1
|
Saha A, Ganguly A, Kumar A, Srivastava N, Pathak R. Harnessing Epigenetics: Innovative Approaches in Diagnosing and Combating Viral Acute Respiratory Infections. Pathogens 2025; 14:129. [PMID: 40005506 PMCID: PMC11858160 DOI: 10.3390/pathogens14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Acute respiratory infections (ARIs) caused by viruses such as SARS-CoV-2, influenza viruses, and respiratory syncytial virus (RSV), pose significant global health challenges, particularly for the elderly and immunocompromised individuals. Substantial evidence indicates that acute viral infections can manipulate the host's epigenome through mechanisms like DNA methylation and histone modifications as part of the immune response. These epigenetic alterations can persist beyond the acute phase, influencing long-term immunity and susceptibility to subsequent infections. Post-infection modulation of the host epigenome may help distinguish infected from uninfected individuals and predict disease severity. Understanding these interactions is crucial for developing effective treatments and preventive strategies for viral ARIs. This review highlights the critical role of epigenetic modifications following viral ARIs in regulating the host's innate immune defense mechanisms. We discuss the implications of these modifications for diagnosing, preventing, and treating viral infections, contributing to the advancement of precision medicine. Recent studies have identified specific epigenetic changes, such as hypermethylation of interferon-stimulated genes in severe COVID-19 cases, which could serve as biomarkers for early detection and disease progression. Additionally, epigenetic therapies, including inhibitors of DNA methyltransferases and histone deacetylases, show promise in modulating the immune response and improving patient outcomes. Overall, this review provides valuable insights into the epigenetic landscape of viral ARIs, extending beyond traditional genetic perspectives. These insights are essential for advancing diagnostic techniques and developing innovative treatments to address the growing threat of emerging viruses causing ARIs globally.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India;
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India;
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
2
|
Bork F, Greve CL, Youn C, Chen S, N C Leal V, Wang Y, Fischer B, Nasri M, Focken J, Scheurer J, Engels P, Dubbelaar M, Hipp K, Zalat B, Szolek A, Wu MJ, Schittek B, Bugl S, Kufer TA, Löffler MW, Chamaillard M, Skokowa J, Kramer D, Archer NK, Weber ANR. naRNA-LL37 composite DAMPs define sterile NETs as self-propagating drivers of inflammation. EMBO Rep 2024; 25:2914-2949. [PMID: 38783164 PMCID: PMC11239898 DOI: 10.1038/s44319-024-00150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are a key antimicrobial feature of cellular innate immunity mediated by polymorphonuclear neutrophils (PMNs). NETs counteract microbes but are also linked to inflammation in atherosclerosis, arthritis, or psoriasis by unknown mechanisms. Here, we report that NET-associated RNA (naRNA) stimulates further NET formation in naive PMNs via a unique TLR8-NLRP3 inflammasome-dependent pathway. Keratinocytes respond to naRNA with expression of psoriasis-related genes (e.g., IL17, IL36) via atypical NOD2-RIPK signaling. In vivo, naRNA drives temporary skin inflammation, which is drastically ameliorated by genetic ablation of RNA sensing. Unexpectedly, the naRNA-LL37 'composite damage-associated molecular pattern (DAMP)' is pre-stored in resting neutrophil granules, defining sterile NETs as inflammatory webs that amplify neutrophil activation. However, the activity of the naRNA-LL37 DAMP is transient and hence supposedly self-limiting under physiological conditions. Collectively, upon dysregulated NET release like in psoriasis, naRNA sensing may represent both a potential cause of disease and a new intervention target.
Collapse
Affiliation(s)
- Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sirui Chen
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Masoud Nasri
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Pujan Engels
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Marissa Dubbelaar
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Baher Zalat
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Andras Szolek
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Markus W Löffler
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University of Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany
| | - Mathias Chamaillard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Julia Skokowa
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Hua S, Latha K, Marlin R, Benmeziane K, Bossevot L, Langlois S, Relouzat F, Dereuddre-Bosquet N, Le Grand R, Cavarelli M. Intestinal immunological events of acute and resolved SARS-CoV-2 infection in non-human primates. Mucosal Immunol 2024; 17:25-40. [PMID: 37827377 DOI: 10.1016/j.mucimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.
Collapse
Affiliation(s)
- Stéphane Hua
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Krishna Latha
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Keltouma Benmeziane
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
4
|
Bhattacharjee P, Karim KA, Khan Z. Harnessing the Microbiome: A Comprehensive Review on Advancing Therapeutic Strategies for Rheumatic Diseases. Cureus 2023; 15:e50964. [PMID: 38249228 PMCID: PMC10800157 DOI: 10.7759/cureus.50964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Rheumatic diseases are a group of disorders that affect the joints, muscles, and bones. These diseases, such as rheumatoid arthritis, lupus, and psoriatic arthritis, can cause pain, stiffness, and swelling, leading to reduced mobility and disability. Recent studies have identified the microbiome, the diverse community of microorganisms that live in and on the human body, as a potential factor in the development and progression of rheumatic diseases. Harnessing the microbiome offers a promising new avenue for developing therapeutic strategies for these debilitating conditions. There is growing interest in the role of oral and gut microbiomes in the management of rheumatoid arthritis and other autoimmune disease. Microbial metabolites have immunomodulatory properties that could be exploited for rheumatic disorders. A wide range of microorganisms are present in the oral cavity and are found to be vulnerable to the effects of the environment. The physiology and ecology of the microbiota become intimately connected with those of the host, and they critically influence the promotion of health or progression toward disease. This article aims to provide a comprehensive overview of the current state of knowledge on oral and gut microbiome and its potential future role in the management of rheumatic diseases. This article will also discuss newer treatment strategies such as bioinformatic analyses and fecal transplantation.
Collapse
Affiliation(s)
- Priyadarshini Bhattacharjee
- Acute Medicine, Cambridge University Hospital NHS Foundation Trust, Cambridge, GBR
- School of Clinical Medicine, University of Cambridge, Cambridge, GBR
| | - Karim Arif Karim
- Medicine and Surgery, Kamuzu University of Health Sciences, Blantyre, MWI
| | - Zahid Khan
- Acute Medicine, Mid and South Essex NHS Foundation Trust, Southend-on-Sea, GBR
- Cardiology, Bart's Heart Centre, London, GBR
- Cardiology and General Medicine, Barking, Havering and Redbridge University Hospitals NHS Trust, London, GBR
- Cardiology, Royal Free Hospital, London, GBR
| |
Collapse
|
5
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
6
|
Zhang Z, Niu R, Zhao L, Wang Y, Liu G. Mechanisms of Neutrophil Extracellular Trap Formation and Regulation in Cancers. Int J Mol Sci 2023; 24:10265. [PMID: 37373412 DOI: 10.3390/ijms241210265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
As one of the most important components of the innate immune system, neutrophils are always at the forefront of the response to diseases. The immune functions of neutrophils include phagocytosis, degranulation, production of reactive oxygen species, and the production of neutrophil extracellular traps (NETs). NETs are composed of deconcentrated chromatin DNA, histones, myeloperoxidase (MPO) and neutrophil elastase (NE), playing an important role in the resistance to some pathogenic microbial invasions. Until recent years, when NETs were found to play a critical role in cancer. NETs play bidirectional regulation both positive and negative roles in the development and progression of cancer. Targeted NETs may provide new therapeutic strategies for the treatment of cancer. However, the molecular and cellular regulatory mechanisms underlying the formation and role of NET in cancer remain unclear. This review just summarizes the recent progress in regulatory mechanisms about the formation of NETs and their role in cancers.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
8
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Myeloid-Derived Suppressor Cells in Cancer and COVID-19 as Associated with Oxidative Stress. Vaccines (Basel) 2023; 11:218. [PMID: 36851096 PMCID: PMC9966263 DOI: 10.3390/vaccines11020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Myeloid-derived suppressor cells MDSCs are a heterogeneous population of cells that expand beyond their physiological regulation during pathologies such as cancer, inflammation, bacterial, and viral infections. Their key feature is their remarkable ability to suppress T cell and natural killer NK cell responses. Certain risk factors for severe COVID-19 disease, such as obesity and diabetes, are associated with oxidative stress. The resulting inflammation and oxidative stress can negatively impact the host. Similarly, cancer cells exhibit a sustained increase in intrinsic ROS generation that maintains the oncogenic phenotype and drives tumor progression. By disrupting endoplasmic reticulum calcium channels, intracellular ROS accumulation can disrupt protein folding and ultimately lead to proteostasis failure. In cancer and COVID-19, MDSCs consist of the same two subtypes (PMN-MSDC and M-MDSC). While the main role of polymorphonuclear MDSCs is to dampen the response of T cells and NK killer cells, they also produce reactive oxygen species ROS and reactive nitrogen species RNS. We here review the origin of MDSCs, their expansion mechanisms, and their suppressive functions in the context of cancer and COVID-19 associated with the presence of superoxide anion •O2- and reactive oxygen species ROS.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Celia Andrés Juan
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
9
|
Salehzadeh F, Pourfarzi F, Molatefi R, Davarnia B, Shahbazfar E, Ahmadabadi F. Immunogenic Potential of the Mediterranean Fever Gene in Patients with Coronavirus Disease: A Cross-Sectional Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:43-48. [PMID: 36688196 PMCID: PMC9843464 DOI: 10.30476/ijms.2022.92802.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND In December 2019, an outbreak of pneumonia caused by the novel coronavirus disease 2019 (COVID-19) became a pandemic and caused a global health crisis. This study evaluates the immunogenic potential of the Mediterranean fever (MEFV) gene in patients with COVID-19. METHODS A cross-sectional study was conducted from March to April 2020 in various COVID-19 referral centers in Ardabil, Iran. Blood samples of 50 hospitalized patients with confirmed COVID-19 were evaluated for MEFV gene mutation using the amplification refractory mutation system polymerase chain reaction (ARMS-PCR) and Sanger sequencing. Statistical analysis was performed using SPSS software, version 22.0. RESULTS Mutations of the MEFV gene were found in 6 (12%) of the patients. All mutations were heterozygous, and no homozygous or compound heterozygous forms were detected. The total mutant allele frequency was 6% and the carrier rate was 12%. The most common allele of the MEFV variant was E148Q, detected in 3 (6%) patients. No mutant variant of the MEFV gene was detected in deceased patients. None of the mutation carriers had familial Mediterranean fever (FMF) symptoms or a family history of FMF. CONCLUSION MEFV gene mutations may have immunogenic potential in patients with COVID-19. A preprint version of this article has already been published at https://www.researchsquare.com/article/rs-69373/latest.pdf.
