1
|
Baglamis S, Sheraton VM, van Neerven SM, Logiantara A, Nijman LE, Hageman LA, Léveillé N, Elbers CC, Bijlsma MF, Vermeulen L, Krawczyk PM, Lenos KJ. Clonal dispersal is associated with tumor heterogeneity and poor prognosis in colorectal cancer. iScience 2025; 28:112403. [PMID: 40330878 PMCID: PMC12051713 DOI: 10.1016/j.isci.2025.112403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/27/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Clonal dispersal, resulting from the intermingling of tumor cell subpopulations, is thought to be a key driver of tumor heterogeneity. Despite advances in spatial modeling of cancer biology, quantification of clonal dispersal has been challenging. This study introduces a straightforward method, relying on fluorescent cell barcoding, to quantify clonal dispersal in various in vitro and in vivo models of colorectal cancer (CRC). Our approach allows for precise localization of clones and uncovering the degree of clonal mixing across different CRC models. Our findings suggest that clonal dispersal is correlated with the expression of genes involved in epithelial-mesenchymal transition and CMS4-related signaling pathways. We further identify a dispersal gene signature, associated with intratumor heterogeneity, which is a robust clinical predictor of poor prognosis and recurrence in CRC, highlighting its potential as a prognostic marker and a putative direction for therapeutic targeting.
Collapse
Affiliation(s)
- Selami Baglamis
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Vivek M. Sheraton
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
- University of Amsterdam, Informatics Institute, Computational Science Lab, 1090 GH Amsterdam, the Netherlands
| | - Sanne M. van Neerven
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
- University of Cambridge, Wellcome Trust–Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
| | - Adrian Logiantara
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lisanne E. Nijman
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Laura A. Hageman
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
| | - Nicolas Léveillé
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Clara C. Elbers
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maarten F. Bijlsma
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
- Genentech, Department of Discovery Oncology, South San Francisco, CA 94080, USA
| | - Przemek M. Krawczyk
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, 1105 AZ Amsterdam, the Netherlands
| | - Kristiaan J. Lenos
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, 1081 BT Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, 3521 AL Utrecht, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Liblova Z, Maurencova D, Salovska B, Kratky M, Mracek T, Korandova Z, Pecinova A, Vasicova P, Rysanek D, Andera L, Fabrik I, Kupcik R, Kashmel P, Sultana P, Tambor V, Bartek J, Novak J, Vajrychova M, Hodny Z. Determination of ADP/ATP translocase isoform ratios in malignancy and cellular senescence. Mol Oncol 2025. [PMID: 40288905 DOI: 10.1002/1878-0261.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Cellular senescence has recently been recognized as a significant contributor to the poor prognosis of glioblastoma, one of the most aggressive brain tumors. Consequently, effectively eliminating senescent glioblastoma cells could benefit patients. Human ADP/ATP translocases (ANTs) play a role in oxidative phosphorylation in both normal and tumor cells. Previous research has shown that the sensitivity of senescent cells to mitochondria-targeted senolytics depends on the level of ANT2. Here, we systematically mapped the transcript and protein levels of ANT isoforms in various types of senescence and glioblastoma tumorigenesis. We employed bioinformatics analysis, targeted mass spectrometry, RT-PCR, immunoblotting, and assessment of cellular energy state to elucidate how individual ANT isoforms are expressed during the development of senescence in noncancerous and glioblastoma cells. We observed a consistent elevation of ANT1 protein levels across all tested senescence types, while ANT2 and ANT3 exhibited variable changes. Alterations in ANT protein isoform levels correlated with shifts in the cellular oxygen consumption rate. Our findings suggest that ANT isoforms are mutually interchangeable for oxidative phosphorylation and manipulating individual ANT isoforms could have potential for senolytic therapy.
Collapse
Affiliation(s)
- Zuzana Liblova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominika Maurencova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Salovska
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kratky
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Korandova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Andera
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Rudolf Kupcik
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Pavel Kashmel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pinky Sultana
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtech Tambor
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Sun R, Zhang Y, Zhao X, Tang T, Cao Y, Yang L, Tian Y, Zhang Z, Zhang P, Xu F. Temporal and Spatial Metabolic Shifts Revealing the Transition from Ulcerative Colitis to Colitis-Associated Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412551. [PMID: 39840505 PMCID: PMC11923922 DOI: 10.1002/advs.202412551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Patients with ulcerative colitis (UC) have a higher risk of developing colorectal cancer (CRC), however, the metabolic shifts during the UC-to-CRC transition remain elusive. In this study, an AOM-DSS-induced three-stage colitis-associated colorectal cancer (CAC) model is constructed and targeted metabolomics analysis and pathway enrichment are performed, uncovering the metabolic changes in this transition. Spatial metabolic trajectories in the "normal-to-normal adjacent tissue (NAT)-to-tumor" transition, and temporal metabolic trajectories in the "colitis-to-dysplasia-to-carcinoma" transition are identified through K-means clustering of 74 spatially and 77 temporally differential metabolites, respectively. The findings reveal two distinct metabolic profile categories during the inflammation-to-cancer progression: those with consistent changes, either increasing (e.g., kynurenic acid, xanthurenic acid) or decreasing (e.g., long-chain fatty acids, LCFAs), and those enriched at specific disease stages (e.g., serotonin). Further analysis of metabolites with consistent temporal trends identifies eicosapentaenoic acid (EPA) as a key metabolite, potentially exerting anti-inflammatory and anti-cancer effects by inhibiting insulin-like growth factor binding protein 5 (IGFBP5). This study reveals novel metabolic mechanisms underlying the transition from UC to CAC and suggests potential targets to delay the progression.
Collapse
Affiliation(s)
- Ruiqi Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Yuanyuan Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Xian Zhao
- Department of PharmacyDrum Tower HospitalChina Pharmaceutical UniversityNanjing210008P. R. China
| | - Tian Tang
- School of PharmacyAir Force Medical UniversityXi'an710032P. R. China
| | - Yuepeng Cao
- The Affiliated Cancer Hospital of Nanjing Medical UniversityJiangsu Cancer HospitalJiangsu Institute of Cancer ResearchNanjing210009P. R. China
| | - Liu Yang
- The Affiliated Cancer Hospital of Nanjing Medical UniversityJiangsu Cancer HospitalJiangsu Institute of Cancer ResearchNanjing210009P. R. China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009P. R. China
| |
Collapse
|
4
|
Pawar K, Gupta PP, Solanki PS, Niraj RRK, Kothari SL. Downregulation of solute carrier family 4 members 4 as a biomarker for colorectal cancer. Discov Oncol 2025; 16:229. [PMID: 39988623 PMCID: PMC11847767 DOI: 10.1007/s12672-025-01948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is one of the major cancer types associated with increased mortality worldwide. Hence, identifying reliable biomarkers make it very essential for early diagnosis and prognosis of CRC. Numerous studies have been conducted to decipher molecular mechanisms underlying CRC, however more deep insightful knowledge is the need of the hour. The purpose of this study was to identify promising key candidate genes in colorectal cancer (CRC) and assess their expression and clinical significance. To clarify and verify promising key biomarkers with signal transduction pathways in colorectal cancer, we integrated 11 microarray datasets from NCBI-GEO. This study utilized multiple bioinformatics tools and databases, including OncoDB, GEO2R, UALCAN, GEIPA, TIMER, and DAVID. The gene expression profiles of eleven datasets (GSE10714, GSE113513, GSE13471, GSE15960, GSE24514, GSE32323, GSE41258, GSE4183, GSE44076, GSE44861, GSE9348) were screened. In 11 gene expression profiles, 3 downregulated genes were identified and validated by databases such as OncoDB, UALCAN, GEIPA and TIMER. Downregulation of SLC4A4 with significant predictive value was validated by multi-omic data analysis and validated by Gene Expression Omnibus (GEO). GEIPA survival analysis showed that low SLC4A4 expression correlated with poorer overall survival among CRC patients. Based on this study, we identified SLC4A4 as a potential candidate biomarker for colorectal cancer (CRC), enabling early diagnosis and prognosis with molecular targeted therapy.
Collapse
Affiliation(s)
- Krunal Pawar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Pramodkumar P Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to Be University, Navi-Mumbai, Maharashtra, 400614, India
| | - Pooran Singh Solanki
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Off Campus Jaipur, Jaipur, India, Rajasthan, 302001
| | - Ravi Ranjan Kumar Niraj
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India.
