1
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Lin Z, Guo Y, Bai H, Liu X, Lin M, Zhang Y, Tang R, Hu T, Yu L, Wang C, Cai S. Distinct mammary stem cells orchestrate long-term homeostasis of adult mammary gland. Cell Discov 2025; 11:39. [PMID: 40234382 PMCID: PMC12000503 DOI: 10.1038/s41421-025-00794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/16/2025] [Indexed: 04/17/2025] Open
Abstract
The murine mammary gland is sustained by distinct pools of stem cells that are limited in space and time, exhibiting both unipotency and bipotency. However, the specific identities of the bipotent and unipotent mammary stem cells remain unclear. In this study, we investigated spatial heterogeneity of the mammary gland at the single-cell transcriptional level. We found that mammary basal cells exhibited spatially distinct populations and characteristics, which can be further divided based on the expression of CD34 and CD200 markers. Notably, CD34-CD200+ basal cells enriched at the nipple region demonstrated strong long-term self-renewal ability and possessed the highest stem cell frequency, while CD34+CD200- basal cells enriched in the terminal end buds (TEBs) showed reduced stem cell potency. Through lineage tracing experiments based on their signature genes, we discovered that Bcl11b+ cells were enriched in the CD34-CD200+ population and exhibited bipotency even in the postnatal mammary gland, with an increasing contribution to mammary epithelia observed during long-term tracing and after multiple rounds of pregnancies. Conversely, lineage tracing of Sema3a+ cells, enriched in the CD34+CD200- population, predominantly revealed their unipotent nature and significant contribution during alveologenesis. Notably, the Bcl11b+ cells displayed a slow response to pregnancy but contributed to long-term mammary homeostasis, in contrast to the rapid response observed in Sema3a+ cells. In addition, Bcl11b progenies survived much better than Sema3a progenies during involution stage, thereby exhibiting increased coverage in the mammary gland after multiple rounds of pregnancies. Importantly, depletion of Bcl11b in Krt14+ mammary basal cells resulted in reduced bipotency of mammary stem cells and impaired their long-term contribution to the mammary gland. Overall, our study identifies distinct bipotent and unipotent populations of mammary basal cells with different dynamic properties that play critical roles in maintaining postnatal mammary homeostasis. These findings are crucial for advancing our understanding of breast health and breast cancer research.
Collapse
Affiliation(s)
- Zuobao Lin
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Huiru Bai
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tian'en Hu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lili Yu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chunhui Wang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Shang Cai
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Inoko A, Soga N, Suzuki M, Kiyono T, Ikenouchi J, Kojima T, Sato Y, Saito D, Miyamoto T, Goshima N, Ito H, Kasai K. Long-term expansion of basal cells and the novel differentiation methods identify mechanisms for switching Claudin expression in normal epithelia. Sci Rep 2025; 15:12172. [PMID: 40204777 PMCID: PMC11982363 DOI: 10.1038/s41598-025-95463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Epithelia are tightly connected cellular sheets, that shield our body from the external environment. They are continuously maintained by a pooled population of undifferentiated cells through differentiation. However, the maintenance mechanisms remain incompletely understood due to the difficulty of experimentally observing the differentiation process. To address this issue, we developed a culture method for long-term expansion of primary mammary basal cells with a set of compounds, that includes undifferentiated cells. An effective differentiation method regarding Claudin expression was also developed by simply removing compounds. To verify this differentiation-switching technique, we obtained microarray data comparing each differentiation state. Subsequent cellular analysis confirmed key transcription factors in each state: (1) EGR1 in undifferentiated basal cells is important for suppressing Claudin expression through maintaining the epithelial-mesenchymal transition (EMT) transcription factor TWIST1, (2) ELF3 in differentiated cells is important for actin organization and subsequent Claudin localization at the cell-cell border, that corresponds to the amount of GRHL3, an actin organizer. Their relevance was also observed in tissues and organoids. In summary, we present an effective tool for verifying molecular mechanisms that determine Claudin status in normal basal cell differentiation, that would be beneficial in epithelial cell biology, cancer biology, physiology, and regeneration research.
Collapse
Affiliation(s)
- Akihito Inoko
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan.
| | - Norihito Soga
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Urology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Minako Suzuki
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Kojima
- Department of Urology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
4
|
Li W, Zhao X, Han Q, Ren C, Gao S, Liu Y, Li X. Relationship between breast tissue involution and breast cancer. Front Oncol 2025; 15:1420350. [PMID: 40260293 PMCID: PMC12009883 DOI: 10.3389/fonc.2025.1420350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Breast tissue involution is a process in which the epithelial tissue of the mammary gland gradually disappears with age. The relationship between breast tissue involvement and breast cancer (BC) has received increasing amounts of attention in recent years. Many scholars believe that breast tissue involution is a significant risk factor for BC. Breast imaging parameters, particularly mammographic density (MD), may indirectly reflect the degree of breast tissue involution, which may provide a solid basis for classifying priority screening groups for BC. This review explored the relationship between breast tissue involution and BC by providing an overview of breast tissue involution and elaborating on the association between MD and BC. Consistent with the results of other studies, women with complete breast tissue involution had a lower risk of BC, whereas women with a high MD had a relatively greater risk of BC.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xian Zhao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chuanxin Ren
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shang Gao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Yingying Liu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
5
|
Beers JL, Hebert MF, Wang J. Transporters and drug secretion into human breast milk. Expert Opin Drug Metab Toxicol 2025; 21:409-428. [PMID: 39893560 PMCID: PMC12002141 DOI: 10.1080/17425255.2025.2461479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Medication use is highly prevalent in breastfeeding persons, posing potential risks for drug exposure to nursing infants. Transporters in the lactating mammary gland carry pharmacological and toxicological significance, as they can mediate the active transfer of drugs and nutrients into breastmilk. AREAS COVERED In this narrative review, we searched and compiled current knowledge on the transport of drugs in the human mammary gland from literature indexed in PubMed (current as of 25 October 2024), and clinical evidence demonstrating active transport of drugs into milk is provided. In vitro and in vivo models of the mammary gland are outlined in brief and known drug transporters at the blood-milk barrier and their potential relevance to drug concentrations in milk are described in detail. EXPERT OPINION Although clinical data show that membrane transporters mediate the transfer of multiple drugs into breast milk, our ability to predict milk concentrations for these drugs is limited. Improving our understanding of the transporter biology and pharmacology in the mammary gland is crucial for developing models to predict drug concentrations in human milk, which will support clinicians and lactating individuals in making rational decisions to balance the benefits of breastfeeding and the risks of drug exposure to infants.
Collapse
Affiliation(s)
- Jessica L. Beers
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195 USA
- Department of Pharmaceutics, University of Washington, Seattle, Washington, 98195 USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195 USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, 98195 USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, 98195 USA
| |
Collapse
|
6
|
Wang K, Lu Z, Yao Z, He X, Hu Z, Zhou D. Single-cell phylodynamic inference of stem cell differentiation and tumor evolution. Cell Syst 2025:101244. [PMID: 40174588 DOI: 10.1016/j.cels.2025.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/04/2025] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
Phylodynamic inference (PI) quantifies population dynamics and evolutionary trajectories using phylogenetic trees. Single-cell lineage tracing enables phylogenetic tree reconstruction for thousands of cells in multicellular organisms, facilitating PI at the cellular level. However, cell differentiation and somatic evolution challenge the direct application of existing PI frameworks to somatic tissues. We introduce scPhyloX, a computational framework modeling structured cell populations by leveraging single-cell phylogenetic trees to infer tissue development and tumor evolution dynamics. A key advancement is its ability to infer time-varying parameters, capturing dynamic biological processes. Simulations demonstrate scPhyloX's accuracy in scenarios including tissue development, disease treatment, and tumor growth. Application to three real datasets reveals insights into somatic dynamics: cycling stem cell overshoot in fly organ development, clonal expansion of multipotent hematopoietic progenitors during human aging, and pronounced subclonal selection in early colorectal tumorigenesis. scPhyloX thus provides a computational approach for investigating somatic tissue development and evolution.
