1
|
Abstract
Tissue resident mesenchymal progenitor cells (MPC) are important regulators of tissue repair or regeneration, remodeling, inflammation, and angiogenesis. Here we describe a technology used to define, isolate, and characterize a population of resident lung MPC in both human and mouse explanted tissue. The definition of this population using a defined set of markers facilitates the repeatable isolation of a mesenchymal subpopulation population by flow cytometry and the subsequent translational study of this specific cell type and function.
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) reside in specific microenvironments also called niches that regulate HSC functions. Understanding the molecular and cellular mechanisms involved in the crosstalk between HSCs and niche cells is a major issue in stem cell biology and regenerative medicine. The purpose of this review is to discuss recent advances in this field with particular emphasis on the transcriptional landscape of HSC niche cells and the roles of extracellular vesicles (EVs) in the dialog between HSCs and their microenvironments. RECENT FINDINGS The development of high-throughput technologies combined with computational methods has considerably improved our knowledge on the molecular identity of HSC niche cells. Accumulating evidence strongly suggest that the dialog between HSCs and their niches is bidirectional and that EVs play an important role in this process. SUMMARY These advances bring a unique conceptual and methodological framework for understanding the molecular complexity of the HSC niche and identifying novel HSC regulators. They are also promising for exploring the reciprocal influence of HSCs on niche cells and delivering specific molecules to HSCs in regenerative medicine.
Collapse
|
3
|
Joseph C, Green AC, Kwang D, Purton LE. Extrinsic Regulation of Hematopoietic Stem Cells and Lymphocytes by Vitamin A. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0142-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Stik G, Crequit S, Petit L, Durant J, Charbord P, Jaffredo T, Durand C. Extracellular vesicles of stromal origin target and support hematopoietic stem and progenitor cells. J Cell Biol 2017. [PMID: 28630143 PMCID: PMC5496607 DOI: 10.1083/jcb.201601109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as crucial mediators in cell-to-cell communication. Stik et al. provide evidence that EVs released by supportive stromal cells target hematopoietic stem and progenitor cells in vivo and in vitro and influence their gene expression and potential. Extracellular vesicles (EVs) have been recently reported as crucial mediators in cell-to-cell communication in development and disease. In this study, we investigate whether mesenchymal stromal cells that constitute a supportive microenvironment for hematopoietic stem and progenitor cells (HSPCs) released EVs that could affect the gene expression and function of HSPCs. By taking advantage of two fetal liver–derived stromal lines with widely differing abilities to maintain HSPCs ex vivo, we demonstrate that stromal EVs play a critical role in the regulation of HSPCs. Both supportive and nonsupportive stromal lines secreted EVs, but only those delivered by the supportive line were taken up by HSPCs ex vivo and in vivo. These EVs harbored a specific molecular signature, modulated the gene expression in HSPCs after uptake, and maintained the survival and clonogenic potential of HSPCs, presumably by preventing apoptosis. In conclusion, our study reveals that EVs are an important component of the HSPC niche, which may have major applications in regenerative medicine.
Collapse
Affiliation(s)
- Gregoire Stik
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Simon Crequit
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Laurence Petit
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Jennifer Durant
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Pierre Charbord
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Thierry Jaffredo
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Charles Durand
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| |
Collapse
|
5
|
Indu S, Sekhar SC, Sengottaiyan J, Kumar A, Pillai SM, Laloraya M, Kumar PG. Aberrant Expression of Dynein light chain 1 (DYNLT1) is Associated with Human Male Factor Infertility. Mol Cell Proteomics 2015; 14:3185-95. [PMID: 26432663 DOI: 10.1074/mcp.m115.050005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 12/18/2022] Open
Abstract
DYNLT1 is a member of a gene family identified within the t-complex of the mouse, which has been linked with male germ cell development and function in the mouse and the fly. Though defects in the expression of this gene are associated with male sterility in both these models, there has been no study examining its association with spermatogenic defects in human males. In this study, we evaluated the levels of DYNLT1 and its expression product in the germ cells of fertile human males and males suffering from spermatogenic defects. We screened fertile (n = 14), asthenozoospermic (n = 15), oligozoospermic (n = 20) and teratozoospermic (n = 23) males using PCR and Western blot analysis. Semiquantitative PCR indicated either undetectable or significantly lower levels of expression of DYNLT1 in the germ cells from several patients from across the three infertility syndrome groups, when compared with that of fertile controls. DYNLT1 was localized on head, mid-piece, and tail segments of spermatozoa from fertile males. Spermatozoa from infertile males presented either a total absence of DYNLT1 or its absence in the tail region. Majority of the infertile individuals showed negligible levels of localization of DYNLT1 on the spermatozoa. Overexpression of DYNLT1 in GC1-spg cell line resulted in the up-regulation of several cytoskeletal proteins and molecular chaperones involved in cell cycle regulation. Defective expression of DYNLT1 was associated with male factor infertility syndromes in our study population. Proteome level changes in GC1-spg cells overexpressing DYNLT1 were suggestive of its possible function in germ cell development. We have discussed the implications of these observations in the light of the known functions of DYNLT1, which included protein trafficking, membrane vesiculation, cell cycle regulation, and stem cell differentiation.
