1
|
Prat-Duran J, De Araujo IBBA, Juste N, Pinilla E, Rios FJ, Montezano AC, Touyz RM, Simonsen U, Nørregaard R, Buus NH. Pharmacological modulation of transglutaminase 2 in the unilateral ureteral obstruction mouse model. Eur J Pharmacol 2024; 984:177037. [PMID: 39369875 DOI: 10.1016/j.ejphar.2024.177037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Transglutaminase 2 (TG2) is a multifunctional enzyme involved in fibrosis by promoting transforming-growth-factor-β1 and crosslinking of extracellular matrix proteins. These functions are dependent on the open conformation, while the closed state of TG2 can induce vasodilation. We explored the putative protective role of TG2 in its closed state on development of renal fibrosis and blood pressure (BP) regulation. METHODS We studied the unilateral ureteral obstruction (UUO) mouse model treated with LDN27219, which promotes the closed conformation of TG2. Mice were subjected to 7 days UUO or sham operation and treated with vehicle (n = 10), LDN27219 (15 mg/kg/12 h, n = 9) or candesartan (5 mg/kg/day, n = 10) as a clinically comparator. Renal expression of TG2 and pro-fibrotic mediators were evaluated by Western blotting, qPCR and histology, and BP by tail-cuff measurements. RESULTS Obstructed kidneys showed increased mRNA and protein expression of fibronectin, collagen 3α1 (Col3α1), α-smooth muscle actin and collagen staining. Despite increased renal TG2 mRNA, protein expression was reduced in all UUO groups, but with increased transamidase activity in the vehicle and candesartan groups. LDN27219 reduced mRNA expression of fibronectin and Col3α1, but their protein expression remained unchanged. In contrast to LDN27219, candesartan lowered BP without affecting expression of pro-fibrotic biomarkers. CONCLUSION Renal TG2 mRNA and protein expression levels seem dissociated, with transamidase activity being increased. LDN27219 influences kidney pro-fibrotic markers at the mRNA level and attenuates transamidase activity but without affecting collagen content or BP. Our findings suggest that TG2 in its closed conformation has anti-fibrotic effects at the molecular level.
Collapse
Affiliation(s)
| | | | - Nina Juste
- Department of Biomedicine, Health, Aarhus University, Denmark
| | | | - Francisco J Rios
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ulf Simonsen
- Department of Biomedicine, Health, Aarhus University, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Henrik Buus
- Department of Biomedicine, Health, Aarhus University, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Trentin-Sonoda M, Cheff V, Gutsol A, Hébert RL. Sex-dependent effects of Canagliflozin on kidney protection in mice with combined hypertension-type 1 diabetes. PLoS One 2023; 18:e0295284. [PMID: 38055691 DOI: 10.1371/journal.pone.0295284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Canagliflozin (CANA) is a sodium-glucose cotransporter 2 (SGLT2) inhibitor with blood glucose lowering effects. CANA also promotes kidney protection in patients with cardiovascular diseases and type 2 diabetes (T2D), as well as in normoglycemic patients with hypertension or heart failure. Clinical studies, although conduct in both sexes, do not report sex-dependent differences in T2DM treated with CANA. However, the impact of CANA in type 1 diabetes, as well in sex-dependent outcomes in such cohort needs further understanding. To analyze the effects of CANA in mice with combined hypertension and type 1 diabetes, diabetes was induced by STZ injection (5 days, 50mg/kg/day) in both male and female 8 weeks old genetic hypertensive mice (Lin), whereas the control (Lin) received 0.1M sodium citrate injections. 8 weeks after STZ. Mice were fed either regular or CANA-infused diet for 4 weeks. 8 weeks after STZ, hyperglycemia was present in both male and female mice. CANA reversed BG increase mice fed regular diet. Male LinSTZ mice had elevated water intake, urine output, urinary albumin to creatinine ratio (ACR), kidney lesion score, and creatinine clearance compared to the Lin control group. Kidney injury was improved in male LinSTZ + CANA group in male mice. Water intake and urine output were not statistically significantly different in female LinSTZ compared to female LinSTZ+ CANA. Moreover, CANA did not improve kidney injury in female mice, showing no effect in creatinine clearance, lesion score and fibrosis when compared to LinSTZ fed regular diet. Here we show that Canagliflozin might exert different kidney protection effects in male compared to female mice with hypertension and type 1 diabetes. Sex-dimorphisms were previously found in the pathophysiology of diabetes induced by STZ. Therefore, we highlight the importance of in-depth investigation on sex-dependent effects of CANA, taking in consideration the unique characteristics of disease progression for each sex.
Collapse
Affiliation(s)
- Mayra Trentin-Sonoda
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Véronique Cheff
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Abolbaghaei A, Turner M, Thibodeau JF, Holterman CE, Kennedy CRJ, Burger D. The Proteome of Circulating Large Extracellular Vesicles in Diabetes and Hypertension. Int J Mol Sci 2023; 24:ijms24054930. [PMID: 36902363 PMCID: PMC10003702 DOI: 10.3390/ijms24054930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Hypertension and diabetes induce vascular injury through processes that are not fully understood. Changes in extracellular vesicle (EV) composition could provide novel insights. Here, we examined the protein composition of circulating EVs from hypertensive, diabetic and healthy mice. EVs were isolated from transgenic mice overexpressing human renin in the liver (TtRhRen, hypertensive), OVE26 type 1 diabetic mice and wild-type (WT) mice. Protein content was analyzed using liquid chromatography-mass spectrometry. We identified 544 independent proteins, of which 408 were found in all groups, 34 were exclusive to WT, 16 were exclusive to OVE26 and 5 were exclusive to TTRhRen mice. Amongst the differentially expressed proteins, haptoglobin (HPT) was upregulated and ankyrin-1 (ANK1) was downregulated in OVE26 and TtRhRen mice compared with WT controls. Conversely, TSP4 and Co3A1 were upregulated and SAA4 was downregulated exclusively in diabetic mice; and PPN was upregulated and SPTB1 and SPTA1 were downregulated in hypertensive mice, compared to WT mice. Ingenuity pathway analysis identified enrichment in proteins associated with SNARE signaling, the complement system and NAD homeostasis in EVs from diabetic mice. Conversely, in EVs from hypertensive mice, there was enrichment in semaphroin and Rho signaling. Further analysis of these changes may improve understanding of vascular injury in hypertension and diabetes.
