expression of formalin-fixed paraffin-embedded (FFPE) tissue may serve for molecular studies on cardiovascular diseases. Chemotherapeutics, such as doxorubicin (DOX) may cause heart injury, but the mechanisms of these side effects of DOX are not well understood. This study aimed to investigate whether DOX-induced gene expression in archival FFPE heart tissue in experimental rats would correlate with the gene expression in fresh-frozen heart tissue by applying RNA sequencing technology. The results showed RNA from FFPE samples was degraded, resulting in a lower number of uniquely mapped reads. However, DOX-induced differentially expressed genes in FFPE were related to molecular mechanisms of DOX-induced cardiotoxicity, such as inflammation, calcium binding, endothelial dysfunction, senescence, and cardiac hypertrophy signaling. Our data suggest that, despite the limitations, RNA sequencing of archival FFPE heart tissue supports utilizing FFPE tissues from retrospective studies on cardiovascular disorders, including DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Michael A Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gohar Azhar
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
6
|
Polak M, Wieczorek J, Botor M, Auguścik-Duma A, Hoffmann A, Wnuk-Wojnar A, Gawron K, Mizia-Stec K. Principles and Limitations of miRNA Purification and Analysis in Whole Blood Collected during Ablation Procedure from Patients with Atrial Fibrillation. J Clin Med 2024; 13:1898. [PMID: 38610663 PMCID: PMC11012484 DOI: 10.3390/jcm13071898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: MicroRNA (miRNA) have the potential to be non-invasive and attractive biomarkers for a vast number of diseases and clinical conditions; however, a reliable analysis of miRNA expression in blood samples meets a number of methodological challenges. In this report, we presented and discussed, specifically, the principles and limitations of miRNA purification and analysis in blood plasma samples collected from the left atrium during an ablation procedure on patients with atrial fibrillation (AF). Materials and Methods: Consecutive patients hospitalized in the First Department of Cardiology for pulmonary vein ablation were included in this study (11 with diagnosed paroxysmal AF, 14 with persistent AF, and 5 without AF hospitalized for left-sided WPW ablation-control group). Whole blood samples were collected from the left atrium after transseptal puncture during the ablation procedure of AF patients. Analysis of the set of miRNA molecules was performed in blood plasma samples using the MIHS-113ZF-12 kit and miScript microRNA PCR Array Human Cardiovascular Disease. Results: The miRNS concentrations were in the following ranges: paroxysmal AF: 7-23.1 ng/µL; persistent AF: 4.9-66.8 ng/µL; controls: 6.3-10.6 ng/µL. The low A260/280 ratio indicated the protein contamination and the low A260/A230 absorbance ratio suggested the contamination by hydrocarbons. Spectrophotometric measurements also indicated low concentration of nucleic acids (<10 ng/µL). Further steps of analysis revealed that the concentration of cDNA after the Real-Time PCR (using the PAXgene RNA Blood kit) reaction was higher (148.8 ng/µL vs. 68.4 ng/µL) and the obtained absorbance ratios (A260/A280 = 2.24 and A260/A230 = 2.23) indicated adequate RNA purity. Conclusions: Although developments in miRNA sequencing and isolation technology have improved, detection of plasma-based miRNA, low RNA content, and sequencing bias introduced during library preparation remain challenging in patients with AF. The measurement of the quantity and quality of the RNA obtained is crucial for the interpretation of an efficient RNA isolation.
Collapse
Affiliation(s)
- Mateusz Polak
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Wieczorek
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguścik-Duma
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Hoffmann
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Wnuk-Wojnar
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
7
|
Kellett DO, Aziz Q, Humphries JD, Korsak A, Braga A, Gutierrez Del Arroyo A, Crescente M, Tinker A, Ackland GL, Gourine AV. Transcriptional response of the heart to vagus nerve stimulation. Physiol Genomics 2024; 56:167-178. [PMID: 38047311 PMCID: PMC11281814 DOI: 10.1152/physiolgenomics.00095.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease, it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF and stimulated using light. RNA sequencing of the left ventricular myocardium identified 294 differentially expressed genes (false discovery rate < 0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z score of ≥2/≤-2, including EIF-2, IL-2, integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signaling, inflammation, and hypertrophy. IPA further predicted that the identified differentially expressed genes were the targets of 50 upstream regulators, including transcription factors (e.g., MYC and NRF1) and microRNAs (e.g., miR-335-3p and miR-338-3p). These data demonstrate that the vagus nerve has a major impact on the myocardial expression of genes involved in the regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.NEW & NOTEWORTHY This experimental animal study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity. Vagal stimulation induced significant transcriptional changes in the heart involving the pathways controlling autonomic signaling, inflammation, fibrosis, and hypertrophy. This study provides the first direct evidence that myocardial gene expression is modulated by the activity of the autonomic nervous system.
Collapse
Affiliation(s)
- Daniel O Kellett
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Qadeer Aziz
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan D Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Marilena Crescente
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andrew Tinker
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Kellett DO, Aziz Q, Humphries JD, Korsak A, Braga A, Del Arroyo AG, Crescente M, Tinker A, Ackland GL, Gourine AV. Transcriptional response of the heart to vagus nerve stimulation. Physiol Genomics 2024; 56:167-178. [PMID: 39071113 PMCID: PMC7616044 DOI: 10.6084/m9.figshare.24449590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF, and stimulated using light. RNA sequencing of left ventricular myocardium identified 294 differentially expressed genes (DEGs, false discovery rate <0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z-score of ≥2/≤-2, including EIF-2, IL-2, Integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signalling, inflammation, and hypertrophy. IPA further predicted that the identified DEGs were the targets of 50 upstream regulators, including transcription factors (e.g., MYC, NRF1) and microRNAs (e.g., miR-335-3p, miR-338-3p). These data demonstrate that the vagus nerve has a major impact on myocardial expression of genes involved in regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.