Collapse
Affiliation(s)
- Sivankutty Indu
- From the ‡Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Sreeja C Sekhar
- From the ‡Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Jeeva Sengottaiyan
- From the ‡Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Anil Kumar
- From the ‡Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Sathy M Pillai
- §Dr. SathyPillai, Samad Hospital, V.V.Road, Pattoor, Thiruvananthapuram-695035. Kerala, India
| | - Malini Laloraya
- From the ‡Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Pradeep G Kumar
- From the ‡Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India;
| |
Collapse
|
6
|
Freeman BT, Jung JP, Ogle BM. Single-Cell RNA-Seq of Bone Marrow-Derived Mesenchymal Stem Cells Reveals Unique Profiles of Lineage Priming. PLoS One 2015; 10:e0136199. [PMID: 26352588 PMCID: PMC4564185 DOI: 10.1371/journal.pone.0136199] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
The plasticity and immunomodulatory capacity of mesenchymal stem cells (MSCs) have spurred clinical use in recent years. However, clinical outcomes vary and many ascribe inconsistency to the tissue source of MSCs. Yet unconsidered is the extent of heterogeneity of individual MSCs from a given tissue source with respect to differentiation potential and immune regulatory function. Here we use single-cell RNA-seq to assess the transcriptional diversity of murine mesenchymal stem cells derived from bone marrow. We found genes associated with MSC multipotency were expressed at a high level and with consistency between individual cells. However, genes associated with osteogenic, chondrogenic, adipogenic, neurogenic and vascular smooth muscle differentiation were expressed at widely varying levels between individual cells. Further, certain genes associated with immunomodulation were also inconsistent between individual cells. Differences could not be ascribed to cycles of proliferation, culture bias or other cellular process, which might alter transcript expression in a regular or cyclic pattern. These results support and extend the concept of lineage priming of MSCs and emphasize caution for in vivo or clinical use of MSCs, even when immunomodulation is the goal, since multiple mesodermal (and even perhaps ectodermal) outcomes are a possibility. Purification might enable shifting of the probability of a certain outcome, but is unlikely to remove multilineage potential altogether.
Collapse
Affiliation(s)
- Brian T. Freeman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Jangwook P. Jung
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- * E-mail:
| |
Collapse
|
7
|
Baskir R, Majka S. Pulmonary Vascular Remodeling by Resident Lung Stem and Progenitor Cells. LUNG STEM CELLS IN THE EPITHELIUM AND VASCULATURE 2015. [DOI: 10.1007/978-3-319-16232-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Popov B, Petrov N. pRb-E2F signaling in life of mesenchymal stem cells: Cell cycle, cell fate, and cell differentiation. Genes Dis 2014; 1:174-187. [PMID: 30258863 PMCID: PMC6150080 DOI: 10.1016/j.gendis.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various mesodermal lines forming fat, muscle, bone, and other lineages of connective tissue. MSCs possess plasticity and under special metabolic conditions may transform into cells of unusual phenotypes originating from ecto- and endoderm. After transplantation, MSCs release the humoral factors promoting regeneration of the damaged tissue. During last five years, the numbers of registered clinical trials of MSCs have increased about 10 folds. This gives evidence that MSCs present a new promising resource for cell therapy of the most dangerous diseases. The efficacy of the MSCs therapy is limited by low possibilities to regulate their conversion into cells of damaged tissues that is implemented by the pRb-E2F signaling. The widely accepted viewpoint addresses pRb as ubiquitous regulator of cell cycle and tumor suppressor. However, current publications suggest that basic function of the pRb-E2F signaling in development is to regulate cell fate and differentiation. Through facultative and constitutive chromatin modifications, pRb-E2F signaling promotes transient and stable cells quiescence, cell fate choice to differentiate, to senesce, or to die. Loss of pRb is associated with cancer cell fate. pRb regulates cell fate by retaining quiescence of one cell population in favor of commitment of another or by suppression of genes of different cell phenotype. pRb is the founder member of the "pocket protein" family possessing functional redundancy. Critical increase in the efficacy of the MSCs based cell therapy will depend on precise understanding of various aspects of the pRb-E2F signaling.
Collapse
Affiliation(s)
- Boris Popov
- Institute of Cytology, Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, Russia
| | | |
Collapse
|
9
|
Charbord P, Pouget C, Binder H, Dumont F, Stik G, Levy P, Allain F, Marchal C, Richter J, Uzan B, Pflumio F, Letourneur F, Wirth H, Dzierzak E, Traver D, Jaffredo T, Durand C. A systems biology approach for defining the molecular framework of the hematopoietic stem cell niche. Cell Stem Cell 2014; 15:376-391. [PMID: 25042701 DOI: 10.1016/j.stem.2014.06.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/04/2014] [Accepted: 06/06/2014] [Indexed: 12/20/2022]
Abstract
Despite progress in identifying the cellular composition of hematopoietic stem/progenitor cell (HSPC) niches, little is known about the molecular requirements of HSPC support. To address this issue, we used a panel of six recognized HSPC-supportive stromal lines and less-supportive counterparts originating from embryonic and adult hematopoietic sites. Through comprehensive transcriptomic meta-analyses, we identified 481 mRNAs and 17 microRNAs organized in a modular network implicated in paracrine signaling. Further inclusion of 18 additional cell strains demonstrated that this mRNA subset was predictive of HSPC support. Our gene set contains most known HSPC regulators as well as a number of unexpected ones, such as Pax9 and Ccdc80, as validated by functional studies in zebrafish embryos. In sum, our approach has identified the core molecular network required for HSPC support. These cues, along with a searchable web resource, will inform ongoing efforts to instruct HSPC ex vivo amplification and formation from pluripotent precursors.
Collapse
Affiliation(s)
- Pierre Charbord
- INSERM U972, University Paris 11, Hôpital Paul Brousse, 94807 Villejuif, France.