Collapse
Affiliation(s)
- Akram Abolbaghaei
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Maddison Turner
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Thibodeau
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Chet E. Holterman
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Christopher R. J. Kennedy
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
- Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Dylan Burger
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
- Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8241)
| |
Collapse
|
4
|
High fat diet is protective against kidney injury in hypertensive-diabetic mice, but leads to liver injury. PLoS One 2023; 18:e0281123. [PMID: 36730247 PMCID: PMC9894391 DOI: 10.1371/journal.pone.0281123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide health burden with increases risk of end-stage renal function if left untreated. CKD induced in the context of metabolic syndrome (MS) increases risks of hypertension, hyperglycemia, excess body fat and dyslipidemia. To test if combining a high-fat diet (HFD) regimen onto the hypertensive/ diabetic phenotype would mimic features of MS induced-CKD in mice, hyperglycemia was induced in genetically hypertensive mice (Lin), followed by HFD regimen. For that, 8-week-old male were subjected to streptozotocin (STZ) intraperitoneal (i.p.) injections (50 mg/kg, 5 days consecutive). LinSTZ were fed a 60% kCal HFD for 8 weeks. Lin mice treated with STZ developed polydipsia, became hypertensive and hyperglycemic. HFD induced weight gain, protected against glomerular hypertrophy, scarring, and albuminuria at endpoint compared to regular diet fed LinSTZ. On the other hand, HFD induced steatosis, liver fibrosis, inflammation, and increase in AST/ALT ratio, characteristics of non-alcoholic liver disease. Taken together, our results show that LinSTZ mice fed a HFD did not lead to a more robust model of MS-induced CKD, protected against kidney injury, but inducing liver damage. More studies are necessary to understand the kidney protective mechanisms of HFD when superimposed with hypertension and type 1 diabetes.
Collapse
|
5
|
Gutsol AA, Blanco P, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Afanasiev SA, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative analysis of hypertensive nephrosclerosis in animal models of hypertension and its relevance to human pathology. Glomerulopathy. PLoS One 2022; 17:e0264136. [PMID: 35176122 PMCID: PMC8853553 DOI: 10.1371/journal.pone.0264136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/03/2022] [Indexed: 01/09/2023] Open
Abstract
Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed–chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans–hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.
Collapse
Affiliation(s)
- Alex A. Gutsol
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| | - Paula Blanco
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Taben M. Hale
- Basic Medical Sciences Faculty, University of Arizona, Tucson, AZ, United States of America
| | - Jean-Francois Thibodeau
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Chet E. Holterman
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Rania Nasrallah
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Jose W. N. Correa
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Amazonas, Manaus, Brazil
| | | | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Chris R. J. Kennedy
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Richard L. Hébert
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kevin D. Burns
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Alves-Lopes R, Montezano AC, Neves KB, Harvey A, Rios FJ, Skiba DS, Arendse LB, Guzik TJ, Graham D, Poglitsch M, Sturrock E, Touyz RM. Selective Inhibition of the C-Domain of ACE (Angiotensin-Converting Enzyme) Combined With Inhibition of NEP (Neprilysin): A Potential New Therapy for Hypertension. Hypertension 2021; 78:604-616. [PMID: 34304582 PMCID: PMC8357049 DOI: 10.1161/hypertensionaha.121.17041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Karla B. Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Adam Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Francisco J. Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Dominik S. Skiba
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Lauren B. Arendse
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, University of Cape Town, South Africa (L.B.A., E.S.)
| | - Tomasz J. Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| | | | - Edward Sturrock
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, University of Cape Town, South Africa (L.B.A., E.S.)
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., A.C.M., K.B.N., A.H., F.J.R., D.S.S., T.J.G., D.G., R.M.T.)
| |
Collapse
|
7
|
Thibodeau JF, Holterman CE, Burger D, Read NC, Reudelhuber TL, Kennedy CRJ. A novel mouse model of advanced diabetic kidney disease. PLoS One 2014; 9:e113459. [PMID: 25514595 PMCID: PMC4267730 DOI: 10.1371/journal.pone.0113459] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023] Open
Abstract
Currently available rodent models exhibit characteristics of early diabetic nephropathy (DN) such as hyperfiltration, mesangial expansion, and albuminuria yet features of late DN (hypertension, GFR decline, tubulointerstitial fibrosis) are absent or require a significant time investment for full phenotype development. Accordingly, the aim of the present study was to develop a mouse model of advanced DN with hypertension superimposed (HD mice). Mice transgenic for human renin cDNA under the control of the transthyretin promoter (TTRhRen) were employed as a model of angiotensin-dependent hypertension. Diabetes was induced in TTRhRen mice through low dose streptozotocin (HD-STZ mice) or by intercrossing with OVE26 diabetic mice (HD-OVE mice). Both HD-STZ and HD-OVE mice displayed more pronounced increases in urinary albumin levels as compared with their diabetic littermates. Additionally, HD mice displayed renal hypertrophy, advanced glomerular scarring and evidence of tubulointerstitial fibrosis. Both HD-OVE and HD-STZ mice showed evidence of GFR decline as FITC-inulin clearance was decreased compared to hyperfiltering STZ and OVE mice. Taken together our results suggest that HD mice represent a robust model of type I DN that recapitulates key features of human disease which may be significant in studying the pathogenesis of DN and in the assessment of putative therapeutics.