Collapse
Affiliation(s)
- Daniel O Kellett
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Qadeer Aziz
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Ana Gutierrez Del Arroyo
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Marilena Crescente
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew Tinker
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
9
|
Atzemian N, Dovrolis N, Ragia G, Portokallidou K, Kolios G, Manolopoulos VG. Beyond the Rhythm: In Silico Identification of Key Genes and Therapeutic Targets in Atrial Fibrillation. Biomedicines 2023; 11:2632. [PMID: 37893006 PMCID: PMC10604372 DOI: 10.3390/biomedicines11102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia worldwide and is characterized by a high risk of thromboembolism, ischemic stroke, and fatality. The precise molecular mechanisms of AF pathogenesis remain unclear. The purpose of this study was to use bioinformatics tools to identify novel key genes in AF, provide deeper insights into the molecular pathogenesis of AF, and uncover potential therapeutic targets. Four publicly available raw RNA-Seq datasets obtained through the ENA Browser, as well as proteomic analysis results, both derived from atrial tissues, were used in this analysis. Differential gene expression analysis was performed and cross-validated with proteomics results to identify common genes/proteins between them. A functional enrichment pathway analysis was performed. Cross-validation analysis revealed five differentially expressed genes, namely FGL2, IGFBP5, NNMT, PLA2G2A, and TNC, in patients with AF compared with those with sinus rhythm (SR). These genes play crucial roles in various cardiovascular functions and may be part of the molecular signature of AF. Furthermore, functional enrichment analysis revealed several pathways related to the extracellular matrix, inflammation, and structural remodeling. This study highlighted five key genes that constitute promising candidates for further experimental exploration as biomarkers as well as therapeutic targets for AF.
Collapse
Affiliation(s)
- Natalia Atzemian
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantina Portokallidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| |
Collapse
|
10
|
Huiskes FG, Creemers EE, Brundel BJJM. Dissecting the Molecular Mechanisms Driving Electropathology in Atrial Fibrillation: Deployment of RNA Sequencing and Transcriptomic Analyses. Cells 2023; 12:2242. [PMID: 37759465 PMCID: PMC10526291 DOI: 10.3390/cells12182242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Despite many efforts to treat atrial fibrillation (AF), the most common progressive and age-related cardiac tachyarrhythmia in the Western world, the efficacy is still suboptimal. A plausible reason for this is that current treatments are not directed at underlying molecular root causes that drive electrical conduction disorders and AF (i.e., electropathology). Insights into AF-induced transcriptomic alterations may aid in a deeper understanding of electropathology. Specifically, RNA sequencing (RNA-seq) facilitates transcriptomic analyses and discovery of differences in gene expression profiles between patient groups. In the last decade, various RNA-seq studies have been conducted in atrial tissue samples of patients with AF versus controls in sinus rhythm. Identified differentially expressed molecular pathways so far include pathways related to mechanotransduction, ECM remodeling, ion channel signaling, and structural tissue organization through developmental and inflammatory signaling pathways. In this review, we provide an overview of the available human AF RNA-seq studies and highlight the molecular pathways identified. Additionally, a comparison is made between human RNA-seq findings with findings from experimental AF model systems and we discuss contrasting findings. Finally, we elaborate on new exciting RNA-seq approaches, including single-nucleotide variants, spatial transcriptomics and profiling of different populations of total RNA, small RNA and long non-coding RNA.
Collapse
Affiliation(s)
- Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, VUmc, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ, Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1105 AZ Amsterdam, The Netherlands;
| | - Esther E. Creemers
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1105 AZ Amsterdam, The Netherlands;
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, VUmc, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ, Amsterdam, The Netherlands;
| |
Collapse
|
11
|
Jameson HS, Hanley A, Hill MC, Xiao L, Ye J, Bapat A, Ronzier E, Hall AW, Hucker WJ, Clauss S, Barazza M, Silber E, Mina J, Tucker NR, Mills RW, Dong JT, Milan DJ, Ellinor PT. Loss of the Atrial Fibrillation-Related Gene, Zfhx3, Results in Atrial Dilation and Arrhythmias. Circ Res 2023; 133:313-329. [PMID: 37449401 PMCID: PMC10527554 DOI: 10.1161/circresaha.123.323029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND ZFHX3 (zinc finger homeobox 3), a gene that encodes a large transcription factor, is at the second-most significantly associated locus with atrial fibrillation (AF), but its function in the heart is unknown. This study aims to identify causative genetic variation related to AF at the ZFHX3 locus and examine the impact of Zfhx3 loss on cardiac function in mice. METHODS CRISPR-Cas9 genome editing, chromatin immunoprecipitation, and luciferase assays in pluripotent stem cell-derived cardiomyocytes were used to identify causative genetic variation related to AF at the ZFHX3 locus. Cardiac function was assessed by echocardiography, magnetic resonance imaging, electrophysiology studies, calcium imaging, and RNA sequencing in mice with heterozygous and homozygous cardiomyocyte-restricted Zfhx3 loss (Zfhx3 Het and knockout, respectively). Human cardiac single-nucleus ATAC (assay for transposase-accessible chromatin)-sequencing data was analyzed to determine which genes in atrial cardiomyocytes are directly regulated by ZFHX3. RESULTS We found single-nucleotide polymorphism (SNP) rs12931021 modulates an enhancer regulating ZFHX3 expression, and the AF risk allele is associated with decreased ZFHX3 transcription. We observed a gene-dose response in AF susceptibility with Zfhx3 knockout mice having higher incidence, frequency, and burden of AF than Zfhx3 Het and wild-type mice, with alterations in conduction velocity, atrial action potential duration, calcium handling and the development of atrial enlargement and thrombus, and dilated cardiomyopathy. Zfhx3 loss results in atrial-specific differential effects on genes and signaling pathways involved in cardiac pathophysiology and AF. CONCLUSIONS Our findings implicate ZFHX3 as the causative gene at the 16q22 locus for AF, and cardiac abnormalities caused by loss of cardiac Zfhx3 are due to atrial-specific dysregulation of pathways involved in AF susceptibility. Together, these data reveal a novel and important role for Zfhx3 in the control of cardiac genes and signaling pathways essential for normal atrial function.