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Florent Dumont
- Genomic Platform, Institut Cochin, INSERM U567, 75014 Paris, France
| | - Grégoire Stik
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Pacifique Levy
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Fabrice Allain
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Céline Marchal
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Jenna Richter
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | - Benjamin Uzan
- UMR967 INSERM, LSHL/IRCM, CEA, University Paris 7, 92260 Fontenay-aux-Roses, France
| | - Françoise Pflumio
- UMR967 INSERM, LSHL/IRCM, CEA, University Paris 7, 92260 Fontenay-aux-Roses, France
| | | | - Henry Wirth
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Elaine Dzierzak
- Department of Cell Biology, Erasmus Stem Cell Institute, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - David Traver
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | - Thierry Jaffredo
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Charles Durand
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
10
|
Foronjy RF, Majka SM. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues. Cells 2014; 1:874. [PMID: 23626909 PMCID: PMC3634590 DOI: 10.3390/cells1040874] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH), pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD)/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases.
Collapse
Affiliation(s)
- Robert F. Foronjy
- Department of Medicine, St. Luke’s Roosevelt Health Sciences Center, Antenucci Building, 432 West 58th Street, Room 311, New York, NY 10019, USA; ; Tel.: +1-212-523-7265
| | - Susan M. Majka
- Department of Medicine, Vanderbilt University, 1161 21st. Ave S, T1218 MCN, Nashville, TN 37232, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-303-883-8786
| |
Collapse
|
11
|
Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:259187. [PMID: 24319678 PMCID: PMC3844199 DOI: 10.1155/2013/259187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/11/2013] [Indexed: 11/23/2022]
Abstract
Background. Although pathological involvements of diabetic polyneuropathy (DPN) have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs) ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs) into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.
Collapse
|
12
|
The generation of hepatocytes from mesenchymal stem cells and engraftment into the liver. Curr Opin Organ Transplant 2013; 16:69-75. [PMID: 21150616 DOI: 10.1097/mot.0b013e3283424f5b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Liver transplantation is the ultimate therapeutic option for the treatment of end-stage liver diseases, which, however, is restricted by the shortage of donor organs. Instead hepatocyte transplantation seemed to be a way out, but again marginal donor livers for the isolation of primary human hepatocytes are scarce. The hepatocyte differentiation capacity of mesenchymal stem cells might open a new cell resource to generate hepatocyte-like cells for therapeutical use. RECENT FINDINGS Apart from their potency of hepatocyte differentiation mesenchymal stem cells display pleiotropic biological features including modulation of immunogenicity, anti-inflammatory and anti-apoptotic as well as pro-proliferative impact at the site of tissue or organ lesions. They are mobilized from the bone marrow and migrate to the liver along chemoattractive gradients thus contributing to the humoral and cellular response in tissue repair. The cause of different liver diseases is varying depending on, for example, viral, toxic, nutritional, neoplastic challenges. As known from animal studies mesenchymal stem cells seem to have a beneficial impact on liver regeneration and tissue repair under a variety of liver disease conditions. SUMMARY Their versatile biological features render mesenchymal stem cells an alternate cell resource for the treatment of liver diseases. It is important to know the mechanisms of integration of transplanted cells into the recipient tissue and to understand the communication between donor cells and the host tissue on the molecular level in order to support efficacy of cell transplantation and thus optimize the therapeutical outcome.
Collapse
|
13
|
Coller HA. Introducing the systems biology of cell state regulation section of Physiological Genomics. Physiol Genomics 2013; 45:407-8. [PMID: 23632415 DOI: 10.1152/physiolgenomics.00052.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Chow K, Fessel JP, Kaoriihida-Stansbury, Schmidt EP, Gaskill C, Alvarez D, Graham B, Harrison DG, Wagner DH, Nozik-Grayck E, West JD, Klemm DJ, Majka SM. Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling. Pulm Circ 2013; 3:31-49. [PMID: 23662173 PMCID: PMC3641738 DOI: 10.4103/2045-8932.109912] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary vascular remodeling and oxidative stress are common to many adult lung diseases. However, little is known about the relevance of lung mesenchymal stem cells (MSCs) in these processes. We tested the hypothesis that dysfunctional lung MSCs directly participate in remodeling of the microcirculation. We employed a genetic model to deplete extracellular superoxide dismutase (EC-SOD) in lung MSCs coupled with lineage tracing analysis. We crossed floxpsod3 and mT/mG reporter mice to a strain expressing Cre recombinase under the control of the ABCG2 promoter. We demonstrated In vivo that depletion of EC-SOD in lung MSCs resulted in their contribution to microvascular remodeling in the smooth muscle actin positive layer. We further characterized lung MSCs to be multipotent vascular precursors, capable of myofibroblast, endothelial and pericyte differentiation in vitro. EC-SOD deficiency in cultured lung MSCs accelerated proliferation and apoptosis, restricted colony-forming ability, multilineage differentiation potential and promoted the transition to a contractile phenotype. Further studies correlated cell dysfunction to alterations in canonical Wnt/β-catenin signaling, which were more evident under conditions of oxidative stress. Our data establish that lung MSCs are a multipotent vascular precursor population, a population which has the capacity to participate in vascular remodeling and their function is likely regulated in part by the Wnt/β-catenin signaling pathway. These studies highlight an important role for microenviromental regulation of multipotent MSC function as well as their potential to contribute to tissue remodeling.
Collapse
Affiliation(s)
- Kelsey Chow
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Masaki T, Qu J, Cholewa-Waclaw J, Burr K, Raaum R, Rambukkana A. Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 2013; 152:51-67. [PMID: 23332746 PMCID: PMC4314110 DOI: 10.1016/j.cell.2012.12.014] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/31/2012] [Accepted: 12/10/2012] [Indexed: 01/09/2023]
Abstract
Differentiated cells possess a remarkable genomic plasticity that can be manipulated to reverse or change developmental commitments. Here, we show that the leprosy bacterium hijacks this property to reprogram adult Schwann cells, its preferred host niche, to a stage of progenitor/stem-like cells (pSLC) of mesenchymal trait by downregulating Schwann cell lineage/differentiation-associated genes and upregulating genes mostly of mesoderm development. Reprogramming accompanies epigenetic changes and renders infected cells highly plastic, migratory, and immunomodulatory. We provide evidence that acquisition of these properties by pSLC promotes bacterial spread by two distinct mechanisms: direct differentiation to mesenchymal tissues, including skeletal and smooth muscles, and formation of granuloma-like structures and subsequent release of bacteria-laden macrophages. These findings support a model of host cell reprogramming in which a bacterial pathogen uses the plasticity of its cellular niche for promoting dissemination of infection and provide an unexpected link between cellular reprogramming and host-pathogen interaction.