Collapse
Affiliation(s)
- Jean-Francois Thibodeau
- Kidney Research Centre, Division of Nephrology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chet E. Holterman
- Kidney Research Centre, Division of Nephrology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Centre, Division of Nephrology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Naomi C. Read
- Kidney Research Centre, Division of Nephrology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Timothy L. Reudelhuber
- Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | - Christopher R. J. Kennedy
- Kidney Research Centre, Division of Nephrology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Effects of a domain-selective ACE inhibitor in a mouse model of chronic angiotensin II-dependent hypertension. Clin Sci (Lond) 2014; 127:57-63. [PMID: 24506807 DOI: 10.1042/cs20130808] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The somatic isozyme of ACE (angiotensin I-converting enzyme) comprises two distinct zinc-dependent catalytic domains with different substrate specificities for angiotensin I (cleaved selectively by the C-domain) and bradykinin (cleaved equally efficiently by both the N- and C-domains). Classical ACEIs (ACE inhibitors) target both domains, with side effects such as cough and angio-oedema being attributed, in part, to N-domain inhibition, probably through bradykinin accumulation. We questioned whether a novel C-domain-selective ACEI (lisW-S) has anti-hypertensive effects without influencing bradykinin status. AngII (angiotensin II)-dependent hypertension was studied in mice that express active human renin in the liver (TtRhRen). Compared with wild-type littermates, TtRhRen mice displayed cardiac hypertrophy and had significantly elevated SBP [systolic BP (blood pressure)] as determined by tail cuff sphygmomanometry (150±3 compared with 112±5 mmHg; P<0.05) and telemetry (163±3 compared with 112±2 mmHg; P<0.01). Treatment with the non-selective ACEI lisinopril (1 mg/kg of body weight per day via an osmotic mini-pump for 2 weeks) reduced SBP (127±3 compared with. 154±6; P<0.05). Similarly, treatment with the C-domain selective ACEI lisW-S (lisinopril-tryptophan; 3.6 mg/kg of body weight per day via an osmotic mini-pump for 2 weeks) reduced BP. Treatment with lisinopril or lisW-S significantly reduced levels of AngII in kidneys (~4-fold; P<0.001). Ang-(2-8) [angiotensin-2-8)] was significantly reduced by lisinopril, but not by lisW-S. Plasma bradykinin levels were significantly increased only in the lisinopril group. These data suggest that C-domain-selective ACEIs reduce BP and AngII levels similarly to classical ACEIs. C-domain-selective ACEIs have the potential to avoid undesirable effects on the bradykinin system common to classic ACEIs and may represent a novel approach to the treatment of hypertension.
Collapse
|
9
|
Affiliation(s)
- A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
De Mello WC, Gerena Y. Prolonged exposure of cardiac cells to renin plus angiotensinogen reduces intracellular renin in the failing heart. On the role of angiotensin II-AT1 complex internalization. REGULATORY PEPTIDES 2009; 155:139-44. [PMID: 19303904 PMCID: PMC3769704 DOI: 10.1016/j.regpep.2009.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/13/2009] [Accepted: 03/07/2009] [Indexed: 10/21/2022]
Abstract
UNLABELLED To investigate the influence of prolonged exposure of cardiac cells to renin plus angiotensinogen (Ao) on intracellular renin levels, myocytes were isolated from the ventricle of cardiomyopathic hamsters(TO-2) and incubated in Krebs solution containing renin(128 pmol Ang ml/min) plus Ao (110 pmol Ang I generated by renin to exhaustion) for a period of 24 h. Membrane-bound and intracellular AT1 receptors levels as well as intracellular renin were studied using immunological methods and quantified by flow cytometry. The results indicated: a) intracellular renin levels were higher in the failing heart at an advanced stage of the disease (8 months) than in age-matched controls; b) the intracellular renin levels were significantly reduced in cells exposed to renin (128 pmol Ang I.ml/min) plus angiotensinogen (Ao)(110 pmol Ang I generated by renin to exhaustion) for a period of 24 h; c) incubation of the cardiomyocytes with renin (128 pmol Ang I.ml/min) alone did not reduced the intracellular renin levels; d) the fall of the intracellular renin level was related to the formation of angiotensin II (Ang II) at the surface cell membrane and internalization of the Ang II-AT1 complex because losartan (10(-7) M) added to the incubation medium containing renin plus Ao, blocked the internalization of AT1 and suppressed the decline of the intracellular renin levels; e) no internalization of renin or renin secretion was found in these experiments. IN CONCLUSION prolonged exposure of cardiac cells to renin plus Ao (24 h) reduced intracellular renin levels through the internalization of Ang II-AT1 complex and inhibition of renin expression.
Collapse
Affiliation(s)
- Walmor C. De Mello
- Medical Sciences Campus, UPR, School of Medicine, San Juan, PR 00936-5067, USA
| | - Yamil Gerena
- Medical Sciences Campus, UPR, School of Medicine, San Juan, PR 00936-5067, USA
- Medical Sciences Campus, UPR, School of Pharmacy, San Juan, PR 00936-5067, USA
| |
Collapse
|
11
|
Mercure C, Prescott G, Lacombe MJ, Silversides DW, Reudelhuber TL. Chronic increases in circulating prorenin are not associated with renal or cardiac pathologies. Hypertension 2009; 53:1062-9. [PMID: 19364992 DOI: 10.1161/hypertensionaha.108.115444] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated levels of circulating prorenin, the precursor of renin, have been reported to precede the appearance of microvascular complications in diabetes mellitus. Although several studies using animal models have attempted to address the link between elevated prorenin and the tissue remodeling and damage associated with both hypertension and diabetes mellitus, the results have been contradictory, and the mechanism whereby prorenin might contribute to these pathologies remains a subject of debate. To directly test the role of prorenin in these pathologies, we generated transgenic mice with selective increases (13- to 66-fold) in circulating native or active site-mutated prorenin. Systolic blood pressure was either unchanged or increased (+25 mm Hg) in native prorenin-expressing mice, whereas the mice expressing active site-mutated prorenin showed no significant differences in systolic blood pressure compared with control animals. There was no increase in cardiac fibrosis or renal glomerular sclerosis in any of the transgenic animals tested, even at an advanced age (18 months). Captopril (an angiotensin-converting enzyme inhibitor) rapidly normalized blood pressure of hyperproreninemic mice, whereas infusion of the putative antagonist of the prorenin receptor (handle region peptide) had no effect. These results suggest that the primary consequence of chronic elevations in circulating prorenin is an increase in blood pressure and do not support a role for prorenin as the primary causative agent in cardiac fibrosis or renal glomerular injury. The lack of effect seen with active site-mutated prorenin and the efficacy of angiotensin-converting enzyme inhibition are also consistent with prorenin acting through the generation of angiotensin II to raise blood pressure.