Collapse
Affiliation(s)
- Heather S. Jameson
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alan Hanley
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew C. Hill
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jiangchuan Ye
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Elsa Ronzier
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amelia Weber Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - William J. Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastian Clauss
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), 81377 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Germany
| | - Miranda Barazza
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Silber
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Julie Mina
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Robert W. Mills
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
12
|
Darkow E, Yusuf D, Rajamani S, Backofen R, Kohl P, Ravens U, Peyronnet R. Meta-Analysis of Mechano-Sensitive Ion Channels in Human Hearts: Chamber- and Disease-Preferential mRNA Expression. Int J Mol Sci 2023; 24:10961. [PMID: 37446137 DOI: 10.3390/ijms241310961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The cardiac cell mechanical environment changes on a beat-by-beat basis as well as in the course of various cardiac diseases. Cells sense and respond to mechanical cues via specialized mechano-sensors initiating adaptive signaling cascades. With the aim of revealing new candidates underlying mechano-transduction relevant to cardiac diseases, we investigated mechano-sensitive ion channels (MSC) in human hearts for their chamber- and disease-preferential mRNA expression. Based on a meta-analysis of RNA sequencing studies, we compared the mRNA expression levels of MSC in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and from patients in sinus rhythm (underlying diseases: heart failure, coronary artery disease, heart valve disease) or with atrial fibrillation. Our results suggest that a number of MSC genes are expressed chamber preferentially, e.g., CHRNE in the atria (compared to the ventricles), TRPV4 in the right atrium (compared to the left atrium), CACNA1B and KCNMB1 in the left atrium (compared to the right atrium), as well as KCNK2 and KCNJ2 in ventricles (compared to the atria). Furthermore, 15 MSC genes are differentially expressed in cardiac disease, out of which SCN9A (lower expressed in heart failure compared to donor tissue) and KCNQ5 (lower expressed in atrial fibrillation compared to sinus rhythm) show a more than twofold difference, indicative of possible functional relevance. Thus, we provide an overview of cardiac MSC mRNA expression in the four cardiac chambers from patients with different cardiac diseases. We suggest that the observed differences in MSC mRNA expression may identify candidates involved in altered mechano-transduction in the respective diseases.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg∙Bad Krozingen, 79110 Freiburg im Breisgau, Germany
- Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Dilmurat Yusuf
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Sridharan Rajamani
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA 91320, USA
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg∙Bad Krozingen, 79110 Freiburg im Breisgau, Germany
- Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg∙Bad Krozingen, 79110 Freiburg im Breisgau, Germany
- Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg∙Bad Krozingen, 79110 Freiburg im Breisgau, Germany
- Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
13
|
Casini S, Marchal GA, Kawasaki M, Fabrizi B, Wesselink R, Nariswari FA, Neefs J, van den Berg NWE, Driessen AHG, de Groot JR, Verkerk AO, Remme CA. Differential Sodium Current Remodelling Identifies Distinct Cellular Proarrhythmic Mechanisms in Paroxysmal vs Persistent Atrial Fibrillation. Can J Cardiol 2023; 39:277-288. [PMID: 36586483 DOI: 10.1016/j.cjca.2022.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The cellular mechanisms underlying progression from paroxysmal to persistent atrial fibrillation (AF) are not fully understood, but alterations in (late) sodium current (INa) have been proposed. Human studies investigating electrophysiological changes at the paroxysmal stage of AF are sparse, with the majority employing right atrial appendage cardiomyocytes (CMs). We here investigated action potential (AP) characteristics and (late) INa remodelling in left atrial appendage CMs (LAA-CMs) from patients with paroxysmal and persistent AF and patients in sinus rhythm (SR), as well as the potential contribution of the "neuronal" sodium channel SCN10A/NaV1.8. METHODS Peak INa, late INa and AP properties were investigated through patch-clamp analysis on single LAA-CMs, whereas quantitative polymerase chain reaction was used to assess SCN5A/SCN10A expression levels in LAA tissue. RESULTS In paroxysmal and persistent AF LAA-CMs, AP duration was shorter than in SR LAA-CMs. Compared with SR, peak INa and SCN5A expression were significantly decreased in paroxysmal AF, whereas they were restored to SR levels in persistent AF. Conversely, although late INa was unchanged in paroxysmal AF compared with SR, it was significantly increased in persistent AF. Peak or late Nav1.8-based INa was not detected in persistent AF LAA-CMs. Similarly, expression of SCN10A was not observed in LAAs at any stage. CONCLUSIONS Our findings demonstrate differences in (late) INa remodeling in LAA-CMs from patients with paroxysmal vs persistent AF, indicating distinct cellular proarrhythmic mechanisms in different AF forms. These observations are of particular relevance when considering potential pharmacologic approaches targeting (late) INa in AF.
Collapse
Affiliation(s)
- Simona Casini
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands.
| | - Gerard A Marchal
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Makiri Kawasaki
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Fransisca A Nariswari
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Nicoline W E van den Berg
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands; Amsterdam UMC, location University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Donniacuo M, De Angelis A, Telesca M, Bellocchio G, Riemma MA, Paolisso P, Scisciola L, Cianflone E, Torella D, Castaldo G, Capuano A, Urbanek K, Berrino L, Rossi F, Cappetta D. Atrial fibrillation: Epigenetic aspects and role of sodium-glucose cotransporter 2 inhibitors. Pharmacol Res 2023; 188:106591. [PMID: 36502999 DOI: 10.1016/j.phrs.2022.106591] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia and is associated with substantial morbidity and mortality. Pathophysiological aspects consist in the activation of pro-fibrotic signaling and Ca2+ handling abnormalities at atrial level. Structural and electrical remodeling creates a substrate for AF by triggering conduction abnormalities and cardiac arrhythmias. The care of AF patients focuses predominantly on anticoagulation, symptoms control and the management of risk factors and comorbidities. The goal of AF therapy points to restore sinus rhythm, re-establish atrioventricular synchrony and improve atrial contribution to the stroke volume. New layer of information to better comprehend AF pathophysiology, and identify targets for novel pharmacological interventions consists of the epigenetic phenomena including, among others, DNA methylation, histone modifications and noncoding RNAs. Moreover, the benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in diabetic and non-diabetic patients at cardiovascular risk as well as emerging evidence on the ability of SGLT2i to modify epigenetic signature in cardiovascular diseases provide a solid background to investigate a possible role of this drug class in the onset and progression of AF. In this review, following a summary of pathophysiology and management, epigenetic mechanisms in AF and the potential of sodium-glucose SGLT2i in AF patients are discussed.
