1
|
Devapatla P, Jeng WY, Chiu WT, Hsieh-Li HM. The pathophysiological significance between autosomal dominant polycystic kidney disease and neutrophil gelatinase-associated lipocalin. Kidney Res Clin Pract 2025; 44:238-248. [PMID: 40083127 PMCID: PMC11985312 DOI: 10.23876/j.krcp.23.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 03/16/2025] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of polycystic kidney disease (PKD) and is a typical adult-onset multisystem disorder. It is a progressive disease characterized by the disruption of renal tubular integrity, involving the modulation of cellular proliferation and apoptosis. Most ADPKD results from a mutation in either the PKD1 or PKD2 gene encoding polycystin-1 and polycystin-2, respectively. With the inconsistent disease course of ADPKD, biomarkers that can predict the treatment efficacy and rapid progression of the disease are needed. Studies have identified neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for predicting the progression of ADPKD patients. The NGAL protein is expressed at a low level in the kidneys, which helps to regulate iron transport and participates in epithelial differentiation, inflammation, and cell proliferation. NGAL level also increases in serum and urine during renal detrimental conditions such as ischemia and acute and chronic kidney diseases. On the other hand, some studies have also demonstrated that NGAL may act as a tubulogenic factor controlling cell growth and that the upregulation of the Ngal gene hinders tubular cell proliferation, resulting in significantly reduced cyst growth in cellular and murine models of ADPKD. This review attempts to correlate ADPKD and NGAL based on available research findings to evaluate the therapeutic potential of NGAL in ADPKD.
Collapse
Affiliation(s)
- Pallavi Devapatla
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
2
|
Lichner Z, Ding M, Khare T, Dan Q, Benitez R, Praszner M, Song X, Saleeb R, Hinz B, Pei Y, Szászi K, Kapus A. Myocardin-Related Transcription Factor Mediates Epithelial Fibrogenesis in Polycystic Kidney Disease. Cells 2024; 13:984. [PMID: 38891116 PMCID: PMC11172104 DOI: 10.3390/cells13110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and we identified the RhoA/cytoskeleton/myocardin-related transcription factor (MRTF) pathway as an emerging mediator of epithelium-induced fibrogenesis. Therefore, we hypothesized that MRTF is activated by PC1/2 loss and plays a critical role in the fibrogenic reprogramming of the epithelium. The loss of PC1 or PC2, induced by siRNA in vitro, activated RhoA and caused cytoskeletal remodeling and robust nuclear MRTF translocation and overexpression. These phenomena were also manifested in PKD1 (RC/RC) and PKD2 (WS25/-) mice, with MRTF translocation and overexpression occurring predominantly in dilated tubules and the cyst-lining epithelium, respectively. In epithelial cells, a large cohort of PC1/PC2 downregulation-induced genes was MRTF-dependent, including cytoskeletal, integrin-related, and matricellular/fibrogenic proteins. Epithelial MRTF was necessary for the paracrine priming of the fibroblast-myofibroblast transition. Thus, MRTF acts as a prime inducer of epithelial fibrogenesis in PKD. We propose that RhoA is a common upstream inducer of both histological hallmarks of PKD: cystogenesis and fibrosis.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Mei Ding
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Tarang Khare
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Enrich Bioscience, Toronto, ON M5B 1T8, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Raquel Benitez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Mercédesz Praszner
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Xuewen Song
- Division of Nephrology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Rola Saleeb
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Laboratory Medicine and Pathobiology, Temerty School of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Boris Hinz