| |
Collapse
|
5
|
Zhang C, Shi D, Lai G, Li K, Zhang Y, Li W, Zeng H, Yan Q, Zhong X, Xie B. A transcriptome-wide association study integrating multi-omics bioinformatics and Mendelian randomization reveals the prognostic value of ADAMDEC1 in colon cancer. Arch Toxicol 2025; 99:645-665. [PMID: 39680087 DOI: 10.1007/s00204-024-03910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
An abundant amount of colon cancers is diagnosed every year, accounting for 9% of malignant tumors. Even with the progress of relevant research, the 5-year survival rate for colon cancer is still less than 60%, indicating that improving the prognosis of colon cancer is still a challenge that needs to be overcome. This study employed the algorithm "scissor" to integrate the single-cell sequencing data and bulk transcriptome data with prognosis information to predict prognosis-associated cells (PAC). Summary-data-based Mendelian randomization (SMR) analysis was conducted using expression quantitative trait loci data and GWAS data to identify genes having causal associations with prognosis phenotype in colon cancer patients and five traditional two-sample Mendelian randomization methods were utilized to confirm the results. Finally, our findings were validated based on two independent external validation datasets, GSE17536 and GSE39582. The real-world tissue dataset with corresponding immunohistochemical (IHC) experiments was utilized to confirm our findings. We determined that the majority of PACs were fibroblasts. On top of that, this study identified ADAMDEC1 as a gene that has a significant causal association with overall survival. ADAMDEC1, highly expressed in highly differentiated fibroblasts, was ascertained its high expression was linked with a better prognosis of patients with colon cancer by the related bulk transcriptome analysis. Our dataset presented that higher IHC scores were associated with a better prognosis for colon cancer, further validating our results. This study has identified ADAMDEC1 as a prognostic protective factor for patients with colon cancer, providing clues for clinical trials and drug experimental target research.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China
- Research Centre for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Kangjie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Yuan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Wenlong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Haijiao Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Qiaoping Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| |
Collapse
|
6
|
Zhang Y, Jin Y, Wang Y, Wang S, Niu Y, Ma B, Li J. Insights of Expression Profile of Chemokine Family in Inflammatory Bowel Diseases and Carcinogenesis. Int J Mol Sci 2024; 25:10857. [PMID: 39409185 PMCID: PMC11476924 DOI: 10.3390/ijms251910857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Chemokines are integral components of the immune system and deeply involved in the pathogenesis and progression of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although a considerable amount of transcriptome data has been accumulated on these diseases, most of them are limited to a specific stage of the disease. The purpose of this study is to visually demonstrate the dynamic changes in chemokines across various stages of bowel diseases by integrating relevant datasets. Integrating the existing datasets for IBD and CRC, we compare the expression changes of chemokines across different pathological stages. This study collected 11 clinical databases from various medical centers around the world. Patients: Data of patient tissue types were classified into IBD, colorectal adenoma, primary carcinoma, metastasis, and healthy control according to the publisher's annotation. The expression changes in chemokines in various pathological stages are statistically analyzed. The chemokines were clustered by different expression patterns. The chemokine family was clustered into four distinct expression patterns, which correspond to varying expression changes in different stages of colitis and tumor development. Certain chemokines and receptors associated with inflammation and tumorigenesis have been identified. Furthermore, it was confirmed that the 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis model and the azoxymethane (AOM)/ dextran sulfate sodium (DSS)-induced colon cancer model shows stronger correlations with the clinical data in terms of chemokine expression levels. This study paints a panoramic picture of the expression profiles of chemokine families at multiple stages from IBD to advanced colon cancer, facilitating a comprehensive understanding of the regulation patterns of chemokines and guiding the direction of drug development. This study provides researchers with a clear atlas of chemokine expression in the pathological processes of inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Yinjie Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yue Jin
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yanjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Siyi Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Yuchen Niu
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| |
Collapse
|
7
|
Li Y, Du Y, Wang M, Ai D. CSER: a gene regulatory network construction method based on causal strength and ensemble regression. Front Genet 2024; 15:1481787. [PMID: 39371416 PMCID: PMC11449711 DOI: 10.3389/fgene.2024.1481787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Gene regulatory networks (GRNs) reveal the intricate interactions between and among genes, and understanding these interactions is essential for revealing the molecular mechanisms of cancer. However, existing algorithms for constructing GRNs may confuse regulatory relationships and complicate the determination of network directionality. Methods We propose a new method to construct GRNs based on causal strength and ensemble regression (CSER) to overcome these issues. CSER uses conditional mutual inclusive information to quantify the causal associations between genes, eliminating indirect regulation and marginal genes. It considers linear and nonlinear features and uses ensemble regression to infer the direction and interaction (activation or regression) from regulatory to target genes. Results Compared to traditional algorithms, CSER can construct directed networks and infer the type of regulation, thus demonstrating higher accuracy on simulated datasets. Here, using real gene expression data, we applied CSER to construct a colorectal cancer GRN and successfully identified several key regulatory genes closely related to colorectal cancer (CRC), including ADAMDEC1, CLDN8, and GNA11. Discussion Importantly, by integrating immune cell and microbial data, we revealed the complex interactions between the CRC gene regulatory network and the tumor microenvironment, providing additional new biomarkers and therapeutic targets for the early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
| | | | | | - Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
8
|
Alghamdi KS, Kassar RH, Farrash WF, Obaid AA, Idris S, Siddig A, Shakoori AM, Alshehre SM, Minshawi F, Mujalli A. Key Disease-Related Genes and Immune Cell Infiltration Landscape in Inflammatory Bowel Disease: A Bioinformatics Investigation. Int J Mol Sci 2024; 25:9751. [PMID: 39273699 PMCID: PMC11396460 DOI: 10.3390/ijms25179751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory Bowel Diseases (IBD), which encompass ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic inflammation and tissue damage of the gastrointestinal tract. This study aimed to uncover novel disease-gene signatures, dysregulated pathways, and the immune cell infiltration landscape of inflamed tissues. Eight publicly available transcriptomic datasets, including inflamed and non-inflamed tissues from CD and UC patients were analyzed. Common differentially expressed genes (DEGs) were identified through meta-analysis, revealing 180 DEGs. DEGs were implicated in leukocyte transendothelial migration, PI3K-Akt, chemokine, NOD-like receptors, TNF signaling pathways, and pathways in cancer. Protein-protein interaction network and cluster analysis identified 14 central IBD players, which were validated using eight external datasets. Disease module construction using the NeDRex platform identified nine out of 14 disease-associated genes (CYBB, RAC2, GNAI2, ITGA4, CYBA, NCF4, CPT1A, NCF2, and PCK1). Immune infiltration profile assessment revealed a significantly higher degree of infiltration of neutrophils, activated dendritic cells, plasma cells, mast cells (resting/activated), B cells (memory/naïve), regulatory T cells, and M0 and M1 macrophages in inflamed IBD tissue. Collectively, this study identified the immune infiltration profile and nine disease-associated genes as potential modulators of IBD pathogenesis, offering insights into disease molecular mechanisms, and highlighting potential disease modulators and immune cell dynamics.
Collapse
Affiliation(s)
- Kawthar S Alghamdi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al-Batin 39511, Saudi Arabia
| | - Rahaf H Kassar
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Shakir Idris
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Alaa Siddig
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Afnan M Shakoori
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Sallwa M Alshehre
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| |
Collapse
|
9
|
Vedantham M, Polari L, Poosakkannu A, Pinto RG, Sakari M, Laine J, Sipilä P, Määttä J, Gerke H, Rissanen T, Rantakari P, Toivola DM, Pulliainen AT. Body-wide genetic deficiency of poly(ADP-ribose) polymerase 14 sensitizes mice to colitis. FASEB J 2024; 38:e23775. [PMID: 38967223 DOI: 10.1096/fj.202400484r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract affecting millions of people. Here, we investigated the expression and functions of poly(ADP-ribose) polymerase 14 (Parp14), an important regulatory protein in immune cells, with an IBD patient cohort as well as two mouse colitis models, that is, IBD-mimicking oral dextran sulfate sodium (DSS) exposure and oral Salmonella infection. Parp14 was expressed in the human colon by cells in the lamina propria, but, in particular, by the epithelial cells with a granular staining pattern in the cytosol. The same expression pattern was evidenced in both mouse models. Parp14-deficiency caused increased rectal bleeding as well as stronger epithelial erosion, Goblet cell loss, and immune cell infiltration in DSS-exposed mice. The absence of Parp14 did not affect the mouse colon bacterial microbiota. Also, the colon leukocyte populations of Parp14-deficient mice were normal. In contrast, bulk tissue RNA-Seq demonstrated that the colon transcriptomes of Parp14-deficient mice were dominated by abnormalities in inflammation and infection responses both prior and after the DSS exposure. Overall, the data indicate that Parp14 has an important role in the maintenance of colon epithelial barrier integrity. The prognostic and predictive biomarker potential of Parp14 in IBD merits further investigation.
Collapse
Affiliation(s)
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | | | - Rita G Pinto
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Moona Sakari
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Laine
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Petra Sipilä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Heidi Gerke
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tiia Rissanen
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | |
Collapse
|
10
|
Mouillet-Richard S, Gougelet A, Passet B, Brochard C, Le Corre D, Pitasi CL, Joubel C, Sroussi M, Gallois C, Lavergne J, Castille J, Vilotte M, Daniel-Carlier N, Pilati C, de Reyniès A, Djouadi F, Colnot S, André T, Taieb J, Vilotte JL, Romagnolo B, Laurent-Puig P. Wnt, glucocorticoid and cellular prion protein cooperate to drive a mesenchymal phenotype with poor prognosis in colon cancer. J Transl Med 2024; 22:337. [PMID: 38589873 PMCID: PMC11003154 DOI: 10.1186/s12967-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS In silico analyses combined with cell-based assays identified the Wnt-β-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, β-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| | - Angélique Gougelet
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Camille Brochard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Department of Pathology, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Delphine Le Corre
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Caterina Luana Pitasi
- Université Paris Cité, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Camille Joubel
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Marine Sroussi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Claire Gallois
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Hepatogastroenterology and GI Oncology Department, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Julien Lavergne
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Histology, Imaging and Cytometry Center (CHIC), Paris, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Nathalie Daniel-Carlier
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Camilla Pilati
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Aurélien de Reyniès
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Fatima Djouadi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Sabine Colnot
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Thierry André
- Saint-Antoine Hospital, INSERM, Unité Mixte de Recherche Scientifique 938, Sorbonne Université, Paris, France
| | - Julien Taieb
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Hepatogastroenterology and GI Oncology Department, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Béatrice Romagnolo
- Université Paris Cité, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
- Institut du Cancer Paris CARPEM, APHP, Department of Biology, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France.
| |
Collapse
|
11
|
Björner K, Chen WN, Gannavarapu VR, Axling F, Gulyas M, Halim MA, Webb DL, Hellström PM. High iNOS and IL-1β immunoreactivity are features of colitis-associated colorectal cancer tumors, but fail to predict 5-year survival. Ups J Med Sci 2024; 28:10241. [PMID: 38187473 PMCID: PMC10770641 DOI: 10.48101/ujms.v128.10241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Background Inflammatory bowel disease (IBD; mainly ulcerative colitis and Crohn's disease) is associated with the development of colorectal cancer (CRC) referred to as colitis-associated colorectal cancer (CAC). In inflammatory flares of IBD, the production of luminal nitric oxide (NO) increases due to the increased inducible nitric oxide synthase (iNOS) activity in inflamed tissue. It is believed that iNOS parallels pro-inflammatory interleukin-1β (IL-1β). How these biomarkers relate to CAC pathogenesis or survival is unknown. Aim The primary aim of this study was to investigate iNOS and IL-1β immunoreactivity in CAC tumors in comparison with CRC and normal colonic mucosa, and the secondary aim was to determine if immunoreactivity correlates with 5-year survival of CAC. Methods Immunohistochemistry was performed on tissue sections as follows: CAC (n = 59); sporadic CRC (sCRC) (n = 12); colonic mucosa >2 cm outside sCRC margin (normal mucosa) (n = 22); paracancerous IBD (pIBD) (n = 12). The expression of iNOS and IL-1β was quantified separately for epithelium and stroma. Data were evaluated using the Mann-Whitney U-test and the log-rank test for 5-year Kaplan-Meier survival curves. Results were compared with online mRNA databases. Results Immunoreactivity occurred predominantly in epithelial cells and to lesser extent in stroma. Compared with normal mucosa, immunoreactivity for iNOS (P < 0.01) and IL-1β (P < 0.005) was higher in CAC epithelium. In CAC stroma, iNOS immunoreactivity was lower than normal mucosa (P < 0.001), whereas IL-1β was higher (P < 0.05). Immunoreactivity differences of iNOS or IL-1β among CAC patients failed to correlate with 5-year survival. These findings were supported by online mRNA databases. Conclusion Consistent with high NO production in IBD, there is more iNOS in CAC epithelium, albeit not in stroma. This immunoreactivity difference exists for IL-1β in both epithelium and stroma. The intervention of arginine or iNOS activity for CAC chemotherapy is not straightforward.