Collapse
Affiliation(s)
- Kun Wang
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Zhaolian Lu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zeqi Yao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng Hu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Starostecka M, Jeong H, Hasenfeld P, Benito-Garagorri E, Christiansen T, Stober Brasseur C, Gomes Queiroz M, Garcia Montero M, Jechlinger M, Korbel JO. Structural variant and nucleosome occupancy dynamics postchemotherapy in a HER2+ breast cancer organoid model. Proc Natl Acad Sci U S A 2025; 122:e2415475122. [PMID: 39993200 DOI: 10.1073/pnas.2415475122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/08/2025] [Indexed: 02/26/2025] Open
Abstract
The most common chemotherapeutics induce DNA damage to eradicate cancer cells, yet defective DNA repair can propagate mutations, instigating therapy resistance and secondary malignancies. Structural variants (SVs), arising from copy-number-imbalanced and -balanced DNA rearrangements, are a major driver of tumor evolution, yet understudied posttherapy. Here, we adapted single-cell template-strand sequencing (Strand-seq) to a HER2+ breast cancer model to investigate the formation of doxorubicin-induced de novo SVs. We coupled this approach with nucleosome occupancy (NO) measurements obtained from the same single cell to enable simultaneous SV detection and cell-type classification. Using organoids from TetO-CMYC/TetO-Neu/MMTV-rtTA mice modeling HER2+ breast cancer, we generated 459 Strand-seq libraries spanning various tumorigenesis stages, identifying a 7.4-fold increase in large chromosomal alterations post-doxorubicin. Complex DNA rearrangements, deletions, and duplications were prevalent across basal, luminal progenitor (LP), and mature luminal (ML) cells, indicating uniform susceptibility of these cell types to SV formation. Doxorubicin further elevated sister chromatid exchanges (SCEs), indicative of genomic stress persisting posttreatment. Altered nucleosome occupancy levels on distinct cancer-related genes further underscore the broad genomic impact of doxorubicin. The organoid-based system for single-cell multiomics established in this study paves the way for unraveling the most important therapy-associated SV mutational signatures, enabling systematic studies of the effect of therapy on cancer evolution.
Collapse
Affiliation(s)
- Maja Starostecka
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
- Faculty of Biosciences, Collaboration for joint PhD degree between European Molecular Biology Laboratory and Heidelberg University, Heidelberg 69120, Germany
| | - Hyobin Jeong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Eva Benito-Garagorri
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Tania Christiansen
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg 69120, Germany
| | | | - Maise Gomes Queiroz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Marta Garcia Montero
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg 69117, Germany
| | - Martin Jechlinger
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg 69117, Germany
- Molecular and Information Technology Institute for Personalized Medicine gGmbH, Heilbronn 74076, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
8
|
Hattori Y, Nagata K, Watanabe R, Yokoya A, Imaoka T. Super-competition as a Novel Mechanism of the Dose-rate Effect in Radiation Carcinogenesis: A Mathematical Model Study. Radiat Res 2025; 203:61-72. [PMID: 39829329 DOI: 10.1667/rade-24-00191.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Data from animal experiments show that the radiation-related risk of cancer decreases if the dose rate is reduced, even though the cumulative dose is unchanged (i.e., a dose-rate effect); however, the underlying mechanism is not well understood. To explore factors underlying the dose-rate effect observed in experimental rat mammary carcinogenesis, we developed a mathematical model that accounts for cellular dynamics during carcinogenesis, and then examined whether the model predicts cancer incidence. A mathematical model of multistage carcinogenesis involving radiation-induced cell death and mutagenesis was constructed using differential equations. The mutation rate was changed depending on the dose rate. The model also considered competition among cells with various mutation levels. The main parameters of the model were determined using previous experimental data. The parameters of the model were consistent with experimental observations. A dose-rate effect on carcinogenesis became apparent when the relationship between dose rate and mutation rate was linear quadratic or quadratic. The dose-rate effect became prominent when cells with more mutations preferentially compensated for the radiation-induced death of cells with fewer mutations. The phenomenon by which mutated cells gain a competitive advantage over normal cells is known as super-competition. Here, we identified super-competition as a novel mechanism underlying the dose-rate effects on carcinogenesis. The data also confirmed the relevance of the shape of the relationship between dose rate and the mutation rate. Thus, this study provides new evidence for the mechanism underlying the dose-rate effect, which is important for predicting the cancer-related risks of low-dose-rate irradiation.
Collapse
Affiliation(s)
- Yuya Hattori
- Faculty of Electrical Engineering and Information Science, National Institute of Technology Kure College, Hiroshima 737-8506 Japan
| | - Kento Nagata
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-shi, Chiba 263-8555, Japan
| | - Ritsuko Watanabe
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba-shi 263-8555, Japan
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba-shi 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-shi, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba-shi 263-8555, Japan
| |
Collapse
|
9
|
Kan Z, Wen J, Bonato V, Webster J, Yang W, Ivanov V, Kim KH, Roh W, Liu C, Mu XJ, Lapira-Miller J, Oyer J, VanArsdale T, Rejto PA, Bienkowska J. Real-world clinical multi-omics analyses reveal bifurcation of ER-independent and ER-dependent drug resistance to CDK4/6 inhibitors. Nat Commun 2025; 16:932. [PMID: 39843429 PMCID: PMC11754447 DOI: 10.1038/s41467-025-55914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
To better understand drug resistance mechanisms to CDK4/6 inhibitors and inform precision medicine, we analyze real-world multi-omics data from 400 HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors plus endocrine therapies, including 200 pre-treatment and 227 post-progression samples. The prevalences of ESR1 and RB1 alterations significantly increase in post-progression samples. Integrative clustering analysis identifies three subgroups harboring different resistance mechanisms: ER driven, ER co-driven and ER independent. The ER independent subgroup, growing from 5% pre-treatment to 21% post-progression, is characterized by down-regulated estrogen signaling and enrichment of resistance markers including TP53 mutations, CCNE1 over-expression and Her2/Basal subtypes. Trajectory inference analyses identify a pseudotime variable strongly correlated with ER independence and disease progression; and revealed bifurcated evolutionary trajectories for ER-independent vs. ER-dependent drug resistance mechanisms. Machine learning models predict therapeutic dependency on ESR1 and CDK4 among ER-dependent tumors and CDK2 dependency among ER-independent tumors, confirmed by experimental validation.
Collapse
Affiliation(s)
- Zhengyan Kan
- Oncology Research & Development, Pfizer Inc., San Diego, CA, USA.
| | - Ji Wen
- Oncology Research & Development, Pfizer Inc., San Diego, CA, USA
| | | | | | - Wenjing Yang
- Oncology Research & Development, Pfizer Inc., San Diego, CA, USA
| | - Vladimir Ivanov
- Global Biometrics & Data Management, Pfizer Inc., Cambridge, MA, USA
| | | | - Whijae Roh
- Oncology Research & Development, Pfizer Inc., San Diego, CA, USA
| | - Chaoting Liu
- Oncology Research & Development, Pfizer Inc., San Diego, CA, USA
| | | | | | - Jon Oyer
- Oncology Research & Development, Pfizer Inc., San Diego, CA, USA
| | - Todd VanArsdale
- Oncology Research & Development, Pfizer Inc., San Diego, CA, USA
| | - Paul A Rejto
- Oncology Research & Development, Pfizer Inc., San Diego, CA, USA
| | | |
Collapse
|
10
|
Majumder S, Mishra S, Shinde N, Cuitino MC, Bauer M, Ahirwar D, Basree MM, Bharti V, Ormiston K, Mawalkar R, Alsammerai S, Sarathy G, Vilgelm AE, Zhang X, Ganju RK, Ramaswamy B. Divergent paths of mammary gland involution: unveiling the cellular dynamics in abruptly and gradually involuted mouse models. Breast Cancer Res 2025; 27:1. [PMID: 39754221 PMCID: PMC11697808 DOI: 10.1186/s13058-024-01933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast. Our previous study utilizing a murine model demonstrated precancerous changes, specifically hyperplasia, a non-obligate precursor of breast cancer in the mammary glands of AI mice. Here we investigated mechanisms during early events of AI that prompts precancerous changes in mouse mammary glands. METHODS Uniparous FVB/N mice were randomized to AI and GI on postpartum day 7 when all pups were removed from AI dams. GI dams were allowed to nurse the pups till day 31. Cell death kinetics and gene expression were assessed by TUNEL assay and qPCR respectively. Immune cell changes were investigated by flow cytometry, cytokine array and multiplex immunofluorescence. 3D-organoid cultures were used for in vitro assay of luminal progenitor cells. RESULTS AI results in rapid cell death, DNA repair response, and immunosuppressive myeloid cells infiltration, leading to a chronically inflamed microenvironment. GI elicits a more controlled immune response and extended cell death. At the peak of cell death, AI glands harbored more immunosuppressive myeloid-derived suppressor cells (MDSCs) and CD206 + M2-like macrophages, known to promote oncogenic events, compared to GI glands. AI glands exhibit an enrichment of CCL9-producing MDSCs and CD206 + M2-like macrophages that promote expansion of ELF5 + /ERα- luminal cells, both in vitro and in vivo. Multiplex imaging of AI glands demonstrated an increase in ELF5 + /WNT5a + luminal cells alongside a reduction in the ELF5 + /ERα + population when involution appeared histologically complete. A significantly higher number of CD206 + cells in post involution AI gland attests to a chronically inflamed state induced by AI. CONCLUSIONS Our findings reveal significant disparities between AI and GI gland dynamics at the early phase of involution. CCL9, secreted by immune cells at the peak of cell death promotes expansion of Elf5 + /ERα- luminal progenitor cells, the putative precursors of TNBC connecting early events of AI with increased breast cancer risk.