Collapse
Affiliation(s)
- Farhad Salehzadeh
- Department of Pediatric, Bouali Children's Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Department of Community Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rasool Molatefi
- Department of Pediatric, Bouali Children's Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Davarnia
- Department of Genetic, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ehsan Shahbazfar
- Department of Pediatric, Bouali Children's Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzad Ahmadabadi
- Department of Pediatric, Bouali Children's Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Zhao Y, Jin H, Lei K, Bai LP, Pan H, Wang C, Zhu X, Tang Y, Guo Z, Cai J, Li T. Oridonin inhibits inflammation of epithelial cells via dual-targeting of CD31 Keap1 to ameliorate acute lung injury. Front Immunol 2023; 14:1163397. [PMID: 37090710 PMCID: PMC10116055 DOI: 10.3389/fimmu.2023.1163397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Introdcution Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of COVID-19 mortality. However, drug delivery to lung tissues is impeded by endothelial cell barriers, limiting the efficacy of existing treatments. A prompt and aggressive treatment strategy is therefore necessary. Methods We assessed the ability of anti-CD31-ORI-NPs to penetrate endothelial cell barriers and specifically accumulate in lung tissues using an animal model. We also compared the efficacy of anti-CD31-ORI-NPs to that of free oridonin in ameliorating acute lung injury and evaluated the cytotoxicity of both treatments on endothelial cells. Results Compared to free ORI, the amount of anti-CD31-ORI-NPs accumulated in lung tissues increase at least three times. Accordingly, anti-CD31-ORI-NPs improve the efficacy three times on suppressing IL-6 and TNF-a secretion, ROS production, eventually ameliorating acute lung injury in animal model. Importantly, anti-CD31-ORI-NPs significantly decrease the cytotoxicity at least two times than free oridonin on endothelial cells. Discussion Our results from this study will not only offer a novel therapeutic strategy with high efficacy and low toxicity, but also provide the rational design of nanomaterials of a potential drug for acute lung injury therapy.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Kawai Lei
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yanqing Tang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zhengyang Guo
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Ting Li,
| |
Collapse
|
11
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
12
|
Influence of SARS-COV-2 Infection on Cytokine Production by Mitogen-Stimulated Peripheral Blood Mononuclear Cells and Neutrophils in COVID-19 Intensive Care Unit Patients. Microorganisms 2022; 10:microorganisms10112194. [PMID: 36363785 PMCID: PMC9695671 DOI: 10.3390/microorganisms10112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
We sought to investigate the influence of SARS-CoV-2 infection on the cytokine profiles of peripheral blood mononuclear cells (PBMCs) and neutrophils from coronavirus disease 2019 (COVID-19) intensive care unit (ICU) patients. Neutrophils and PBMCs were separated and stimulated with the mitogen phytohemagglutinin. Culture supernatants of mitogen-stimulated PBMCs and neutrophils from 88 COVID-19 ICU patients and 88 healthy controls were evaluated for levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-α, IFN-γ, interleukin (IL)-2, -4, -5, -6, -9, -10, -12, -17A, and tumor necrosis factor (TNF)-α using anti-cytokine antibody MACSPlex capture beads. Cytokine profiles of PBMCs showed significantly lower levels of GM-CSF, IFN-γ, IL-6, IL-9, IL-10, IL-17A, and TNF-α (p < 0.0001) in COVID-19 ICU patients. In contrast, COVID-19 ICU patients showed higher median levels of IL-2 (p < 0.001) and IL-5 (p < 0.01) by PBMCs. As for neutrophils, COVID-19 ICU patients showed significantly lower levels of GM-CSF, IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-17A, IL-12, TNF-α (p < 0.0001), and IFN-α (p < 0.01). T-helper (Th)1:Th2 cytokine ratios revealed lower inflammatory cytokine for PBMCs and neutrophils in COVID-19 ICU patients. Cytokine production profiles and Th1:Th2 cytokine ratios suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has an immunomodulatory effect on PBMCs and neutrophils. This study also suggests that the increased levels of several cytokines in the serum are not sourced from PBMCs and neutrophils.
Collapse
|
13
|
Khodakarim N, Kalantari S, Riahi T, Moradians V, Talebi-Taher M, Yassin Z, Afshar H, Kooranifar S, Aloosh O, Ziaie S, Zamani N, Tirkan A, Ramim T. Effectiveness of Plasmapheresis Treatment in the Treatment of Patients with COVID-19 Disease. Med J Islam Repub Iran 2022; 36:83. [PMID: 36128282 PMCID: PMC9448457 DOI: 10.47176/mjiri.36.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
Background: According to the World Health Organization, COVID-19 management focuses primarily on infection prevention, case management, case monitoring, and supportive care. However, due to the lack of evidence, no specific anti-SARS-CoV-2 treatment is recommended. This study aimed to evaluate the effectiveness of plasmapheresis treatment in COVID-19 patients with symptoms of pulmonary involvement on the computed tomography (CT) of the lung. Methods: In 2021, an experimental study in critically ill patients admitted to the COVID-19 ward in the Hazrat-e Rasool hospital diagnosed with COVID-19 was conducted in the second phase (pilot study). The diagnosis was confirmed according to clinical signs, CT scan of the lung, and the Polymerase chain reaction (PCR) test. All patients received the usual treatments for COVID-19 disease and underwent plasmapheresis at a dose of 40 cc/kg daily up to 4 doses. All patients were observed for 24 hours for complications of plasmapheresis treatment and simultaneously for symptoms of COVID-19, after which only routine care measures were performed. The next day and 2 weeks after resumption of the treatment, patients experienced COVID-19 symptoms, including shortness of breath, cough, and fever. Blood oxygen saturation, and treatment results were evaluated. Qualitative and rank variables were described using absolute and relative frequencies and quantitative parametric variables were used using mean and confidence interval. Frequencies were compared in groups using the chi-square test. All tests were performed in 2 directions and P > 0.05 was considered statistically significant. Results: Of the 120 patients studied, 79 (65.8%) were men and 41 (34.2%) were women. The mean age was 60.30 ± 15.61 years (22-95 years). The mean hospital stay was 12.89 days ± 7.25 days (2-38 days). Increased blood oxygen saturation levels in patients had an increasing trend. Inflammatory indices had a downward trend in patients. The frequency of plasmapheresis had no significant effect on reducing the downward trend of inflammatory markers. The greatest reduction occurred in the first plasmapheresis. Conclusion: Finally, according to the findings, plasmapheresis is one of the appropriate treatments to improve patients' symptoms and reduce cytokine storm. Recovered patients had lower levels of inflammatory markers than those who died.