Collapse
Affiliation(s)
- Kajsa Björner
- Department of Medical Sciences, Gastroenterology and Hepatology Section, Uppsala University, Uppsala, Sweden
| | - Wei-Na Chen
- Department of Medical Sciences, Gastroenterology and Hepatology Section, Uppsala University, Uppsala, Sweden
| | - Venkata Ram Gannavarapu
- Department of Medical Sciences, Gastroenterology and Hepatology Section, Uppsala University, Uppsala, Sweden
| | - Fredrik Axling
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklos Gulyas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mohammad Abdul Halim
- Department of Medical Sciences, Gastroenterology and Hepatology Section, Uppsala University, Uppsala, Sweden
| | - Dominic-Luc Webb
- Department of Medical Sciences, Gastroenterology and Hepatology Section, Uppsala University, Uppsala, Sweden
| | - Per M. Hellström
- Department of Medical Sciences, Gastroenterology and Hepatology Section, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Pratscher B, Kuropka B, Csukovich G, Doulidis PG, Spirk K, Kramer N, Freund P, Rodríguez-Rojas A, Burgener IA. Traces of Canine Inflammatory Bowel Disease Reflected by Intestinal Organoids. Int J Mol Sci 2024; 25:576. [PMID: 38203746 PMCID: PMC10778911 DOI: 10.3390/ijms25010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that affects humans and several domestic animal species, including cats and dogs. In this study, we have analyzed duodenal organoids derived from canine IBD patients using quantitative proteomics. Our objective was to investigate whether these organoids show phenotypic traits of the disease compared with control organoids obtained from healthy donors. To this aim, IBD and control organoids were subjected to quantitative proteomics analysis via liquid chromatography-mass spectrometry. The obtained data revealed notable differences between the two groups. The IBD organoids exhibited several alterations at the levels of multiple proteins that are consistent with some known IBD alterations. The observed phenotype in the IBD organoids to some degree mirrors the corresponding intestinal condition, rendering them a compelling approach for investigating the disease and advancing drug exploration. Additionally, our study revealed similarities to some human IBD biomarkers, further emphasizing the translational and comparative value of dogs for future investigations related to the causes and treatment of IBD. Relevant proteins such as CALU, FLNA, MSN and HMGA2, which are related to intestinal diseases, were all upregulated in the IBD duodenal organoids. At the same time, other proteins such as intestinal keratins and the mucosal immunity PIGR were depleted in these IBD organoids. Based on these findings, we propose that these organoids could serve as a valuable tool for evaluating the efficacy of therapeutic interventions against canine IBD.
Collapse
Affiliation(s)
- Barbara Pratscher
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Georg Csukovich
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Pavlos G. Doulidis
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Katrin Spirk
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Nina Kramer
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Patricia Freund
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Alexandro Rodríguez-Rojas
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Iwan A. Burgener
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| |
Collapse
|
13
|
Feng K, Jiang H, Yin C, Sun H. Gene regulatory network inference based on causal discovery integrating with graph neural network. QUANTITATIVE BIOLOGY 2023; 11:434-450. [DOI: 10.1002/qub2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 01/06/2025]
Abstract
AbstractGene regulatory network (GRN) inference from gene expression data is a significant approach to understanding aspects of the biological system. Compared with generalized correlation‐based methods, causality‐inspired ones seem more rational to infer regulatory relationships. We propose GRINCD, a novel GRN inference framework empowered by graph representation learning and causal asymmetric learning, considering both linear and non‐linear regulatory relationships. First, high‐quality representation of each gene is generated using graph neural network. Then, we apply the additive noise model to predict the causal regulation of each regulator‐target pair. Additionally, we design two channels and finally assemble them for robust prediction. Through comprehensive comparisons of our framework with state‐of‐the‐art methods based on different principles on numerous datasets of diverse types and scales, the experimental results show that our framework achieves superior or comparable performance under various evaluation metrics. Our work provides a new clue for constructing GRNs, and our proposed framework GRINCD also shows potential in identifying key factors affecting cancer development.
Collapse
Affiliation(s)
- Ke Feng
- School of Artificial Intelligence Jilin University Changchun China
| | - Hongyang Jiang
- School of Artificial Intelligence Jilin University Changchun China
| | - Chaoyi Yin
- School of Artificial Intelligence Jilin University Changchun China
| | - Huiyan Sun
- School of Artificial Intelligence Jilin University Changchun China
- International Center of Future Science Jilin University Changchun China
- Engineering Research Center of Knowledge‐Driven Human‐Machine Intelligence Ministry of Education Changchun China
| |
Collapse
|
14
|
Wang Y, Wang S, Niu Y, Ma B, Li J. Data Mining Suggests That CXCL14 Gene Silencing in Colon Cancer Is Due to Promoter Methylation. Int J Mol Sci 2023; 24:16027. [PMID: 38003215 PMCID: PMC10671198 DOI: 10.3390/ijms242216027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
CXCL14 is one of the most evolutionarily conserved members of the chemokine family and is constitutionally expressed in multiple organs, suggesting that it is involved in the homeostasis maintenance of the system. CXCL14 is highly expressed in colon epithelial cells and shows obvious gene silencing in clinical colon cancer samples, suggesting that its silencing is related to the immune escape of cancer cells. In this paper, we analyzed the expression profiles of multiple human clinical colon cancer datasets and mouse colon cancer models to reveal the variation trend of CXCL14 expression during colitis, colon polyps, primary colon cancer, and liver metastases. The relationship between CXCL14 gene silencing and promoter hypermethylation was revealed through the colorectal carcinoma methylation database. The results suggest that CXCL14 is a tumor suppressor gene in colorectal carcinoma which is activated first and then silenced during the process of tumor occurrence and deterioration. Promoter hypermethylation is the main cause of CXCL14 silencing. The methylation level of CXCL14 is correlated with the anatomic site of tumor occurrence, positively correlated with patient age, and associated with prognosis. Reversing the hypermethylation of CXCL14 may be an epigenetic therapy for colon cancer.
Collapse
Affiliation(s)
| | | | | | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (S.W.); (Y.N.)
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (S.W.); (Y.N.)
| |
Collapse
|
15
|
Yang Y, Xia L, Yang W, Wang Z, Meng W, Zhang M, Ma Q, Gou J, Wang J, Shu Y, Wu X. Transcriptome profiling of intact bowel wall reveals that PDE1A and SEMA3D are possible markers with roles in enteric smooth muscle apoptosis, proliferative disorders, and dysautonomia in Crohn's disease. Front Genet 2023; 14:1194882. [PMID: 37727374 PMCID: PMC10505932 DOI: 10.3389/fgene.2023.1194882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a complex and multifactorial inflammatory condition, comprising Crohn's disease (CD) and ulcerative colitis (UC). While numerous studies have explored the immune response in IBD through transcriptional profiling of the enteric mucosa, the subtle distinctions in the pathogenesis of Crohn's disease and ulcerative colitis remain insufficiently understood. Methods: The intact bowel wall specimens from IBD surgical patients were divided based on their inflammatory status into inflamed Crohn's disease (iCD), inflamed ulcerative colitis (iUC) and non-inflamed (niBD) groups for RNA sequencing. Differential mRNA GO (Gene Ontology), and KEGG (Kyoto Encyclopedia of Genes and Genomes), and GSEA (Gene Set Enrichment Analysis) bioinformatic analyses were performed with a focus on the enteric autonomic nervous system (ANS) and smooth muscle cell (SMC). The transcriptome results were validated by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Results: A total of 2099 differentially expressed genes were identified from the comparison between iCD and iUC. Regulation of SMC apoptosis and proliferation were significantly enriched in iCD, but not in iUC. The involved gene PDE1A in iCD was 4-fold and 1.5-fold upregulated at qPCR and IHC compared to that in iUC. Moreover, only iCD was significantly associated with the gene sets of ANS abnormality. The involved gene SEMA3D in iCD was upregulated 8- and 5-fold at qPCR and IHC levels compared to iUC. Conclusion: These findings suggest that PDE1A and SEMA3D may serve as potential markers implicated in enteric smooth muscle apoptosis, proliferative disorders, and dysautonomia specifically in Crohn's disease.
Collapse
Affiliation(s)
- Yun Yang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
| | - Lin Xia
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjian Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingming Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
| | - Qin Ma
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junhe Gou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Junjian Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Shu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Wu
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal and Pelvic Floor Center, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Hosseini-Abgir A, Naghizadeh MM, Igder S, Miladpour B. Insilco prediction of the role of the FriZZled5 gene in colorectal cancer. Cancer Treat Res Commun 2023; 36:100751. [PMID: 37595345 DOI: 10.1016/j.ctarc.2023.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION In this study, we aimed to elucidate the crosstalk between the Wnt/β-catenin signaling pathway and colorectal cancer (CRC) associated with inflammatory bowel disease (IBD) using a bioinformatics analysis of putative common biomarkers and a systems biology approach. MATERIALS AND METHODS The following criteria were used to search the GEO and ArrayExpress databases for terms related to CRC and IBD: 1. The dataset containing the transcriptomic data, and 2. Untreated samples by medications or drugs. A total of 42 datasets were selected for additional analysis. The GEO2R identified the differentially expressed genes. The genes involved in the Wnt signaling pathway were extracted from the KEGG database. Enrichment analysis and miRNA target prediction were conducted through the ToppGene online tool. RESULTS In CRC datasets, there were 1168 up- and 998 down-regulated probes, whereas, in IBD datasets, there were 256 up- and 200 down-regulated probes. There were 65 upregulated and 57 downregulated genes shared by CRC and IBD. According to KEGG, there were 166 genes in the Wnt pathway. FriZZled5 (FZD5) was a down-regulated gene in both CRC and IBD, as determined by the intersection of CRC- and IBD-related DEGs with the Wnt pathway. It was also demonstrated that miR-191, miR-885-5p, miR-378a-3p, and miR-396-3p affect the FriZZled5 gene expression. CONCLUSION It is possible that increased expression of miR-191 and miR-885-5p, or decreased expression of miR-378a -3p and miR396-3, in IBD and CRC results in decreased expression of the FZD5 gene. Based on the function of this gene, FZD5 may be a potential therapeutic target in IBD that progresses to CRC.
Collapse
Affiliation(s)
| | | | - Somayeh Igder
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Behnoosh Miladpour
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
17
|
Kothalawala WJ, Győrffy B. Transcriptomic and Cellular Content Analysis of Colorectal Cancer by Combining Multiple Independent Cohorts. Clin Transl Gastroenterol 2023; 14:e00517. [PMID: 35858620 PMCID: PMC9945259 DOI: 10.14309/ctg.0000000000000517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION By linking cellular content and molecular subtypes of colorectal cancer (CRC), we aim to uncover novel features useful for targeted therapy. Our first goal was to evaluate gene expression alterations linked to CRC pathogenesis, and then, we aimed to evaluate the cellular composition differences between normal colon mucosa and tumor and between different colon cancer molecular subtypes. METHODS We collected microarray and RNA sequencing data of patients with CRC from the Genome Expression Omnibus and The Cancer Genome Atlas. We combined all cases and performed quantile normalization. Genes with a fold change of >2 were further investigated. We used xCell for cellular decomposition and CMScaller for molecular subtyping. For statistical analyses, the Kruskal-Wallis H test and Mann-Whitney U tests were performed with Bonferroni correction. RESULTS We established an integrated database of normal colon and CRC using transcriptomic data of 1,082 samples. By using this data set, we identified genes showing the highest differential expression in colon tumors. The top genes were linked to calcium signaling, matrix metalloproteinases, and transcription factors. When compared with normal samples, CD4+ memory T cells, CD8+ naive T cells, CD8+ T cells, Th1 cells, Th2 cells, and regulatory T cells were enriched in tumor tissues. The ImmuneScore was decreased in tumor samples compared with normal samples. The CMS1 and CMS4 molecular subtypes were the most immunogenic, with the highest ImmuneScore but also high infiltration by CD8+ T cells, Th1 cells, and Th2 cells in CMS1 and B-cell subtypes and CD8+ T cells in CMS4. DISCUSSION Our analysis uncovers features enabling advanced treatment selection and the development of novel therapies in CRC.