Collapse
Affiliation(s)
- Sarmila Majumder
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Neelam Shinde
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maria C Cuitino
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Morgan Bauer
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dinesh Ahirwar
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Mustafa M Basree
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vijaya Bharti
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Kate Ormiston
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Resham Mawalkar
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sara Alsammerai
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gautam Sarathy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
11
|
Joyce R, Visvader JE. Cells-of-Origin of Breast Cancer and Intertumoral Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:151-165. [PMID: 39821025 DOI: 10.1007/978-3-031-70875-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Both intrinsic and extrinsic mechanisms underpin the profound intertumoral heterogeneity in breast cancer. Increasing evidence suggests that the intrinsic characteristics of breast epithelial precursor cells may influence tumour phenotype. These "cells-of-origin" of cancer preside in normal breast tissue and are uniquely susceptible to mutagenesis upon exposure to distinct oncogenic stimuli. Notably, molecular profiling studies have revealed strong concordance between the gene expression profiles of breast cancer subtypes and discrete cell types within the normal breast epithelium. Further characterisation of cells-of-origin of breast cancer requires comprehensive delineation of the normal mammary stem cell hierarchy. To this end, mouse models have provided valuable tools for exploring stem and progenitor cell function and identifying potential targets of neoplastic transformation via in vivo lineage-tracing studies. Nonetheless, the murine mammary differentiation hierarchy does not fully recapitulate human biology, and complementary studies using patient-direct breast tissue are critical. There is also accumulating evidence that extrinsic factors such as the microenvironment of premalignant cells can influence tumour initiation, highlighting opportunities for targeting cancer cells-of-origin via deconvolution of the premalignant epithelial niche. Pertinently, the identification of premalignant clones and targetable molecular perturbations responsible for driving their oncogenic transformation has critical implications for disease management and prevention.
Collapse
Affiliation(s)
- Rachel Joyce
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Wurundjeri Country, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Wurundjeri Country, Melbourne, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Wurundjeri Country, Melbourne, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Wurundjeri Country, Melbourne, Australia.
| |
Collapse
|
12
|
Corbishley C, Rainford P, Reed A, Khaled W. Single-Cell Analysis in the Mouse and Human Mammary Gland. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:45-73. [PMID: 39821020 DOI: 10.1007/978-3-031-70875-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The mammary gland is a complex organ, host to a rich array of different cell types. As the only organ to complete its development in adulthood, it delicately balances both cell intrinsic and external signalling from hormones, growth factors and other stimulants. The gland can undergo vast proliferation, restructuring and functional maturation during pregnancy and undo these gross changes to a nearly identical resting state during involution. The adaptive nature of the mammary gland underpins its function but also increases its susceptibility to cancer. While already characterised at a macro scale, understanding the complexities of mammary gland morphogenesis, development and tumorigenesis requires interrogation of cellular and molecular mechanisms. As outlined below, single-cell analysis is a key approach for this, allowing us to unbiasedly explore and characterise the functions and properties of individual cells from the genome to the proteome. Here, we introduce key single-cell analysis methods and give brief introductions to their respective workflows. We then discuss the structure, cell types and development of the mammary gland from birth, puberty and through pregnancy, as well as cancer formation. Additionally, we highlight the benefits and caveats of implementing single-cell methodologies and mouse models for studying critical time points of human development and disease. Finally, we highlight some limitations and future directions of single-cell techniques. This chapter provides a starting point for users hoping to further their understanding of mammary gland development and its link to cancer as explained by single-cell analysis studies.
Collapse
Affiliation(s)
- Catriona Corbishley
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Patrick Rainford
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Austin Reed
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Walid Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Ingthorsson S, Traustadottir GA, Gudjonsson T. Breast Morphogenesis: From Normal Development to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:29-44. [PMID: 39821019 DOI: 10.1007/978-3-031-70875-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human breast gland is composed of branching epithelial ducts that culminate in milk-producing units known as terminal duct lobular units (TDLUs). The epithelial compartment comprises an inner layer of luminal epithelial cells (LEP) and an outer layer of contractile myoepithelial cells (MEP). Both LEP and MEP arise from a common stem cell population. The epithelial compartment undergoes dynamic branching morphogenesis and remodelling, which expands the surface area for milk production. The epithelial remodelling that starts at the onset of menarche is largely under hormonal control, first and foremost by estrogen and progesterone from ovaries, the production of which is stimulated by pituitary-derived hormones. Menopause leads to a significant decline in estrogen and progesterone levels, resulting in involution and senescence of the breast epithelium. The branching morphogenesis involves developmental events such as epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). EMT and MET confer plasticity to the epithelial compartment enabling the migration of epithelial cells through the stroma and restoration of the epithelial phenotype. In the normal breast, the stroma, including the basement membrane (BM), collagen-rich extracellular matrix, and various stromal cells, supports the correct histoarchitecture of the glandular tree. However, in cancer, the stroma can acquire tumour-promoting properties and is referred to as the tumour microenvironment. This chapter will explore the developmental processes including branching morphogenesis in the normal breast gland and discuss the lineage relationship between LEPS and MEPs and their interactions with the surrounding stroma in the normal and neoplastic breast gland. Finally, we will review various in vitro and in vivo models employed in mammary gland research.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Faculty of Nursing and Midwifery, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland.
| |
Collapse
|
14
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
15
|
Dawson CA, Milevskiy MJG, Capaldo BD, Yip RKH, Song X, Vaillant F, Prokopuk L, Jackling FC, Smyth GK, Chen Y, Lindeman GJ, Visvader JE. Hormone-responsive progenitors have a unique identity and exhibit high motility during mammary morphogenesis. Cell Rep 2024; 43:115073. [PMID: 39700014 DOI: 10.1016/j.celrep.2024.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Hormone-receptor-positive (HR+) luminal cells largely mediate the response to estrogen and progesterone during mammary gland morphogenesis. However, there remains a lack of consensus on the precise nature of the precursor cells that maintain this essential HR+ lineage. Here we refine the identification of HR+ progenitors and demonstrate their unique regenerative capacity compared to mature HR+ cells. HR+ progenitors proliferate but do not expand, suggesting rapid differentiation. Subcellular resolution, 3D intravital microscopy was performed on terminal end buds (TEBs) during puberty to dissect the contribution of each luminal lineage. Surprisingly, HR+ TEB progenitors were highly elongated and motile compared to columnar HR- progenitors and static, conoid HR+ cells within ducts. This dynamic behavior was also observed in response to hormones. Development of an AI model for motility dynamics analysis highlighted stark behavioral changes in HR+ progenitors as they transitioned to mature cells. This work provides valuable insights into how progenitor behavior contributes to mammary morphogenesis.
Collapse
Affiliation(s)
- Caleb A Dawson
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bianca D Capaldo
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Raymond K H Yip
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Xiaoyu Song
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lexie Prokopuk
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Felicity C Jackling
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yunshun Chen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC 3052, Australia
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| |
Collapse
|
16
|
Kohler KT, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Oncogene activated human breast luminal progenitors contribute basally located myoepithelial cells. Breast Cancer Res 2024; 26:183. [PMID: 39695857 DOI: 10.1186/s13058-024-01939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Basal-like breast cancer originates in luminal progenitors, frequently with an altered PI3K pathway, and focally in close association with genetically altered myoepithelial cells at the site of tumor initiation. The exact trajectory behind this bi-lineage phenomenon remains poorly understood. METHODS AND RESULTS Here we used a breast cancer relevant transduction protocol including hTERT, shp16, shp53, and PIK3CAH1047R to immortalize FACS isolated luminal cells, and we identified a candidate multipotent progenitor. Specifically, we identified a keratin 23 (K23)+/ALDH1A3+/CALML5- ductal-like progenitor with the potential to differentiate into CALML5+ lobular-like cells. We found that the apparent luminal phenotype of these oncogene transduced progenitors was metastable giving rise to basal-like cells dependent on culture conditions. In 3D organoid culture and upon transplantation to mice the bipotent progenitor cell line organized into a bi-layered acinus-like structure reminiscent of that of the normal breast gland. CONCLUSIONS These findings provide proof of principle that progenitors within the human breast luminal epithelial compartment may serve as a source of correctly positioned myoepithelial cells. This may prove useful in assessing the role of myoepithelial cells in breast tumor progression.