Collapse
Affiliation(s)
- M Donniacuo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - M Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - G Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - M A Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - P Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy
| | - L Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - E Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - D Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - G Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced, Via G. Salvatore 486, 80131 Naples, Italy
| | - A Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - K Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced, Via G. Salvatore 486, 80131 Naples, Italy.
| | - L Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - D Cappetta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
15
|
Identification and Verification of Biomarkers and Immune Infiltration in Obesity-Related Atrial Fibrillation. BIOLOGY 2023; 12:biology12010121. [PMID: 36671813 PMCID: PMC9855995 DOI: 10.3390/biology12010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Obesity is an independent risk factor for atrial fibrillation (AF). However, the mechanisms underlying this crosstalk are still being uncovered. Co-differentially expressed genes (co-DEGs) of AF and obesity microarrays were identified by bioinformatics analysis. Subsequently, functional enrichment, cell-type enrichment, and protein-protein interaction network analyses of co-DEGs were carried out. Then, we validated the hub genes by qRT-PCR of patients' blood samples. Finally, CIBERSORT was utilized to evaluate the AF microarray to determine immune infiltration and the correlation between validated hub genes and immune cells. A total of 23 co-up-regulated DEGs in AF and obesity microarrays were identified, and these genes were enriched in inflammation- and immune-related function. The enriched cells were whole blood, CD33+ myeloid, and CD14+ monocytes. The hub genes were identified as MNDA, CYBB, CD86, FCGR2C, NCF2, LCP2, TLR8, HLA-DRA, LCP1, and PTPN22. All hub genes were only elevated in blood samples of obese-AF patients. The CIBERSORT analysis revealed that the AF patients' left atrial appendage had increased infiltration of naïve B cells and decreased infiltration of memory B cells. The hub genes were related positively to naïve B cells and negatively to memory B cells. Ten hub genes may serve as biomarkers for obesity-related AF. These findings may also aid in comprehending pathophysiological mechanisms for obesity-related AF.
Collapse
|
16
|
Deviatiiarov RM, Gams A, Kulakovskiy IV, Buyan A, Meshcheryakov G, Syunyaev R, Singh R, Shah P, Tatarinova TV, Gusev O, Efimov IR. An atlas of transcribed human cardiac promoters and enhancers reveals an important role of regulatory elements in heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:58-75. [PMID: 39196209 DOI: 10.1038/s44161-022-00182-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/02/2022] [Indexed: 08/29/2024]
Abstract
A deeper knowledge of the dynamic transcriptional activity of promoters and enhancers is needed to improve mechanistic understanding of the pathogenesis of heart failure and heart diseases. In this study, we used cap analysis of gene expression (CAGE) to identify and quantify the activity of transcribed regulatory elements (TREs) in the four cardiac chambers of 21 healthy and ten failing adult human hearts. We identified 17,668 promoters and 14,920 enhancers associated with the expression of 14,519 genes. We showed how these regulatory elements are alternatively transcribed in different heart regions, in healthy versus failing hearts and in ischemic versus non-ischemic heart failure samples. Cardiac-disease-related single-nucleotide polymorphisms (SNPs) appeared to be enriched in TREs, potentially affecting the allele-specific transcription factor binding. To conclude, our open-source heart CAGE atlas will serve the cardiovascular community in improving the understanding of the role of the cardiac gene regulatory networks in cardiovascular disease and therapy.
Collapse
Affiliation(s)
- Ruslan M Deviatiiarov
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anna Gams
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Ivan V Kulakovskiy
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Buyan
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | | | - Roman Syunyaev
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramesh Singh
- Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Palak Shah
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
- Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Department of Biology, University of La Verne, La Verne, CA, USA.
| | - Oleg Gusev
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Graduate School of Medicine, Juntendo University, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.
- Endocrinology Research Center, Moscow, Russia.
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
- Department of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Chen X, He XY, Dan Q, Li Y. FAM201A, a long noncoding RNA potentially associated with atrial fibrillation identified by ceRNA network analyses and WGCNA. BMC Med Genomics 2022; 15:80. [PMID: 35410298 PMCID: PMC8996407 DOI: 10.1186/s12920-022-01232-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Being the most common arrhythmia in clinic, atrial fibrillation (AF) causes various comorbidities to patients such as heart failure and stroke. LncRNAs were reported involved in pathogenesis of AF, yet, little is known about AF-associated lncRNAs. The present study aims to explore lncRNAs associated with AF susceptibility based on competing endogenous RNA (ceRNA) network analysis and weighted gene co-expression network analysis (WGCNA). Methods GSE41177 and GSE79768 datasets were obtained from the Gene Expression Omnibus (GEO) database. Competing endogenous RNA (ceRNA) network analysis was performed using GSE41177. Differentially expressed lncRNAs (DElncRNAs), mRNAs (DEmRNAs) between AF patients and patients with sinus rhythm (SR) were identified from GSE41177 using R software. Then, the ceRNA network was constructed based on DElncRNAs, the predicted target miRNAs and DEmRNAs. Weighted gene co-expression network analysis (WGCNA) was performed using GSE79768 to validate the AF-related lncRNAs identified from GSE41177. LncRNA modules and crucial lncRNAs relevant to AF and were identified. Results In summary, 18 DElncRNAs and 350 DEmRNAs were found between AF patients and SR patients. A total of 5 lncRNAs, 10 miRNAs, and 21 mRNAs were contained in the final ceRNA network. Taking into consideration both the ceRNA theory and inference scores from the comparative toxicogenomics database (CTD) database, the ceRNA axis FAM201A-miR-33a-3p-RAC3 was identified as mostly relevant to AF susceptibility. FAM201A (Gene significance, GS = − 0.62; Module membership, MM = 0.75) was also proved in the blue module, which was identified most highly relevant with AF by WGCNA. Conclusions These results demonstrated that decreased expression of FAM201A might be associated with susceptibility of AF. Working as the ceRNA to regulate RAC3 might be one function of FAM201A in AF susceptibility, which requires further exploration in future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01232-w.