Collapse
Affiliation(s)
- Chantal Mercure
- Department of Medicine, Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Spak E, Casselbrant A, Olbers T, Lönroth H, Fändriks L. Angiotensin II-induced contractions in human jejunal wall musculature in vitro. Acta Physiol (Oxf) 2008; 193:181-90. [PMID: 18081740 DOI: 10.1111/j.1748-1716.2007.01826.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM Angiotensin II is well known for its contractile effects on smooth muscle cells. This effect is also present in the gut previously shown in animal models. The aim of this study was to clarify expression and localization of angiotensin II receptors in the human small intestine and to explore the pharmacological profile of angiotensin II effects in vitro. METHODS Strips of jejunal muscle wall from 32 patients undergoing bariatric surgery were used to record isometric tension in vitro in response to angiotensin II (10(-10)-10(-5) M) alone and in the presence of PD123319 (10(-7) M), losartan (10(-7) M), PD123319 (10(-7) M) and losartan (10(-7) M) in combination, tetrodotoxin (TTX) (10(-6) M), atropine (10(-6) M) and guanethidine (3 x 10(-6) M). Western blot, immunohistochemistry and RT-PCR were performed on corresponding muscle samples to identify expression and localization of key components of the renin-angiotensin system. RESULTS Angiotensin II elicited concentration-dependent contraction in both longitudinal and circular jejunal muscle wall strips; neither TTX, atropine nor guanethidine affected this action. Losartan alone and in combination with PD123319 shifted the concentration-response curve to the right. Transcription of angiotensinogen, ACE and angiotensin II types 1 and 2 receptor RNA was detected in all patients. Immunohistochemistry detected angiotensin II type 1 receptors in the musculature; both angiotensin II types 1 and type 2 receptors were found in the myenteric plexus. CONCLUSION This pharmacological analysis indicates that the contractile action elicited by angiotensin II on jejunal wall musculature is primarily mediated through the angiotensin II type 1 receptor located on the musculature.
Collapse
MESH Headings
- Adult
- Aged
- Angiotensin II/pharmacology
- Blotting, Western
- Dose-Response Relationship, Drug
- Humans
- Jejunum/drug effects
- Jejunum/metabolism
- Jejunum/physiology
- Middle Aged
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiology
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tissue Culture Techniques
Collapse
Affiliation(s)
- E Spak
- Department of Gastrosurgical Research, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
14
|
The (pro)renin receptor: a new addition to the renin-angiotensin system? Eur J Pharmacol 2008; 585:320-4. [PMID: 18417113 DOI: 10.1016/j.ejphar.2008.02.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 01/28/2008] [Accepted: 02/07/2008] [Indexed: 11/21/2022]
Abstract
The renin-angiotensin system is still incompletely understood. In particular, the function of prorenin, the inactive precursor of renin, is unknown. Yet, prorenin levels are >10-fold higher than renin levels, and prorenin increases even further in subjects with diabetes mellitus displaying microvascular complications. The recent discovery of a (pro)renin binding receptor may shed light on the role of prorenin. This review discusses the possibility that prorenin binding to this receptor results in prorenin activation, thereby allowing angiotensin generation, and that prorenin simultaneously acts as an agonist of this receptor, inducing angiotensin-independent effects. Transgenic animals overexpressing the receptor, as well as a receptor antagonist are now available, and future studies should reveal to what degree this concept is applicable to humans as well.
Collapse
|
15
|
Yogi A, Mercure C, Touyz J, Callera GE, Montezano ACI, Aranha AB, Tostes RC, Reudelhuber T, Touyz RM. Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension 2008; 51:500-6. [PMID: 18195161 DOI: 10.1161/hypertensionaha.107.103192] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phox-containing NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P<0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2- to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P<0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Collapse
Affiliation(s)
- Alvaro Yogi
- Kidney Research Centre, Ontario Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
|
18
|
Abstract
The NADPH oxidase is a multi-subunit enzyme that catalyzes the reduction of molecular oxygen to form superoxide (O(2)(-)). While classically linked to the respiratory burst in neutrophils, recent evidence now shows that O(2)(-) (and associated reactive oxygen species, ROS) generated by NADPH oxidase in nonphagocytic cells serves myriad functions in health and disease. An entire new family of NADPH Oxidase (Nox) homologues has emerged, which vary widely in cell and tissue distribution, as well as in function and regulation. A major concept in redox signaling is that while NADPH oxidase-derived ROS are necessary for normal cellular function, excessive oxidative stress can contribute to pathological disease. This certainly is true in the central nervous system (CNS), where normal NADPH oxidase function appears to be required for processes such as neuronal signaling, memory, and central cardiovascular homeostasis, but overproduction of ROS contributes to neurotoxicity, neurodegeneration, and cardiovascular diseases. Despite implications of NADPH oxidase in normal and pathological CNS processes, still relatively little is known about the mechanisms involved. This paper summarizes the evidence for NADPH oxidase distribution, regulation, and function in the CNS, emphasizing the diversity of Nox isoforms and their new and emerging role in neuro-cardiovascular function. In addition, perspectives for future research and novel therapeutic targets are offered.
Collapse
Affiliation(s)
- David W Infanger
- Department of Anatomy and Cell Biology, Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, 52245, USA
| | | | | |
Collapse
|
19
|
Touyz RM, Mercure C, He Y, Javeshghani D, Yao G, Callera GE, Yogi A, Lochard N, Reudelhuber TL. Angiotensin II-Dependent Chronic Hypertension and Cardiac Hypertrophy Are Unaffected by gp91phox-Containing NADPH Oxidase. Hypertension 2005; 45:530-7. [PMID: 15753233 DOI: 10.1161/01.hyp.0000158845.49943.5e] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The gp91phox-containing NADPH oxidase is the major source of reactive oxygen species (ROS) in the cardiovascular system and inactivation of gp91phox has been reported to blunt hypertension and cardiac hypertrophy seen in angiotensin (Ang) II-infused animals. In the current study, we sought to determine the role of gp91phox-derived ROS on cardiovascular outcomes of chronic exposure to Ang II. The gp91phox-deficient mice were crossed with transgenic mice expressing active human renin in the liver (TTRhRen). TTRhRen mice exhibit chronic Ang II–dependent hypertension and frank cardiac hypertrophy by age 10 to 12 weeks. Four genotypes of mice were generated: control, TTRhRen trangenics (TTRhRen), gp91phox-deficient (gp91
−
), and TTRhRen transgenic gp91phox-deficient (TTRhRen/gp91
−
). Eight to 10 mice/group were studied. ROS levels were significantly reduced (
P
<0.05) in the heart and aorta of TTRhRen/gp91
−
and gp91
−
mice compared with control counterparts, and this was associated with reduced cardiac, aortic, and renal NADPH oxidase activity (
P
<0.05). Systolic blood pressure (SBP), cardiac mass, and cardiac fibrosis were increased in TTRhRen versus controls. In contrast to its action on ROS generation, gp91phox inactivation had no effect on development of hypertension or cardiac hypertrophy in TTRhRen mice, although interstitial fibrosis was reduced. Cardiac and renal expression of gp91phox homologues, Nox1 and Nox4, was not different between groups. Thus, although eliminating gp91phox-associated ROS production may be important in cardiovascular consequences in acute insult models, it does not prevent the development of hypertension and cardiac hypertrophy in a model in which the endogenous renin-angiotensin system is chronically upregulated.