Collapse
Affiliation(s)
- Nastaran Khodakarim
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Kalantari
- Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Taghi Riahi
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Vahan Moradians
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Talebi-Taher
- Department of Infectious Disease, Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeynab Yassin
- Department of Infectious Disease, School of Medicine, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hale Afshar
- Department of Pulmonary Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Siavash Kooranifar
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Oldooz Aloosh
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Ziaie
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zamani
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Atefe Tirkan
- Department of Internal Medicine, School of Medicine, Hazrat- e Rasoul General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Tayeb Ramim
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran,Corresponding author: Tayeb Ramim,
| |
Collapse
|
14
|
Rasmi Y, Hatamkhani S, Naderi R, Shokati A, Nayeb Zadeh V, Hosseinzadeh F, Farnamian Y, Jalali L. Molecular signaling pathways, pathophysiological features in various organs, and treatment strategies in SARS-CoV2 infection. Acta Histochem 2022; 124:151908. [PMID: 35662001 PMCID: PMC9130726 DOI: 10.1016/j.acthis.2022.151908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Cytokine storms and extra-activated cytokine signaling pathways can lead to severe tissue damage and patient death. Activation of inflammatory signaling pathways during Cytokine storms are an important factor in the development of acute respiratory syndrome (SARS-CoV-2), which is the major health problem today, causing systemic and local inflammation. Cytokine storms attract many inflammatory cells that attack the lungs and other organs and cause tissue damage. Angiotensin-converting enzyme 2 (ACE2) are expressed in a different type of tissues. inhibition of ACE2 activity impairs renin-angiotensin (RAS) function, which is related to the severity of symptoms and mortality rate in COVID-19 patients. Different signaling cascades are activated, affecting various organs during SARS-CoV-2 infection. Nowadays, there is no specific treatment for COVID-19, but scientists have recognized and proposed several treatment alternatives, including applying cytokine inhibitors, immunomodulators, and plasma therapy. Herein, we have provided the detailed mechanism of SARS-CoV-2 induced cytokine signaling and its connection with pathophysiological features in different organs. Possible treatment options to cope with the severe clinical manifestations of COVID-19 are also discussed.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Sciences, Qom, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
15
|
Fiction and Facts about BCG Imparting Trained Immunity against COVID-19. Vaccines (Basel) 2022; 10:vaccines10071006. [PMID: 35891168 PMCID: PMC9316941 DOI: 10.3390/vaccines10071006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
The Bacille Calmette-Guérin or BCG vaccine, the only vaccine available against Mycobacterium tuberculosis can induce a marked Th1 polarization of T-cells, characterized by the antigen-specific secretion of IFN-γ and enhanced antiviral response. A number of studies have supported the concept of protection by non-specific boosting of immunity by BCG and other microbes. BCG is a well-known example of a trained immunity inducer since it imparts ‘non-specific heterologous’ immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the recent pandemic. SARS-CoV-2 continues to inflict an unabated surge in morbidity and mortality around the world. There is an urgent need to devise and develop alternate strategies to bolster host immunity against the coronavirus disease of 2019 (COVID-19) and its continuously emerging variants. Several vaccines have been developed recently against COVID-19, but the data on their protective efficacy remains doubtful. Therefore, urgent strategies are required to enhance system immunity to adequately defend against newly emerging infections. The concept of trained immunity may play a cardinal role in protection against COVID-19. The ability of trained immunity-based vaccines is to promote heterologous immune responses beyond their specific antigens, which may notably help in defending against an emergency situation such as COVID-19 when the protective ability of vaccines is suspicious. A growing body of evidence points towards the beneficial non-specific boosting of immune responses by BCG or other microbes, which may protect against COVID-19. Clinical trials are underway to consider the efficacy of BCG vaccination against SARS-CoV-2 on healthcare workers and the elderly population. In this review, we will discuss the role of BCG in eliciting trained immunity and the possible limitations and challenges in controlling COVID-19 and future pandemics.
Collapse
|
16
|
Veenith T, Martin H, Le Breuilly M, Whitehouse T, Gao-Smith F, Duggal N, Lord JM, Mian R, Sarphie D, Moss P. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci Rep 2022; 12:10484. [PMID: 35729319 PMCID: PMC9212205 DOI: 10.1038/s41598-022-13825-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/27/2022] [Indexed: 12/25/2022] Open
Abstract
Neutrophilia and an elevated neutrophil:lymphocyte ratio are both characteristic features of severe COVID-19 infection. However, functional neutrophil responses have been poorly investigated in this setting. We utilised a novel PMA-based stimulation assay to determine neutrophil-derived reactive oxygen species (ROS) generation in patients with severe COVID-19 infection, non-COVID related sepsis and healthy study participants. ROS production was markedly elevated in COVID-19 patients with median values ninefold higher than in healthy controls and was particularly high in patients on mechanical ventilation. ROS generation correlated strongly with neutrophil count and elevated levels were also seen in patients with non-COVID related sepsis. Relative values, adjusted for neutrophil count, were high in both groups but extreme low or high values were seen in two patients who died shortly after testing, potentially indicating a predictive value for neutrophil function. Our results show that the high levels of neutrophils observed in patients with COVID-19 and sepsis exhibit functional capacity for ROS generation. This may contribute to the clinical features of acute disease and represents a potential novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Tonny Veenith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Helena Martin
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Martin Le Breuilly
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Tony Whitehouse
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Fang Gao-Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Niharika Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | | | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
17
|
Zhang Y, Wang Q, Mackay CR, Ng LG, Kwok I. Neutrophil subsets and their differential roles in viral respiratory diseases. J Leukoc Biol 2022; 111:1159-1173. [PMID: 35040189 PMCID: PMC9015493 DOI: 10.1002/jlb.1mr1221-345r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Neutrophils play significant roles in immune homeostasis and as neutralizers of microbial infections. Recent evidence further suggests heterogeneity of neutrophil developmental and activation states that exert specialized effector functions during inflammatory disease conditions. Neutrophils can play multiple roles during viral infections, secreting inflammatory mediators and cytokines that contribute significantly to host defense and pathogenicity. However, their roles in viral immunity are not well understood. In this review, we present an overview of neutrophil heterogeneity and its impact on the course and severity of viral respiratory infectious diseases. We focus on the evidence demonstrating the crucial roles neutrophils play in the immune response toward respiratory infections, using influenza as a model. We further extend the understanding of neutrophil function with the studies pertaining to COVID-19 disease and its neutrophil-associated pathologies. Finally, we discuss the relevance of these results for future therapeutic options through targeting and regulating neutrophil-specific responses.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of ResearchNational Skin CentreSingaporeSingapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Microbiology, Infection and Immunity ProgramBiomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
- State Key Laboratory of Experimental HematologyInstitute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and ImmunologyImmunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of SingaporeSingaporeSingapore
- National Cancer Centre SingaporeSingaporeSingapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
| |
Collapse
|
18
|
Gholami MD, Guppy-Coles K, Nihal S, Langguth D, Sonar P, Ayoko GA, Punyadeera C, Izake EL. A paper-based optical sensor for the screening of viruses through the cysteine residues of their surface proteins: A proof of concept on the detection of coronavirus infection. Talanta 2022; 248:123630. [PMID: 35660992 PMCID: PMC9153203 DOI: 10.1016/j.talanta.2022.123630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/29/2022] [Indexed: 12/27/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health. Current methods such as reverse transcription polymerase chain reaction (qRT-PCR) are complex, expensive, and time-consuming. Rapid, and simple screening methods for the detection of SARS-CoV-2 are critically required to fight the current pandemic. In this work we present a proof of concept for, a simple optical sensing method for the screening of SARS-CoV-2 through its spike protein subunit S1. The method utilizes a target-specific extractor chip to bind the protein from the biological specimens. The disulfide bonds of the protein are then reduced into a biothiol with sulfhydryl (SH) groups that react with a blue-colored benzothiazole azo dye-Hg complex (BAN-Hg) and causes the spontaneous change of its blue color to pink which is observable by the naked eye. A linear relationship between the intensity of the pink color and the logarithm of reduced S1 protein concentration was found within the working range 130 ng.mL−1-1.3 pg mL−1. The lowest limit of detection (LOD) of the assay was 130 fg mL−1. A paper based optical sensor was fabricated by loading the BAN-Hg sensor onto filter paper and used to screen the S1 protein in spiked saliva and patients’ nasopharyngeal swabs. The results obtained by the paper sensor corroborated with those obtained by qRT-PCR. The new paper-based sensing method can be extended to the screening of many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method has strong potential for screening viruses at pathology labs and in remote areas that lacks advanced scientific infrastructure. Further clinical studies are warranted to validate the new sensing method.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Kristyan Guppy-Coles
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Serena Nihal
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Daman Langguth
- Department of Clinical Immunology and Allergy, Wesley Hospital, Brisbane, QLD, 4066, Australia; Department of Immunology, Sullivan Nicolaides Pathology, QLD, 4006, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Biomedical Technology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Godwin A Ayoko
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Chamindie Punyadeera
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, 4111, Australia; Menzies Health Institute Queensland (MIHQ), Griffith University, Brisbane, QLD, 4111, Australia
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Biomedical Technology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
19
|
Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022; 14:v14061188. [PMID: 35746659 PMCID: PMC9228950 DOI: 10.3390/v14061188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 has evolved into a virus that primarily results in mild or asymptomatic disease, making its transmission more challenging to control. In addition to the respiratory tract, SARS-CoV-2 also infects the digestive tract. Some gastrointestinal symptoms occur with or before respiratory symptoms in patients with COVID-19. Respiratory infections are known to cause intestinal immune impairment and gastrointestinal symptoms. When the intestine is inflamed, cytokines affect the lung immune response and inflammation through blood circulation. The gastrointestinal microbiome may be a modifiable factor in determining the risk of SARS-CoV-2 infection and disease severity. The development of oral SARS-CoV-2 vaccine candidates and the maintenance of gut microbiota profiles may contribute to the early control of COVID-19 outbreaks. To this end, this review summarizes information on the gastrointestinal complications caused by SARS-CoV-2, SARS-CoV-2 infection, the gastrointestinal–lung axis immune response, potential control strategies for oral vaccine candidates and maintaining intestinal microbiota homeostasis.