Collapse
Affiliation(s)
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Liu S, Wang Z, Cao H, Tong J, Cui J, Li L, Bu Q, Li Y, Jin T, An X, Zhang L, Song Y. Establishment of an immortalized sheep mammary epithelial cell line for studying milk fat and protein synthesis. J Food Sci 2024; 89:9799-9815. [PMID: 39322983 DOI: 10.1111/1750-3841.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
The mammary gland, crucial for milk production in mammals, presents challenges for in vitro study due to its complex structure and limited cell lifespan. We addressed this by introducing the SV40 large T antigen into primary mammary epithelial cells (MECs) from sheep, creating an immortalized T-tag MEC line. This line, stable for over 50 passages, maintained typical epithelial cell morphology during long-term culture. Through transcriptome sequencing and validation, we discovered 3833 differentially expressed genes between MECs and T-tag MEC line, encompassing key biological processes and signaling pathways like cell cycle, p53, and cancer. The cell line, expressing MEC markers (KRT8, KRT18, proliferating cell nuclear antigen, SV40, CSN2, and acetyl-CoA carboxylase alpha), proved capable of synthesizing milk fat and protein. Despite its infinite proliferation potential, the T-tag MEC line showed no tumor formation in mice or cell migration in vitro, indicating stability. This development offers a valuable resource for studying MECs in dairy sheep, facilitating the advancement of long-term culture systems and in vitro lactation bioreactors.
Collapse
Affiliation(s)
- Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiashun Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qiqi Bu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
18
|
Guo SS, Liu Z, Wang GM, Sun Z, Yu K, Fawcett JP, Buettner R, Gao B, Fässler R. KANK1 promotes breast cancer development by compromising Scribble-mediated Hippo activation. Nat Commun 2024; 15:10381. [PMID: 39613731 DOI: 10.1038/s41467-024-54645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
KANK1 is expressed in epithelial cells and connects focal adhesions with the adjacent cortical microtubule stabilizing complex. Although KANK1 was shown to suppress cancer cell growth in vitro, TCGA database points to high KANK1 levels associated with poor prognosis in a wide spectrum of human malignancies. Here, we address this discrepancy and report that KANK1 promotes proliferation and survival of PyMT-transformed mammary tumor cells in vivo. Mechanistically, KANK1 localizes to the basal side of basement membrane (BM)-attached transformed luminal epithelial cells. When these cells lose the contact with the BM and disassemble integrin adhesions, KANK1 is found at cell-cell junctions where it competes with the polarity and tumor suppressor Scribble for NOS1AP binding, which curbs the ability of Scribble to promote Hippo pathway activity. The consequences are stabilization and nuclear accumulation of TAZ, growth and survival of tumor cells and elevated breast cancer development.
Collapse
Affiliation(s)
- Shiny Shengzhen Guo
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Zhiying Liu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guan M Wang
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Zhiqi Sun
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kaikai Yu
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - James P Fawcett
- Departments of Pharmacology and Surgery, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Reinhard Buettner
- Institute of Pathology, Medical Faculty, University Cologne, Cologne, Germany
| | - Bo Gao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
19
|
Zhu J, Yang L, Deng H, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Hepatic-derived extracellular vesicles in late pregnancy promote mammary gland development by stimulating prolactin receptor-mediated JAK2/STAT5/mTOR signalling. Int J Biol Macromol 2024; 281:136498. [PMID: 39393720 DOI: 10.1016/j.ijbiomac.2024.136498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The mammary glands develop rapidly in late pregnancy to prepare adequately for lactation. At this stage the liver is crucial for mammary gland development, and it can achieve distal mammary gland regulation through hepatic factors and hormones. Recently, an increasing number of studies have found that hepatic-derived extracellular vesicles play an essential role in organ-to-organ communication, however, its effect on mammary gland development remains unclear. In this study, we extracted hepatic-derived extracellular vesicles from pregnant (P-hEVs) and non-pregnant mice (NP-hEVs), respectively, and explored their regulatory role on mammary gland development. The results revealed that P-hEVs was able to promote the proliferation and differentiation of HC11 cells. In addition, intraperitoneal injection of P-hEVs into pubertal female mice increased mammary gland weight and promoted mammary gland development. Mechanistically, P-hEVs activated the PI3K/AKT signalling pathway to enhance the proliferation of mammary epithelial cells, and also activated prolactin receptor-mediated JAK2/STAT5/mTOR signalling to promote mammary epithelial cell lactation and the synthesis of milk proteins and milk lipids. Overall, mouse liver during pregnancy can transmit signals to the mammary gland in the form of extracellular vesicles to promote its development and provide for subsequent lactation.
Collapse
Affiliation(s)
- Jiahao Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Lekai Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Haibin Deng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Junyi Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ting Chen
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Jiajie Sun
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yongliang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Qianyun Xi
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China..
| |
Collapse
|
20
|
Ye Z, Xu Y, Zhang M, Cai C. Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality. J Mol Cell Biol 2024; 16:mjae020. [PMID: 38740522 PMCID: PMC11520406 DOI: 10.1093/jmcb/mjae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.
Collapse
Affiliation(s)
- Zi Ye
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yu Xu
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheguo Cai
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
21
|
Yasavoli‐Sharahi H, Shahbazi R, Alsadi N, Robichaud S, Kambli D, Izadpanah A, Mohsenifar Z, Matar C. Edodes Cultured Extract Regulates Immune Stress During Puberty and Modulates MicroRNAs Involved in Mammary Gland Development and Breast Cancer Suppression. Cancer Med 2024; 13:e70277. [PMID: 39382253 PMCID: PMC11462599 DOI: 10.1002/cam4.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Immune stressors, such as lipopolysaccharides (LPS), profoundly affect microbiota balance, leading to gut dysbiosis. This imbalance disrupts the metabolic phenotype and structural integrity of the gut, increasing intestinal permeability. During puberty, a critical surge in estrogen levels is crucial for mammary gland development. However, inflammation originating from the gut in this period may interfere with this development, potentially heightening breast cancer risk later. The long-term effects of pubertal inflammation on mammary development and breast cancer risk are underexplored. Such episodes can dysregulate cytokine levels and microRNA expression, altering mammary cell gene expression, and predisposing them to tumorigenesis. METHODS This study hypothesizes that prebiotics, specifically Lentinula edodes Cultured Extract (AHCC), can counteract LPS's adverse effects. Using BALB/c mice, an acute LPS dose was administered at puberty, and breast cancer predisposition was assessed at 13 weeks. Cytokine and tumor-related microRNA levels, tumor development, and cancer stem cells were explored through immunoassays and qRT-PCR. RESULTS Results show that LPS induces lasting effects on cytokine and microRNA expression in mammary glands and tumors. AHCC modulates cytokine expression, including IL-1β, IL-17A/F, and IL-23, and mitigates LPS-induced IL-6 in mammary glands. It also regulates microRNA expression linked to tumor progression and suppression, particularly counteracting the upregulation of oncogenic miR-21, miR-92, and miR-155. Although AHCC slightly alters some tumor-suppressive microRNAs, these changes are modest, highlighting a complex regulatory role that warrants further study. CONCLUSION These findings underscore the potential of dietary interventions like AHCC to mitigate pubertal LPS-induced inflammation on mammary gland development and tumor formation, suggesting a preventive strategy against breast cancer.
Collapse
Affiliation(s)
- Hamed Yasavoli‐Sharahi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Samuel Robichaud
- Department of PathologyUniversity of MontrealMontrealQuebecCanada
| | - Darshan Babu Kambli
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Zhaleh Mohsenifar
- Department of PathologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- School of Nutrition Sciences, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
22
|
Eden JA. Why does hormonal contraception and menopausal hormonal treatment have such a small effect on breast cancer risk? Aust N Z J Obstet Gynaecol 2024; 64:427-431. [PMID: 38686660 PMCID: PMC11660022 DOI: 10.1111/ajo.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Oestrogen is considered by many to be a major cause of breast cancer, and yet hormonal contraception and menopausal hormonal therapy have a paradoxically small effect on breast cancer risk. Also, in the oestrogen-only arm of the Women's Health Initiative, subjects given oestrogen had a reduced risk of breast cancer compared to controls. Initiation of breast cancer likely begins early in life, in the long-lived ER-PR- breast stem cell. The main mitogen of ER+PR+ breast cancers is oestrogen derived from local breast fat and the tumour itself, rather than circulating oestrogens. Progesterone is relatively breast neutral, but progestins in the laboratory have been shown to expand malignant breast stem cell number.