Collapse
Affiliation(s)
- Xi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang-Yu He
- Department of Ophthalmology, The 958th Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Dan
- Department of Cardiology, General Hospital of Chinese People's Liberation Army, No. 28 Fu Xing Road, Beijing, 100853, China
| | - Yang Li
- Department of Cardiology, General Hospital of Chinese People's Liberation Army, No. 28 Fu Xing Road, Beijing, 100853, China.
| |
Collapse
|
18
|
Herrera-Rivero M, Gandhi S, Witten A, Ghalawinji A, Schotten U, Stoll M. Cardiac chamber-specific genetic alterations suggest candidate genes and pathways implicating the left ventricle in the pathogenesis of atrial fibrillation. Genomics 2022; 114:110320. [PMID: 35218871 DOI: 10.1016/j.ygeno.2022.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
It is believed that the atria play a predominant role in the initiation and maintenance of atrial fibrillation (AF), while the role of left ventricular dysfunction in the pathophysiology remains enigmatic. We sought to dissect chamber specificity of AF-associated transcriptional changes using RNA-sequencing. We performed intra- and inter-chamber differential expression analyses comparing AF against sinus rhythm to identify genes specifically dysregulated in human left atria, right atria, and left ventricle (LV), and integrated known AF genetic associations with expression quantitative trait loci datasets to inform the potential for disease causal contributions within each chamber. Inter-chamber patterns changed drastically. Vast AF-associated transcriptional changes specific to LV, enriched for biological pathway terms implicating mitochondrial function, developmental processes and immunity, were supported at the genetic level, but no major enrichments for candidate genes specific to the atria were found. Our observations suggest an active role of the LV in the pathogenesis of AF.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Shrey Gandhi
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany; Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Amer Ghalawinji
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Ulrich Schotten
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany; Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
19
|
Assum I, Krause J, Scheinhardt MO, Müller C, Hammer E, Börschel CS, Völker U, Conradi L, Geelhoed B, Zeller T, Schnabel RB, Heinig M. Tissue-specific multi-omics analysis of atrial fibrillation. Nat Commun 2022; 13:441. [PMID: 35064145 PMCID: PMC8782899 DOI: 10.1038/s41467-022-27953-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered numerous disease-associated variants. Their underlying molecular mechanisms, especially consequences for mRNA and protein expression remain largely elusive. Thus, refined multi-omics approaches are needed for deciphering the underlying molecular networks. Here, we integrate genomics, transcriptomics, and proteomics of human atrial tissue in a cross-sectional study to identify widespread effects of genetic variants on both transcript (cis-eQTL) and protein (cis-pQTL) abundance. We further establish a novel targeted trans-QTL approach based on polygenic risk scores to determine candidates for AF core genes. Using this approach, we identify two trans-eQTLs and five trans-pQTLs for AF GWAS hits, and elucidate the role of the transcription factor NKX2-5 as a link between the GWAS SNP rs9481842 and AF. Altogether, we present an integrative multi-omics method to uncover trans-acting networks in small datasets and provide a rich resource of atrial tissue-specific regulatory variants for transcript and protein levels for cardiovascular disease gene prioritization.
Collapse
Affiliation(s)
- Ines Assum
- Computational Health Center, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
- Department of Informatics, Technical University Munich, München, Germany
| | - Julia Krause
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Markus O Scheinhardt
- Institute of Medical Biometry and Statistics, University of Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Christian Müller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Partner site Greifswald, DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - Christin S Börschel
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Partner site Greifswald, DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - Lenard Conradi
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Bastiaan Geelhoed
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Renate B Schnabel
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany.
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany.
| | - Matthias Heinig
- Computational Health Center, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany.
- Department of Informatics, Technical University Munich, München, Germany.
- Partner site Munich, DZHK (German Center for Cardiovascular Research), Munich, Germany.
| |
Collapse
|
20
|
Regional Diversities in Fibrogenesis Weighed as a Key Determinant for Atrial Arrhythmogenesis. Biomedicines 2021; 9:biomedicines9121900. [PMID: 34944715 PMCID: PMC8698388 DOI: 10.3390/biomedicines9121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Atrial fibrosis plays a key role in atrial myopathy, resulting in the genesis of atrial fibrillation (AF). The abnormal distribution of fibrotic tissue, electrical coupling, paracrine interactions, and biomechanical–electrical interactions have all been suggested as causes of fibrosis-related arrhythmogenesis. Moreover, the regional difference in fibrogenesis, specifically the left atrium (LA) exhibiting a higher arrhythmogenesis and level of fibrosis than the right atrium (RA) in AF, is a key contributor to atrial arrhythmogenesis. LA fibroblasts have greater profibrotic cellular activities than RA fibroblasts, but knowledge about the regional diversity of atrial regional fibrogenesis remains limited. This article provides a comprehensive review of research findings on the association between fibrogenesis and arrhythmogenesis from laboratory to clinical evidence and updates the current understanding of the potential mechanism underlying the difference in fibrogenesis between the LA and RA.
Collapse
|
21
|
Meng X, Nie Y, Wang K, Fan C, Zhao J, Yuan Y. Identification of Atrial Fibrillation-Associated Genes ERBB2 and MYPN Using Genome-Wide Association and Transcriptome Expression Profile Data on Left-Right Atrial Appendages. Front Genet 2021; 12:696591. [PMID: 34276800 PMCID: PMC8278573 DOI: 10.3389/fgene.2021.696591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
More reliable methods are needed to uncover novel biomarkers associated with atrial fibrillation (AF). Our objective is to identify significant network modules and newly AF-associated genes by integrative genetic analysis approaches. The single nucleotide polymorphisms with nominal relevance significance from the AF-associated genome-wide association study (GWAS) data were converted into the GWAS discovery set using ProxyGeneLD, followed by merging with significant network modules constructed by weighted gene coexpression network analysis (WGCNA) from one expression profile data set, composed of left and right atrial appendages (LAA and RAA). In LAA, two distinct network modules were identified (blue: p = 0.0076; yellow: p = 0.023). Five AF-associated biomarkers were identified (ERBB2, HERC4, MYH7, MYPN, and PBXIP1), combined with the GWAS test set. In RAA, three distinct network modules were identified and only one AF-associated gene LOXL1 was determined. Using human LAA tissues by real-time quantitative polymerase chain reaction, the differentially expressive results of ERBB2, MYH7, and MYPN were observed (p < 0.05). This study first demonstrated the feasibility of fusing GWAS with expression profile data by ProxyGeneLD and WGCNA to explore AF-associated genes. In particular, two newly identified genes ERBB2 and MYPN via this approach contribute to further understanding the occurrence and development of AF, thereby offering preliminary data for subsequent studies.