Collapse
|
20
|
Chegni H, Babaii H, Hassan ZM, Pourshaban M. Immune response and cytokine storm in SARS-CoV-2 infection: Risk factors, ways of control and treatment. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221098970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In 2020, a deadly pandemic caused by the SARS-COV-2 virus spread worldwide and killed many people. In some viral infections, in addition to the pathogenic role of the virus, impaired immune function leads to inflammation and further damage in internal tissues. For example, coronavirus in some patients prevents the stimulation of the acquired immune system. Therefore, innate immunity is over-stimulated to compensate, followed by the overproduction of inflammatory cytokines and cytokine storm. Various underlying factors such as age, gender, blood pressure, diabetes, and obesity affect cytokine storm. It seems that cytokine storm is one of the leading causes of death among COVID-19 patients, and providing that this storm is detected and controlled in time, it can reduce the mortality of COVID-19 patients. This article aims to investigate the immune system response to COVID-19, various factors associated with cytokine storm, and its treatment. In the current situation, in parallel with the progress made in the field of vaccination, it is necessary to carefully examine the various dimensions of the immune system in response to the COVID-19 virus to seek a suitable treatment strategy to save the lives of patients in intensive care units
Collapse
Affiliation(s)
- Hamid Chegni
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hadise Babaii
- Department of paramedical school, University of Shahid Beheshti, Tehran, Iran
| | - Zuhair M Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Manoochehr Pourshaban
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
21
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Pastorek M, Dúbrava M, Celec P. On the Origin of Neutrophil Extracellular Traps in COVID-19. Front Immunol 2022; 13:821007. [PMID: 35359960 PMCID: PMC8961727 DOI: 10.3389/fimmu.2022.821007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Despite ongoing vaccination COVID-19 is a global healthcare problem because of the lack of an effective targeted therapy. In severe COVID-19 manifesting as acute respiratory distress syndrome, uncontrolled innate immune system activation results in cytokine deregulation, damage-associated molecular patterns release upon tissue damage and high occurrence of thrombotic events. These pathomechanisms are linked to neutrophil function and dysfunction, particularly increased formation of neutrophil extracellular traps (NETs). While the association of NETs and severity of COVID-19 has been shown and proved, the causes of NETs formation are unclear. The aim of this review is to summarize potential inducers of NETs formation in severe COVID-19 and to discuss potential treatment options targeting NETs formation of removal.
Collapse
Affiliation(s)
- Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Dúbrava
- Department of Geriatric Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
23
|
Resistin and IL-15 as Predictors of Invasive Mechanical Ventilation in COVID-19 Pneumonia Irrespective of the Presence of Obesity and Metabolic Syndrome. J Pers Med 2022; 12:jpm12030391. [PMID: 35330391 PMCID: PMC8955294 DOI: 10.3390/jpm12030391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
The cytokine signature present in COVID-19 could provide information on the pathogenic mechanisms of the disease and could identify possible prognostic biomarkers and possible therapeutic targets. In this longitudinal work, we studied the clinical and biochemical parameters and circulating cytokine levels of 146 patients at the time of admission for COVID-19 and 4–6 weeks later. The main objective of this study was to determine whether basal cytokines could be early prognostic biomarkers of COVID-19, and also to analyze the impact of comorbidities, such as obesity or metabolic syndrome (MS), in the cytokine profile. The levels of most inflammatory cytokines were elevated on admission in relation to the level that was reached 4–6 weeks later, except for IL-1β, which was lower on admission; these levels were irrespective of the presence of obesity or MS since the cytokine storm masks these inflammatory processes. Among the cytokines analyzed, those that correlated with a worse prognosis of COVID-19 were resistin, IL-6, IL-8, IL-15, MCP-1 and TNF-α. Specifically, resistin and IL-15 are the best early predictors of requiring invasive ventilation. Therefore, resistin and IL-15 should be included in the personalized treatment decision algorithm of patients with COVID-19.
Collapse
|
24
|
Toll-Like Receptors (TLRs) as Therapeutic Targets for Treating SARS-CoV-2: An Immunobiological Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:87-109. [PMID: 35132596 DOI: 10.1007/978-3-030-85109-5_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 is presently the biggest threat to mankind throughout the globe. Increasing reports on deaths, cases of new infection, and socioeconomic losses are continuously coming from all parts of the world. Developing an efficacious drug and/or vaccine is currently the major goal to the scientific communities. In this context, toll-like receptors (TLRs) could be the useful targets in adopting effective therapeutic approaches. METHODS This chapter has been written by incorporating the findings on TLR-based therapies against SARS-CoV-2 demonstrated in the recently published research papers/reviews. RESULTS TLRs are the essential components of host immunity and play critical roles in deciding the fate of SARS-CoV-2 by influencing the immunoregulatory circuits governing human immune response to this pathogen. Hitherto, a number of multi-subunit peptide-based vaccines and pharmacological agents developed against SARS-CoV-2 have been found to manipulate TLR function. Therefore, circumventing overt immunopathology of COVID-19 applying TLR-antagonists can effectively reduce the morality caused from "cytokine storm"-induced multiorgan failure. Similarly, pre-administration of TLR- agonists may be used as a prophylaxis to sensitize the immune system of the individuals having risk of infection. A lot of collaborative efforts are required for bench-to-bench transformation of these knowledges. CONCLUSION This chapter enlightens the potentials and promises of TLR-guided therapeutic strategies against COVID-19 by reviewing the major findings and achievements depicted in the literatures published till date.
Collapse
|
25
|
Fouladseresht H, Ghamar Talepoor A, Eskandari N, Norouzian M, Ghezelbash B, Beyranvand MR, Nejadghaderi SA, Carson-Chahhoud K, Kolahi AA, Safiri S. Potential Immune Indicators for Predicting the Prognosis of COVID-19 and Trauma: Similarities and Disparities. Front Immunol 2022; 12:785946. [PMID: 35126355 PMCID: PMC8815083 DOI: 10.3389/fimmu.2021.785946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although cellular and molecular mediators of the immune system have the potential to be prognostic indicators of disease outcomes, temporal interference between diseases might affect the immune mediators, and make them difficult to predict disease complications. Today one of the most important challenges is predicting the prognosis of COVID-19 in the context of other inflammatory diseases such as traumatic injuries. Many diseases with inflammatory properties are usually polyphasic and the kinetics of inflammatory mediators in various inflammatory diseases might be different. To find the most appropriate evaluation time of immune mediators to accurately predict COVID-19 prognosis in the trauma environment, researchers must investigate and compare cellular and molecular alterations based on their kinetics after the start of COVID-19 symptoms and traumatic injuries. The current review aimed to investigate the similarities and differences of common inflammatory mediators (C-reactive protein, procalcitonin, ferritin, and serum amyloid A), cytokine/chemokine levels (IFNs, IL-1, IL-6, TNF-α, IL-10, and IL-4), and immune cell subtypes (neutrophil, monocyte, Th1, Th2, Th17, Treg and CTL) based on the kinetics between patients with COVID-19 and trauma. The mediators may help us to accurately predict the severity of COVID-19 complications and follow up subsequent clinical interventions. These findings could potentially help in a better understanding of COVID-19 and trauma pathogenesis.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Norouzian
- Department of Laboratory Sciences, School of Allied Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Beyranvand
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kristin Carson-Chahhoud
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Identifying potential novel insights for COVID-19 pathogenesis and therapeutics using an integrated bioinformatics analysis of host transcriptome. Int J Biol Macromol 2022; 194:770-780. [PMID: 34826456 PMCID: PMC8610562 DOI: 10.1016/j.ijbiomac.2021.11.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying the pathogenesis of COVID-19 have not been fully discovered. This study aims to decipher potentially hidden parts of the pathogenesis of COVID-19, potential novel drug targets, and identify potential drug candidates. Two gene expression profiles were analyzed, and overlapping differentially expressed genes (DEGs) were selected for which top enriched transcription factors and kinases were identified, and pathway analysis was performed. Protein-protein interaction (PPI) of DEGs was constructed, hub genes were identified, and module analysis was also performed. DGIdb database was used to identify drugs for the potential targets (hub genes and the most enriched transcription factors and kinases for DEGs). A drug-potential target network was constructed, and drugs were ranked according to the degree. L1000FDW was used to identify drugs that can reverse transcriptional profiles of COVID-19. We identified drugs currently in clinical trials, others predicted by different methods, and novel potential drug candidates Entrectinib, Omeprazole, and Exemestane for combating COVID-19. Besides the well-known pathogenic pathways, it was found that axon guidance is a potential pathogenic pathway. Sema7A, which may exacerbate hypercytokinemia, is considered a potential novel drug target. Another potential novel pathway is related to TINF2 overexpression, which may induce potential telomere dysfunction and damage DNA that may exacerbate lung fibrosis. This study identified new potential insights regarding COVID-19 pathogenesis and treatment, which might help us improve our understanding of the mechanisms of COVID-19.