Collapse
Affiliation(s)
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Cancer Biomarker Research Group, Budapest, Hungary
| |
Collapse
|
18
|
Colonocyte keratin 7 is expressed de novo in inflammatory bowel diseases and associated with pathological changes and drug-resistance. Sci Rep 2022; 12:22213. [PMID: 36564440 PMCID: PMC9789078 DOI: 10.1038/s41598-022-26603-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The clinical course of IBD, characterized by relapses and remissions, is difficult to predict. Initial diagnosis can be challenging, and novel disease markers are needed. Keratin 7 (K7) is a cytoskeletal intermediate filament protein not expressed in the colonic epithelium but has been reported in IBD-associated colorectal tumors. Our aim was to analyze whether K7 is expressed in chronic colonic inflammatory diseases and evaluate its potential as a novel biomarker. K7 was analyzed in two patient cohorts using immunohistochemistry-stained colon samples and single-cell quantitative digital pathology methods. K7 was correlated to pathological changes and clinical patient characteristics. Our data shows that K7 is expressed de novo in the colonic epithelium of ulcerative colitis and Crohn's disease IBD patients, but not in collagenous or lymphocytic colitis. K7 mRNA expression was significantly increased in colons of IBD patients compared to controls when assessed in publicly available datasets. While K7 increased in areas with inflammatory activity, it was not expressed in specific crypt compartments and did not correlate with neutrophils or stool calprotectin. K7 was increased in areas proximal to pathological alterations and was most pronounced in drug-resistant ulcerative colitis. In conclusion, colonic epithelial K7 is neo-expressed selectively in IBD patients and could be investigated for its potential as a disease biomarker.
Collapse
|
19
|
Cao Y, Liang W, Fang L, Liu M, Zuo J, Peng Y, Shan J, Sun R, Zhao J, Wang J. PD-L1/PD-L1 signalling promotes colorectal cancer cell migration ability through RAS/MEK/ERK. Clin Exp Pharmacol Physiol 2022; 49:1281-1293. [PMID: 36050267 PMCID: PMC9826327 DOI: 10.1111/1440-1681.13717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
Programmed death ligand 1 (PD-L1) is widely known as an immune checkpoint, and immunotherapy through the inhibition of checkpoint molecules has become an important component in the successful treatment of tumours via programmed death 1 (PD-1)/PD-L1 signalling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) are elusive. We previously found that PD-L1 can bind to PD-L1 and cause cell detachment. However, the detailed molecular mechanisms of how PD-L1 binds to PD-L1 and how it transmits signals to the cell remain unclear. In this study, we disclosed that PD-L1 expression was dramatically upregulated in CRC compared to normal tissues. Ectopic expression of PD-L1 inhibits cell adhesive capacity and promotes cell migration in CRC cell lines, while silencing PD-L1 had the opposite effects and suppressed invasion and proliferation. Mechanistically, PD-L1 was found to promote epithelial-mesenchymal transition (EMT) through the ERK signalling molecule pathway and interacted with the 1-86 aa fragment of KRAS to transduce signals. Collectively, our study demonstrated the role of PD-L1 after binding to PD-L1 in CRC, thereby providing a new theoretical basis for further improving immunotherapy with anti-PD-L1 antibodies.
Collapse
Affiliation(s)
- Yihui Cao
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Weiye Liang
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Lian Fang
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ming‐kai Liu
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jia Zuo
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying‐long Peng
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jia‐jie Shan
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Rui‐xia Sun
- Bioscience LaboratoryBIOS bioscience and Technology Limited CompanyGuangzhouChina
| | - Jie Zhao
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jian Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina,Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina,Bioscience LaboratoryBIOS bioscience and Technology Limited CompanyGuangzhouChina
| |
Collapse
|
20
|
Keane S, Herring M, Rolny P, Wettergren Y, Ejeskär K. Inflammation suppresses DLG2 expression decreasing inflammasome formation. J Cancer Res Clin Oncol 2022; 148:2295-2311. [PMID: 35499706 PMCID: PMC9349146 DOI: 10.1007/s00432-022-04029-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
Purpose Loss of expression of DLG2 has been identified in a number of cancers to contribute to the disease by resulting in increased tumor cell proliferation and poor survival. In light of the previous evidence that DLG2 alters the cell cycle and affects proliferation, combined with indications that DLG2 is involved in NLRP3 inflammasome axis we speculated that DLG2 has an immune function. So far, there is no data that clearly elucidates this role, and this study was designed to investigate DLG2 in inflammatory colon disease and in colon cancer as well as its impact on inflammasome induction. Methods The DLG2 expression levels were established in publicly available inflammation, colon cancer and mouse model datasets. The overexpression and silencing of DLG2 in colon cancer cells were used to determine the effect of DLG2 expression on the activation of the inflammasome and subsequent cytokine release. Results The expression of DLG2 is repressed in inflammatory colon diseases IBD and Ulcerative colitis as well as colorectal cancer tissue compared to healthy individuals. We subsequently show that induction with inflammatory agents in cell and animal models results in a biphasic alteration of DLG2 with an initial increase followed by an ensuing decrease. DLG2 overexpression leads to a significant increase in expression of IL1B, IκBζ and BAX, components that result in inflammasome formation. DLG2 silencing in THP1 cells resulted in increased release of IL-6 into the microenvironment which once used to treat bystander COLO205 cells resulted in an increase in STAT3 phosphorylation and an increase proliferating cells and more cells in the G2/M phase. Restoration of DLG2 to the colon resulted in reduced AKT and S6 signaling. Conclusion DLG2 expression is altered in response to inflammation in the gut as well as colon cancer, resulting in altered ability to form inflammasomes. Trial registration NCT03072641. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04029-7.
Collapse
Affiliation(s)
- Simon Keane
- School of Health Science, DHEAR, Translational Medicine, University of Skövde, Skövde, Sweden.
| | - Matthew Herring
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Peter Rolny
- Division of Gastroenterology/Hepatology, Department of Medicine, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, The Sahlgrenska Academy at University of Gothenburg, SU/Östra, Gothenburg, Sweden
| | - Katarina Ejeskär
- School of Health Science, DHEAR, Translational Medicine, University of Skövde, Skövde, Sweden
| |
Collapse
|
21
|
Zhang Y, Garrett S, Carroll RE, Xia Y, Sun J. Vitamin D receptor upregulates tight junction protein claudin-5 against colitis-associated tumorigenesis. Mucosal Immunol 2022; 15:683-697. [PMID: 35338345 PMCID: PMC9262815 DOI: 10.1038/s41385-022-00502-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
Tight junctions are essential for barrier integrity, inflammation, and cancer. Vitamin D and the vitamin D receptor (VDR) play important roles in colorectal cancer (CRC). Using the human CRC database, we found colonic VDR expression was low and significantly correlated with a reduction of Claudin-5 mRNA and protein. In the colon of VDRΔIEC mice, deletion of intestinal VDR led to lower protein and mRNA levels of Claudin-5. Intestinal permeability was increased in the VDR-/- colon cancer model. Lacking VDR and a reduction of Claudin-5 are associated with an increased number of tumors in the VDR-/- and VDRΔIEC mice. Furthermore, gain and loss functional studies have identified CLDN-5 as a downstream target of VDR. We identified the Vitamin D response element (VDRE) binding sites in a reporter system showed that VDRE in the Claudin-5 promoter is required for vitamin D3-induced Claudin-5 expression. Conditional epithelial VDR overexpression protected against the loss of Claudin-5 in response to inflammation and tumorigenesis in vivo. We also reported fecal VDR reduction in a colon cancer model. This study advances the understanding of how VDR regulates intestinal barrier functions in tumorigenesis and the possibility for identifying new biomarker and therapeutic targets to restore VDR-dependent functions in CRC.
Collapse
Affiliation(s)
- Yongguo Zhang
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shari Garrett
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology/Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert E. Carroll
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology/Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Jesse Brown VA Medical Center Chicago, IL (537), USA
| |
Collapse
|
22
|
Bai L, Scott MKD, Steinberg E, Kalesinskas L, Habtezion A, Shah NH, Khatri P. Computational drug repositioning of atorvastatin for ulcerative colitis. J Am Med Inform Assoc 2021; 28:2325-2335. [PMID: 34529084 PMCID: PMC8510297 DOI: 10.1093/jamia/ocab165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic inflammatory disorder with limited effective therapeutic options for long-term treatment and disease maintenance. We hypothesized that a multi-cohort analysis of independent cohorts representing real-world heterogeneity of UC would identify a robust transcriptomic signature to improve identification of FDA-approved drugs that can be repurposed to treat patients with UC. MATERIALS AND METHODS We performed a multi-cohort analysis of 272 colon biopsy transcriptome samples across 11 publicly available datasets to identify a robust UC disease gene signature. We compared the gene signature to in vitro transcriptomic profiles induced by 781 FDA-approved drugs to identify potential drug targets. We used a retrospective cohort study design modeled after a target trial to evaluate the protective effect of predicted drugs on colectomy risk in patients with UC from the Stanford Research Repository (STARR) database and Optum Clinformatics DataMart. RESULTS Atorvastatin treatment had the highest inverse-correlation with the UC gene signature among non-oncolytic FDA-approved therapies. In both STARR (n = 827) and Optum (n = 7821), atorvastatin intake was significantly associated with a decreased risk of colectomy, a marker of treatment-refractory disease, compared to patients prescribed a comparator drug (STARR: HR = 0.47, P = .03; Optum: HR = 0.66, P = .03), irrespective of age and length of atorvastatin treatment. DISCUSSION & CONCLUSION These findings suggest that atorvastatin may serve as a novel therapeutic option for ameliorating disease in patients with UC. Importantly, we provide a systematic framework for integrating publicly available heterogeneous molecular data with clinical data at a large scale to repurpose existing FDA-approved drugs for a wide range of human diseases.