Collapse
Affiliation(s)
- Xiangguang Meng
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, China
| | - Yali Nie
- Department of Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Keke Wang
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, China
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Juntao Zhao
- Department of Cardiac Surgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, China
| | - Yiqiang Yuan
- Department of Cardiovascular Internal Medicine, Henan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
22
|
Calcium Regulation on the Atrial Regional Difference of Collagen Production Activity in Atrial Fibrogenesis. Biomedicines 2021; 9:biomedicines9060686. [PMID: 34204537 PMCID: PMC8233809 DOI: 10.3390/biomedicines9060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Atrial fibrosis plays an important role in the genesis of heart failure and atrial fibrillation. The left atrium (LA) exhibits a higher level of fibrosis than the right atrium (RA) in heart failure and atrial arrhythmia. However, the mechanism for the high fibrogenic potential of the LA fibroblasts remains unclear. Calcium (Ca2+) signaling contributes to the pro-fibrotic activities of fibroblasts. This study investigated whether differences in Ca2+ homeostasis contribute to differential fibrogenesis in LA and RA fibroblasts. Methods: Ca2+ imaging, a patch clamp assay and Western blotting were performed in isolated rat LA and RA fibroblasts. Results: The LA fibroblasts exhibited a higher Ca2+ entry and gadolinium-sensitive current compared with the RA fibroblasts. The LA fibroblasts exhibited greater pro-collagen type I, type III, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), phosphorylated phospholipase C (PLC), stromal interaction molecule 1 (STIM1) and transient receptor potential canonical (TRPC) 3 protein expression compared with RA fibroblasts. In the presence of 1 mmol/L ethylene glycol tetra-acetic acid (EGTA, Ca2+ chelator), the LA fibroblasts had similar pro-collagen type I, type III and phosphorylated CaMKII expression compared with RA fibroblasts. Moreover, in the presence of KN93 (a CaMKII inhibitor, 10 μmol/L), the LA fibroblasts had similar pro-collagen type I and type III compared with RA fibroblasts. Conclusion: The discrepancy of phosphorylated PLC signaling and gadolinium-sensitive Ca2+ channels in LA and RA fibroblasts induces different levels of Ca2+ influx, phosphorylated CaMKII expression and collagen production.
Collapse
|
23
|
Victorino J, Alvarez-Franco A, Manzanares M. Functional genomics and epigenomics of atrial fibrillation. J Mol Cell Cardiol 2021; 157:45-55. [PMID: 33887329 DOI: 10.1016/j.yjmcc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. Despite years of study, we still do not have a full comprehension of the molecular mechanism responsible for the disease. The recent implementation of large-scale approaches in both patient samples, population studies and animal models has helped us to broaden our knowledge on the molecular drivers responsible for AF and on the mechanisms behind disease progression. Understanding genomic and epigenomic changes that take place during chronification of AF will prove essential to design novel treatments leading to improved patient care.
Collapse
Affiliation(s)
- Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Spain
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
24
|
Darkow E, Nguyen TT, Stolina M, Kari FA, Schmidt C, Wiedmann F, Baczkó I, Kohl P, Rajamani S, Ravens U, Peyronnet R. Small Conductance Ca 2 +-Activated K + (SK) Channel mRNA Expression in Human Atrial and Ventricular Tissue: Comparison Between Donor, Atrial Fibrillation and Heart Failure Tissue. Front Physiol 2021; 12:650964. [PMID: 33868017 PMCID: PMC8047327 DOI: 10.3389/fphys.2021.650964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
In search of more efficacious and safe pharmacological treatments for atrial fibrillation (AF), atria-selective antiarrhythmic agents have been promoted that target ion channels principally expressed in the atria. This concept allows one to engage antiarrhythmic effects in atria, but spares the ventricles from potentially proarrhythmic side effects. It has been suggested that cardiac small conductance Ca2+-activated K+ (SK) channels may represent an atria-selective target in mammals including humans. However, there are conflicting data concerning the expression of SK channels in different stages of AF, and recent findings suggest that SK channels are upregulated in ventricular myocardium when patients develop heart failure. To address this issue, RNA-sequencing was performed to compare expression levels of three SK channels (KCNN1, KCNN2, and KCNN3) in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and patients with cardiac disease in sinus rhythm or with AF. In addition, for control purposes expression levels of several genes known to be either chamber-selective or differentially expressed in AF and heart failure were determined. In atria, as compared to ventricle from transplant donor hearts, we confirmed higher expression of KCNN1 and KCNA5, and lower expression of KCNJ2, whereas KCNN2 and KCNN3 were statistically not differentially expressed. Overall expression of KCNN1 was low compared to KCNN2 and KCNN3. Comparing atrial tissue from patients with AF to sinus rhythm samples we saw downregulation of KCNN2 in AF, as previously reported. When comparing ventricular tissue from heart failure patients to non-diseased samples, we found significantly increased ventricular expression of KCNN3 in heart failure, as previously published. The other channels showed no significant difference in expression in either disease. Our results add weight to the view that SK channels are not likely to be an atria-selective target, especially in failing human hearts, and modulators of these channels may prove to have less utility in treating AF than hoped. Whether targeting SK1 holds potential remains to be elucidated.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thong T Nguyen
- Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Marina Stolina
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Fabian A Kari
- Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sridharan Rajamani
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
25
|
Disease Modeling and Disease Gene Discovery in Cardiomyopathies: A Molecular Study of Induced Pluripotent Stem Cell Generated Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22073311. [PMID: 33805011 PMCID: PMC8037452 DOI: 10.3390/ijms22073311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
The in vitro modeling of cardiac development and cardiomyopathies in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) provides opportunities to aid the discovery of genetic, molecular, and developmental changes that are causal to, or influence, cardiomyopathies and related diseases. To better understand the functional and disease modeling potential of iPSC-differentiated CMs and to provide a proof of principle for large, epidemiological-scale disease gene discovery approaches into cardiomyopathies, well-characterized CMs, generated from validated iPSCs of 12 individuals who belong to four sibships, and one of whom reported a major adverse cardiac event (MACE), were analyzed by genome-wide mRNA sequencing. The generated CMs expressed CM-specific genes and were highly concordant in their total expressed transcriptome across the 12 samples (correlation coefficient at 95% CI =0.92 ± 0.02). The functional annotation and enrichment analysis of the 2116 genes that were significantly upregulated in CMs suggest that generated CMs have a transcriptomic and functional profile of immature atrial-like CMs; however, the CMs-upregulated transcriptome also showed high overlap and significant enrichment in primary cardiomyocyte (p-value = 4.36 × 10−9), primary heart tissue (p-value = 1.37 × 10−41) and cardiomyopathy (p-value = 1.13 × 10−21) associated gene sets. Modeling the effect of MACE in the generated CMs-upregulated transcriptome identified gene expression phenotypes consistent with the predisposition of the MACE-affected sibship to arrhythmia, prothrombotic, and atherosclerosis risk.