Collapse
Affiliation(s)
- Toshihiro Masaki
- MRC Center for Regenerative Medicine, University of Edinburgh, Little France Campus, Edinburgh, EH16 4SB, Scotland, UK,Center for Neuroregeneration, University of Edinburgh, Little France Campus, Edinburgh, EH16 4SB, Scotland, UK,The Rockefeller University, York Avenue, New York, NY 10065, USA
| | - Jinrong Qu
- The Rockefeller University, York Avenue, New York, NY 10065, USA
| | - Justyna Cholewa-Waclaw
- MRC Center for Regenerative Medicine, University of Edinburgh, Little France Campus, Edinburgh, EH16 4SB, Scotland, UK,Center for Neuroregeneration, University of Edinburgh, Little France Campus, Edinburgh, EH16 4SB, Scotland, UK
| | - Karen Burr
- Center for Neuroregeneration, University of Edinburgh, Little France Campus, Edinburgh, EH16 4SB, Scotland, UK
| | - Ryan Raaum
- The Rockefeller University, York Avenue, New York, NY 10065, USA
| | - Anura Rambukkana
- MRC Center for Regenerative Medicine, University of Edinburgh, Little France Campus, Edinburgh, EH16 4SB, Scotland, UK,Center for Neuroregeneration, University of Edinburgh, Little France Campus, Edinburgh, EH16 4SB, Scotland, UK,Center for Infectious Diseases, University of Edinburgh, Little France Campus, Edinburgh, EH16 4SB, Scotland, UK,The Rockefeller University, York Avenue, New York, NY 10065, USA,Correspondence: (A.R), Telephone: +44(0) 131-651-9565, Fax: +44(0) 131-651-9501
| |
Collapse
|
16
|
Sági B, Maraghechi P, Urbán VS, Hegyi B, Szigeti A, Fajka-Boja R, Kudlik G, Német K, Monostori É, Gócza E, Uher F. Positional Identity of Murine Mesenchymal Stem Cells Resident in Different Organs Is Determined in the Postsegmentation Mesoderm. Stem Cells Dev 2012; 21:814-28. [DOI: 10.1089/scd.2011.0551] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bernadett Sági
- National Blood Service, Stem Cell Biology Unit, Budapest, Hungary
| | | | - Veronika S. Urbán
- National Blood Service, Stem Cell Biology Unit, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Beáta Hegyi
- National Blood Service, Stem Cell Biology Unit, Budapest, Hungary
| | - Anna Szigeti
- National Blood Service, Laboratory of Experimental Gene Therapy, Budapest, Hungary
| | - Roberta Fajka-Boja
- Lymphocyte Signal Transduction Laboratory, Biological Research Center of Hungarian Academy of Sciences, Institute of Genetics, Szeged, Hungary
| | - Gyöngyi Kudlik
- National Blood Service, Stem Cell Biology Unit, Budapest, Hungary
| | - Katalin Német
- National Blood Service, Laboratory of Experimental Gene Therapy, Budapest, Hungary
| | - Éva Monostori
- Lymphocyte Signal Transduction Laboratory, Biological Research Center of Hungarian Academy of Sciences, Institute of Genetics, Szeged, Hungary
| | - Elen Gócza
- Agricultural Biotechnology Center, Gödöllő, Hungary
| | - Ferenc Uher
- National Blood Service, Stem Cell Biology Unit, Budapest, Hungary
| |
Collapse
|
17
|
Jin YC, Han JA, Xu CX, Kang SK, Kim SH, Seo KS, Yoon DH, Choi YJ, Lee HG. Functional study of Villin 2 protein expressed in longissimus dorsi muscle of Korean native cattle in different growth stages. BMB Rep 2012; 45:102-7. [DOI: 10.5483/bmbrep.2012.45.2.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Choi B, Chun E, Kim SY, Kim M, Lee KY, Kim SJ. Notch-induced hIL-6 production facilitates the maintenance of self-renewal of hCD34+ cord blood cells through the activation of Jak-PI3K-STAT3 pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:351-64. [PMID: 22062221 DOI: 10.1016/j.ajpath.2011.09.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 09/04/2011] [Accepted: 09/12/2011] [Indexed: 10/15/2022]
Abstract
Ex vivo expansion of CD34(+) stem cells in contact culture between hCD34(+)CD38(-)Lin(-) cord blood stem cells and human delta-like-expressing AFT024 feeder cells revealed increased amounts of stemness-related proteins such as HoxB4, GATA2, Bmi-1, and p21 and anti-apoptotic proteins such as Bcl-2, Bcl-xL, Mcl-1, and phospho-Bad, when compared with control or noncontact culture. Production of human IL-6 (hIL-6) was markedly elevated in the culture, but was profoundly inhibited by treatment with γ-secretase inhibitor. In addition, Notch-induced activation of STAT3 was directly involved in gene expression of hIL-6 and soluble hIL-6Rα, indicating the close linkage between Notch signaling and hIL-6 production. Furthermore, depletion of soluble hIL-6 (with hIL-6-specific antibodies) and inhibition of IL-6-mediated signals (with a Jak1 inhibitor and wortmannin) severely affected the maintenance of self-renewal of hCD34(+) cord blood cells. It was also observed that the ex vivo expanded CD34(+) cord blood cells were induced to reconstitute human immune cells in nonobese diabetic mice with severe combined immunodeficiency when compared with freshly isolated CD34(+) cord blood cells. Together, these results strongly demonstrate that Notch signaling in the "cell-to-cell contact" between hCD34(+) cord blood and delta-like-expressing AFT024 feeder cells facilitates maintenance of self-renewal of hCD34(+) cord blood cells through direct regulation of hIL-6 production.