Collapse
Affiliation(s)
- Rhian M Touyz
- CIHR Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
There is compelling physiological evidence of binding and uptake of renin and prorenin in tissues. A number of molecules with the ability to bind renin and prorenin have been identified and have been characterized to varying degrees. It remains unclear, however, just how many renin/prorenin binding proteins and receptors exist and what their physiological functions may be. The possible functions of renin/prorenin binding and uptake are manifold, and include clearance of renin and prorenin from the circulation, local generation of angiotensins, activation of prorenin on the cell surface, trafficking of prorenin between cellular and extracellular compartments as part of a complex processing machinery, and signal transduction both via direct receptor mediated signaling, and via modulation of O-linkage of N-acetyl-glucosamine to cellular proteins. Some of these functions may involve single renin/prorenin binding sites or receptors, while others may require multiple binding sites and receptors. This review describes the physiological studies that have provided evidence of renin/prorenin uptake from the circulation, summarizes our knowledge of renin/prorenin binding proteins and receptors, and postulates new roles for renin/prorenin binding and uptake in tissues.
Collapse
Affiliation(s)
- Daniel F Catanzaro
- Department of Cardiothoracic Surgery, Weill Medical College, Cornell University, New York, USA.
| |
Collapse
|
21
|
|
22
|
Lochard N, Thibault G, Silversides DW, Touyz RM, Reudelhuber TL. Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist. Circ Res 2004; 94:1451-7. [PMID: 15117826 DOI: 10.1161/01.res.0000130654.56599.40] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin IV (Ang IV) is a metabolite of the potent vasoconstrictor angiotensin II (Ang II). Because specific binding sites for this peptide have been reported in numerous tissues including the brain, it has been suggested that a specific Ang IV receptor (AT4) might exist. Bolus injection of Ang IV in brain ventricles has been implicated in learning, memory, and localized vasodilatation. However, the functions of Ang IV in a physiological context are still unknown. In this study, we generated a transgenic (TG) mouse model that chronically releases Ang IV peptide specifically in the brain. TG mice were found to be hypertensive by the tail-cuff method as compared with control littermates. Treatment with the angiotensin-converting enzyme inhibitor captopril had no effect on blood pressure, but surprisingly treatment with the Ang II AT1 receptor antagonist candesartan normalized the blood pressure despite the fact that the levels of Ang IV in the brains of TG mice were only 4-fold elevated over the normal endogenous level of Ang peptides. Calcium mobilization assays performed on cultured CHO cells chronically transfected with the AT1 receptor confirm that low-dose Ang IV can mobilize calcium via the AT1 receptor only in the presence of Ang II, consistent with an allosteric mechanism. These results suggest that chronic elevation of Ang IV in the brain can induce hypertension that can be treated with angiotensin II AT1 receptor antagonists.
Collapse
Affiliation(s)
- Nadheige Lochard
- Laboratories of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
23
|
Collidge TA, Lammie GA, Fleming S, Mullins JJ. The role of the renin–angiotensin system in malignant vascular injury affecting the systemic and cerebral circulations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:301-19. [PMID: 14769441 DOI: 10.1016/j.pbiomolbio.2003.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malignant hypertension is a rare but serious syndrome complicating 1% of essential hypertension and causing neurological, renal and cardiac complications. Despite improved anti-hypertensive medication, the incidence of this condition fails to decline. In the first part of this review, we discuss transgenic rat models of malignant hypertension, generated by over-expressing renin, to illustrate the role of the renin-angiotensin system in the development of systemic hypertensive vascular remodelling and hypertension. In the second part, we focus on the cerebrovascular response to hypertension and discuss new data using a conditional, transgenic model of malignant hypertension, the inducible hypertensive rat (IHR). Cerebral infarction associates strongly with hypertension in man and the mechanisms by which hypertension predisposes to different types of stroke remains poorly understood. Rats have similar cerebrovascular anatomy and structure to humans and as such provide a good experimental tool. To date, such models lack controllability and blood-pressure matched controls. Using the IHR, we have manipulated dietary salt and water intake to generate a novel, controllable stroke phenotype. Hypertensive small-vessel stroke develops over a predictable time period, permitting the study of developing cerebrovascular lesions. Systemic end-organ injury and hypertension are not affected. Dissociation of the systemic and central vascular responses in this way, will allow for comparative study of animals with equivalent hypertension, genetic background and systemic features of hypertension with or without stroke.
Collapse
Affiliation(s)
- Tara A Collidge
- Molecular Physiology Laboratory, University of Edinburgh Medical School, Wilkie Building, Teviot Place, Edinburgh EH8 9AG, UK
| | | | | | | |
Collapse
|
24
|
Lavoie JL, Lake-Bruse KD, Sigmund CD. Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule. Am J Physiol Renal Physiol 2004; 286:F965-71. [PMID: 15075192 DOI: 10.1152/ajprenal.00402.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the physiological significance of a tissue renin-angiotensin system in the proximal tubule of the kidney. To accomplish this, we produced mice that express human renin (hREN) under the control of the kidney androgen-regulated promoter (KAP), which is androgen responsive. One of the lines expressed the hREN transgene primarily in the kidney. Renal expression of the transgene was undetectable in females but could be induced by testosterone treatment. Because the renin-angiotensin system is species specific, we bred KAP2-hREN mice with the mice expressing human angiotensinogen under the same promoter (KAP-hAGT) to produce offspring that expressed both transgenes. We measured mean arterial blood pressure (MAP) in the carotid artery of double-transgenic and control mice using radiotelemetry. Double-transgenic female mice had a normal baseline MAP (116 +/- 4 mmHg, n = 8), which increased by 15 mmHg after 2 wk of testosterone treatment, and returned to baseline after elimination of the testosterone pellet. The change in arterial pressure paralleled the change in plasma testosterone. There was no MAP change in testosterone-treated control littermates. We conclude that dual production of renin and angiotensinogen in the renal proximal tubule can result in a systemic increase in arterial pressure. These data support a role for a tissue-specific renin-angiotensin system in the renal proximal tubule that contributes to the regulation of systemic blood pressure.