Collapse
|
26
|
Abstract
The Wnt signaling pathway regulates physiological processes such as cell proliferation and differentiation, cell fate decisions, and stem cell maintenance and, thus, plays essential roles in embryonic development, but also in adult tissue homeostasis and repair. The Wnt signaling pathway has been associated with heart development and repair and has been shown to be crucially involved in proliferation and differentiation of progenitor cells into cardiomyocytes. The investigation of the role of the Wnt signaling pathway and the regulation of its expression/activity in atrial fibrillation has only just begun. The present minireview (I) provides original data regarding the expression of Wnt signaling components in atrial tissue of patients with atrial fibrillation or sinus rhythm and (II) summarizes the current state of knowledge of the regulation of Wnt signaling components' expression/activity and the contribution of the various levels of the Wnt signal transduction pathway to the processes of the development, maintenance, and progression of atrial fibrillation.
Collapse
Affiliation(s)
- Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Elmer Antileo
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| |
Collapse
|
27
|
Iacobas S, Amuzescu B, Iacobas DA. Transcriptomic uniqueness and commonality of the ion channels and transporters in the four heart chambers. Sci Rep 2021; 11:2743. [PMID: 33531573 PMCID: PMC7854717 DOI: 10.1038/s41598-021-82383-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profiled with Agilent microarrays to identify the differences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantified 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited differential expression between the atrium and the ventricle, while 5.8% of genes were differently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber differences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantified binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side.
Collapse
Affiliation(s)
- Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Bogdan Amuzescu
- Department Biophysics and Physiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA. .,DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
28
|
Oh Y, Yang S, Liu X, Jana S, Izaddoustdar F, Gao X, Debi R, Kim DK, Kim KH, Yang P, Kassiri Z, Lakin R, Backx PH. Transcriptomic Bioinformatic Analyses of Atria Uncover Involvement of Pathways Related to Strain and Post-translational Modification of Collagen in Increased Atrial Fibrillation Vulnerability in Intensely Exercised Mice. Front Physiol 2020; 11:605671. [PMID: 33424629 PMCID: PMC7793719 DOI: 10.3389/fphys.2020.605671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial Fibrillation (AF) is the most common supraventricular tachyarrhythmia that is typically associated with cardiovascular disease (CVD) and poor cardiovascular health. Paradoxically, endurance athletes are also at risk for AF. While it is well-established that persistent AF is associated with atrial fibrosis, hypertrophy and inflammation, intensely exercised mice showed similar adverse atrial changes and increased AF vulnerability, which required tumor necrosis factor (TNF) signaling, even though ventricular structure and function improved. To identify some of the molecular factors underlying the chamber-specific and TNF-dependent atrial changes induced by exercise, we performed transcriptome analyses of hearts from wild-type and TNF-knockout mice following exercise for 2 days, 2 or 6 weeks of exercise. Consistent with the central role of atrial stretch arising from elevated venous pressure in AF promotion, all 3 time points were associated with differential regulation of genes in atria linked to mechanosensing (focal adhesion kinase, integrins and cell-cell communications), extracellular matrix (ECM) and TNF pathways, with TNF appearing to play a permissive, rather than causal, role in gene changes. Importantly, mechanosensing/ECM genes were only enriched, along with tubulin- and hypertrophy-related genes after 2 days of exercise while being downregulated at 2 and 6 weeks, suggesting that early reactive strain-dependent remodeling with exercise yields to compensatory adjustments. Moreover, at the later time points, there was also downregulation of both collagen genes and genes involved in collagen turnover, a pattern mirroring aging-related fibrosis. By comparison, twofold fewer genes were differentially regulated in ventricles vs. atria, independently of TNF. Our findings reveal that exercise promotes TNF-dependent atrial transcriptome remodeling of ECM/mechanosensing pathways, consistent with increased preload and atrial stretch seen with exercise. We propose that similar preload-dependent mechanisms are responsible for atrial changes and AF in both CVD patients and athletes.
Collapse
Affiliation(s)
- Yena Oh
- Department of Biology, York University, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Sibao Yang
- Department of Biology, York University, Toronto, ON, Canada.,Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Department of Biology, York University, Toronto, ON, Canada.,Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sayantan Jana
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | | | - Xiaodong Gao
- Department of Biology, York University, Toronto, ON, Canada
| | - Ryan Debi
- Department of Biology, York University, Toronto, ON, Canada
| | - Dae-Kyum Kim
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Kyoung-Han Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | - Robert Lakin
- Department of Biology, York University, Toronto, ON, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Hall AW, Chaffin M, Roselli C, Lin H, Lubitz SA, Bianchi V, Geeven G, Bedi K, Margulies KB, de Laat W, Tucker NR, Ellinor PT. Epigenetic Analyses of Human Left Atrial Tissue Identifies Gene Networks Underlying Atrial Fibrillation. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e003085. [PMID: 33155827 PMCID: PMC8240092 DOI: 10.1161/circgen.120.003085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) often arises from structural abnormalities in the left atria (LA). Annotation of the noncoding genome in human LA is limited, as are effects on gene expression and chromatin architecture. Many AF-associated genetic variants reside in noncoding regions; this knowledge gap impairs efforts to understand the molecular mechanisms of AF and cardiac conduction phenotypes. METHODS We generated a model of the LA noncoding genome by profiling 7 histone post-translational modifications (active: H3K4me3, H3K4me2, H3K4me1, H3K27ac, H3K36me3; repressive: H3K27me3, H3K9me3), CTCF binding, and gene expression in samples from 5 individuals without structural heart disease or AF. We used MACS2 to identify peak regions (P<0.01), applied a Markov model to classify regulatory elements, and annotated this model with matched gene expression data. We intersected chromatin states with expression quantitative trait locus, DNA methylation, and HiC chromatin interaction data from LA and left ventricle. Finally, we integrated genome-wide association data for AF and electrocardiographic traits to link disease-related variants to genes. RESULTS Our model identified 21 epigenetic states, encompassing regulatory motifs, such as promoters, enhancers, and repressed regions. Genes were regulated by proximal chromatin states; repressive states were associated with a significant reduction in gene expression (P<2×10-16). Chromatin states were differentially methylated, promoters were less methylated than repressed regions (P<2×10-16). We identified over 15 000 LA-specific enhancers, defined by homeobox family motifs, and annotated several cardiovascular disease susceptibility loci. Intersecting AF and PR genome-wide association studies loci with long-range chromatin conformation data identified a gene interaction network dominated by NKX2-5, TBX3, ZFHX3, and SYNPO2L. CONCLUSIONS Profiling the noncoding genome provides new insights into the gene expression and chromatin regulation in human LA tissue. These findings enabled identification of a gene network underlying AF; our experimental and analytic approach can be extended to identify molecular mechanisms for other cardiac diseases and traits.