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Laboratory Medicine and Pathobiology, Temerty School of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Brownjohn PW, Zoufir A, O’Donovan DJ, Sudhahar S, Syme A, Huckvale R, Porter JR, Bange H, Brennan J, Thompson NT. Computational drug discovery approaches identify mebendazole as a candidate treatment for autosomal dominant polycystic kidney disease. Front Pharmacol 2024; 15:1397864. [PMID: 38846086 PMCID: PMC11154008 DOI: 10.3389/fphar.2024.1397864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a rare genetic disorder characterised by numerous renal cysts, the progressive expansion of which can impact kidney function and lead eventually to renal failure. Tolvaptan is the only disease-modifying drug approved for the treatment of ADPKD, however its poor side effect and safety profile necessitates the need for the development of new therapeutics in this area. Using a combination of transcriptomic and machine learning computational drug discovery tools, we predicted that a number of existing drugs could have utility in the treatment of ADPKD, and subsequently validated several of these drug predictions in established models of disease. We determined that the anthelmintic mebendazole was a potent anti-cystic agent in human cellular and in vivo models of ADPKD, and is likely acting through the inhibition of microtubule polymerisation and protein kinase activity. These findings demonstrate the utility of combining computational approaches to identify and understand potential new treatments for traditionally underserved rare diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hester Bange
- Crown Bioscience Netherlands B.V., Biopartner Center Leiden JH, Leiden, Netherlands
| | | | | |
Collapse
|
4
|
Walker RV, Maranto A, Palicharla VR, Hwang SH, Mukhopadhyay S, Qian F. Cilia-Localized Counterregulatory Signals as Drivers of Renal Cystogenesis. Front Mol Biosci 2022; 9:936070. [PMID: 35832738 PMCID: PMC9272769 DOI: 10.3389/fmolb.2022.936070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
Primary cilia play counterregulatory roles in cystogenesis-they inhibit cyst formation in the normal renal tubule but promote cyst growth when the function of polycystins is impaired. Key upstream cilia-specific signals and components involved in driving cystogenesis have remained elusive. Recent studies of the tubby family protein, Tubby-like protein 3 (TULP3), have provided new insights into the cilia-localized mechanisms that determine cyst growth. TULP3 is a key adapter of the intraflagellar transport complex A (IFT-A) in the trafficking of multiple proteins specifically into the ciliary membrane. Loss of TULP3 results in the selective exclusion of its cargoes from cilia without affecting their extraciliary pools and without disrupting cilia or IFT-A complex integrity. Epistasis analyses have indicated that TULP3 inhibits cystogenesis independently of the polycystins during kidney development but promotes cystogenesis in adults when polycystins are lacking. In this review, we discuss the current model of the cilia-dependent cyst activation (CDCA) mechanism in autosomal dominant polycystic kidney disease (ADPKD) and consider the possible roles of ciliary and extraciliary polycystins in regulating CDCA. We then describe the limitations of this model in not fully accounting for how cilia single knockouts cause significant cystic changes either in the presence or absence of polycystins. Based on available data from TULP3/IFT-A-mediated differential regulation of cystogenesis in kidneys with deletion of polycystins either during development or in adulthood, we hypothesize the existence of cilia-localized components of CDCA (cCDCA) and cilia-localized cyst inhibition (CLCI) signals. We develop the criteria for cCDCA/CLCI signals and discuss potential TULP3 cargoes as possible cilia-localized components that determine cystogenesis in kidneys during development and in adult mice.