Collapse
Affiliation(s)
- John A. Eden
- Royal Hospital for WomenUniversity of NSWSydneyNew South WalesAustralia
| |
Collapse
|
23
|
Nagata K, Nishimura M, Daino K, Nishimura Y, Hattori Y, Watanabe R, Iizuka D, Yokoya A, Suzuki K, Kakinuma S, Imaoka T. Luminal progenitor and mature cells are more susceptible than basal cells to radiation-induced DNA double-strand breaks in rat mammary tissue. JOURNAL OF RADIATION RESEARCH 2024; 65:640-650. [PMID: 39238338 PMCID: PMC11420845 DOI: 10.1093/jrr/rrae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Indexed: 09/07/2024]
Abstract
Ionizing radiation promotes mammary carcinogenesis. Induction of DNA double-strand breaks (DSBs) is the initial event after radiation exposure, which can potentially lead to carcinogenesis, but the dynamics of DSB induction and repair are not well understood at the tissue level. In this study, we used female rats, which have been recognized as a useful experimental model for studying radiation effects on the mammary gland. We focused on differences in DSB kinetics among basal cells, luminal progenitor and mature cells in different parts of the mammary duct. 53BP1 foci were used as surrogate markers of DSBs, and 53BP1 foci in each mammary epithelial cell in immunostained tissue sections were counted 1-24 h after irradiation and fitted to an exponential function of time. Basal cells were identified as cytokeratin (CK) 14+ cells, luminal progenitor cells as CK8 + 18low cells and luminal mature cells as CK8 + 18high cells. The number of DSBs per nucleus tended to be higher in luminal cells than basal cells at 1 h post-irradiation. A model analysis indicated that basal cells in terminal end buds (TEBs), which constitute the leading edge of the mammary duct, had significantly fewer initial DSBs than the two types of luminal cells, and there was no significant difference in initial amount among the cell types in the subtending duct. The repair rate did not differ among mammary epithelial cell types or their locations. Thus, luminal progenitor and mature cells are more susceptible to radiation-induced DSBs than are basal cells in TEBs.
Collapse
Affiliation(s)
- Kento Nagata
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuya Hattori
- Department of Electrical Engineering and Information Science, Faculty of Electrical Engineering and Information Science, National Institute of Technology Kure College, 2–2–11 Aga-minami, Kure, Hiroshima 737-8506, Japan
| | - Ritsuko Watanabe
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1–12–4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
24
|
Chen W, Guo L, Wei W, Cai C, Wu G. Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation is essential for maintenance of mammary stem cell activity. Cell Rep 2024; 43:114762. [PMID: 39321020 DOI: 10.1016/j.celrep.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Guo
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
25
|
Porwal M, Rastogi V, Chandra P, Sharma KK, Varshney P. Significance of Phytoconstituents in Modulating Cell Signalling Pathways for the Treatment of Pancreatic Cancer. REVISTA BRASILEIRA DE FARMACOGNOSIA 2024. [DOI: 10.1007/s43450-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 01/03/2025]
|
26
|
Zeng P, Shu LZ, Zhou YH, Huang HL, Wei SH, Liu WJ, Deng H. Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges. Stem Cells Dev 2024; 33:449-467. [PMID: 38943275 DOI: 10.1089/scd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Animals
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/metabolism
- Carcinogenesis/genetics
- Stem Cells/metabolism
- Stem Cells/cytology
- Cell Division
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/metabolism
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Lin-Zhen Shu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Hong Zhou
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Hai-Lin Huang
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Shu-Hua Wei
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wen-Jian Liu
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Huan Deng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Campo Verde Arbocco F, Pascual LI, García D, Ortiz I, Gamarra-Luques C, Carón RW, Hapon MB. Epigenetic impact of hypothyroidism on the functional differentiation of the mammary gland in rats. Mol Cell Endocrinol 2024; 590:112267. [PMID: 38729597 DOI: 10.1016/j.mce.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Mammary gland (MG) lactogenic differentiation involves epigenetic mechanisms. We have previously shown that hypothyroidism (HypoT) alters the MG transcriptome in lactation. However, the role of thyroid hormones (T3 and T4 a. k.a. THs) in epigenetic differentiation of MG is still unknown. We used a model of post-lactating HypoT rats to study in MG: a) Methylation and expression level of Gata3, Elf5, Stat6, Stat5a, Stat5b; b) Expression of Lalba, IL-4Rα and Ncoa1 mRNA; c) Histone H3 acetylation and d) Estrogen and progesterone concentration in serum. HypoT increases the estrogen serum level, decreases the progesterone level, promotes methylation of Stat5a, Stat5b and Stat6, decreasing their mRNA level and of its target genes (Lalba and IL-4Rα) and increases the Ncoa1 mRNA expression and histone H3 acetylation level. Our results proved that HypoT alters the post-lactation MG epigenome and could compromise mammary functional differentiation.
Collapse
Affiliation(s)
- Fiorella Campo Verde Arbocco
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad de Mendoza, Facultad de Ciencias Médicas, Argentina.
| | - Lourdes Inés Pascual
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Daiana García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Irina Ortiz
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Rubén Walter Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
28
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
29
|
Nightingale R, Reehorst CM, Vukelic N, Papadopoulos N, Liao Y, Guleria S, Bell C, Vaillant F, Paul S, Luk IY, Dhillon AS, Jenkins LJ, Morrow RJ, Jackling FC, Chand AL, Chisanga D, Chen Y, Williams DS, Anderson RL, Ellis S, Meikle PJ, Shi W, Visvader JE, Pal B, Mariadason JM. Ehf controls mammary alveolar lineage differentiation and is a putative suppressor of breast tumorigenesis. Dev Cell 2024; 59:1988-2004.e11. [PMID: 38781975 DOI: 10.1016/j.devcel.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.
Collapse
Affiliation(s)
- Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Nikolaos Papadopoulos
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shalini Guleria
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Caroline Bell
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - François Vaillant
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amardeep S Dhillon
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Riley J Morrow
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Felicity C Jackling
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yunshun Chen
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Department of Pathology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah Ellis
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
30
|
Pados BF, Camp L. Physiology of Human Lactation and Strategies to Support Milk Supply for Breastfeeding. Nurs Womens Health 2024; 28:303-314. [PMID: 38972331 DOI: 10.1016/j.nwh.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/21/2024] [Indexed: 07/09/2024]
Abstract
Despite advances across the globe in breastfeeding initiation rates, many families continue to report they are not meeting their breastfeeding goals. Concerns about milk supply, infant nutritional intake, and infant weight gain are among the most commonly cited reasons for early breastfeeding cessation. Nurses working with individuals during the perinatal period are uniquely positioned to educate families and offer evidence-based interventions to promote optimal milk supply, infant growth, and maternal mental and physical health. Such interventions include early and frequent skin-to-skin care, emptying of the breast, and professional lactation support. By implementing such evidence-based practices in the first hours after birth and connecting families to lactation support in the first 14 days, nurses can begin to help families achieve their breastfeeding goals.
Collapse
|
31
|
Li T, Chen YC, Ao P. Heterogeneous Evolution of Breast Cancer Cells-An Endogenous Molecular-Cellular Network Study. BIOLOGY 2024; 13:564. [PMID: 39194502 DOI: 10.3390/biology13080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Breast cancer heterogeneity presents a significant challenge in clinical therapy, such as over-treatment and drug resistance. These challenges are largely due to its obscure normal epithelial origins, evolutionary stability, and transitions on the cancer subtypes. This study aims to elucidate the cellular emergence and maintenance of heterogeneous breast cancer via quantitative bio-process modeling, with potential benefit to therapeutic strategies for the disease. An endogenous molecular-cellular hypothesis posits that both pathological and physiological states are phenotypes evolved from and shaped by interactions among a number of conserved modules and cellular factors within a biological network. We hereby developed a model of core endogenous network for breast cancer in accordance with the theory, quantifying its intrinsic dynamic properties with dynamic modeling. The model spontaneously generates cell states that align with molecular classifications at both the molecular and modular level, replicating four widely recognized molecular subtypes of the cancer and validating against data extracted from the TCGA database. Further analysis shows that topologically, a singular progression gateway from normal breast cells to cancerous states is identified as the Luminal A-type breast cancer. Activated positive feedback loops are found to stabilize cellular states, while negative feedback loops facilitate state transitions. Overall, more routes are revealed on the cellular transition between stable states, and a traceable count explains the origin of breast cancer heterogeneity. Ultimately, the research intended to strength the search for therapeutic targets.