Collapse
|
27
|
Datta D, Singh R, Velayutham R, Bhattacharya A, Ray U, Dasgupta S, Dutta S, Saha A, Roy D, Ghosh S, Arumugam S, Datta P, Ganguly NK. SARS-CoV-2 Infection after Effects: Multi-Organ Damage through Oxygen Radicals. APOLLO MEDICINE 2022. [DOI: 10.4103/am.am_122_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Julian DR, Kazakoff MA, Patel A, Jaynes J, Willis MS, Yates CC. Chemokine-Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in COVID-19. CURRENT PATHOBIOLOGY REPORTS 2021; 9:93-105. [PMID: 34900402 PMCID: PMC8651461 DOI: 10.1007/s40139-021-00226-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2 betacoronavirus and has taken over 761,426 American lives as of the date of publication and will likely result in long-term, if not permanent, tissue damage for countless patients. COVID-19 presents with diverse and multisystemic pathologic processes, including a hyperinflammatory response, acute respiratory distress syndrome (ARDS), vascular injury, microangiopathy, tissue fibrosis, angiogenesis, and widespread thrombosis across multiple organs, including the lungs, heart, kidney, liver, and brain. C-X-C chemokines contribute to these pathologies by attracting inflammatory mediators, the disruption of endothelial cell integrity and function, and the initiation and propagation of the cytokine storm. Among these, CXCL10 is recognized as a critical contributor to the hyperinflammatory state and poor prognosis in COVID-19. CXCL10 is also known to regulate growth factor-induced fibrosis, and recent evidence suggests the CXCL10-CXCR3 signaling system may be vital in targeting convergent pro-inflammatory and pro-fibrotic pathways. This review will explore the mechanistic role of CXCL10 and related chemokines in fibrotic complications associated with COVID-19 and the potential of CXCL10-targeted therapeutics for early intervention and long-term treatment of COVID-19-induced fibrosis.
Collapse
Affiliation(s)
- Dana R Julian
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA 15261 USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Megan A Kazakoff
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA 15261 USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Akhil Patel
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA 15261 USA
| | - Jesse Jaynes
- College of Agriculture, Environment and Nutrition Sciences and College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 USA
| | - Monte S Willis
- Pathology Institute, Allegheny Health Network, Pittsburgh, PA USA.,Department of Internal Medicine, Cardiology Section, Indiana University School of Medicine, Indianapolis, IN USA
| | - Cecelia C Yates
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA 15261 USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
29
|
Ruffin M, Bigot J, Calmel C, Mercier J, Givelet M, Oliva J, Pizzorno A, Rosa-Calatrava M, Corvol H, Balloy V, Terrier O, Guillot L. Flagellin From Pseudomonas aeruginosa Modulates SARS-CoV-2 Infectivity in Cystic Fibrosis Airway Epithelial Cells by Increasing TMPRSS2 Expression. Front Immunol 2021; 12:714027. [PMID: 34950129 PMCID: PMC8688244 DOI: 10.3389/fimmu.2021.714027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
In the coronavirus disease 2019 (COVID-19) health crisis, one major challenge is to identify the susceptibility factors of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in order to adapt the recommendations for populations, as well as to reduce the risk of COVID-19 development in the most vulnerable people, especially patients with chronic respiratory diseases such as cystic fibrosis (CF). Airway epithelial cells (AECs) play a critical role in the modulation of both immune responses and COVID-19 severity. SARS-CoV-2 infects the airway through the receptor angiotensin-converting enzyme 2, and a host protease, transmembrane serine protease 2 (TMPRSS2), plays a major role in SARS-CoV-2 infectivity. Here, we show that Pseudomonas aeruginosa increases TMPRSS2 expression, notably in primary AECs with deficiency of the ion channel CF transmembrane conductance regulator (CFTR). Further, we show that the main component of P. aeruginosa flagella, the protein flagellin, increases TMPRSS2 expression in primary AECs and Calu-3 cells, through activation of Toll-like receptor-5 and p38 MAPK. This increase is particularly seen in Calu-3 cells deficient for CFTR and is associated with an intracellular increased level of SARS-CoV-2 infection, however, with no effect on the amount of virus particles released. Considering the urgency of the COVID-19 health crisis, this result may be of clinical significance for CF patients, who are frequently infected with and colonized by P. aeruginosa during the course of CF and might develop COVID-19.
Collapse
Affiliation(s)
- Manon Ruffin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Jeanne Bigot
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Laboratoire de Parasitologie-Mycologie, APHP, Hôpital Saint-Antoine, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Julia Mercier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Maëlle Givelet
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Justine Oliva
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Pneumologie Pédiatrique, APHP, Hôpital Trousseau, Paris, France
| | - Viviane Balloy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Loïc Guillot
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
30
|
Almutairi MM, Sivandzade F, Albekairi TH, Alqahtani F, Cucullo L. Neuroinflammation and Its Impact on the Pathogenesis of COVID-19. Front Med (Lausanne) 2021; 8:745789. [PMID: 34901061 PMCID: PMC8652056 DOI: 10.3389/fmed.2021.745789] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
31
|
Aykac K, Ozsurekci Y, Yayla BCC, Gurlevik SL, Oygar PD, Bolu NB, Tasar MA, Erdinc FS, Ertem GT, Neselioglu S, Erel O, Cengiz AB, Ceyhan M. Oxidant and antioxidant balance in patients with COVID-19. Pediatr Pulmonol 2021; 56:2803-2810. [PMID: 34265172 PMCID: PMC8441878 DOI: 10.1002/ppul.25549] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND A crucial balance exists between oxidant and antioxidant mechanisms in the functional immune system. We aimed to evaluate the contributions of balance between these systems to coronavirus disease 2019 (COVID-19), a devastating pandemic caused by viral infection. METHOD We analyzed serum oxidant and antioxidant stress parameters according to the clinical and demographic characteristics of children and adults with COVID-19 and compared them against the values of healthy controls. Serum native thiol (NT), total thiol (TT), disulfide, total antioxidant status, total oxidant status, and ischemia-modified albumin levels were evaluated and compared between groups. RESULTS A total of 79 children and 74 adults were evaluated in the present study, including 46 children and 40 adults with COVID-19, 33 healthy children, and 34 healthy adults. TT, NT, and disulfide levels were significantly lower in the adult COVID-19 group than in all other groups (p = .001, p = .001, and p = .005, respectively). Additionally, TT and NT levels were significantly lower in both pediatric and adult COVID-19 cases with severe disease course than mild/moderate course. TT and NT levels were identified as predictors for the diagnosis of the adult COVID-19 cases and as independent predictors for disease severity in both children and adults with COVID-19. CONCLUSION Parameters that reveal the oxidant and antioxidant capacity, including TT and NT, appear to be good candidates for the accurate prediction of the clinical course among patients with COVID-19.
Collapse
Affiliation(s)
- Kubra Aykac
- Department of Pediatric Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Yasemin Ozsurekci
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Burcu Ceylan Cura Yayla
- Department of Pediatric Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Sibel Lacinel Gurlevik
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pembe Derin Oygar
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nuriye Boduc Bolu
- Department of Pediatric Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Medine Aysin Tasar
- Department of Pediatric Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Fatma Sebnem Erdinc
- Department of Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Gulay Tuncer Ertem
- Department of Infectious Diseases, Ankara Training and Research Hospital, University of Health Science, Ankara, Turkey
| | - Salim Neselioglu
- Department of Clinical Biochemistry, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Ozcan Erel
- Department of Clinical Biochemistry, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Ali Bülent Cengiz
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Ceyhan
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
32
|
Liu J, Du C, Pu L, Xiang P, Xiong H, Xie W, Chen Z, Li A. Comparative therapeutic efficacy of interferon alfa-2b and combination lopinavir/ritonavir plus interferon alfa-2b against SARS-CoV-2. BMC Infect Dis 2021; 21:885. [PMID: 34461841 PMCID: PMC8404023 DOI: 10.1186/s12879-021-06595-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 08/18/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The outbreak of coronavirus disease 2019 (COVID-19) posed an enormous threat to public health. The use of antiviral drugs in patients with this disease have triggered people's attentions. Whether interferon alfa-2b or lopinavir/ritonavir (LPV/r) plus interferon alfa-2b treatment can against SARS-CoV-2 was unknown. The objectives of this study was to evaluate the efficacy and safety of interferon alfa-2b and LPV/r plus interferon alfa-2b for SARS-CoV-2 infection in adult patients hospitalized with COVID-19. METHODS This is a retrospective cohort study of 123 patients confirmed SARS-CoV-2 infection by PCR on nasopharyngeal swab and symptoms between Jan. 13 and Apr. 23, 2020. All patients received standard supportive care and regular clinical monitoring. Patients were assigned to standard care group (n = 12), interferon alfa-2b group (n = 44), and combination LPV/r plus interferon alfa-2b group (n = 67). The primary endpoints were duration of required oxygen support and virus clearance time. Associations between therapies and these outcomes were assessed by Cox proportional hazards regression. RESULTS Baseline clinical characteristics were not significantly different among the three groups (P > 0.05). No significant associations were observed between LPV/r/interferon alfa-2b and faster SARS-CoV-2 RNA clearance (HR, 0.85 [95% confidence interval (CI) 0.45-1.61]; P = 0.61 in interferon alfa-2b group vs HR, 0.59 [95% CI 0.32-1.11]; P = 0.10 in LPV/r plus interferon alfa-2b group). Individual therapy groups also showed no significant association with duration of required oxygen support. There were no significant differences among the three groups in the incidence of adverse events (P > 0.05). CONCLUSIONS In patients with confirmed SARS-CoV-2 infection, no benefit was observed from interferon alfa-2b or LPV/r plus interferon alfa-2b treatment. The findings may provide references for treatment guidelines of patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Lin Pu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Pan Xiang
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Haofeng Xiong
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ang Li
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China.