Collapse
Affiliation(s)
- Rebecca V. Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Abstract
Mutations of polycystin-1 (PC1) are the major cause (85% of cases) of autosomal dominant polycystic kidney disease (ADPKD), which is the fourth leading cause of kidney failure. PC1 is thought to function as an atypical G protein-coupled receptor, yet the mechanism by which PC1 regulates G-protein signaling remains poorly understood. A significant portion of ADPKD mutations of PC1 encode a protein with defects in maturation or reduced function that may be amenable to functional rescue. In this work, we have combined complementary biochemical and cellular assay experiments and accelerated molecular simulations, which revealed an allosteric transduction pathway in activation of the PC1 C-terminal fragment. Our findings will facilitate future rational drug design efforts targeting the PC1 signaling function. Polycystin-1 (PC1) is an important unusual G protein-coupled receptor (GPCR) with 11 transmembrane domains, and its mutations account for 85% of cases of autosomal dominant polycystic kidney disease (ADPKD). PC1 shares multiple characteristics with Adhesion GPCRs. These include a GPCR proteolysis site that autocatalytically divides these proteins into extracellular, N-terminal, and membrane-embedded, C-terminal fragments (CTF), and a tethered agonist (TA) within the N-terminal stalk of the CTF that is suggested to activate signaling. However, the mechanism by which a TA can activate PC1 is not known. Here, we have combined functional cellular signaling experiments of PC1 CTF expression constructs encoding wild type, stalkless, and three different ADPKD stalk variants with all-atom Gaussian accelerated molecular dynamics (GaMD) simulations to investigate TA-mediated signaling activation. Correlations of residue motions and free-energy profiles calculated from the GaMD simulations correlated with the differential signaling abilities of wild type and stalk variants of PC1 CTF. They suggested an allosteric mechanism involving residue interactions connecting the stalk, Tetragonal Opening for Polycystins (TOP) domain, and putative pore loop in TA-mediated activation of PC1 CTF. Key interacting residues such as N3074–S3585 and R3848–E4078 predicted from the GaMD simulations were validated by mutagenesis experiments. Together, these complementary analyses have provided insights into a TA-mediated activation mechanism of PC1 CTF signaling, which will be important for future rational drug design targeting PC1.
Collapse
|
6
|
Vasileva VY, Sultanova RF, Sudarikova AV, Ilatovskaya DV. Insights Into the Molecular Mechanisms of Polycystic Kidney Diseases. Front Physiol 2021; 12:693130. [PMID: 34566674 PMCID: PMC8456103 DOI: 10.3389/fphys.2021.693130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant (AD) and autosomal recessive (AR) polycystic kidney diseases (PKD) are severe multisystem genetic disorders characterized with formation and uncontrolled growth of fluid-filled cysts in the kidney, the spread of which eventually leads to the loss of renal function. Currently, there are no treatments for ARPKD, and tolvaptan is the only FDA-approved drug that alleviates the symptoms of ADPKD. However, tolvaptan has only a modest effect on disease progression, and its long-term use is associated with many side effects. Therefore, there is still a pressing need to better understand the fundamental mechanisms behind PKD development. This review highlights current knowledge about the fundamental aspects of PKD development (with a focus on ADPKD) including the PC1/PC2 pathways and cilia-associated mechanisms, major molecular cascades related to metabolism, mitochondrial bioenergetics, and systemic responses (hormonal status, levels of growth factors, immune system, and microbiome) that affect its progression. In addition, we discuss new information regarding non-pharmacological therapies, such as dietary restrictions, which can potentially alleviate PKD.
Collapse
Affiliation(s)
| | - Regina F Sultanova
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Department of Physiology, Augusta University, Augusta, GA, United States
| | | | | |
Collapse
|
7
|
Lu L, Liu Q, Zhi L, Che X, Xiao B, Cui M, Yu M, Yang B, Zhang J, Zhang B. Establishment of a Ciliogenesis-Associated Signaling Model for Polycystic Kidney Disease. Kidney Blood Press Res 2021; 46:693-701. [PMID: 34469896 DOI: 10.1159/000517408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Polycystic kidney disease (PKD) represents the most prevalent inherited progressive kidney disorder in humans. Due to complexity of the genetic network behind the disease, the molecular mechanisms of PKD are still poorly understood yet. OBJECTIVES This study aimed to develop a ciliogenesis-associated gene network for PKD patients and comprehensively understand the molecular mechanisms underlying the disease. METHOD The potential hub genes were selected based on the differential expression analysis from the GEO database. Meanwhile, the primary hub genes were further elucidated by both in vivo and in vitro experiments. RESULTS In this study, we established a comprehensive differentially expressed genes profile (including GNAS, PI4KB, UMOD, SLC7A13, and MIOX) for PKD patients compared with the control specimen. At the same time, enrichment analysis was utilized to demonstrate that the G-protein-related signaling and cilia assembling signaling pathways were closely associated with PKD development. The further investigations of the interaction between 2 genes (GNAS and PI4KB) with in vivo and in vitro analyses revealed that PI4KB functioned as a downstream factor for GNAS and spontaneously activated the phosphorylation of Akt into p-Akt for ciliogenesis in PKD formation. The PI4KB depletion mutant zebrafish model displayed a PKD phenotype as well as absence of primary cilia in the kidney. CONCLUSIONS Collectively, our work discovered an innovative potential signaling pathway model for PKD formation, which provided a valuable insight for future study of the mechanism of this disease.