Collapse
Affiliation(s)
- Tianqi Li
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China
| | - Yong-Cong Chen
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China
| | - Ping Ao
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Fifield BA, Vusich J, Haberfellner E, Andrechek ER, Porter LA. Atypical cell cycle regulation promotes mammary stem cell expansion during mammary development and tumourigenesis. Breast Cancer Res 2024; 26:106. [PMID: 38943151 PMCID: PMC11212383 DOI: 10.1186/s13058-024-01862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND The cell cycle of mammary stem cells must be tightly regulated to ensure normal homeostasis of the mammary gland to prevent abnormal proliferation and susceptibility to tumorigenesis. The atypical cell cycle regulator, Spy1 can override cell cycle checkpoints, including those activated by the tumour suppressor p53 which mediates mammary stem cell homeostasis. Spy1 has also been shown to promote expansion of select stem cell populations in other developmental systems. Spy1 protein is elevated during proliferative stages of mammary gland development, is found at higher levels in human breast cancers, and promotes susceptibility to mammary tumourigenesis when combined with loss of p53. We hypothesized that Spy1 cooperates with loss of p53 to increase susceptibility to tumour initiation due to changes in susceptible mammary stem cell populations during development and drives the formation of more aggressive stem like tumours. METHODS Using a transgenic mouse model driving expression of Spy1 within the mammary gland, mammary development and stemness were assessed. These mice were intercrossed with p53 null mice to study the tumourigenic properties of Spy1 driven p53 null tumours, as well as global changes in signaling via RNA sequencing analysis. RESULTS We show that elevated levels of Spy1 leads to expansion of mammary stem cells, even in the presence of p53, and an increase in mammary tumour formation. Spy1-driven tumours have an increased cancer stem cell population, decreased checkpoint signaling, and demonstrate an increase in therapy resistance. Loss of Spy1 decreases tumor onset and reduces the cancer stem cell population. CONCLUSIONS This data demonstrates the potential of Spy1 to expand mammary stem cell populations and contribute to the initiation and progression of aggressive, breast cancers with increased cancer stem cell populations.
Collapse
Affiliation(s)
- Bre-Anne Fifield
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - John Vusich
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Erika Haberfellner
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Lisa A Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- St. Joseph's Health Care London, Lawson Health Institute, London, ON, N6A 4V2, Canada.
| |
Collapse
|
33
|
Schroeder J, Polemi KM, Tapaswi A, Svoboda LK, Sexton JZ, Colacino JA. Investigating phenotypic plasticity due to toxicants with exposure disparities in primary human breast cells in vitro. Front Oncol 2024; 14:1411295. [PMID: 38915368 PMCID: PMC11194339 DOI: 10.3389/fonc.2024.1411295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Breast cancer is the second most diagnosed cancer, as well as the primary cause of cancer death in women worldwide. Of the different breast cancer subtypes, triple-negative breast cancer (TNBC) is particularly aggressive and is associated with poor prognosis. Black women are two to three times more likely to be diagnosed with TNBCs than white women. Recent experimental evidence suggests that basal-like TNBCs may derive from luminal cells which acquire basal characteristics through phenotypic plasticity, a newly recognized hallmark of cancer. Whether chemical exposures can promote phenotypic plasticity in breast cells is poorly understood. Methods To investigate further, we developed a high-content immunocytochemistry assay using normal human breast cells to test whether chemical exposures can impact luminal/basal plasticity by unbiased quantification of keratin 14 (KRT14), a basal-myoepithelial marker; keratin 8 (KRT8), a luminal-epithelial marker; and Hoechst 33342, a DNA marker. Six cell lines established from healthy tissue from donors to the Susan G. Komen Normal Tissue Bank were exposed for 48 hours to three different concentrations (0.1μM, 1μM, and 10μM) of eight ubiquitous chemicals (arsenic, BPA, BPS, cadmium, copper, DDE, lead, and PFNA), with documented exposure disparities in US Black women, in triplicate. Automated fluorescence image quantification was performed using Cell Profiler software, and a random-forest classifier was trained to classify individual cells as KRT8 positive, KRT14 positive, or hybrid (both KRT8 and KRT14 positive) using Cell Profiler Analyst. Results and discussion Results demonstrated significant concentration-dependent increases in hybrid populations in response to BPA, BPS, DDE, and PFNA. The increase in hybrid populations expressing both KRT14 and KRT8 is indicative of a phenotypically plastic progenitor-like population in line with known theories of carcinogenesis. Furthermore, BPA, BPS, DDE, and copper produced significant increases in cell proliferation, which could be indicative of a more malignant phenotype. These results further elucidate the relationship between chemical exposure and breast phenotypic plasticity and highlight potential environmental factors that may impact TNBC risk.
Collapse
Affiliation(s)
- Jade Schroeder
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Katelyn M. Polemi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Anagha Tapaswi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, United States
- Program in the Environment, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Faraldo MM, Romagnoli M, Wallon L, Dubus P, Deugnier MA, Fre S. Alpha-6 integrin deletion delays the formation of Brca1/p53-deficient basal-like breast tumors by restricting luminal progenitor cell expansion. Breast Cancer Res 2024; 26:91. [PMID: 38835038 PMCID: PMC11151721 DOI: 10.1186/s13058-024-01851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.
Collapse
Affiliation(s)
- Marisa M Faraldo
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France.
| | - Mathilde Romagnoli
- Laboratory of Cell Biology and Cancer, CNRS UMR144, Institut Curie, PSL Research University, 75248, Paris, France
- Institut de Recherches Internationales Servier, 91190, Gif Sur Yvette, France
| | - Loane Wallon
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France
- Alacris Theranostics GmbH, 12489, Berlin, Germany
| | - Pierre Dubus
- Department of Histology and Pathology, Centre Hospitalier Universitaire de Bordeaux, 33000, Bordeaux, France
- BRIC U1312, INSERM, Bordeaux Institute of Oncology, Université de Bordeaux, 33000, Bordeaux, France
| | - Marie-Ange Deugnier
- Laboratory of Cell Biology and Cancer, CNRS UMR144, Institut Curie, PSL Research University, 75248, Paris, France
| | - Silvia Fre
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France.
| |
Collapse
|
35
|
Fu S, Ke H, Yuan H, Xu H, Chen W, Zhao L. Dual role of pregnancy in breast cancer risk. Gen Comp Endocrinol 2024; 352:114501. [PMID: 38527592 DOI: 10.1016/j.ygcen.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.
Collapse
Affiliation(s)
- Shiting Fu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | | | - Huaimeng Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Wenyan Chen
- Department of Medical Oncology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
36
|
Guo X, Zhao C, Yang R, Wang Y, Hu X. ABCD4 is associated with mammary gland development in mammals. BMC Genomics 2024; 25:494. [PMID: 38764031 PMCID: PMC11103957 DOI: 10.1186/s12864-024-10398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Mammary gland development is a critical process in mammals, crucial for their reproductive success and offspring nourishment. However, the functional roles of key candidate genes associated with teat number, including ABCD4, VRTN, PROX2, and DLST, in this developmental process remain elusive. To address this gap in knowledge, we conducted an in-depth investigation into the dynamic expression patterns, functional implications, and regulatory networks of these candidate genes during mouse mammary gland development. RESULTS In this study, the spatial and temporal patterns of key genes were characterized in mammary gland development. Using time-series single-cell data, we uncovered differences in the expression of A bcd4, Vrtn, Prox2, and Dlst in cell population of the mammary gland during embryonic and adult stages, while Vrtn was not detected in any cells. We found that only overexpression and knockdown of Abcd4 could inhibit proliferation and promote apoptosis of HC11 mammary epithelial cells, whereas Prox2 and Dlst had no significant effect on these cells. Using RNA-seq and qPCR, further analysis revealed that Abcd4 can induce widespread changes in the expression levels of genes involved in mammary gland development, such as Igfbp3, Ccl5, Tlr2, and Prlr, which were primarily associated with the MAPK, JAK-STAT, and PI3K-AKT pathways by functional enrichment. CONCLUSIONS These findings revealed ABCD4 as a candidate gene pivotal for regulating mammary gland development and lactation during pregnancy by influencing PRLR expression.