| |
Collapse
|
33
|
Mehata AK, Viswanadh MK, Priya V, Vikas, Muthu MS. Harnessing immunological targets for COVID-19 immunotherapy. Future Virol 2021. [PMID: 34447458 PMCID: PMC8375415 DOI: 10.2217/fvl-2021-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
COVID-19 is an infectious and highly contagious disease caused by SARS-CoV-2. The immunotherapy strategy has a great potential to develop a permanent cure against COVID-19. Innate immune cells are in constant motion to scan molecular alteration to cells led by microbial infections throughout the body and helps in clearing invading viruses. Harnessing immunological targets for removing viral infection, generally based on the principle of enhancing the T-cell and protective immune responses. Currently-approved COVID-19 vaccines are mRNA encapsulated in liposomes that stimulate the host immune system to produce antibodies. Given the vital role of innate immunity, harnessing these immune responses opens up new hope for the generation of long-lasting and protective immunity against COVID-19.
Collapse
Affiliation(s)
- Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Vikas
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
34
|
Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol 2021; 27:5047-5059. [PMID: 34497434 PMCID: PMC8384742 DOI: 10.3748/wjg.v27.i30.5047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/01/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
As the gastrointestinal tract may also be a crucial entry or interaction site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the role of the gut mucosal immune system as a first-line physical and immunological defense is critical. Furthermore, gastrointestinal involvement and symptoms in coronavirus disease 2019 (COVID-19) patients have been linked to worse clinical outcomes. This review discusses recent data on the interactions between the virus and the immune cells and molecules in the mucosa during the infection. By carrying out appropriate investigations, the mucosal immune system role in SARS-CoV-2 infection in therapy and prevention can be established. In line with this, COVID-19 vaccines that stimulate mucosal immunity against the virus may have more advantages than the others.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Medical Faculty, Sofia University, St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Violeta Snegarova
- Clinic of Internal Diseases, Naval Hospital – Varna, Military Medical Academy, Medical Faculty, Medical University, Varna 9000, Bulgaria
| | - Alexander Kukov
- Department of Clinical Immunology, University Hospital Lozenetz, Medical Faculty, Sofia University, St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, Medical University, Plovdiv, University Hospital "St George", Plovdiv 6000, Bulgaria
| | - Antoaneta Mihova
- Department of Clinical Immunology, University Hospital Lozenetz, Medical Faculty, Sofia University, St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Radislav Nakov
- Clinic of Gastroenterology, Tsaritsa Joanna University Hospital, Medical University of Sofia, Sofia 1527, Bulgaria
| |
Collapse
|
35
|
Ngo VL, Gewirtz AT. Microbiota as a potentially-modifiable factor influencing COVID-19. Curr Opin Virol 2021; 49:21-26. [PMID: 34000641 PMCID: PMC8059947 DOI: 10.1016/j.coviro.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Impacts of respiratory tract viruses have long been appreciated to highly heterogeneous both between and within various populations. The SARS-CoV-2 pandemic, which is the first time that a pathogen's spread across the globe has been extensively monitored by direct detection of the pathogen itself rather just than the morbidity left in its wake, indicates such heterogeneity is not limited to outcomes of infections but whether infection of a particular host occurs at all. This suggests an important role for yet to be discovered environmental (i.e. non-genetic) factors that influence whether an exposure to the virus initiates a productive infection and, moreover, the severity of disease that results. This article discusses the emerging hypothesis that the composition of a host's commensal microbial communities, that is, its 'microbiome', may be one such determinant that influences outcomes following encounters with respiratory viral pathogens in general and SARS-CoV-2 in particular. Specifically, we will review the rationales and evidence that supports this hypothesis and, moreover, speculate as to possible approaches to manipulate microbiota to ameliorate disease induced by respiratory viral pathogens.
Collapse
Affiliation(s)
- Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
36
|
Iqbal Yatoo M, Hamid Z, Rather I, Nazir QUA, Bhat RA, Ul Haq A, Magray SN, Haq Z, Sah R, Tiwari R, Natesan S, Bilal M, Harapan H, Dhama K. Immunotherapies and immunomodulatory approaches in clinical trials - a mini review. Hum Vaccin Immunother 2021; 17:1897-1909. [PMID: 33577374 PMCID: PMC7885722 DOI: 10.1080/21645515.2020.1871295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created havoc worldwide. Due to the non-availability of any vaccine or drugs against COVID-19, immunotherapies involving convalescent plasma, immunoglobulins, antibodies (monoclonal or polyclonal), and the use of immunomodulatory agents to enhance immunity are valuable alternative options. Cell-based therapies including natural killer cells, T cells, stem cells along with cytokines and toll-like receptors (TLRs) based therapies are also being exploited potentially against COVID-19. Future research need to strengthen the field of developing effective immunotherapeutics and immunomodulators with a thrust of providing appropriate, affordable, convenient, and cost-effective prophylactic and treatment regimens to combat global COVID-19 crisis that has led to a state of medical emergency enforcing entire countries of the world to devote their research infrastructure and manpower in tackling this pandemic.
Collapse
Affiliation(s)
- Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Zeenat Hamid
- Department of Biotechnology, University of Kashmir, Jammu and Kashmir, India
| | - Izhar Rather
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Qurat Ul Ain Nazir
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Riyaz Ahmed Bhat
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Abrar Ul Haq
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Suhail Nabi Magray
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Zulfqar Haq
- ICAR-Centre for Research on Poultry, Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - SenthilKumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Gandhinagar, Gujarat, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
37
|
To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021; 10:cells10061469. [PMID: 34208037 PMCID: PMC8230648 DOI: 10.3390/cells10061469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.
Collapse
|
38
|
Hanan N, Doud RL, Park IW, Jones HP, Mathew SO. The Many Faces of Innate Immunity in SARS-CoV-2 Infection. Vaccines (Basel) 2021; 9:vaccines9060596. [PMID: 34199761 PMCID: PMC8228170 DOI: 10.3390/vaccines9060596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
The innate immune system is important for initial antiviral response. SARS-CoV-2 can result in overactivity or suppression of the innate immune system. A dysregulated immune response is associated with poor outcomes; with patients having significant Neutrophil-to-Lymphocyte ratios (NLR) due to neutrophilia alongside lymphopenia. Elevated interleukin (IL)-6 and IL-8 leads to overactivity and is a prominent feature of severe COVID-19 patients. IL-6 can result in lymphopenia; where COVID-19 patients typically have significantly altered lymphocyte subsets. IL-8 attracts neutrophils; which may play a significant role in lung tissue damage with the formation of neutrophil extracellular traps leading to cytokine storm or acute respiratory distress syndrome. Several factors like pre-existing co-morbidities, genetic risks, viral pathogenicity, and therapeutic efficacy act as important modifiers of SARS-CoV-2 risks for disease through an interplay with innate host inflammatory responses. In this review, we discuss the role of the innate immune system at play with other important modifiers in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicholas Hanan
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
| | - Ronnie L. Doud
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
| | - In-Woo Park
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Harlan P. Jones
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Stephen O. Mathew
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.H.); (R.L.D.J.); (I.-W.P.); (H.P.J.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-5407
| |
Collapse
|
39
|
Vashishtha VM, Kumar P. Development of SARS-CoV-2 vaccines: challenges, risks, and the way forward. Hum Vaccin Immunother 2021; 17:1635-1649. [PMID: 33270478 PMCID: PMC7754925 DOI: 10.1080/21645515.2020.1845524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic mandates the development of a safe and effective Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccine. This review analyzes the complexities, challenges, and other vital issues associated with the development of the SARS-CoV-2 vaccine. A brief review of the immune responses (innate, antibody, and T-cell) to SARS-CoV-2, including immune targets, correlates of protection, and duration of immunity is presented. Approaches to vaccine development including different vaccine platforms, critical attributes of novel vaccine candidates, the status of the ongoing clinical trials, and the ways to speed up vaccine development are also reviewed. Despite a historical average success rate of only 6%, and a usual gestation period of 10-12 years for the development of a new vaccine, the world is on the verge of developing COVID-19 vaccines in an extraordinary short time span.