Collapse
Affiliation(s)
- Ling Lu
- Department of Nephrology, Tianjin First Central Hospital, Tianjin, China
| | - Qiuling Liu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Lei Zhi
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuchun Che
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bo Xiao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingxuan Cui
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Mingyu Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bing Yang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Bo Zhang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Mahendran R, Lim SK, Ong KC, Chua KH, Chai HC. Natural-derived compounds and their mechanisms in potential autosomal dominant polycystic kidney disease (ADPKD) treatment. Clin Exp Nephrol 2021; 25:1163-1172. [PMID: 34254206 DOI: 10.1007/s10157-021-02111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic kidney disorder that impairs renal functions progressively leading to kidney failure. The disease affects between 1:400 and 1:1000 ratio of the people worldwide. It is caused by the mutated PKD1 and PKD2 genes which encode for the defective polycystins. Polycystins mimic the receptor protein or protein channel and mediate aberrant cell signaling that causes cystic development in the renal parenchyma. The cystic development is driven by the increased cyclic AMP stimulating fluid secretion and infinite cell growth. In recent years, natural product-derived small molecules or drugs targeting specific signaling pathways have caught attention in the drug discovery discipline. The advantages of natural products over synthetic drugs enthusiast researchers to utilize the medicinal benefits in various diseases including ADPKD. CONCLUSION Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.
Collapse
Affiliation(s)
- Rhubaniya Mahendran
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Leierer J, Perco P, Hofer B, Eder S, Dzien A, Kerschbaum J, Rudnicki M, Mayer G. Coregulation Analysis of Mechanistic Biomarkers in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2021; 22:6885. [PMID: 34206927 PMCID: PMC8269435 DOI: 10.3390/ijms22136885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder leading to deterioration of kidney function and end stage kidney disease (ESKD). A number of molecular processes are dysregulated in ADPKD but the exact mechanism of disease progression is not fully understood. We measured protein biomarkers being linked to ADPKD-associated molecular processes via ELISA in urine and serum in a cohort of ADPKD patients as well as age, gender and eGFR matched CKD patients and healthy controls. ANOVA and t-tests were used to determine differences between cohorts. Spearman correlation coefficient analysis was performed to assess coregulation patterns of individual biomarkers and renal function. Urinary epidermal growth factor (EGF) and serum apelin (APLN) levels were significantly downregulated in ADPKD patients. Serum vascular endothelial growth factor alpha (VEGFA) and urinary angiotensinogen (AGT) were significantly upregulated in ADPKD patients as compared with healthy controls. Arginine vasopressin (AVP) was significantly upregulated in ADPKD patients as compared with CKD patients. Serum VEGFA and VIM concentrations were positively correlated and urinary EGF levels were negatively correlated with urinary AGT levels. Urinary EGF and AGT levels were furthermore significantly associated with estimated glomerular filtration rate (eGFR) in ADPKD patients. In summary, altered protein concentrations in body fluids of ADPKD patients were found for the mechanistic markers EGF, APLN, VEGFA, AGT, AVP, and VIM. In particular, the connection between EGF and AGT during progression of ADPKD warrants further investigation.