Collapse
Affiliation(s)
- Lawrence Bai
- Immunology Program, Stanford University School of Medicine, Stanford, California, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA.,Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
| | - Ethan Steinberg
- Computer Science Program, Department of Computer Science, Stanford University, Stanford, California, USA
| | - Laurynas Kalesinskas
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Aida Habtezion
- Immunology Program, Stanford University School of Medicine, Stanford, California, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nigam H Shah
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
23
|
Elsayed I, Li L, Sheahan K, Moran B, Bakheit S, Wang X. Adenoma to carcinoma: A portrait of molecular and immunological profiles of colorectal sporadic tumors. Int Immunopharmacol 2021; 100:108168. [PMID: 34562842 DOI: 10.1016/j.intimp.2021.108168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
An in-depth investigation of the molecular and immunologic properties of colorectal adenoma is important for understanding the mechanisms of colorectal cancer (CRC) initiation and development through the adenoma pathway. We performed a meta-analysis of the gene expression data from seven CRC and colorectal sporadic conventional adenoma datasets. We compared the enrichment levels of immune signatures between adenoma, normal colon, and CRC, then applied immunohistochemistry to compare the CD3 + and CD8 + T cells infiltration using samples of adenoma, contiguous adenoma, and CRC. We identified differentially expressed genes (DEGs) between adenoma, normal colon, and CRC, then performed pathway, network, immune correlation, and survival analyses on the DEGs. Adenoma had lower enrichment levels of antitumor immune signatures (CD8 + T cells, NK cells, and MHC Class I) while higher levels of TGF-β and Th17 signatures. Immunohistochemistry revealed variations in CD3 + and CD8 + T cells infiltration between low-grade and high-grade adenomas and between adenoma, normal colon, and CRC. We identified two groups of genes, which we named (NACupGs and NACdownGs), with consistent expression elevation and reduction respectively across the normal, precancerous, and cancerous stages. 48% of the NACupGs had expression levels highly correlated with Treg and TGF-β immune signatures, of which 39% were inversely correlated with CRC survival. We conclude that anti-tumor immune response is reduced at the precancerous (adenoma) stage which is characterized by prominent TGF-β and Th17 activity. The alterations of molecular and immunological profiles in adenoma can provide new insights into the initiation and development of CRC.
Collapse
Affiliation(s)
- Inas Elsayed
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Wad Madani 20, Sudan
| | - Lin Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Elm Park Dublin 4, Ireland; School of Medicine and Medical Sciences, University College Dublin, Belfield Dublin 4, Ireland
| | - Bruce Moran
- Department of Pathology, St. Vincent's University Hospital, Elm Park Dublin 4, Ireland
| | - Salih Bakheit
- Hull Royal Infirmary, Hull University Hospital NHS Trust, Hull, East Yorkshire, UK
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
24
|
Rohr M, Beardsley J, Nakkina SP, Zhu X, Aljabban J, Hadley D, Altomare D. A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression. Sci Data 2021; 8:214. [PMID: 34381057 PMCID: PMC8358057 DOI: 10.1038/s41597-021-00998-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types.
Collapse
Affiliation(s)
- Michael Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jordan Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Dexter Hadley
- Department of Clinical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Deborah Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
25
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
26
|
Penrose HM, Iftikhar R, Collins ME, Toraih E, Ruiz E, Ungerleider N, Nakhoul H, Flemington EF, Kandil E, Shah SB, Savkovic SD. Ulcerative colitis immune cell landscapes and differentially expressed gene signatures determine novel regulators and predict clinical response to biologic therapy. Sci Rep 2021; 11:9010. [PMID: 33907256 PMCID: PMC8079702 DOI: 10.1038/s41598-021-88489-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
The heterogeneous pathobiology underlying Ulcerative Colitis (UC) is not fully understood. Using publicly available transcriptomes from adult UC patients, we identified the immune cell landscape, molecular pathways, and differentially expressed genes (DEGs) across patient cohorts and their association with treatment outcomes. The global immune cell landscape of UC tissue included increased neutrophils, T CD4 memory activated cells, active dendritic cells (DC), and M0 macrophages, as well as reduced trends in T CD8, Tregs, B memory, resting DC, and M2 macrophages. Pathway analysis of DEGs across UC cohorts demonstrated activated bacterial, inflammatory, growth, and cellular signaling. We identified a specific transcriptional signature of one hundred DEGs (UC100) that distinctly separated UC inflamed from uninflamed transcriptomes. Several UC100 DEGs, with unidentified roles in UC, were validated in primary tissue. Additionally, non-responders to anti-TNFα and anti-α4β7 therapy displayed distinct profiles of immune cells and pathways pertaining to inflammation, growth, and metabolism. We identified twenty resistant DEGs in UC non-responders to both therapies of which four had significant predictive power to treatment outcome. We demonstrated the global immune landscape and pathways in UC tissue, highlighting a unique UC signature across cohorts and a UC resistant signature with predictive performance to biologic therapy outcome.
Collapse
Affiliation(s)
- Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Morgan E Collins
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Eman Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Emmanuelle Ruiz
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Hani Nakhoul
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Erik F Flemington
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Shamita B Shah
- Division of Gastroenterology, Ochsner Clinic Foundation, New Orleans, LA, 70121, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
27
|
Schulc K, Nagy ZT, Kamp S, Molnár J, Veres DV, Csermely P, Kovács BM. Modular Reorganization of Signaling Networks during the Development of Colon Adenoma and Carcinoma. J Phys Chem B 2021; 125:1716-1726. [PMID: 33562960 PMCID: PMC8023713 DOI: 10.1021/acs.jpcb.0c09307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
![]()
Network science is
an emerging tool in systems biology and oncology,
providing novel, system-level insight into the development of cancer.
The aim of this project was to study the signaling networks in the
process of oncogenesis to explore the adaptive mechanisms taking part
in the cancerous transformation of healthy cells. For this purpose,
colon cancer proved to be an excellent candidate as the preliminary
phase, and adenoma has a long evolution time. In our work, transcriptomic
data have been collected from normal colon, colon adenoma, and colon
cancer samples to calculating link (i.e., network edge) weights as
approximative proxies for protein abundances, and link weights were
included in the Human Cancer Signaling Network. Here we show that
the adenoma phase clearly differs from the normal and cancer states
in terms of a more scattered link weight distribution and enlarged
network diameter. Modular analysis shows the rearrangement of the
apoptosis- and the cell-cycle-related modules, whose pathway enrichment
analysis supports the relevance of targeted therapy. Our work enriches
the system-wide assessment of cancer development, showing specific
changes for the adenoma state.
Collapse
Affiliation(s)
- Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest 1085, Hungary
| | - Zsolt T Nagy
- Department of Molecular Biology, Semmelweis University, Budapest 1085, Hungary
| | | | | | - Daniel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest 1085, Hungary.,Turbine Ltd, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest 1085, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest 1085, Hungary
| |
Collapse
|
28
|
Dong Y, Lei J, Zhang B. Dietary Quercetin Alleviated DSS-induced Colitis in Mice Through Several Possible Pathways by Transcriptome Analysis. Curr Pharm Biotechnol 2021; 21:1666-1673. [PMID: 32651963 DOI: 10.2174/1389201021666200711152726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of inflammatory bowel disease is rapidly increasing around the world. Quercetin is a flavonoid commonly found in vegetables and fruits and has been reported to exert numerous pharmacological activities such as enhancing antioxidant capacity or suppressing inflammation. OBJECTIVE We aimed to explore whether quercetin was effective for IBD and the underlying mechanism of quercetin for the ameliorative effects on the DSS-induced colitis in mice. METHODS Thirty-six mice were randomly assigned to three treatments, including the control group (Ctr), DSS-induced colitis group (DSS) and DSS-induced colitis supplemented with 500 ppm quercetin (DQ500). Colitis was induced by DSS intake, and body weight was recorded every day. After six days administration of DSS, intestinal permeability was measured, and the liver was taken for antioxidant enzyme tests. Colonic tissue was taken for the histopathlogical score and RNA-sequencing analysis. RESULTS In this experiment, dietary quercetin for 500ppm alleviated the DSS-induced colitis, possibly by strengthening intestinal integrity, liver antioxidant capacity. Based on the results of the transcriptome of colon tissue, several key genes were modulated by quercetin. ERK1/2-FKBP pathway and RXR-STAT3 pathway were involved in the development of IBD, furthermore, in the down-regulation of S100a8/9, FBN2 contributed to lowering the risk of colongenesis. CONCLUSION We demonstrated that dietary quercetin alleviated the DSS-induced colitis in mice. This is most likely due to its beneficial effects on intestinal integrity and modulation of several key pathways. Based on our research, quercetin was a promising candidate for IBD and its pharmaceutical effects on both IBD and colongenesis need further research.
Collapse
Affiliation(s)
- Yuanyang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Ge CY, Wei LY, Tian Y, Wang HH. A Seven-NF-κB-Related Gene Signature May Distinguish Patients with Ulcerative Colitis-Associated Colorectal Carcinoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:707-718. [PMID: 33299340 PMCID: PMC7719442 DOI: 10.2147/pgpm.s274258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023]
Abstract
Purpose Ulcerative colitis (UC) patients have an increased risk of colorectal cancer (CRC), and compared with sporadic CRC, ulcerative colitis-associated colorectal cancer (CAC) is more aggressive with a worse prognosis. This study aimed to identify a gene signature to predict the risk of CAC for patients with UC in remission. Patients and Methods Series of quiescent UC-related transcriptome data obtained from the Gene Expression Omnibus (GEO) data set were divided into a training set and a validation set. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and \Weighted Correlation Network Analysis (WGCNA) combined with protein-protein interaction (PPI) analysis were used to identify the pathways and gene signatures related to tumorigenesis among quiescent UC patients. A generalized linear model (GLM) of Poisson regression based on the training set was applied to estimate the diagnostic power of the gene signature in our validation set. Results The tumor necrosis factor (TNF) signaling via NF-κB pathway was significantly augmented with the highest normalized enrichment score (NES). The genes in the brown module from WGCNA have shown a significant correlation with CAC (Pearson coefficient = 0.83, p = 6e-06). A subset of NF-κB related genes (FOS, CCL4, CXCL1, MYC, CEBPB, ATF3, and JUNB) were identified with a relatively higher expression level in CAC samples. The diagnostic value of this 7-gene biomarker was estimated by the receiver operating characteristic (ROC) curve with an area under the ROC curve (AUC) at 0.82 (p<0.0001, 95% CI: 0.7098-0.9400) in the validation cohort. Conclusion In summary, the increased expression of this seven-NF-κB-related gene signature may act as a powerful index for tumorigenesis prediction among patients with UC in remission.