Collapse
Affiliation(s)
- Xiaoli Guo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition &, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chengcheng Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruifei Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuzhe Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoxiang Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
37
|
Shao H, Huang J, Wang H, Wang G, Yang X, Cheng M, Sun C, Zou L, Yang Q, Zhang D, Liu Z, Jiang X, Shi L, Shi P, Han B, Jiao B. Fused in sarcoma (FUS) inhibits milk production efficiency in mammals. Nat Commun 2024; 15:3953. [PMID: 38729967 PMCID: PMC11087553 DOI: 10.1038/s41467-024-48428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.
Collapse
Affiliation(s)
- Haili Shao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jipeng Huang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guolei Wang
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong, 261042, China
| | - Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Mei Cheng
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Changjie Sun
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Dandan Zhang
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China
| | - Zhen Liu
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xuelong Jiang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lei Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Peng Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Baowei Han
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China.
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China.
| |
Collapse
|
38
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
39
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
40
|
Waas M, Khoo A, Tharmapalan P, McCloskey CW, Govindarajan M, Zhang B, Khan S, Waterhouse PD, Khokha R, Kislinger T. Droplet-based proteomics reveals CD36 as a marker for progenitors in mammary basal epithelium. CELL REPORTS METHODS 2024; 4:100741. [PMID: 38569541 PMCID: PMC11045875 DOI: 10.1016/j.crmeth.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Deep proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present DROPPS (droplet-based one-pot preparation for proteomic samples), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. By applying DROPPS within the mammary epithelium, we elucidated the connection between mitochondrial activity and clonogenicity, identifying CD36 as a marker of progenitor capacity in the basal cell compartment. We anticipate that DROPPS will accelerate biology-driven proteomic research for a multitude of rare cell populations.
Collapse
Affiliation(s)
- Matthew Waas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Amanda Khoo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Pirashaanthy Tharmapalan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Curtis W McCloskey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Meinusha Govindarajan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Bowen Zhang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Paul D Waterhouse
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
41
|
Kwon HC, Jung HS, Kim DH, Han JH, Han SG. The Role of Progesterone in Elf5 Activation and Milk Component Synthesis for Cell-Cultured Milk Production in MAC-T Cells. Animals (Basel) 2024; 14:642. [PMID: 38396610 PMCID: PMC10886090 DOI: 10.3390/ani14040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Prolactin is essential for mammary gland development and lactation. Progesterone also induces ductal branching and alveolar formation via initial secretory differentiation within the mammary gland. Herein, we aimed to evaluate the role of progesterone as a prolactin substitute for the production of cell-cultured milk components in MAC-T cells. Cells were treated with various hormones such as prolactin (PRL), progesterone (P4), 17β-estradiol (E2), cortisol (COR), and insulin (INS) for 5 d. MAC-T cells cultured in a P4 differentiation media (2500 ng/mL of P4, 25 ng/mL of E2, 25 ng/mL of COR, and 25 ng/mL of INS) showed similar levels of E74-like factor 5 (Elf5) and milk component synthesis (α-casein, β-casein, α-lactalbumin, β-lactoglobulin, and triglycerides) compared to those cultured in a PRL differentiation media (5000 ng/mL of PRL, 500 ng/mL of CORT, and 50 ng/mL of INS). The levels of α-casein and triglycerides in the optimal P4 differentiation media were present at comparable levels to those in the PRL differentiation media. Our results demonstrated that P4 induces the activation of Elf5 and the synthesis of milk components in MAC-T cells, similar to PRL. Therefore, P4 may be used as an effective substitute of PRL for cell-cultured milk production in in vitro frameworks.
Collapse
Affiliation(s)
| | | | | | | | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (H.C.K.); (H.S.J.); (D.H.K.); (J.H.H.)
| |
Collapse
|
42
|
Li H, Seada H, Madnick S, Zhao H, Chen Z, Li F, Zhu F, Hall S, Boekelheide K. Machine learning-assisted high-content imaging analysis of 3D MCF7 microtissues for estrogenic effect prediction. Sci Rep 2024; 14:2999. [PMID: 38316851 PMCID: PMC10844358 DOI: 10.1038/s41598-024-53323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.
Collapse
Affiliation(s)
- Hui Li
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA.
| | - Haitham Seada
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - Samantha Madnick
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - He Zhao
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Zhaozeng Chen
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Susan Hall
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA.
| |
Collapse
|
43
|
Caputo A, Vipparthi K, Bazeley P, Downs-Kelly E, McIntire P, Duckworth LA, Ni Y, Hu B, Keri RA, Karaayvaz M. Spatial Transcriptomics Suggests That Alterations Occur in the Preneoplastic Breast Microenvironment of BRCA1/2 Mutation Carriers. Mol Cancer Res 2024; 22:169-180. [PMID: 37878345 PMCID: PMC10872731 DOI: 10.1158/1541-7786.mcr-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Breast cancer is the most common cancer in females, affecting one in every eight women and accounting for the majority of cancer-related deaths in women worldwide. Germline mutations in the BRCA1 and BRCA2 genes are significant risk factors for specific subtypes of breast cancer. BRCA1 mutations are associated with basal-like breast cancers, whereas BRCA2 mutations are associated with luminal-like disease. Defects in mammary epithelial cell differentiation have been previously recognized in germline BRCA1/2 mutation carriers even before cancer incidence. However, the underlying mechanism is largely unknown. Here, we employ spatial transcriptomics to investigate defects in mammary epithelial cell differentiation accompanied by distinct microenvironmental alterations in preneoplastic breast tissues from BRCA1/2 mutation carriers and normal breast tissues from noncarrier controls. We uncovered spatially defined receptor-ligand interactions in these tissues for the investigation of autocrine and paracrine signaling. We discovered that β1-integrin-mediated autocrine signaling in BRCA2-deficient mammary epithelial cells may differ from BRCA1-deficient mammary epithelial cells. In addition, we found that the epithelial-to-stromal paracrine signaling in the breast tissues of BRCA1/2 mutation carriers is greater than in control tissues. More integrin-ligand pairs were differentially correlated in BRCA1/2-mutant breast tissues than noncarrier breast tissues with more integrin receptor-expressing stromal cells. IMPLICATIONS These results suggest alterations in the communication between mammary epithelial cells and the microenvironment in BRCA1 and BRCA2 mutation carriers, laying the foundation for designing innovative breast cancer chemo-prevention strategies for high-risk patients.
Collapse
Affiliation(s)
- Anthony Caputo
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kavya Vipparthi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erinn Downs-Kelly
- Department of Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick McIntire
- Department of Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lauren A. Duckworth
- Department of Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mihriban Karaayvaz
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
44
|
Tessier CE, Dupuy AMM, Pelé T, Juin PP, Lees JA, Guen VJ. EMT and primary ciliogenesis: For better or worse in sickness and in health. Genesis 2024; 62:e23568. [PMID: 37946671 DOI: 10.1002/dvg.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Epithelial-mesenchymal transition (EMT) and primary ciliogenesis are two cell-biological programs that are essential for development of multicellular organisms and whose abnormal regulation results in many diseases (i.e., developmental anomalies and cancers). Emerging studies suggest an intricate interplay between these two processes. Here, we discuss physiological and pathological contexts in which their interconnections promote normal development or disease progression. We describe underlying molecular mechanisms of the interplay and EMT/ciliary signaling axes that influence EMT-related processes (i.e., stemness, motility and invasion). Understanding the molecular and cellular mechanisms of the relationship between EMT and primary ciliogenesis may provide new insights in the etiology of diseases related to EMT and cilia dysfunction.
Collapse
Affiliation(s)
- Camille E Tessier
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Aurore M M Dupuy
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Thomas Pelé
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Philippe P Juin
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | - Jacqueline A Lees
- Koch Institute for Integrative Cancer Research @ MIT, Cambridge, Massachusetts, USA
| | - Vincent J Guen
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| |
Collapse
|
45
|
Ren S, Bai F, Schnell V, Stanko C, Ritsch M, Schenk T, Barth E, Marz M, Wang B, Pei XH, Bierhoff H. PAPAS promotes differentiation of mammary epithelial cells and suppresses breast carcinogenesis. Cell Rep 2024; 43:113644. [PMID: 38180837 DOI: 10.1016/j.celrep.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Extensive remodeling of the female mammary epithelium during development and pregnancy has been linked to cancer susceptibility. The faithful response of mammary epithelial cells (MECs) to hormone signaling is key to avoiding breast cancer development. Here, we show that lactogenic differentiation of murine MECs requires silencing of genes encoding ribosomal RNA (rRNA) by the antisense transcript PAPAS. Accordingly, knockdown of PAPAS derepresses rRNA genes, attenuates the response to lactogenic hormones, and induces malignant transformation. Restoring PAPAS levels in breast cancer cells reduces tumorigenicity and lung invasion and activates many interferon-regulated genes previously linked to metastasis suppression. Mechanistically, PAPAS transcription depends on R-loop formation at the 3' end of rRNA genes, which is repressed by RNase H1 and replication protein A (RPA) overexpression in breast cancer cells. Depletion of PAPAS and upregulation of RNase H1 and RPA in human breast cancer underpin the clinical relevance of our findings.