Collapse
Affiliation(s)
- Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Benedikt Hofer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Susanne Eder
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | | | - Julia Kerschbaum
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (J.L.); (B.H.); (S.E.); (J.K.); (M.R.); (G.M.)
| |
Collapse
|
10
|
Signal transduction in primary cilia - analyzing and manipulating GPCR and second messenger signaling. Pharmacol Ther 2021; 224:107836. [PMID: 33744260 DOI: 10.1016/j.pharmthera.2021.107836] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The primary cilium projects from the surface of most vertebrate cells, where it senses extracellular signals to regulate diverse cellular processes during tissue development and homeostasis. Dysfunction of primary cilia underlies the pathogenesis of severe diseases, commonly referred to as ciliopathies. Primary cilia contain a unique protein repertoire that is distinct from the cell body and the plasma membrane, enabling the spatially controlled transduction of extracellular cues. G-protein coupled receptors (GPCRs) are key in sensing environmental stimuli that are transmitted via second messenger signaling into a cellular response. Here, we will give an overview of the role of GPCR signaling in primary cilia, and how ciliary GPCR signaling can be targeted by pharmacology, chemogenetics, and optogenetics.
Collapse
|
11
|
Abraham S, Paknikar R, Bhumbra S, Luan D, Venkatareddy M, O'Connor C, Bitzer M, Fenton RA, Hurd T, Garg P, Patel SR. Epigenetic regulation of arginine vasopressin receptor 2 expression by PAX2 and Pax transcription interacting protein. Am J Physiol Renal Physiol 2021; 320:F404-F417. [PMID: 33522413 PMCID: PMC7988803 DOI: 10.1152/ajprenal.00371.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Renal arginine vasopressin receptor 2 (AVPR2) plays a crucial role in osmoregulation. Engagement of ligand with AVPR2 results in aquaporin 2 movement to the apical membrane and water reabsorption from the urinary filtrate. Despite this essential role, little is known about transcriptional regulation of Avpr2. Here, we identify novel roles for PAX2, a transcription factor crucial for kidney development, and its adaptor protein, Pax transcription interacting protein (PTIP), for epigenetic regulation of Avpr2 and thus body water balance. Chromatin immunoprecipitation (ChIP) from murine inner medulla cells (IMCD-3) identified the minimal DNA-binding region of PAX2 on the Avpr2 promoter. Regulation of Avpr2 by PAX2 was confirmed using a heterologous DNA expression system. PAX2 recruits the adaptor protein PTIP and its associated histone methyltransferase (HMT) complex to Avpr2 promoter, imposing epigenetic marks on this region and throughout the coding sequence that modulate Avpr2 gene transcription. Reduction of PAX2 or PTIP protein levels by siRNA prevented histone lysine methylation and expression of Avpr2. ChIP using mouse or human kidneys determined that PAX2 is highly enriched in the AVPR2 promoter alongside PTIP and HMT proteins, leading to high levels of histone H3 lysine trimethylation within the promoter and throughout the gene. In conclusion, PAX2 provides locus specificity for PTIP, allowing the HMT complex to impart epigenetic changes at the Avpr2 locus and regulate Avpr2 transcription. These finding have major implications for understanding regulation of body water balance.NEW & NOTEWORTHY The transcription factor PAX2 plays an indispensable role in kidney development. In the adult kidney, we identified the first described protein this protein regulates. PAX2 and its interacting partner Pax transcription interacting protein recruit a histone methyltransferase complex to the promoter and epigentically regulate the expression of arginine vasopressin receptor 2, a protein that plays a crucial role in osmoregulation in the distal tubule.
Collapse
Affiliation(s)
- Saji Abraham
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Raghavendra Paknikar
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Samina Bhumbra
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Danny Luan
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Madhusudan Venkatareddy
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Christopher O'Connor
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Markus Bitzer
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Veterans Administration, Veterans Affairs Medical Center, Ann Arbor, Michigan
| | - Robert A Fenton
- Department of Biomedicine and Health, Aarhus University, Aarhus, Denmark
| | - Toby Hurd
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Puneet Garg
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Veterans Administration, Veterans Affairs Medical Center, Ann Arbor, Michigan
| | - Sanjeevkumar R Patel
- Nephrology Division of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
- Department of Internal Medicine, Veterans Administration, Veterans Affairs Medical Center, Ann Arbor, Michigan
| |
Collapse
|
12
|
Maser RL, Calvet JP. Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 2020; 72:109637. [PMID: 32305667 DOI: 10.1016/j.cellsig.2020.109637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.