Collapse
Affiliation(s)
- Chao-Yi Ge
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| | - Li-Yuan Wei
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, People's Republic of China
| | - Yu Tian
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| | - Hua-Hong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
30
|
Galamb O, Kalmár A, Sebestyén A, Dankó T, Kriston C, Fűri I, Hollósi P, Csabai I, Wichmann B, Krenács T, Barták BK, Nagy ZB, Zsigrai S, Barna G, Tulassay Z, Igaz P, Molnár B. Promoter Hypomethylation and Increased Expression of the Long Non-coding RNA LINC00152 Support Colorectal Carcinogenesis. Pathol Oncol Res 2020; 26:2209-2223. [PMID: 32307642 PMCID: PMC7471146 DOI: 10.1007/s12253-020-00800-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
Up-regulation of the long non-coding RNA LINC00152 can contribute to cancer development, proliferation and invasion, including colorectal cancer, however, its mechanism of action in colorectal carcinogenesis and progression is only insufficiently understood. In this work we correlated LINC00152 expression with promoter DNA methylation changes in colorectal tissues along the normal-adenoma-carcinoma sequence and studied the effects of LINC00152 silencing on the cell cycle regulation and on the whole transcriptome in colon carcinoma cells using cell and molecular biology techniques. LINC00152 was significantly up-regulated in adenoma and colorectal cancer (p < 0.001) compared to normal samples, which was confirmed by real-time PCR and in situ hybridization. LINC00152 promoter hypomethylation detected in colorectal cancer (p < 0.01) was strongly correlated with increased LINC00152 expression (r=-0.90). Silencing of LINC00152 significantly suppressed cell growth, induced apoptosis and decreased cyclin D1 expression (p < 0.05). Whole transcriptome analysis of LINC00152-silenced cells revealed significant down-regulation of oncogenic and metastasis promoting genes (e.g. YES proto-oncogene 1, PORCN porcupine O-acyltransferase), and up-regulation of tumour suppressor genes (e.g. DKK1 dickkopf WNT signalling pathway inhibitor 1, PERP p53 apoptosis effector) (adjusted p < 0.05). Pathway analysis confirmed the LINC00152-related activation of oncogenic molecular pathways including those driven by PI3K/Akt, Ras, WNT, TP53, Notch and ErbB. Our results suggest that promoter hypomethylation related overexpression of LINC00152 can contribute to the pathogenesis of colorectal cancer by facilitating cell progression through the up-regulation of several oncogenic and metastasis promoting pathway elements.
Collapse
Affiliation(s)
- Orsolya Galamb
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary.
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| | - Alexandra Kalmár
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csilla Kriston
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - István Fűri
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
| | - Péter Hollósi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Barbara Kinga Barták
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
| | - Zsófia Brigitta Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
| | - Sára Zsigrai
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Tulassay
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Igaz
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Béla Molnár
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Bao Z, Zhang B, Li L, Ge Q, Gu W, Bai Y. Identifying disease-associated signaling pathways through a novel effector gene analysis. PeerJ 2020; 8:e9695. [PMID: 32864216 PMCID: PMC7430270 DOI: 10.7717/peerj.9695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Signaling pathway analysis methods are commonly used to explain biological behaviors of disease cells. Effector genes typically decide functional attributes (associated with biological behaviors of disease cells) by abnormal signals they received. The signals that the effector genes receive can be quite different in normal vs. disease conditions. However, most of current signaling pathway analysis methods do not take these signal variations into consideration. Methods In this study, we developed a novel signaling pathway analysis method called signaling pathway functional attributes analysis (SPFA) method. This method analyzes the signal variations that effector genes received between two conditions (normal and disease) in different signaling pathways. Results We compared the SPFA method to seven other methods across 33 Gene Expression Omnibus datasets using three measurements: the median rank of target pathways, the median p-value of target pathways, and the percentages of significant pathways. The results confirmed that SPFA was the top-ranking method in terms of median rank of target pathways and the fourth best method in terms of median p-value of target pathways. SPFA’s percentage of significant pathways was modest, indicating a good false positive rate and false negative rate. Overall, SPFA was comparable to the other methods. Our results also suggested that the signal variations calculated by SPFA could help identify abnormal functional attributes and parts of pathways. The SPFA R code and functions can be accessed at https://github.com/ZhenshenBao/SPFA.
Collapse
Affiliation(s)
- Zhenshen Bao
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Li Li
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Wang H, Zhang M, Zhang M, Wang F, Liu J, Zhao Q. Carboxypeptidase A6 was identified and validated as a novel potential biomarker for predicting the occurrence of active ulcerative colitis. J Cell Mol Med 2020; 24:8803-8813. [PMID: 32570281 PMCID: PMC7412415 DOI: 10.1111/jcmm.15517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic, highly heterogeneous intestinal inflammation with changes in epithelial function and tissue damage. However, the pathogenesis is still unclear between active UC and inactive UC. Herein, weighted gene co‐expression network analysis was applied to explore the gene modules related to active UC. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to further investigate the underlying mechanism of selected genes. We found that in the blue module (r = −.72), carboxypeptidase A6 (CPA6) was chosen to validate because of its high intra‐modular connectivity and module membership. In the test sets, the expression level of CPA6 was down‐regulated in active UC compared with inactive UC and normal colon. Furthermore, CPA6 expression was decreased primarily in the descending colon and only in mucosa affected by active UC. The receiver operating characteristic curve indicated that CPA6 expression had a performed well in diagnosing active UC from inactive UC (area under the curve = 0.99). Importantly, anti‐tumour necrosis factor (TNF) treatment (infliximab and golimumab) significantly increased the CPA6 expression. Finally, GSEA and GSVA found that extracellular matrix receptor, inflammatory response and epithelial‐mesenchymal transition were highly enriched in active UC with low CPA6 expression. In conclusion, CPA6 was identified and validated as a novel potential biomarker for predicting the occurrence of active UC, probably through regulating extracellular matrix or immune response.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mengna Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
33
|
Chen X, Xu C, Hong S, Xia X, Cao Y, McDermott J, Mu Y, Han JDJ. Immune Cell Types and Secreted Factors Contributing to Inflammation-to-Cancer Transition and Immune Therapy Response. Cell Rep 2020; 26:1965-1977.e4. [PMID: 30759403 DOI: 10.1016/j.celrep.2019.01.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/17/2018] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
Although chronic inflammation increases many cancers' risk, how inflammation facilitates cancer development is still not well studied. Recognizing whether and when inflamed tissues transition to cancerous tissues is of utmost importance. To unbiasedly infer molecular events, immune cell types, and secreted factors contributing to the inflammation-to-cancer (I2C) transition, we develop a computational package called "SwitchDetector" based on liver, gastric, and colon cancer I2C data. Using it, we identify angiogenesis associated with a common critical transition stage for multiple I2C events. Furthermore, we infer infiltrated immune cell type composition and their secreted or suppressed extracellular proteins to predict expression of important transition stage genes. This identifies extracellular proteins that may serve as early-detection biomarkers for pre-cancer and early-cancer stages. They alone or together with I2C hallmark angiogenesis genes are significantly related to cancer prognosis and can predict immune therapy response. The SwitchDetector and I2C database are publicly available at www.inflammation2cancer.org.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi Xu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjun Hong
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Xia
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiang Cao
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yonglin Mu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Bao Z, Zhu Y, Ge Q, Gu W, Dong X, Bai Y. Signaling Pathway Analysis Combined With the Strength Variations of Interactions Between Genes Under Different Conditions. IEEE ACCESS 2020; 8:138036-138045. [DOI: 10.1109/access.2020.3010796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Inactivation of Interferon Regulatory Factor 1 Causes Susceptibility to Colitis-Associated Colorectal Cancer. Sci Rep 2019; 9:18897. [PMID: 31827213 PMCID: PMC6906452 DOI: 10.1038/s41598-019-55378-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/23/2019] [Indexed: 12/24/2022] Open
Abstract
The mechanisms linking chronic inflammation of the gut (IBD) and increased colorectal cancer susceptibility are poorly understood. IBD risk is influenced by genetic factors, including the IBD5 locus (human 5q31), that harbors the IRF1 gene. A cause-to-effect relationship between chronic inflammation and colorectal cancer, and a possible role of IRF1 were studied in Irf1-/- mice in a model of colitis-associated colorectal cancer (CA-CRC) induced by azoxymethane and dextran sulfate. Loss of Irf1 causes hyper-susceptibility to CA-CRC, with early onset and increased number of tumors leading to rapid lethality. Transcript profiling (RNA-seq) and immunostaining of colons shows heightened inflammation and enhanced enterocyte proliferation in Irf1−/− mutants, prior to appearance of tumors. Considerable infiltration of leukocytes is seen in Irf1−/− colons at this early stage, and is composed primarily of proinflammatory Gr1+ Cd11b+ myeloid cells and other granulocytes, as well as CD4+ lymphoid cells. Differential susceptibility to CA-CRC of Irf1−/− vs. B6 controls is fully transferable through hematopoietic cells as observed in bone marrow chimera studies. Transcript signatures seen in Irf1−/− mice in response to AOM/DSS are enriched in clinical specimens from patients with IBD and with colorectal cancer. In addition, IRF1 expression in the colon is significantly decreased in late stage colorectal cancer (stages 3, 4) and is associated with poorer prognosis. This suggests that partial or complete loss of IRF1 expression alters the type, number, and function of immune cells in situ during chronic inflammation, possibly via the creation of a tumor-promoting environment.
Collapse
|
36
|
Overexpressed long noncoding RNA CRNDE with distinct alternatively spliced isoforms in multiple cancers. Front Med 2019; 13:330-343. [PMID: 29808251 DOI: 10.1007/s11684-017-0557-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/30/2017] [Indexed: 12/22/2022]
|
37
|
Papiez A, Marczyk M, Polanska J, Polanski A. BatchI: Batch effect Identification in high-throughput screening data using a dynamic programming algorithm. Bioinformatics 2019; 35:1885-1892. [PMID: 30357412 PMCID: PMC6546123 DOI: 10.1093/bioinformatics/bty900] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/28/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION In contemporary biological experiments, bias, which interferes with the measurements, requires attentive processing. Important sources of bias in high-throughput biological experiments are batch effects and diverse methods towards removal of batch effects have been established. These include various normalization techniques, yet many require knowledge on the number of batches and assignment of samples to batches. Only few can deal with the problem of identification of batch effect of unknown structure. For this reason, an original batch identification algorithm through dynamical programming is introduced for omics data that may be sorted on a timescale. RESULTS BatchI algorithm is based on partitioning a series of high-throughput experiment samples into sub-series corresponding to estimated batches. The dynamic programming method is used for splitting data with maximal dispersion between batches, while maintaining minimal within batch dispersion. The procedure has been tested on a number of available datasets with and without prior information about batch partitioning. Datasets with a priori identified batches have been split accordingly, measured with weighted average Dice Index. Batch effect correction is justified by higher intra-group correlation. In the blank datasets, identified batch divisions lead to improvement of parameters and quality of biological information, shown by literature study and Information Content. The outcome of the algorithm serves as a starting point for correction methods. It has been demonstrated that omitting the essential step of batch effect control may lead to waste of valuable potential discoveries. AVAILABILITY AND IMPLEMENTATION The implementation is available within the BatchI R package at http://zaed.aei.polsl.pl/index.php/pl/111-software. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anna Papiez
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Michal Marczyk
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joanna Polanska
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Andrzej Polanski
- Institute of Informatics, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
38
|
Bao Z, Zhu Y, Ge Q, Gu W, Dong X, Bai Y. gwSPIA: Improved Signaling Pathway Impact Analysis With Gene Weights. IEEE ACCESS 2019; 7:69172-69183. [DOI: 10.1109/access.2019.2918150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Understanding the mechanisms of cancers based on function sub-pathways. Comput Biol Chem 2018; 78:491-496. [PMID: 30501983 DOI: 10.1016/j.compbiolchem.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/16/2018] [Indexed: 01/07/2023]
Abstract
Pathway analysis has become a popular technology tool for gaining insight into the underlying biology of differentially expressed genes and proteins. Although many sub-pathways analysis methods have been proposed, the function of these sub-pathways is generally implicit. In this paper, we propose a function sub-pathway analysis (FSPA) method which includes all nodes reaching a specific function node at the downstream of pathways. The perturbation degree of a sub-pathway is defined as the negative of the log p-value of the sub-pathway. The proposed FSPA allows analyzing the differentially expressed genes in a sub-pathway with diseases in explicit function level. Results from six datasets of colorectal cancer, lung cancer and pancreatic cancer show that the proposed FSPA could identify more cancer associated pathways. And more importantly, it could identify which sub-pathways lead to a specific abnormal function, and to what extent it affects the function. Furthermore, the proposed perturbation degree could also analyze the imbalance of some functions involved in some biological process. The results by FSPA are helpful for elucidating the underlying mechanisms of cancers and designing therapeutic strategies.