Collapse
Affiliation(s)
- Julie L Lavoie
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
25
|
Javeshghani D, Touyz RM, Sairam MR, Virdis A, Neves MF, Schiffrin EL. Attenuated responses to angiotensin II in follitropin receptor knockout mice, a model of menopause-associated hypertension. Hypertension 2003; 42:761-7. [PMID: 12885794 DOI: 10.1161/01.hyp.0000085331.22169.3f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the renin-angiotensin system has been implicated in the development of hypertension in menopausal women. We investigated whether blood pressure is elevated and whether angiotensin II (Ang II)-induced vascular reactivity is increased in follitropin receptor knockout (FORKO) female mice. These mice are estrogen-deficient and have characteristics similar to postmenopausal women. Serum estradiol levels were significantly reduced in FORKO versus wild-type mice (1.4+/-0.2 versus 15+/-3 pg/mL, P<0.01). Blood pressure, measured by telemetry, was significantly increased in FORKO (120+/-2/92+/-2 mm Hg) compared with wild-type counterparts (110+/-1/85+/-2 mm Hg, P<0.05). Vascular dose responses to acetylcholine (endothelium-dependent dilation) and sodium nitroprusside (endothelium-independent dilation) were not different. Ang II-induced vasoconstriction was blunted in FORKO compared with wild-type mice (P<0.05). Media-to-lumen ratio was significantly increased in FORKO (6.2+/-0.5%) versus control mice (5.2+/-0.3%), indicating vascular remodeling. Aortic*O2- levels, NADH-inducible.O2- generation, and plasma levels of thiobarbituric acid reactive substances (TBARS), indexes of oxidative stress, were not significantly different between wild-type and FORKO mice. Vascular AT1 receptor content, assessed by immunoblotting, was reduced by 40% in FORKO compared with wild-type mice (P<0.01). This was associated with decreased circulating Ang II levels in FORKO versus control mice. These data indicate that FORKO mice have increased blood pressure, vascular remodeling, and attenuated vascular responses to Ang II. Our findings suggest that vascular Ang II signaling is downregulated in female FORKO mice and that Ang II may not play an important role in blood pressure elevation in this model of menopause-associated hypertension.
Collapse
Affiliation(s)
- Danesh Javeshghani
- Experimental Hypertension, Clinical Research Institute of Montreal, Quebec, 110 Pine Ave West, Montreal, H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
26
|
De Mello W. Effect of extracellular and intracellular angiotensins on heart cell function; on the cardiac renin-angiotensin system. REGULATORY PEPTIDES 2003; 114:87-90. [PMID: 12832095 DOI: 10.1016/s0167-0115(03)00121-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this manuscript, I presented up-to-date evidence that intracellular and extracellular angiotensins have an important regulatory effect on the processes of heart cell communication and inward calcium current and that aldosterone modulates the effect of angiotensin II (Ang II) on the electrical properties of the heart. Moreover, I discussed the most relevant information about the origin of cardiac renin, the presence of a cardiac renin-angiotensin aldosterone system and its possible relevance for heart cell physiology and pathology.
Collapse
Affiliation(s)
- Walmor De Mello
- Department of Pharmacology, School of Medicine, Medical Sciences Campus, UPR, PO Box 365067, San Juan, PR 00936-5067, USA.
| |
Collapse
|
27
|
Abstract
The concept of local renin-angiotensin systems has been introduced almost 20 years ago to explain the beneficial blood pressure-independent effects of ACE inhibitors and AT(1) receptor antagonists in cardiovascular diseases. In the past decade, research has focussed on the local effects of angiotensin II rather than on the mechanism(s) of its local generation. This review addresses several of the unanswered questions with regard to tissue angiotensin II generation, focussing in particular on the heart and vascular wall: (1) what is the origin of the renin that is required to generate angiotensin II locally, (2) where does tissue angiotensin generation occur (intra- versus extracellular), (3) what is the importance of alternative (non-renin, non-ACE) angiotensin-generating enzymes, (4) do ACE inhibitors and AT(1) receptor antagonists exert local effects that are renin-angiotensin system independent (thereby incorrectly leading to the conclusion that they interfere with the local generation or effects of angiotensin II), and (5) to what degree do differences in tissue angiotensin generation underlie the association between cardiovascular diseases and renin-angiotensin system gene polymorphisms?
Collapse
Affiliation(s)
- A H Jan Danser
- Department of Pharmacology, room EE1418b, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Abstract
There is evidence that many peptide growth factors and hormones act in the intracellular space after either internalization or retention in their cells of synthesis. These factors, commonly called intracrines, are structurally diverse while sharing some common functional features. Reports of intracellular peptide hormone binding and action are reviewed here. Also, this laboratory has made proposals regarding the origin and actions of intracrines and these areas are further explored. Intracrine interactions and the relationship of intracrines to transcription factors are discussed. The intracellular/intracrine renin-angiotensin system (iRAS) is reviewed to illustrate the intracrine analogue of a well-established physiological system. The role of intracrine action in metazoan development is also considered.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 99 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| |
Collapse
|
29
|
Lochard N, Silversides DW, van Kats JP, Mercure C, Reudelhuber TL. Brain-specific restoration of angiotensin II corrects renal defects seen in angiotensinogen-deficient mice. J Biol Chem 2003; 278:2184-9. [PMID: 12399452 DOI: 10.1074/jbc.m209933200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice deficient for angiotensinogen (AGT), or other components of the renin-angiotensin system, show a high rate of neonatal mortality correlated with severe renal abnormalities including hydronephrosis, hypertrophy of renal arteries, and an impaired ability to concentrate urine. Although transgenic replacement of systemic or adipose, but not renal, AGT in AGT-deficient mice has previously been reported to correct some of these renal abnormalities, the tissue target for this complementation has not been defined. In the current study, we have used a novel transgenic strategy to restore the peptide product of the renin-angiotensin system, angiotensin II, exclusively in the brain of AGT-deficient mice and demonstrate that brain-specific angiotensin II can correct the hydronephrosis and partially correct renal dysfunction seen in AGT-deficient mice. Taken together, these results suggest that the renin-angiotensin system affects renal development and function through systemically accessible targets in the brain.