Collapse
Affiliation(s)
- Robin L Maser
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| |
Collapse
|
13
|
Wang Z, Ng C, Liu X, Wang Y, Li B, Kashyap P, Chaudhry HA, Castro A, Kalontar EM, Ilyayev L, Walker R, Alexander RT, Qian F, Chen X, Yu Y. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep 2019; 20:e48336. [PMID: 31441214 PMCID: PMC6832002 DOI: 10.15252/embr.201948336] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2 gene, encoding the polycystic kidney disease protein polycystin-1 and the transient receptor potential channel polycystin-2 (also known as TRPP2), respectively. Polycystin-1 and polycystin-2 form a receptor-ion channel complex located in primary cilia. The function of this complex, especially the role of polycystin-1, is largely unknown due to the lack of a reliable functional assay. In this study, we dissect the role of polycystin-1 by directly recording currents mediated by a gain-of-function (GOF) polycystin-1/polycystin-2 channel. Our data show that this channel has distinct properties from that of the homomeric polycystin-2 channel. The polycystin-1 subunit directly contributes to the channel pore, and its eleven transmembrane domains are sufficient for its channel function. We also show that the cleavage of polycystin-1 at the N-terminal G protein-coupled receptor proteolysis site is not required for the activity of the GOF polycystin-1/polycystin-2 channel. These results demonstrate the ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex, enriching our understanding of this channel and its role in ADPKD.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Courtney Ng
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Xiong Liu
- Department of Physiology, Membrane Protein Disease Research GroupFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yan Wang
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Bin Li
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Parul Kashyap
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | | | - Alexis Castro
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | | | - Leah Ilyayev
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Rebecca Walker
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - R Todd Alexander
- Departments of Pediatrics and PhysiologyUniversity of AlbertaEdmontonABCanada
| | - Feng Qian
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xing‐Zhen Chen
- Department of Physiology, Membrane Protein Disease Research GroupFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yong Yu
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| |
Collapse
|
14
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
15
|
Zhang B, Tran U, Wessely O. Polycystin 1 loss of function is directly linked to an imbalance in G-protein signaling in the kidney. Development 2018. [PMID: 29530879 DOI: 10.1242/dev.158931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of the kidney relies on the establishment and maintenance of a precise tubular diameter of its functional units, the nephrons. This process is disrupted in polycystic kidney disease (PKD), resulting in dilations of the nephron and renal cyst formation. In the course of exploring G-protein-coupled signaling in the Xenopus pronephric kidney, we discovered that loss of the G-protein α subunit, Gnas, results in a PKD phenotype. Polycystin 1, one of the genes mutated in human PKD, encodes a protein resembling a G-protein-coupled receptor. Furthermore, deletion of the G-protein-binding domain present in the intracellular C terminus of polycystin 1 impacts functionality. A comprehensive analysis of all the G-protein α subunits expressed in the Xenopus pronephric kidney demonstrates that polycystin 1 recruits a select subset of G-protein α subunits and that their knockdown - as in the case of Gnas - results in a PKD phenotype. Mechanistically, the phenotype is caused by increased endogenous G-protein β/γ signaling and can be reversed by pharmacological inhibitors as well as knocking down Gnb1. Together, our data support the hypothesis that G proteins are recruited to the intracellular domain of PKD1 and that this interaction is crucial for its function in the kidney.
Collapse
Affiliation(s)
- Bo Zhang
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA.,LSU Health Sciences Center, Department of Cell Biology and Anatomy, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Uyen Tran
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Córdova-Casanova A, Olmedo I, Riquelme J, Barrientos G, Sánchez G, Gillette T, Lavandero S, Chiong M, Donoso P, Pedrozo Z. Mechanical stretch increases L-type calcium channel stability in cardiomyocytes through a polycystin-1/AKT-dependent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:289-296. [DOI: 10.1016/j.bbamcr.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
|