Collapse
Affiliation(s)
- Sijia Ren
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Viviane Schnell
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Clara Stanko
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Muriel Ritsch
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Tino Schenk
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Emanuel Barth
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
46
|
Liu C, Xu Y, Yang G, Tao Y, Chang J, Wang S, Cheung TH, Chen J, Zeng YA. Niche inflammatory signals control oscillating mammary regeneration and protect stem cells from cytotoxic stress. Cell Stem Cell 2024; 31:89-105.e6. [PMID: 38141612 DOI: 10.1016/j.stem.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/03/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Stem cells are known for their resilience and enhanced activity post-stress. The mammary gland undergoes frequent remodeling and is subjected to recurring stress during the estrus cycle, but it remains unclear how mammary stem cells (MaSCs) respond to the stress and contribute to regeneration. We discovered that cytotoxic stress-induced activation of CD11c+ ductal macrophages aids stem cell survival and prevents differentiation. These macrophages boost Procr+ MaSC activity through IL1β-IL1R1-NF-κB signaling during the estrus cycle in an oscillating manner. Deleting IL1R1 in MaSCs results in stem cell loss and skewed luminal differentiation. Moreover, under cytotoxic stress from the chemotherapy agent paclitaxel, ductal macrophages secrete higher IL1β levels, promoting MaSC survival and preventing differentiation. Inhibiting IL1R1 sensitizes MaSCs to paclitaxel. Our findings reveal a recurring inflammatory process that regulates regeneration, providing insights into stress-induced inflammation and its impact on stem cell survival, potentially affecting cancer therapy efficacy.
Collapse
Affiliation(s)
- Chunye Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yishu Xu
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guowei Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Tao
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiali Chang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shihui Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research Center for Systems Biology and Human Health, the State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518057, Guangdong, China
| | - Jianfeng Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
47
|
Coradini D. Impact of De Novo Cholesterol Biosynthesis on the Initiation and Progression of Breast Cancer. Biomolecules 2024; 14:64. [PMID: 38254664 PMCID: PMC10813427 DOI: 10.3390/biom14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Cholesterol (CHOL) is a multifaceted lipid molecule. It is an essential structural component of cell membranes, where it cooperates in regulating the intracellular trafficking and signaling pathways. Additionally, it serves as a precursor for vital biomolecules, including steroid hormones, isoprenoids, vitamin D, and bile acids. Although CHOL is normally uptaken from the bloodstream, cells can synthesize it de novo in response to an increased requirement due to physiological tissue remodeling or abnormal proliferation, such as in cancer. Cumulating evidence indicated that increased CHOL biosynthesis is a common feature of breast cancer and is associated with the neoplastic transformation of normal mammary epithelial cells. After an overview of the multiple biological activities of CHOL and its derivatives, this review will address the impact of de novo CHOL production on the promotion of breast cancer with a focus on mammary stem cells. The review will also discuss the effect of de novo CHOL production on in situ and invasive carcinoma and its impact on the response to adjuvant treatment. Finally, the review will discuss the present and future therapeutic strategies to normalize CHOL biosynthesis.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, "Giulio A. Maccacaro", Department of Clinical Sciences and Community Health, University of Milan, Campus Cascina Rosa, 20133 Milan, Italy
| |
Collapse
|
48
|
Yang X, Xu H, Yang X, Wang H, Zou L, Yang Q, Qi X, Li L, Duan H, Yan X, Fu NY, Tan J, Hou Z, Jiao B. Mcam inhibits macrophage-mediated development of mammary gland through non-canonical Wnt signaling. Nat Commun 2024; 15:36. [PMID: 38167296 PMCID: PMC10761817 DOI: 10.1038/s41467-023-44338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
While canonical Wnt signaling is well recognized for its crucial regulatory functions in cell fate decisions, the role of non-canonical Wnt signaling in adult stem cells remains elusive and contradictory. Here, we identified Mcam, a potential member of the non-canonical Wnt signaling, as an important negative regulator of mammary gland epithelial cells (MECs) by genome-scale CRISPR-Cas9 knockout (GeCKO) library screening. Loss of Mcam increases the clonogenicity and regenerative capacity of MECs, and promotes the proliferation, differentiation, and ductal morphogenesis of mammary epithelial in knockout mice. Mechanically, Mcam knockout recruits and polarizes macrophages through the Il4-Stat6 axis, thereby promoting secretion of the non-canonical Wnt ligand Wnt5a and its binding to the non-canonical Wnt signaling receptor Ryk to induce the above phenotypes. These findings reveal Mcam roles in mammary gland development by orchestrating communications between MECs and macrophages via a Wnt5a/Ryk axis, providing evidences for non-canonical Wnt signaling in mammary development.
Collapse
Affiliation(s)
- Xing Yang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Haibo Xu
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xu Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiaopeng Qi
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Li
- Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hongxia Duan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Xiyun Yan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Jing Tan
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China.
| | - Zongliu Hou
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China.
| | - Baowei Jiao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
49
|
Torborg SR, Grbovic-Huezo O, Singhal A, Holm M, Wu K, Han X, Ho YJ, Haglund C, Mitchell MJ, Lowe SW, Dow LE, Pitter KL, Sanchez-Rivera FJ, Levchenko A, Tammela T. Solid tumor growth depends on an intricate equilibrium of malignant cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573100. [PMID: 38234855 PMCID: PMC10793475 DOI: 10.1101/2023.12.30.573100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Control of cell identity and number is central to tissue function, yet principles governing organization of malignant cells in tumor tissues remain poorly understood. Using mathematical modeling and candidate-based analysis, we discover primary and metastatic pancreatic ductal adenocarcinoma (PDAC) organize in a stereotypic pattern whereby PDAC cells responding to WNT signals (WNT-R) neighbor WNT-secreting cancer cells (WNT-S). Leveraging lineage-tracing, we reveal the WNT-R state is transient and gives rise to the WNT-S state that is highly stable and committed to organizing malignant tissue. We further show that a subset of WNT-S cells expressing the Notch ligand DLL1 form a functional niche for WNT-R cells. Genetic inactivation of WNT secretion or Notch pathway components, or cytoablation of the WNT-S state disrupts PDAC tissue organization, suppressing tumor growth and metastasis. This work indicates PDAC growth depends on an intricately controlled equilibrium of functionally distinct cancer cell states, uncovering a fundamental principle governing solid tumor growth and revealing new opportunities for therapeutic intervention.
Collapse
|
50
|
Knutsen E, Das Sajib S, Fiskaa T, Lorens J, Gudjonsson T, Mælandsmo GM, Johansen SD, Seternes OM, Perander M. Identification of a core EMT signature that separates basal-like breast cancers into partial- and post-EMT subtypes. Front Oncol 2023; 13:1249895. [PMID: 38111531 PMCID: PMC10726128 DOI: 10.3389/fonc.2023.1249895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular plasticity program critical for embryonic development and tissue regeneration, and aberrant EMT is associated with disease including cancer. The high degree of plasticity in the mammary epithelium is reflected in extensive heterogeneity among breast cancers. Here, we have analyzed RNA-sequencing data from three different mammary epithelial cell line-derived EMT models and identified a robust mammary EMT gene expression signature that separates breast cancers into distinct subgroups. Most strikingly, the basal-like breast cancers form two subgroups displaying partial-EMT and post-EMT gene expression patterns. We present evidence that key EMT-associated transcription factors play distinct roles at different stages of EMT in mammary epithelial cells.
Collapse
Affiliation(s)
- Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Saikat Das Sajib
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tonje Fiskaa
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - James Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Thorarinn Gudjonsson
- Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Hematology, Landspitali, University Hospital, Reykjavik, Iceland
| | - Gunhild M. Mælandsmo
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Steinar Daae Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Genomics Division, Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway
| | - Ole-Morten Seternes
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|