Collapse
Affiliation(s)
- Vipin M. Vashishtha
- Department of Pediatrics, Mangla Hospital & Research Center, Shakti Chowk, Bijnor, India
| | | |
Collapse
|
40
|
Hu CAA, Murphy I, Klimaj S, Reece J, Chand HS. SARS-CoV-2, Inflammatory Apoptosis, and Cytokine Storm Syndrome. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2666958702101010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), a novel and currently intensively studied beta coronavirus, is the causing agent of COVID-19 (Coronavirus Disease 2019), a highly contagious and devastating disease that has killed more than 2 million human beings since December 2019. Building on what has already been understood from studying SARS-CoV, a closely related single-strand RNA virus that set off SARS in 2002 and 2003, researchers began to learn how SARS-CoV-2 operates its vicious effects on the host cells. In essence, COVID-19 patients display hyperinflammatory and dysregulated cell death phenotypes that give a spectrum of symptoms ranging from mild to moderate upper-respiratory tract illnesses. However, SARS-CoV-2 can elicit serious pathologies, such as acute respiratory distress syndrome, sepsis-like multi-organ failure and even death, depending on the individual and their pre-existing condition(s). As viruses cannot reproduce independently, they hijack the machinery within the host cells and enslave them for the purpose of propagation. SARS-CoV-2 RNA genome harbors the genes that produce the protein products for manipulating host cell, viral replication, and repeating the vicious viral cycle. For counteracting the viral invasion, human cells have developed layers of defense mechanisms, such as restriction factors, Regulated Cell Death (RCD) pathways, interferon production, inflammatory response, and innate and adaptive immunity that are used to recognize and thwart viral infection. Unfortunately, some coronavirus encoded proteins are capable of attacking the host anti-viral system to achieve parasitic advantages. We reviewed the proteins of SARS-CoV and SARS-CoV-2 that possess manipulating effects on the host cell and cause tissue damage, immune cascade, cytokine production and release. We also discuss the means to restore the homeostatic balance between inflammatory response and RCD pathways and the potential targeted interventions that can be used to treat and/or prevent COVID-19.
Collapse
|
41
|
Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. Nanocarrier vaccines for SARS-CoV-2. Adv Drug Deliv Rev 2021; 171:215-239. [PMID: 33428995 PMCID: PMC7794055 DOI: 10.1016/j.addr.2021.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/18/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 global pandemic has seen rapid spread, disease morbidities and death associated with substantive social, economic and societal impacts. Treatments rely on re-purposed antivirals and immune modulatory agents focusing on attenuating the acute respiratory distress syndrome. No curative therapies exist. Vaccines remain the best hope for disease control and the principal global effort to end the pandemic. Herein, we summarize those developments with a focus on the role played by nanocarrier delivery.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA; Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Preet Amol Singh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Tapan A Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand 388421, Gujarat, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Rajashree Chakraborty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Caroline G Saksena
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Suvarthi Das
- Department of Medicine, Stanford Medical School, Stanford University, Palo Alto, CA 94304, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| |
Collapse
|
42
|
Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus. Viruses 2021; 13:v13040575. [PMID: 33805458 PMCID: PMC8066409 DOI: 10.3390/v13040575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3−/− mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFNβ), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3′s RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.
Collapse
|
43
|
Saksena N, Bonam SR, Miranda-Saksena M. Epigenetic Lens to Visualize the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in COVID-19 Pandemic. Front Genet 2021; 12:581726. [PMID: 33828579 PMCID: PMC8019793 DOI: 10.3389/fgene.2021.581726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
In <20 years, we have witnessed three different epidemics with coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2 in human populations, causing widespread mortality. SARS-CoV-2, through its rapid global spread, has led to the pandemic that we call COVID-19. As of February 1, 2021, the global infections linked to SARS-CoV-2 stand at 103,503,340, with 2,236,960 deaths, and 75,108,099 recoveries. This review attempts to highlight host-pathogen interaction with particular emphasis on the role of epigenetic machinery in regulating the disease. Although researchers, since the start of the pandemic, have been intensely engaged in diverse areas to understand the mechanisms involved in SARS-CoV-2 infection to find answers that can bring about innovative ways to swiftly treat and prevent disease progression, this review provides an overview on how the host epigenetics is modulated and subverted by SARS-CoV-2 to enter the host cells and drive immunopathogenesis. Epigenetics is the study that combines genetic and non-genetic factors controlling phenotypic variation, which are primarily a consequence of external and environmental stimuli. These stimuli alter the activity of a gene without impinging on the DNA code. In viral-host interactions, DNA/RNA methylation, non-coding RNAs, chromatin remodeling, and histone modifications are known to regulate and modulate host gene expression patterns. Viruses such as Coronaviruses (an RNA virus) show intrinsic association with these processes. They have evolved the ability to tamper with host epigenetic machinery to interfere with immune sensing pathways to evade host immune response, thereby enhancing its replication and pathogenesis post-entry. These epigenetic alterations allow the virus to weaken the host's immune response to successfully spread infection. How this occurs, and what epigenetic mechanisms are altered is poorly understood both for coronaviruses and other respiratory RNA viruses. The review highlights several cutting-edge aspects of epigenetic work primarily pertinent to SARS-CoV-2, which has been published between 2019 and 2020 to showcase the current knowledge both in terms of success and failures and take lessons that will assist us in understanding the disease to develop better treatments suited to kill SARS-CoV-2.
Collapse
Affiliation(s)
- Nitin Saksena
- EPIGENES Australia Pty Ltd, Melbourne, VIC, Australia
- Institute of Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immuno-pathologie et Immuno-intervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Monica Miranda-Saksena
- Herpes Neuropathogenesis Research Group, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Ferraro E, Germanò M, Mollace R, Mollace V, Malara N. HIF-1, the Warburg Effect, and Macrophage/Microglia Polarization Potential Role in COVID-19 Pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8841911. [PMID: 33815663 PMCID: PMC7987467 DOI: 10.1155/2021/8841911] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/07/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Despite the international scientific community's commitment to improve clinical knowledge about coronavirus disease 2019 (COVID-19), knowledge regarding molecular details remains limited. In this review, we discuss hypoxia's potential role in the pathogenesis of the maladaptive immune reaction against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The state of infection, with serious respiratory dysfunction, causes tissues to become hypoxic due to a discrepancy between cellular O2 uptake and consumption similar to that seen within tumor tissue during the progression of numerous solid cancers. In this context, the heterogeneous clinical behavior and the multiorgan deterioration of COVID-19 are discussed as a function of the upregulated expression of the hypoxia-inducible factor-1 (HIF-1) and of the metabolic reprogramming associated with HIF-1 and with a proinflammatory innate immune response activation, independent of the increase in the viral load of SARS-CoV-2. Possible pharmacological strategies targeting O2 aimed to improve prognosis are suggested.
Collapse
|
45
|
Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE. Pharmacotherapeutics of SARS-CoV-2 Infections. J Neuroimmune Pharmacol 2021; 16:12-37. [PMID: 33403500 PMCID: PMC7785334 DOI: 10.1007/s11481-020-09968-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023]
Abstract
The COVID-19 pandemic has affected more than 38 million people world-wide by person to person transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therapeutic and preventative strategies for SARS-CoV-2 remains a significant challenge. Within the past several months, effective treatment options have emerged and now include repurposed antivirals, corticosteroids and virus-specific antibodies. The latter has included convalescence plasma and monoclonal antibodies. Complete viral eradication will be achieved through an effective, safe and preventative vaccine. To now provide a comprehensive summary for each of the pharmacotherapeutics and preventative strategies being offered or soon to be developed for SARS-CoV-2.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Wilson R Blomberg
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Pb, India
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ahmed M Senan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | | | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - St Patrick M Reid
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chamindie Punyadeera
- The School of Biomedical Sciences and the Institute of Health and Biomedical Innovation, Queensland University of Technology and the Translational Research Institute, Brisbane, Australia
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
46
|
Kozlov EM, Ivanova E, Grechko AV, Wu WK, Starodubova AV, Orekhov AN. Involvement of Oxidative Stress and the Innate Immune System in SARS-CoV-2 Infection. Diseases 2021; 9:diseases9010017. [PMID: 33668325 PMCID: PMC8005963 DOI: 10.3390/diseases9010017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of the novel coronavirus in December 2019 in China marked the beginning of a pandemic that impacted healthcare systems and economic life all over the world. The virus primarily targets the respiratory system causing severe acute respiratory syndrome (SARS) in some patients, and therefore received the name of SARS-CoV-2. The pathogen stands out among other coronaviruses by its rapid transmission from human to human, with the majority of infected individuals being asymptomatic or presenting with only minor illness, therefore facilitating the pathogen spread. At the same time, people from the risk groups, such as the elderly, patients suffering from chronic diseases, or obese individuals, have increased chances of developing a severe or even fatal disease. The search for risk factors explaining this phenomenon continues. In this review, we focus on the known mechanisms of SARS-CoV-2 infection affecting the functioning of the immune system and discuss potential risk factors responsible for the severe disease course. Oxidative stress is one of such factors, which plays a prominent role in innate immunity activity, and recent research has revealed its tight involvement in SARS-CoV-2 infection. We discuss these recent findings and the development of excessive inflammation and cytokine storm observed during SARS-CoV-2 infection. Finally, we consider potential use of antioxidant drugs for alleviating the severe symptoms in affected patients.