Collapse
Affiliation(s)
- Bongkum Choi
- Department of Molecular Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
19
|
Chow KS, Jun D, Helm KM, Wagner DH, Majka SM. Isolation & characterization of Hoechst(low) CD45(negative) mouse lung mesenchymal stem cells. J Vis Exp 2011:e3159. [PMID: 22064472 PMCID: PMC3227187 DOI: 10.3791/3159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tissue resident mesenchymal stem cells (MSC) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Taken together these studies suggest that resident lung MSC play a role during pulmonary tissue homeostasis, injury and repair during diseases such as pulmonary fibrosis (PF) and arterial hypertension (PAH). Here we describe a technology to define a population of resident lung MSC. The definition of this population in vivo pulmonary tissue using a define set of markers facilitates the repeated isolation of a well-characterized stem cell population by flow cytometry and the study of a specific cell type and function.
Collapse
Affiliation(s)
- Kelsey S Chow
- Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, USA
| | | | | | | | | |
Collapse
|
20
|
Jun D, Garat C, West J, Thorn N, Chow K, Cleaver T, Sullivan T, Torchia EC, Childs C, Shade T, Tadjali M, Lara A, Nozik-Grayck E, Malkoski S, Sorrentino B, Meyrick B, Klemm D, Rojas M, Wagner DH, Majka SM. The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells 2011; 29:725-35. [PMID: 21312316 PMCID: PMC3322548 DOI: 10.1002/stem.604] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue-resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis, and tumor formation. Here, we define a population of resident lung MSCs (luMSCs) that function to regulate the severity of bleomycin injury via modulation of the T-cell response. Bleomycin-induced loss of these endogenous luMSCs and elicited fibrosis (pulmonary fibrosis), inflammation, and pulmonary arterial hypertension (PAH). Replacement of resident stem cells by administration of isolated luMSCs attenuated the bleomycin-associated pathology and mitigated the development of PAH. In addition, luMSC modulated a decrease in numbers of lymphocytes and granulocytes in bronchoalveolar fluid and demonstrated an inhibition of effector T-cell proliferation in vitro. Global gene expression analysis indicated that the luMSCs are a unique stromal population differing from lung fibroblasts in terms of proinflammatory mediators and profibrotic pathways. Our results demonstrate that luMSCs function to protect lung integrity after injury; however, when endogenous MSCs are lost, this function is compromised illustrating the importance of this novel population during lung injury. The definition of this population in vivo in both murine and human pulmonary tissue facilitates the development of a therapeutic strategy directed at the rescue of endogenous cells to facilitate lung repair during injury.
Collapse
Affiliation(s)
- Du Jun
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Troeger C, Perahud I, Moser S, Holzgreve W. Transplacental traffic after in utero mesenchymal stem cell transplantation. Stem Cells Dev 2011; 19:1385-92. [PMID: 20131967 DOI: 10.1089/scd.2009.0434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transplacental traffic of fetal progenitor and differentiated cells is a well-known phenomenon in pregnancies. We hypothesize that intrauterine stem cell transplantation leads to microchimerism in the dams and that this is gestational age-dependent. EGFP+ fetal liver-derived mesenchymal stem cell (MSC) (10(5) per fetus) were injected intraperitoneally into congeneic and allogeneic recipient fetuses at E12 versus E13.5 of murine pregnancy (56 dams). Engraftment in maternal organs was evaluated using TaqMan quantitative polymerase chain reaction (PCR) and fluorescence microscopy during pregnancy (1, 3, and 7 days after in utero transplantation [IUT]) and after delivery (1 and 4 weeks after delivery). One day after IUT donor cells were mainly found in the placenta (E12: 9/10 dams vs. E13.5: 4/8 dams) and laparotomy site (E12: 5/10 dams vs. E13.5: 4/8 dams). Three days after IUT these probabilities decreased significantly in the placenta to 3/8 and 1/3, respectively, whereas it was increased within the surgical wound to 8/8 and 2/4. One week after IUT donor cells could be detected in other single maternal organs, such as bone marrow or spleen. The surgical wound was chimeric in all dams. One week after delivery the surgical wound was still a major site of engraftment in both groups. E12 IUT resulted in detectable donor cell microchimerism in the maternal bone marrow (3/4), liver (2/4), lungs (1/4), spleen (1/4), and thymus (1/4), whereas engraftment probabilities were lower following E13.5 IUT (BM: 1/4, liver: 2/4, lungs: 1/4, spleen: 1/4, thymus: 0/4). At 4 weeks after delivery persistent microchimerism was found only after E12 IUT in various maternal organs (BM: 1/4, spleen: 1/4, lungs: 1/4) and within newly created surgical wounds (3/4), but completely not in the E13.5 group. Allogeneic IUT did also not result in any detectable long-term fetal microchimerism. An earlier IUT might lead to a higher transplacental traffic of donor MSC and persistent microchimerism within maternal tissues. Even 4 weeks after delivery, these cells are present in surgical wounds.