Collapse
|
40
|
Shi L, Li S, Maurer K, Zhang Z, Petri M, Sullivan KE. Enhancer RNA and NFκB-dependent P300 regulation of ADAMDEC1. Mol Immunol 2018; 103:312-321. [PMID: 30352365 PMCID: PMC6260809 DOI: 10.1016/j.molimm.2018.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 01/27/2023]
Abstract
We observed increased expression of ADAMDEC1 RNA in monocytes from patients with systemic lupus erythematosus. The precise role of ADAMDEC1 is uncertain and uniquely among metalloproteinases it utilizes a zinc-coordinating aspartic acid residue which allows it to escape inhibition by tissue inhibitor of metalloprotease-3 (TIMP-3). A closely related gene encodes the protein ADAM28, which is not up-regulated in lupus. We leveraged the ability to look at both gene's promoters and enhancers simultaneously. ADAMDEC1 was up-regulated by LPS while ADAM28 was not upregulated in the short term. We identified MAP kinases and NFκB as critical cell pathways regulating the expression of ADAMDEC1. These same pathways were implicated in driving the expression of the ADAMDEC1 upstream enhancer RNAs. We demonstrated that binding of the enhancer RNAs produced from the upstream enhancer were critically important and that p300 bound to both the RNA from the enhancer and the DNA at the enhancer. P300 binding to the enhancer was dependent on NFκB. These data define the critical pathways regulating the expression of ADAMDEC1 and extend our knowledge of the roles of enhancer RNAs and mechanistically links p300 and enhancer RNAs.
Collapse
Affiliation(s)
- Lihua Shi
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, United states.
| | - Song Li
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, United states.
| | - Kelly Maurer
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, United states.
| | - Zhe Zhang
- The Department of Biomedical and Health informatics at the Children's Hospital of Philadelphia, 3535 Market St, Philadelphia, PA, 19104, United states.
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, 21205, United states.
| | - Kathleen E Sullivan
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, United states.
| |
Collapse
|
41
|
Rahmawati E, Yang WCV, Lei YP, Maurya PK, Chen HW, Tzeng CR. Gonadotropin-releasing hormone agonist induces downregulation of tensin 1 in women with endometriosis. Acta Obstet Gynecol Scand 2018; 98:222-231. [PMID: 30312486 DOI: 10.1111/aogs.13481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Many cell migration-related molecules are associated with endometriosis. Tensin 1 (TNS1), which has been implicated in cell migration, may play a role in endometriosis. The study goal was to evaluate the TNS1 expression in endometrial tissue and serum from women with endometriosis treated with gonadotropin-releasing hormone agonist (GnRHa). MATERIAL AND METHODS Tissue and serum samples were collected from women with endometriosis who were treated (n = 29) with GnRHa or untreated (n = 30). TNS1 mRNA was examined using quantitative PCR. TNS1 protein levels in tissue and serum samples were investigated using Western blot, immunohistochemistry and ELISA. Eleven women with endometriosis participated in a follow-up investigation of serum TNS1 before and after GnRHa treatment. RESULTS TNS1 mRNA (P = 0.006) and protein (P = 0.001) were significantly downregulated in endometriotic tissue from women with endometriosis who received GnRHa. Immunolocalization of TNS1 showed strong expression in the epithelial and stromal cells of endometriotic tissue from women untreated with GnRHa, whereas endometriotic tissue from GnRHa-treated women showed low TNS1 expression. Follow-up monitoring of serum TNS1 concentration in 11 women showed an average decrease in concentration of 53%, from 294.9 ± 66.69 to 140.3 ± 55.21 pg/mL, following GnRHa treatment (P = 0.003). CONCLUSIONS GnRHa induces downregulation of TNS1 in tissue and serum in women with endometriosis. These results emphasize the importance TNS1 as a potential therapeutic molecular target for the treatment of endometriosis with GnRHa.
Collapse
Affiliation(s)
- Endah Rahmawati
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wei-Chung V Yang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ping Lei
- Department of Obstetrics and Gynecology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pawan K Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India.,Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Chang K, Willis JA, Reumers J, Taggart MW, San Lucas FA, Thirumurthi S, Kanth P, Delker DA, Hagedorn CH, Lynch PM, Ellis LM, Hawk ET, Scheet PA, Kopetz S, Arts J, Guinney J, Dienstmann R, Vilar E. Colorectal premalignancy is associated with consensus molecular subtypes 1 and 2. Ann Oncol 2018; 29:2061-2067. [PMID: 30412224 PMCID: PMC6225810 DOI: 10.1093/annonc/mdy337] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Gene expression-based profiling of colorectal cancer (CRC) can be used to identify four molecularly homogeneous consensus molecular subtype (CMS) groups with unique biologic features. However, its applicability to colorectal premalignant lesions remains unknown. Patients and methods We assembled the largest transcriptomic premalignancy dataset by integrating different public and proprietary cohorts of adenomatous and serrated polyps from sporadic (N = 311) and hereditary (N = 78) patient populations and carried out a comprehensive analysis of carcinogenesis pathways using the CMS random forest (RF) classifier. Results Overall, transcriptomic subtyping of sporadic and hereditary polyps revealed CMS2 and CMS1 subgroups as the predominant molecular subtypes in premalignancy. Pathway enrichment analysis showed that adenomatous polyps from sporadic or hereditary cases (including Lynch syndrome) displayed a CMS2-like phenotype with WNT and MYC activation, whereas hyperplastic and serrated polyps with CMS1-like phenotype harbored prominent immune activation. Rare adenomas with CMS4-like phenotype showed significant enrichment for stromal signatures along with transforming growth factor-β activation. There was a strong association of CMS1-like polyps with serrated pathology, right-sided anatomic location and BRAF mutations. Conclusions Based on our observations made in premalignancy, we propose a model of pathway activation associated with CMS classification in colorectal carcinogenesis. Specifically, while adenomatous polyps are largely CMS2, most hyperplastic and serrated polyps are CMS1 and may transition into other CMS groups during evolution into carcinomas. Our findings shed light on the transcriptional landscape of premalignant colonic polyps and may help guide the development of future biomarkers or preventive treatments for CRC.
Collapse
Affiliation(s)
- K Chang
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J A Willis
- Hematology and Oncology Fellowship Program, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Reumers
- Janssen Oncology Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - M W Taggart
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - F A San Lucas
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Thirumurthi
- Department of Gastroenterology Hepatology and Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - P Kanth
- Division of Gastroenterology, University of Utah Huntsman Cancer Institute, Salt Lake City, USA
| | - D A Delker
- Division of Gastroenterology, University of Utah Huntsman Cancer Institute, Salt Lake City, USA
| | - C H Hagedorn
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, USA
| | - P M Lynch
- Department of Gastroenterology Hepatology and Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - L M Ellis
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - E T Hawk
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - P A Scheet
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Kopetz
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of GI Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Arts
- Janssen Oncology Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - J Guinney
- Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - R Dienstmann
- Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, USA; Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - E Vilar
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of GI Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
43
|
Meana C, García-Rostán G, Peña L, Lordén G, Cubero Á, Orduña A, Győrffy B, Balsinde J, Balboa MA. The phosphatidic acid phosphatase lipin-1 facilitates inflammation-driven colon carcinogenesis. JCI Insight 2018; 3:97506. [PMID: 30232275 DOI: 10.1172/jci.insight.97506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a devastating illness that is associated with gut inflammation. Here, we explored the possible role of lipin-1, a phosphatidic acid phosphatase, in the development of colitis-associated tumorigenesis. Azoxymethane and dextran sodium sulfate-treated (DSS-treated) animals deficient in lipin-1 harbored fewer tumors and carcinomas than WT animals due to decreased cellular proliferation, lower expression of antiapoptotic and protumorigenic factors, and a reduced infiltration of macrophages in colon tumors. They also displayed increased resistance to DSS-induced colitis by producing less proinflammatory cytokines and experiencing less immune infiltration. Lipin-1-deficient macrophages from the colon were less activated and displayed lower phosphatidic acid phosphatase activity than WT macrophages isolated from DSS-treated animals. Transference of WT macrophages into lipin-1-deficient animals was sufficient to increase colitis burden. Furthermore, treatment of lipin-1-deficient mice with IL-23 exacerbated colon inflammation. Analysis of human databases from colon cancer and ulcerative colitis patients showed that lipin-1 expression is increased in those disorders and correlates with the expression of the proinflammatory markers CXCL1 and CXCL2. And finally, clinically, LPIN1 expression had prognostic value in inflammatory and stem-cell subtypes of colon cancers. Collectively, these data demonstrate that lipin-1 is a critical regulator of intestinal inflammation and inflammation-driven colon cancer development.