Collapse
Affiliation(s)
- Evgenii M. Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Ekaterina Ivanova
- Department of Basic Research, Institute of Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-(495)4159594
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei 10617, Taiwan;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
- Laboratory of Infectious Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
| |
Collapse
|
47
|
McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay-Kumar M. Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). Compr Physiol 2021; 11:1575-1589. [PMID: 33577121 DOI: 10.1002/cphy.c200020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncontrolled immune system activation amplifies end-organ injury in hypertension. Nonetheless, the exact mechanisms initiating this exacerbated inflammatory response, thereby contributing to further increases in blood pressure (BP), are still being revealed. While participation of lymphoid-derived immune cells has been well described in the hypertension literature, the mechanisms by which myeloid-derived innate immune cells contribute to T cell activation, and subsequent BP elevation, remains an active area of investigation. In this article, we critically analyze the literature to understand how monocytes, macrophages, dendritic cells, and polymorphonuclear leukocytes, including mast cells, eosinophils, basophils, and neutrophils, contribute to hypertension and hypertension-associated end-organ injury. The most abundant leukocytes, neutrophils, are indisputably increased in hypertension. However, it is unknown how (and why) they switch from critical first responders of the innate immune system, and homeostatic regulators of BP, to tissue-damaging, pro-hypertensive mediators. We propose that myeloperoxidase-derived pro-oxidants, neutrophil elastase, neutrophil extracellular traps (NETs), and interactions with other innate and adaptive immune cells are novel mechanisms that could contribute to the inflammatory cascade in hypertension. We further posit that the gut microbiota serves as a set point for neutropoiesis and their function. Finally, given that hypertension appears to be a key risk factor for morbidity and mortality in COVID-19 patients, we put forth evidence that neutrophils and NETs cause cardiovascular injury post-coronavirus infection, and thus may be proposed as an intriguing therapeutic target for high-risk individuals. © 2021 American Physiological Society. Compr Physiol 11:1575-1589, 2021.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Piu Saha
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Rachel M Golonka
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Camilla F Wenceslau
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
48
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front Pharmacol 2021; 11:583777. [PMID: 33708109 PMCID: PMC7941276 DOI: 10.3389/fphar.2020.583777] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has caused a global health crisis, with no specific antiviral to treat the infection and the absence of a suitable vaccine to prevent it. While some individuals contracting the SARS-CoV-2 infection exhibit a well coordinated immune response and recover, others display a dysfunctional immune response leading to serious complications including ARDS, sepsis, MOF; associated with morbidity and mortality. Studies revealed that in patients with a dysfunctional immune response, there is a massive cytokine and chemokine release, referred to as the 'cytokine storm'. As a result, such patients exhibit higher levels of pro-inflammatory/modulatory cytokines and chemokines like TNFα, INFγ, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, MCSF, HGF and chemokines CXCL8, MCP1, IP10, MIP1α and MIP1β. Targeting this cytokine storm is a novel, promising treatment strategy to alleviate this excess influx of cytokines observed at the site of infection and their subsequent disastrous consequences. Natural immunosuppressant compounds, derived from plant sources like curcumin, luteolin, piperine, resveratrol are known to inhibit the production and release of pro-inflammatory cytokines and chemokines. This inhibitory effect is mediated by altering signal pathways like NF-κB, JAK/STAT, MAPK/ERK that are involved in the production and release of cytokines and chemokines. The use of these natural immunosuppressants as adjuvants to ameliorate the cytokine storm; in combination with antiviral agents and other treatment drugs currently in use presents a novel, synergistic approach for the treatment and effective cure of COVID-19. This review briefly describes the immunopathogenesis of the cytokine storm observed in SARS-CoV-2 infection and details some natural immunosuppressants that can be used as adjuvants in treating COVID-19 disease.
Collapse
Affiliation(s)
- Angela E. Peter
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. V. Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. Ganga Rao
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - V. Lakshmi Kalpana
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, India
| |
Collapse
|
49
|
Siddique F, Abbas RZ, Mansoor MK, Alghamdi ES, Saeed M, Ayaz MM, Rahman M, Mahmood MS, Iqbal A, Manzoor M, Abbas A, Javaid A, Hussain I. An Insight Into COVID-19: A 21st Century Disaster and Its Relation to Immunocompetence and Food Antioxidants. Front Vet Sci 2021; 7:586637. [PMID: 33521076 PMCID: PMC7838355 DOI: 10.3389/fvets.2020.586637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) ranks third in terms of fatal coronavirus diseases threatening public health, coming after SARS-CoV (severe acute respiratory syndrome coronavirus), and MERS-CoV (Middle East respiratory syndrome coronavirus). SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) causes COVID-19. On January 30, 2020, the World Health Organization (WHO) announced that the current outbreak of COVID-19 is the sixth global health emergency. As of December 3, 2020, 64 million people worldwide have been affected by this malaise, and the global economy has experienced a loss of more than $1 trillion. SARS-CoV-2 is a positive-sense single-stranded RNA virus belonging to the Betacoronavirus genus. The high nucleotide sequence identity of SARS-CoV-2 with the BatCoV RaTG13 genome has indicated that bats could be the possible host of SARS-CoV-2. SARS-CoV-2 penetrates the host cell via binding its spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor, which is similar to the mechanisms of SARS-CoV and MERS-CoV. COVID-19 can spread from person to person via respiratory droplets and airborne and contaminated fomites. Moreover, it poses a significant risk to smokers, the elderly, immunocompromised people, and those with preexisting comorbidities. Two main approaches are used to control viral infections, namely, vaccination, and biosecurity. Studies to analyze the antigenicity and immunogenicity of SARS-CoV-2 vaccine candidates are underway, and few vaccines may be available in the near future. In the current situation, the Human Biosecurity Emergency (HBE) may be the only way to cope effectively with the novel SARS-CoV-2 strain. Here, we summarize current knowledge on the origin of COVID-19 as well as its epidemiological relationship with humans and animals, genomic resemblance, immunopathogenesis, clinical-laboratory signs, diagnosis, control and prevention, and treatment. Moreover, we discuss the interventional effects of various nutrients on COVID-19 in detail. However, multiple possibilities are explored to fight COVID-19, and the greatest efforts targeted toward finding an effective vaccine in the near future. Furthermore, antioxidants, polyphenols, and flavonoids, both synthetic and natural, could play a crucial role in the fight against COVID-19.
Collapse
Affiliation(s)
- Faisal Siddique
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Etab Saleh Alghamdi
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Muhammad Saeed
- Department of Poultry Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Mazhar Ayaz
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Asif Iqbal
- Department of Parasitology, Riphah International University, Lahore, Pakistan
| | - Maida Manzoor
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Department of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Asif Javaid
- Department of Animal Nutrition, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Irshad Hussain
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
50
|
Chugh H, Awasthi A, Agarwal Y, Gaur RK, Dhawan G, Chandra R. A comprehensive review on potential therapeutics interventions for COVID-19. Eur J Pharmacol 2021; 890:173741. [PMID: 33227287 PMCID: PMC7677683 DOI: 10.1016/j.ejphar.2020.173741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 is an infectious respiratory disease caused by SARS-CoV-2, a new beta coronavirus that emerged in Wuhan, China. Being primarily a respiratory disease, it is highly transmissible through both direct and indirect contacts. It displays a range of symptoms in different individuals and thus has been grouped into mild, moderate, and severe diseases. The virus utilizes spike proteins present on its surface to recognize ACE-2 receptors present on the host cells to enter the cell cytoplasm and replicate. The viral invasion of cells induces damage response, pyroptosis, infiltration of immune cells, expression of pro-inflammatory cytokines (cytokine storm), and activation of the adaptive immune system. Depending on viral load and host factors like age and underlying medical conditions, the immune responses mounted against SARS-CoV-2 may cause acute respiratory distress syndrome (ARDS), multiple organ failure, and death. In this review, we specify and justify both viral and host therapeutic targets that can be modulated to relieve the symptoms and treat the disease. Furthermore, we discuss vaccine development in the time of pandemic and the most promising vaccine candidates by far, according to WHO database. Finally, we discuss the conventional re-purposed drugs and potential alternative treatments as adjuvants.
Collapse
Affiliation(s)
- Heerak Chugh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Amardeep Awasthi
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Yashi Agarwal
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rajesh K Gaur
- Division of Medical Oncology, University of Southern California, CA 90033, USA
| | - Gagan Dhawan
- Department of Biomedical Sciences, Acharya Narendra Dev College, University of Delhi, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|