Collapse
Affiliation(s)
- Carolyn Troeger
- Laboratory for Prenatal Medicine, Department of Obstetrics and Gynecology, University Hospital, Basel, Switzerland.
| | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The lifelong stream of all blood cells originates from the pool of hematopoietic stem cells (HSCs) generated during embryogenesis. Given that the placenta has been recently unveiled as a major hematopoietic organ that supports HSC development, the purpose of this review is to present current advances in defining the origin and regulation of placental HSCs. RECENT FINDINGS The mouse placenta has been shown to have the potential to generate multipotential myelo-lymphoid hematopoietic stem/progenitor cells de novo. The cellular origin of HSCs generated in the placenta and other sites has been tracked to the hemogenic endothelium by using novel genetic and imaging-based cell-tracing approaches. Transplantable, myelo-lymphoid hematopoietic stem/progenitor cells have also been recovered from the human placenta throughout gestation. SUMMARY The discovery of the placenta as a major organ that generates HSCs and maintains them in an undifferentiated state provides a valuable model to further elucidate regulatory mechanisms governing HSC emergence and expansion during mouse and human development. Concurrent efforts to optimize protocols for placental banking and HSC harvesting may increase the therapeutic utility of the human placenta as a source of transplantable HSCs.
Collapse
|
23
|
Leblond AL, Naud P, Forest V, Gourden C, Sagan C, Romefort B, Mathieu E, Delorme B, Collin C, Pagès JC, Sensebé L, Pitard B, Lemarchand P. Developing cell therapy techniques for respiratory disease: intratracheal delivery of genetically engineered stem cells in a murine model of airway injury. Hum Gene Ther 2010; 20:1329-43. [PMID: 19606934 DOI: 10.1089/hum.2009.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Interest has increased in the use of exogenous stem cells to optimize lung repair and serve as carriers of a therapeutic gene for genetic airway diseases such as cystic fibrosis. We investigated the survival and engraftment of exogenous stem cells after intratracheal injection, in a murine model of acute epithelial airway injury already used in gene therapy experiments on cystic fibrosis. Embryonic stem cells and mesenchymal stem cells were intratracheally injected 24 hr after 2% polidocanol administration, when epithelial airway injury was maximal. Stem cells were transfected with reporter genes immediately before administration. Reporter gene expression was analyzed in trachea-lungs and bronchoalveolar lavage, using nonfluorescence, quantitative, and sensitive methods. Enzyme-linked immunosorbent assay quantitative results showed that 0.4 to 5.5% of stem cells survived in the injured airway. Importantly, no stem cells survived in healthy airway or in the epithelial lining fluid. Using 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside staining, transduced mesenchymal stem cells were detected in injured trachea and bronchi lumen. When the epithelium was spontaneously regenerated, the in vivo amount of engrafted mesenchymal stem cells from cell lines decreased dramatically. No stem cells from primary culture were located within the lungs at 7 days. This study demonstrated the feasibility of intratracheal cell delivery for airway diseases with acute epithelial injury.
Collapse
|
24
|
A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood 2010; 116:1678-84. [PMID: 20522713 DOI: 10.1182/blood-2010-03-273862] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is believed that hemopoietic stem cells (HSC), which colonize the fetal liver (FL) rapidly, expand to establish a supply of HSCs adequate for maintenance of hemopoiesis throughout life. Accordingly, FL HSCs are actively cycling as opposed to their predominantly quiescent bone marrow counterparts, suggesting that the FL microenvironment provides unique signals that support HSC proliferation and self-renewal. We now report the generation and characterization of mice with a mutant allele of Baf250a lacking exons 2 and 3. Baf250a(E2E3/E2E3) mice are viable until E19.5, but do not survive beyond birth. Most interestingly, FL HSC numbers are markedly higher in these mice than in control littermates, thus raising the possibility that Baf250a determines the HSC pool size in vivo. Limit dilution experiments indicate that the activity of Baf250a(E2E3/E2E3) HSC is equivalent to that of the wild-type counterparts. The Baf250a(E2E3/E2E3) FL-derived stroma, in contrast, exhibits a hemopoiesis-supporting potential superior to the developmentally matched controls. To our knowledge, this demonstration is the first that a mechanism operating in a cell nonautonomous manner canexpand the pool size of the fetal HSC populations.
Collapse
|
25
|
The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc 2010. [PMID: 20224562 DOI: 10.1038/nprot.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Donor organ shortage is still the major obstacle for the clinical application of hepatocyte transplantation in the treatment of liver diseases. However, generation of hepatocyte-like cells from mesenchymal stem cells (MSCs) has become a real alternative to the isolation of primary hepatocytes. MSCs are extracted from the tissue by collagenase digestion and enriched by their capacity to grow on plastic surfaces. Enriched cells display distinct mesenchymal surface markers and are capable of multiple lineage differentiation. In the presence of specific growth conditions, the cells adopt functional features of differentiated hepatocytes. After orthotopic transplantation, differentiated human stem cells engraft in the host liver parenchyma of immunocompromised mice. This protocol describes the in vitro differentiation of stem cells from human bone marrow and their transplantation into livers of immunodeficient mice. The cell culture procedures take about 4-5 weeks, and cells engrafted in the mouse liver may be detected 2-3 months after transplantation.
Collapse
|
26
|
The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc 2010; 5:617-27. [PMID: 20224562 DOI: 10.1038/nprot.2010.7] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor organ shortage is still the major obstacle for the clinical application of hepatocyte transplantation in the treatment of liver diseases. However, generation of hepatocyte-like cells from mesenchymal stem cells (MSCs) has become a real alternative to the isolation of primary hepatocytes. MSCs are extracted from the tissue by collagenase digestion and enriched by their capacity to grow on plastic surfaces. Enriched cells display distinct mesenchymal surface markers and are capable of multiple lineage differentiation. In the presence of specific growth conditions, the cells adopt functional features of differentiated hepatocytes. After orthotopic transplantation, differentiated human stem cells engraft in the host liver parenchyma of immunocompromised mice. This protocol describes the in vitro differentiation of stem cells from human bone marrow and their transplantation into livers of immunodeficient mice. The cell culture procedures take about 4-5 weeks, and cells engrafted in the mouse liver may be detected 2-3 months after transplantation.