Collapse
Affiliation(s)
- Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ginesa García-Rostán
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Lucía Peña
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - África Cubero
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Antonio Orduña
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Balázs Győrffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology and Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
44
|
Ryzhakov G, West NR, Franchini F, Clare S, Ilott NE, Sansom SN, Bullers SJ, Pearson C, Costain A, Vaughan-Jackson A, Goettel JA, Ermann J, Horwitz BH, Buti L, Lu X, Mukhopadhyay S, Snapper SB, Powrie F. Alpha kinase 1 controls intestinal inflammation by suppressing the IL-12/Th1 axis. Nat Commun 2018; 9:3797. [PMID: 30228258 PMCID: PMC6143560 DOI: 10.1038/s41467-018-06085-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) are heterogenous disorders of the gastrointestinal tract caused by a spectrum of genetic and environmental factors. In mice, overlapping regions of chromosome 3 have been associated with susceptibility to IBD-like pathology, including a locus called Hiccs. However, the specific gene that controls disease susceptibility remains unknown. Here we identify a Hiccs locus gene, Alpk1 (encoding alpha kinase 1), as a potent regulator of intestinal inflammation. In response to infection with the commensal pathobiont Helicobacter hepaticus (Hh), Alpk1-deficient mice display exacerbated interleukin (IL)-12/IL-23 dependent colitis characterized by an enhanced Th1/interferon(IFN)-γ response. Alpk1 controls intestinal immunity via the hematopoietic system and is highly expressed by mononuclear phagocytes. In response to Hh, Alpk1-/- macrophages produce abnormally high amounts of IL-12, but not IL-23. This study demonstrates that Alpk1 promotes intestinal homoeostasis by regulating the balance of type 1/type 17 immunity following microbial challenge.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Nathaniel R West
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
- Genentech, Department of Cancer Immunology, South San Francisco, CA, 94080, USA
| | - Fanny Franchini
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Samuel J Bullers
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Claire Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Alice Costain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Alun Vaughan-Jackson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Jeremy A Goettel
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joerg Ermann
- Department of Gastroenterology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce H Horwitz
- Department of Gastroenterology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ludovico Buti
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Xin Lu
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | | | - Scott B Snapper
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
45
|
Roberts AGK, Catchpoole DR, Kennedy PJ. Variance-based Feature Selection for Classification of Cancer Subtypes Using Gene Expression Data. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) 2018:1-8. [DOI: 10.1109/ijcnn.2018.8489279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Lund J, Elimar Bitsch AM, Grønbech Rasch M, Enoksson M, Troeberg L, Nagase H, Loftager M, Overgaard MT, Petersen HH. Monoclonal antibodies targeting the disintegrin-like domain of ADAMDEC1 modulates the proteolytic activity and enables quantification of ADAMDEC1 protein in human plasma. MAbs 2018; 10:118-128. [PMID: 29185848 PMCID: PMC5800386 DOI: 10.1080/19420862.2017.1395541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 01/22/2023] Open
Abstract
Decysin-1 (ADAMDEC1) is an orphan ADAM-like metalloprotease with unknown biological function and a short domain structure. ADAMDEC1 mRNA has previously been demonstrated primarily in macrophages and mature dendritic cells. Here, we generated monoclonal antibodies (mAbs) against the mature ADAMDEC1 protein, as well as mAbs specific for the ADAMDEC1 pro-form, enabling further investigations of the metalloprotease. The generated mAbs bind ADAMDEC1 with varying affinity and represent at least six different epitope bins. Binding of mAbs to one epitope bin in the C-terminal disintegrin-like domain efficiently reduces the proteolytic activity of ADAMDEC1. A unique mAb, also recognizing the disintegrin-like domain, stimulates the caseinolytic activity of ADAMDEC1 while having no significant effect on the proteolysis of carboxymethylated transferrin. Using two different mAbs binding the disintegrin-like domain, we developed a robust, quantitative sandwich ELISA and demonstrate secretion of mature ADAMDEC1 protein by primary human macrophages. Surprisingly, we also found ADAMDEC1 present in human plasma with an approximate concentration of 0.5 nM. The presence of ADAMDEC1 both in human plasma and in macrophage cell culture supernatant were biochemically validated using immunoprecipitation and Western blot analysis demonstrating that ADAMDEC1 is secreted in a mature form.
Collapse
Affiliation(s)
- Jacob Lund
- Department of Haemophilia Biochemistry, Novo Nordisk A/S, Måløv, Denmark
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anne Mette Elimar Bitsch
- Department of Haemophilia Biochemistry, Novo Nordisk A/S, Måløv, Denmark
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Mari Enoksson
- Department of Haemophilia Biochemistry, Novo Nordisk A/S, Måløv, Denmark
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mette Loftager
- Department of Haemophilia Research Bioanalysis, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
47
|
Garcia-Pardo J, Tanco S, Díaz L, Dasgupta S, Fernandez-Recio J, Lorenzo J, Aviles FX, Fricker LD. Substrate specificity of human metallocarboxypeptidase D: Comparison of the two active carboxypeptidase domains. PLoS One 2017; 12:e0187778. [PMID: 29131831 PMCID: PMC5683605 DOI: 10.1371/journal.pone.0187778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Metallocarboxypeptidase D (CPD) is a membrane-bound component of the trans-Golgi network that cycles to the cell surface through exocytic and endocytic pathways. Unlike other members of the metallocarboxypeptidase family, CPD is a multicatalytic enzyme with three carboxypeptidase-like domains, although only the first two domains are predicted to be enzymatically active. To investigate the enzymatic properties of each domain in human CPD, a critical active site Glu in domain I and/or II was mutated to Gln and the protein expressed, purified, and assayed with a wide variety of peptide substrates. CPD with all three domains intact displays >50% activity from pH 5.0 to 7.5 with a maximum at pH 6.5, as does CPD with mutation of domain I. In contrast, the domain II mutant displayed >50% activity from pH 6.5–7.5. CPD with mutations in both domains I and II was completely inactive towards all substrates and at all pH values. A quantitative peptidomics approach was used to compare the activities of CPD domains I and II towards a large number of peptides. CPD cleaved C-terminal Lys or Arg from a subset of the peptides. Most of the identified substrates of domain I contained C-terminal Arg, whereas comparable numbers of Lys- and Arg-containing peptides were substrates of domain II. We also report that some peptides with C-terminal basic residues were not cleaved by either domain I or II, showing the importance of the P1 position for CPD activity. Finally, the preference of domain I for C-terminal Arg was validated through molecular docking experiments. Together with the differences in pH optima, the different substrate specificities of CPD domains I and II allow the enzyme to perform distinct functions in the various locations within the cell.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lucía Díaz
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francesc X. Aviles
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (LDF); (FXA)
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LDF); (FXA)
| |
Collapse
|
48
|
Ohsugi T, Yamaguchi K, Zhu C, Ikenoue T, Furukawa Y. Decreased expression of interferon-induced protein 2 (IFIT2) by Wnt/β-catenin signaling confers anti-apoptotic properties to colorectal cancer cells. Oncotarget 2017; 8:100176-100186. [PMID: 29245969 PMCID: PMC5725011 DOI: 10.18632/oncotarget.22122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Impaired Wnt signaling pathway plays a crucial role in the development of colorectal cancer through activation of the β-catenin/TCF7L2 complex. Although genes up-regulated by Wnt/β-catenin signaling have been intensively studied, the roles of down-regulated genes are poorly understood. In this study, we explored a global gene expression of colorectal cancer cells transfected with β-catenin siRNAs or a dominant negative form of TCF7L2 (dnTCF7L2), and identified a set of genes down-regulated by Wnt/β-catenin signaling. Among the genes, we focused here on IFIT2, a gene encoding interferon-induced protein with tetratricopeptide repeats. A reporter assay using plasmids containing a 5’-flanking region of the gene showed that the reporter activity was enhanced by either transduction of β-catenin siRNA or dnTCF7L2, suggesting that the region is involved in the transcriptional regulation as a downstream of the β-catenin/TCF7L2 complex. Consistent with this result, expression of IFIT2 was significantly lower in colorectal cancer tissues than that in normal tissues. Exogenous IFIT2 expression decreased cell proliferation and increased apoptosis of colorectal cancer cells. These data suggested that the down-regulation of IFIT2 by Wnt/β-catenin signaling may play a vital role in human colorectal carcinogenesis through the suppression of apoptosis.
Collapse
Affiliation(s)
- Tomoyuki Ohsugi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Chi Zhu
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
49
|
Loss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence. Br J Cancer 2017; 117:1689-1701. [PMID: 29024942 PMCID: PMC5729446 DOI: 10.1038/bjc.2017.352] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognised to have a major role in trafficking and polarisation of cells, have recently been reported to be closely associated with several types of cancer and might thus serve as potential prognostic markers in the context of CRC. Methods: We used a previously established meta-analysis of publicly available gene expression data to analyse the expression of different members of the Myosin V family, namely MYO5A, 5B, and 5C, in CRC. Using laser-microdissected material as well as tissue microarrays from paired human CRC samples, we validated both RNA and protein expression of Myosin Vb (MYO5B) and its known adapter proteins (RAB8A and RAB25) in an independent patient cohort. Finally, we assessed the prognostic value of both MYO5B and its adapter-coupled combinatorial gene expression signatures. Results: The meta-analysis as well as an independent patient cohort study revealed a methylation-independent loss of MYO5B expression in CRC that matched disease progression. Although MYO5B mutations were identified in a small number of patients, these cannot be solely responsible for the common downregulation observed in CRC patients. Significantly, CRC patients with low MYO5B expression displayed shorter overall, disease-, and metastasis-free survival, a trend that was further reinforced when RAB8A expression was also taken into account. Conclusions: Our data identify MYO5B as a powerful prognostic biomarker in CRC, especially in early stages (stages I and II), which might help stratifying patients with stage II for adjuvant chemotherapy.
Collapse
|
50
|
Klein MI, Stern DF, Zhao H. GRAPE: a pathway template method to characterize tissue-specific functionality from gene expression profiles. BMC Bioinformatics 2017. [PMID: 28651562 PMCID: PMC5485588 DOI: 10.1186/s12859-017-1711-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Personalizing treatment regimes based on gene expression profiles of individual tumors will facilitate management of cancer. Although many methods have been developed to identify pathways perturbed in tumors, the results are often not generalizable across independent datasets due to the presence of platform/batch effects. There is a need to develop methods that are robust to platform/batch effects and able to identify perturbed pathways in individual samples. RESULTS We present Gene-Ranking Analysis of Pathway Expression (GRAPE) as a novel method to identify abnormal pathways in individual samples that is robust to platform/batch effects in gene expression profiles generated by multiple platforms. GRAPE first defines a template consisting of an ordered set of pathway genes to characterize the normative state of a pathway based on the relative rankings of gene expression levels across a set of reference samples. This template can be used to assess whether a sample conforms to or deviates from the typical behavior of the reference samples for this pathway. We demonstrate that GRAPE performs well versus existing methods in classifying tissue types within a single dataset, and that GRAPE achieves superior robustness and generalizability across different datasets. A powerful feature of GRAPE is the ability to represent individual gene expression profiles as a vector of pathways scores. We present applications to the analyses of breast cancer subtypes and different colonic diseases. We perform survival analysis of several TCGA subtypes and find that GRAPE pathway scores perform well in comparison to other methods. CONCLUSIONS GRAPE templates offer a novel approach for summarizing the behavior of gene-sets across a collection of gene expression profiles. These templates offer superior robustness across distinct experimental batches compared to existing methods. GRAPE pathway scores enable identification of abnormal gene-set behavior in individual samples using a non-competitive approach that is fundamentally distinct from popular enrichment-based methods. GRAPE may be an appropriate tool for researchers seeking to identify individual samples displaying abnormal gene-set behavior as well as to explore differences in the consensus gene-set behavior of groups of samples. GRAPE is available in R for download at https://CRAN.R-project.org/package=GRAPE .
Collapse
Affiliation(s)
- Michael I Klein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - David F Stern
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, 60 College Street, P.O. Box 208034, New Haven, 06520-8034, CT, USA.
| |
Collapse
|