Collapse
Affiliation(s)
- Amelia Weber Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Honghuang Lin
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Steven A. Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Geert Geeven
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kenneth Bedi
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kenneth B. Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
- Masonic Medical Research Institute, Utica, NY
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| |
Collapse
|
30
|
Haas Bueno R, Recamonde-Mendoza M. Meta-analysis of Transcriptomic Data Reveals Pathophysiological Modules Involved with Atrial Fibrillation. Mol Diagn Ther 2020; 24:737-751. [PMID: 33095430 DOI: 10.1007/s40291-020-00497-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a complex disease and affects millions of people around the world. The biological mechanisms that are involved with AF are complex and still need to be fully elucidated. Therefore, we performed a meta-analysis of transcriptome data related to AF to explore these mechanisms aiming at more sensitive and reliable results. METHODS Ten public transcriptomic datasets were downloaded, analyzed for quality control, and individually pre-processed. Differential expression analysis was carried out for each dataset, and the results were meta-analytically aggregated using the rth ordered p value method. We analyzed the final list of differentially expressed genes through network analysis, namely topological and modularity analysis, and functional enrichment analysis. RESULTS The meta-analysis of transcriptomes resulted in 1197 differentially expressed genes, whose protein-protein interaction network presented 39 hubs-bottlenecks and four main identified functional modules. These modules were enriched for 39, 20, 64, and 10 biological pathways involved with the pathophysiology of AF, especially with the disease's structural and electrical remodeling processes. The stress of the endoplasmic reticulum, protein catabolism, oxidative stress, and inflammation are some of the enriched processes. Among hub-bottlenecks genes, which are highly connected and probably have a key role in regulating these processes, HSPA5, ANK2, CTNNB1, and MAPK1 were identified. CONCLUSION Our approach based on transcriptome meta-analysis revealed a set of key genes that demonstrated consistent overall changes in expression patterns associated with AF despite data heterogeneity related, among others, to type of tissue. Further experimental investigation of our findings may shed light on the pathophysiology of the disease and contribute to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Haas Bueno
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Mariana Recamonde-Mendoza
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
32
|
Insight into atrial fibrillation through analysis of the coding transcriptome in humans. Biophys Rev 2020; 12:817-826. [PMID: 32666467 DOI: 10.1007/s12551-020-00735-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia in humans, and its prevalence continues to increase because of the aging of the world population. Much still needs to be learned about the molecular pathways involved in the development and the persistence of the disease. Analysis of the transcriptome of cardiac tissue has provided valuable insight into diverse aspects of atrial remodeling, in particular concerning electrical remodeling-related to ion channels-and structural remodeling identified by dysregulation of processes linked to inflammation, fibrosis, oxidative stress, and thrombogenesis. The huge amount of data produced by these studies now represents a valuable source for the identification of novel potential therapeutic targets. In addition, the shift from cardiac tissue to peripheral blood as a substrate for transcriptome analysis revealed this strategy as a promising tool for improved diagnosis and therefore better patient care.
Collapse
|
33
|
Zhang PP, Sun J, Li W. Genome-wide profiling reveals atrial fibrillation-related circular RNAs in atrial appendages. Gene 2019; 728:144286. [PMID: 31838248 DOI: 10.1016/j.gene.2019.144286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Atrial fibrillation (AF) is an abnormal heart rhythm characterized by rapid and irregular beating of the atria. The non-coding RNAs (ncRNAs) have attracted much attention of AF researchers, as they play a critical role in the transcriptional and post-transcriptional regulation, which could greatly benefit the interpretation of the pathogenesis of AF. However, circRNAs, as a special member of the ncRNAs, and their role in the pathogenesis of AF is less understood. In the present study, we detected a total of 14,215 circRNAs in AF patients and healthy controls. Differential expression analysis of these circRNAs revealed 20 upregulated and 3 downregulated circRNAs, which were differentially expressed in both left and right atrial appendages. The association analysis of the AF-related circRNAs and their parental genes revealed that hsa_circ_0003965 had significantly negative correlation with its parental gene TMEM245 (PCC = -0.51), suggesting that the dysregulation of hsa_circ_0003965 was not regulated by the transcription of its parental gene, but could be associated with glucagon signaling pathway. The competing endogenous RNA (ceRNA) network analysis revealed two upregulated genes, IFNG and GDF7, and one downregulated gene, BMP7, all of which were involved in TGF-beta signaling pathway, which further suggested that these circRNAs, namely hsa_circ_0000075 and hsa_circ_0082096, participated in the AF pathogenesis via TGF-beta signaling pathway. Consistently, TGF-beta signaling pathway was a well-recognized player for its association with atrial fibrosis in AF. In summary, we aimed to discover and provide key circRNAs involved in AF for AF-related researchers, which had the potential to greatly improve our understanding of the underlying mechanism behind circRNAs and AF.
Collapse
Affiliation(s)
- Peng-Pai Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Sun
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|