Collapse
|
27
|
Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther 2010; 17:692-708. [PMID: 20220785 DOI: 10.1038/gt.2010.10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem (stromal) cells (MSCs) are a source of circulating progenitors that are able to generate cells of all mesenchymal lineages and to cover cellular demands of injured tissues. The extent of their transdifferentiation plasticity remains controversial. Cells with MSC properties have been obtained from diverse tissues after purification and expansion in vitro. These cellular populations are heterogeneous and under certain conditions show pluripotent-like properties. MSCs present immunosuppressive and anti-inflammatory features and high migratory capacity toward inflamed or remodeling tissues. In this study we review available data regarding factors and signaling axes involved in the chemoattraction and engraftment of MSCs to an injured tissue or to a tissue undergoing active remodeling. Moreover, experimental evidence in support of uses of MSCs as vehicles of therapeutic genes is discussed. Because of its regenerative capacity and its particular immune properties, the liver is a good model to analyze the potential of MSC-based therapies. Finally, the potential application of MSCs and genetically modified MSCs in liver fibrosis and hepatocellular carcinoma (HCC) is proposed in view of available evidence.
Collapse
|
28
|
Kozhevnikova MN, Mikaelyan AS, Starostin VI. Molecular-genetic and immunophenotypic analysis of antigen profile and osteogenic and adipogenic potentials of mesenchymal stromal cells from fetal liver and adult bone marrow in rats. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Specific Lineage-Priming of Bone Marrow Mesenchymal Stem Cells Provides the Molecular Framework for Their Plasticity. Stem Cells 2009; 27:1142-51. [DOI: 10.1002/stem.34] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Fromigué O, Hamidouche Z, Chateauvieux S, Charbord P, Marie PJ. Distinct osteoblastic differentiation potential of murine fetal liver and bone marrow stroma-derived mesenchymal stem cells. J Cell Biochem 2008; 104:620-8. [PMID: 18080317 DOI: 10.1002/jcb.21648] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) are able to differentiate into osteoblasts under appropriate induction. Although MSC-derived osteoblasts are part of the hematopoietic niche, the nature of the stromal component in fetal liver remains elusive. Here, we determined the in vitro osteoblastic differentiation potential of murine clonal fetal liver-derived cells (AFT024, BFC012, 2012) in comparison with bone marrow-derived cell lines (BMC9, BMC10). Bone morphogenetic protein-2 (BMP2) increased alkaline phosphatase (ALP) activity, an early osteoblastic marker, in AFT024 and 2012 cells, whereas dexamethasone had little or no effect. BMP2, but not dexamethasone, increased ALP activity in BMC9 cells, and both inducers increased ALP activity in BMC10 cells. BMP2 increased ALP mRNA in AFT024, 2012 and BMC9 cells. By contrast, ALP was not detected in BMC10 and BFC012 cells. BMP2 and dexamethasone increased osteopontin and osteocalcin mRNA expression in 2012 cells. Furthermore, bone marrow-derived cells showed extensive matrix mineralization, whereas fetal liver-derived cell lines showed no or very limited matrix mineralization capacity. These results indicate that the osteoblast differentiation potential differs in bone marrow and fetal liver-derived cell lines, which may be due to a distinct developmental program or different microenvironment in the two hematopoietic sites.
Collapse
Affiliation(s)
- Olivia Fromigué
- INSERM U606, Université Paris 7, Hôpital Lariboisière, Paris, France.
| | | | | | | | | |
Collapse
|
31
|
Doherty JM, Geske MJ, Stappenbeck TS, Mills JC. Diverse adult stem cells share specific higher-order patterns of gene expression. Stem Cells 2008; 26:2124-30. [PMID: 18511597 DOI: 10.1634/stemcells.2008-0380] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adult tissue stem cells (SCs) share functional properties regardless of their tissue of residence. It had been thought that SCs might also share expression of certain "stemness" genes, although early investigations for such genes were unsuccessful. Here, we show that SCs from diverse tissues do preferentially express certain types of genes and that SCs resemble other SCs in terms of global gene expression more than they resemble the differentiated cells (DCs) of the tissues that they supply. Genes associated with nuclear function and RNA binding were over-represented in SCs. In contrast, DCs from diverse tissues shared enrichment in genes associated with extracellular space, signal transduction, and the plasma membrane. Further analysis showed that transit-amplifying cells could be distinguished from both SCs and DCs by heightened expression of cell division and DNA repair genes and decreased expression of apoptosis-related genes. This transit-amplifying cell-specific signature was confirmed by de novo generation of a global expression profile of a cell population highly enriched for transit-amplifying cells: colonic crypt-base columnar cells responding to mucosal injury. Thus, progenitor cells preferentially express intracellular or biosynthetic genes, and differentiation correlates with increased expression of genes for interacting with other cells or the microenvironment. The higher-order, Gene Ontology term-based analysis we use to distinguish SC- and DC-associated gene expression patterns can also be used to identify intermediate differentiation states (e.g., that of transit-amplifying cells) and, potentially, any biological state that is reflected in changes in global gene expression patterns. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jason M Doherty
- Department of Pathology and Immunology, Washington University School of Medicine, Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) are multipotent adult stem cells of mesodermal origin localized within the bone marrow compartment. MSC possess multilineage property making them useful for a number of potential therapeutic applications. MSC can be isolated from the bone marrow, expanded in culture and genetically modified to serve as cell carriers for local or systemic therapy. Despite their ability to differentiate into osteoblasts, chondrocytes, adipocytes, myocytes and neuronal cells under appropriate stimuli, distinct molecular signals that guide migration of MSC to specific targets largely remain unknown. The pluripotent nature of MSC makes them ideal resources for regenerative medicine, graft-versus-host disease and autoimmune diseases. Despite their therapeutic potential in a variety of diseases, certain issues need to be critically addressed both in in vitro expansion of these cells without losing their stem cell properties, and the long-term fate of the transplanted MSC in vivo following ex vivo modifications. Finally, understanding of complex, multistep and multifactorial differentiation pathways from pluripotent stem cells to functional tissues will allow us to manipulate MSC for the formation of competent composite tissues in situ. The present article will provide comprehensive account of the characteristics of MSC, their isolation and culturing, multilineage properties and potential therapeutic applications.