Collapse
Affiliation(s)
- Nadheige Lochard
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
30
|
Bader M. Role of the local renin-angiotensin system in cardiac damage: a minireview focussing on transgenic animal models. J Mol Cell Cardiol 2002; 34:1455-62. [PMID: 12431444 DOI: 10.1006/jmcc.2002.2077] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The local generation of all components of the renin-angiotensin system (RAS) in the heart has been the basis for the postulation of a tissue RAS in this organ. Since angiotensin II is involved in the induction of cardiac hypertrophy and fibrosis the local generation of this peptide may be of highest clinical importance. Several transgenic animal models have been generated to evaluate the functional importance of the cardiac RAS. We have established a new hypertensive mouse model lacking local angiotensinogen expression in the heart. In these animals, cardiac weight and collagen synthesis are increased compared to normotensive control mice but to a lesser extent than in mice with equally enhanced blood pressure but intact cardiac angiotensinogen generation. Thus, we have shown that local synthesis of this protein is involved but not essential in the development of cardiac hypertrophy and fibrosis.
Collapse
MESH Headings
- Angiotensin II/deficiency
- Angiotensin II/pharmacology
- Animals
- Animals, Genetically Modified
- Cardiomegaly/etiology
- Cardiomegaly/physiopathology
- Fibrosis
- Heart/drug effects
- Hypertension/complications
- Hypertension/genetics
- Hypertension/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Myocardial Infarction/etiology
- Myocardium/metabolism
- Myocardium/pathology
- Organ Specificity
- Peptidyl-Dipeptidase A/physiology
- Rats
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/deficiency
- Receptors, Angiotensin/physiology
- Renin-Angiotensin System/physiology
- Stress, Mechanical
- Ventricular Remodeling
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), D-13092, Berlin-Buch, Germany.
| |
Collapse
|
31
|
van den Eijnden MMED, de Bruin RJA, de Wit E, Sluiter W, Deinum J, Reudelhuber TL, Danser AHJ. Transendothelial transport of renin-angiotensin system components. J Hypertens 2002; 20:2029-37. [PMID: 12359982 DOI: 10.1097/00004872-200210000-00023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vascular (interstitial) angiotensin (ANG) II production depends on circulating renin-angiotensin system (RAS) components. Mannose 6-phosphate (man-6-P) receptors and angiotensin II type 1 (AT(1)) receptors, via binding and internalization of (pro)renin and ANG II, respectively, could contribute to the transportation of these components across the endothelium. OBJECTIVE To investigate the mechanism(s) contributing to transendothelial RAS component transport. METHODS Human umbilical vein endothelial cells were cultured on transwell polycarbonate filters, and incubated with RAS components in the absence or presence of man-6-P, eprosartan or PD123319, to block man-6-P, AT(1) and angiotensin II type 2 (AT(2)) receptors, respectively. RESULTS Apically applied (pro)renin and angiotensinogen slowly entered the basolateral compartment, in a similar manner as horseradish peroxidase, a molecule of comparable size that reaches the interstitium via diffusion only. Prorenin transport was unaffected by man-6-P. Apical ANG I and ANG II rapidly reached the basolateral fluid independent of AT(1) and AT(2) receptors. Basolateral ANG II during apical ANG I application was as high as apical ANG II, whereas during apical ANG II application it was lower. During basolateral ANG I application, ANG II generation occurred basolaterally only, in an angiotensin-converting enzyme (ACE)-dependent manner. CONCLUSIONS Circulating (pro)renin, angiotensinogen, ANG I and ANG II enter the interstitium via diffusion, and interstitial ANG II generation is mediated, at least in part, by basolaterally located endothelial ACE.
Collapse
Affiliation(s)
- Mark M E D van den Eijnden
- Department of Pharmacology, Cardiovascular Research Institute COEUR, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Morimoto S, Cassell MD, Sigmund CD. Glia- and neuron-specific expression of the renin-angiotensin system in brain alters blood pressure, water intake, and salt preference. J Biol Chem 2002; 277:33235-41. [PMID: 12080069 DOI: 10.1074/jbc.m204309200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study is to examine the regulation of blood pressure and fluid and electrolyte homeostasis in mice overexpressing angiotensin II (Ang-II) in the brain and to determine whether there are significant physiologic differences in Ang-II production in neurons or glia. Therefore, we generated and characterized transgenic mice overexpressing human renin (hREN) under the control of the glial fibrillary acidic protein (GFAP) promoter (GFAP-hREN) and synapsin-I promoter (SYN-hREN) and bred them with mice expressing human angiotensinogen (hAGT) under the control of the same promoters (GFAP-hAGT and SYN-hAGT). Both GFAP-hREN and SYN-hREN mice exhibited the highest hREN mRNA expression in the brain and had undetectable levels of hREN protein in the systemic circulation. In the brain of GFAP-hREN and SYN-hREN mice, hREN protein was observed almost exclusively in astrocytes and neurons, respectively. Transgenic mice overexpressing both hREN and hAGT transgenes in either glia or neurons were moderately hypertensive. In the glia-targeted mice, blood pressure could be corrected by intracerebroventricular injection of the Ang-II type 1 receptor antagonist losartan, and intravenous injection of a ganglion blocking agent, but not an arginine vasopressin V1 receptor antagonist, lowered blood pressure. These data suggest that stimulation of Ang-II type 1 receptors in the brain by Ang-II derived from local synthesis of renin and angiotensinogen can cause an elevation in blood pressure via a mechanism involving enhanced sympathetic outflow. Glia- and neuron-targeted mice also exhibited an increase in drinking volume and salt preference, suggesting that chronic overexpression of renin and angiotensinogen locally in the brain can result in hypertension and alterations in fluid homeostasis.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Internal Medicine and Physiology & Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
33
|
Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov 2002; 1:621-36. [PMID: 12402502 DOI: 10.1038/nrd873] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Effective antihypertensive therapy has made a major contribution to the reductions in the morbidity and mortality of cardiovascular disease that have been achieved since the 1960s. However, blood-pressure control with conventional drugs has not succeeded in reducing cardiovascular disease risks to levels seen in normotensive persons. Drugs that inhibit or antagonize components of the renin-angiotensin-aldosterone system are addressing this deficiency by targeting both blood pressure and related structural and functional abnormalities of the heart and blood vessels, thus preventing target-organ damage and related cardiovascular events.