Collapse
|
33
|
Durand C, Robin C, Bollerot K, Baron MH, Ottersbach K, Dzierzak E. Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. Proc Natl Acad Sci U S A 2007; 104:20838-43. [PMID: 18087045 PMCID: PMC2409228 DOI: 10.1073/pnas.0706923105] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Indexed: 11/18/2022] Open
Abstract
Hematopoietic stem cell (HSC) self-renewal and differentiation is regulated by cellular and molecular interactions with the surrounding microenvironment. During ontogeny, the aorta-gonad-mesonephros (AGM) region autonomously generates the first HSCs and serves as the first HSC-supportive microenvironment. Because the molecular identity of the AGM microenvironment is as yet unclear, we examined two closely related AGM stromal clones that differentially support HSCs. Expression analyses identified three putative HSC regulatory factors, beta-NGF (a neurotrophic factor), MIP-1gamma (a C-C chemokine family member) and Bmp4 (a TGF-beta family member). We show here that these three factors, when added to AGM explant cultures, enhance the in vivo repopulating ability of AGM HSCs. The effects of Bmp4 on AGM HSCs were further studied because this factor acts at the mesodermal and primitive erythropoietic stages in the mouse embryo. In this report, we show that enriched E11 AGM HSCs express Bmp receptors and can be inhibited in their activity by gremlin, a Bmp antagonist. Moreover, our results reveal a focal point of Bmp4 expression in the mesenchyme underlying HSC containing aortic clusters at E11. We suggest that Bmp4 plays a relatively late role in the regulation of HSCs as they emerge in the midgestation AGM.
Collapse
Affiliation(s)
- Charles Durand
- *Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands; and
| | - Catherine Robin
- *Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands; and
| | - Karine Bollerot
- *Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands; and
| | - Margaret H. Baron
- Departments of Medicine, Molecular, Cell, and Developmental Biology, Gene and Cell Medicine, and Oncological Sciences and The Black Family Stem Cell Institute, Mt. Sinai School of Medicine, New York, NY 10029
| | - Katrin Ottersbach
- *Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands; and
| | - Elaine Dzierzak
- *Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands; and
| |
Collapse
|
34
|
Abstract
The pluripotent nature of mesenchymal stem cells (MSC) widens their potential for tissue regeneration and as vehicles for cell therapy in molecular medicine. Although the MSC are relatively easier to obtain and propagate in culture, a major impediment remains in their engraftment to target tissues on autologous transfer. We report here that transient, ectopic expression of alpha4 integrin (CD49d) on MSC greatly increases bone homing in an immunocompetent mouse model. Heterodimerization of the alpha4 integrin with endogenous beta1 integrin (CD29) was confirmed to influence this targeting. In addition to retaining their stem cell property, the engrafted MSC were also found to form osteoblasts and osteocytes in the growth plate of recipient mouse limb bones (femur/tibia) in vivo. These findings provide evidence for a novel strategy to achieve bone homing of genetically engineered MSC, which may broadly benefit in targeted therapies for osteopenic bone defects and cancer bone metastasis.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | | |
Collapse
|
35
|
Sgodda M, Aurich H, Kleist S, Aurich I, König S, Dollinger MM, Fleig WE, Christ B. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 2007; 313:2875-86. [PMID: 17574236 DOI: 10.1016/j.yexcr.2007.05.020] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/13/2007] [Accepted: 05/15/2007] [Indexed: 02/08/2023]
Abstract
Mesenchymal tissues harbour stromal cells capable of multilineage differentiation. Here, we demonstrate the isolation of mesenchymal stem cells (MSC) from rat peritoneal adipose tissue capable of osteogenic and adipogenic differentiation. Under in vitro conditions favouring hepatocyte differentiation, these MSC gained characteristic functions of hepatocytes such as the capacity to synthesize urea or store glycogen. Hepatocyte-specific transcripts of dipeptidylpeptidase type IV (CD26), albumin, cytochrome P450 type 1A1 (CYP1A1) and connexin CX32 (CX32) were detected only in differentiated but not undifferentiated cells. Transient transgenic expression of luciferase could be stimulated by cAMP when driven by the hepatocyte-specific promoter of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) gene. Finally, stem cell-derived hepatocytes from wild type (CD26+/+) rats were transplanted into the livers of CD26-deficient animals after lentiviral transduction with the GFP gene under the control of the ubiquitin promoter. GFP-positive cells engrafted in the host liver predominantly in the periportal region of the liver lobule. They continued to express CD26, a prominent feature of differentiated hepatocytes, indicating their topologically and functionally proper integration into the host liver parenchyma. Thus, MSCs from rat peritoneal adipose tissue exhibit the potential to differentiate into hepatocyte-like cells in vitro and in vivo.
Collapse
Affiliation(s)
- Malte Sgodda
- First Department of Medicine, Martin-Luther University of Halle-Wittenberg, Heinrich-Damerow-Strasse 1, Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|