Collapse
Affiliation(s)
- Mohammad Amin Zaman
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
34
|
Saris JJ, van den Eijnden MMED, Lamers JMJ, Saxena PR, Schalekamp MADH, Danser AHJ. Prorenin-induced myocyte proliferation: no role for intracellular angiotensin II. Hypertension 2002; 39:573-7. [PMID: 11882610 DOI: 10.1161/hy0202.103002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiomyocytes bind, internalize, and activate prorenin, the inactive precursor of renin, via a mannose 6-phosphate receptor (M6PR)--dependent mechanism. M6PRs couple directly to G-proteins. To investigate whether prorenin binding to cardiomyocytes elicits a response, and if so, whether this response depends on angiotensin (Ang) II, we incubated neonatal rat cardiomyocytes with 2 nmol/L prorenin and/or 150 nmol/L angiotensinogen, with or without 10 mmol/L M6P, 1 micromol/L eprosartan, or 1 micromol/L PD123319 to block M6P and AT(1) and AT(2) receptors, respectively. Protein and DNA synthesis were studied by quantifying [(3)H]-leucine and [(3)H]-thymidine incorporation. For comparison, studies with 100 nmol/L Ang II were also performed. Neither prorenin alone, nor angiotensinogen alone, affected protein or DNA synthesis. Prorenin plus angiotensinogen increased [(3)H]-leucine incorporation (+21 +/- 5%, mean +/- SEM, P<0.01), [(3)H]-thymidine incorporation (+29 +/- 6%, P<0.01), and total cellular protein (+14 +/- 3%, P<0.01), whereas Ang II increased DNA synthesis only (+34 +/- 7%, P<0.01). Eprosartan, but not PD123319 or M6P, blocked the effects of prorenin plus angiotensinogen as well as the effects of Ang II. Medium Ang II levels during prorenin and angiotensinogen incubation were <1 nmol/L. In conclusion, prorenin binding to M6PRs on cardiomyocytes per se does not result in enhanced protein or DNA synthesis. However, through Ang II generation, prorenin is capable of inducing myocyte hypertrophy and proliferation. Because this generation occurs independently of M6PRs, it most likely depends on the catalytic activity of intact prorenin in the medium (because of temporal prosegment unfolding) rather than its intracellular activation. Taken together, our results do not support the concept of Ang II generation in cardiomyocytes following intracellular prorenin activation.
Collapse
Affiliation(s)
- Jasper J Saris
- Cardiovascular Research Institute COEUR, Department of Pharmacology, Erasmus University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
van Kats JP, Methot D, Paradis P, Silversides DW, Reudelhuber TL. Use of a biological peptide pump to study chronic peptide hormone action in transgenic mice. Direct and indirect effects of angiotensin II on the heart. J Biol Chem 2001; 276:44012-7. [PMID: 11551931 DOI: 10.1074/jbc.m106132200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II is a peptide hormone regulator of blood pressure and fluid balance in mammals. Evidence obtained largely in vitro has also suggested that angiotensin II has growth-promoting effects and that it might thereby contribute to such pathological phenomena as cardiac hypertrophy, a major risk factor for cardiovascular mortality. It has been difficult to test for the direct growth-promoting effects of angiotensin II in vivo, however, because of the generalized effects of the peptide on hemodynamics. To overcome this limitation and to test for cardiac-specific functions of angiotensin II, we generated transgenic mice expressing an angiotensin II-producing fusion protein exclusively in cardiac myocytes. Our findings are the first to distinguish between local and systemic effects of angiotensin II on the heart and introduce a novel technique for studying tissue-specific peptide function.
Collapse
Affiliation(s)
- J P van Kats
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
36
|
Petrescu G, Costuleanu M, Slatineanu SM, Costuleanu N, Foia L, Costuleanu A. Contractile effects of angiotensin peptides in rat aorta are differentially dependent on tyrosine kinase activity. J Renin Angiotensin Aldosterone Syst 2001; 2:180-7. [PMID: 11881120 DOI: 10.3317/jraas.2001.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It has been suggested that tyrosine kinase activity participates in the regulation of signal transduction associated with angiotensin II (Ang II)-induced pharmaco-mechanical coupling in rat aortic smooth muscle. We further tested the effects of genistein, a tyrosine-kinase inhibitor, and its inactive analogue, daidzein, on angiotensin I (Ang I), angiotensin III (Ang III) and angiotensin IV (Ang IV) contractions, as compared with those on Ang II. Genistein partially inhibited Ang II- and Ang I-induced contractions. The genistein-induced inhibition was more evident on Ang III and especially important on Ang IV contractile effects. Thus, Ang IV- and Ang III-induced contractions seem to be more dependent on tyrosine kinase activity than those evoked by Ang II or Ang I. Daidzein did not significantly affect the contractile effects of any of angiotensin peptides tested. These results clearly suggest that the inhibition of the action of angiotensin peptides actions by genistein is mediated by inhibition of endogenous tyrosine kinase activity. Furthermore, our data show that the type and/or intensity of tyrosine kinase activity is differentially associated with the contractile effects of different angiotensin peptides in rat aorta. Nifedipine, a blocker of membrane L-type Ca2+ channels, strongly inhibited Ang IV-induced contractions. At the same time, it significantly inhibited Ang III contractile effects as compared with Ang II and Ang I contractions. Meanwhile, we observed a close relationship between calcium influx and tyrosine kinase phosphorylation activity under the stimulatory effects of angiotensin peptides. Furthermore, genistein did not significantly influence the phasic contractions induced by angiotensin peptides in Ca2+-free Krebs-Henseleit solution. Thus, it appears that Ca2+ influx, rather than the release of Ca2+ from IP3-sensitive stores, may play a major role in the contractile effects of angiotensin peptides in rat aorta via tyrosine kinase activation. One argument against a direct action of genistein on the Ca2+ channel itself is that it did not markedly affect the K+-induced contraction (depolarisation) in rat aorta. At the same time, a potential role for tyrosine kinase activity in the process of calcium entry is suggested. An elevation of intracellular calcium via tyrosine kinase-mediated processes may mediate the actions of G-protein coupled receptor agonists in smooth muscle, including angiotensin peptides.
Collapse
Affiliation(s)
- G Petrescu
- Department of Physiology, University of Medicine and Pharmacy GR. T. Popa, Iasi, Romania.
| | | | | | | | | | | |
Collapse
|