1
|
Patil HP, Gosavi M, Kulkarni R, Mishra AC, Arankalle VA. Immunoglobulin G Subclass Response After Chikungunya Virus Infection. Viral Immunol 2022; 35:437-442. [PMID: 35838586 DOI: 10.1089/vim.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Various vaccines are under development to prevent chikungunya (CHIKV) infection. For the assessment of the CHIKV vaccine-induced antibody response, it is extremely important to understand antibody response after the infection has occurred. Previously, we assessed IgG response in samples from healthy donors using I-CHIKV and found that IgG1 was the predominant subclass induced after CHIKV infection followed by IgG4. However, IgG3 subclass induction is reported in serum samples from patients with acute CHIKV infection. Therefore, in this study, we evaluated serum/plasma from samples of patients with acute CHIKV infection for the presence of IgG and IgG subclasses against I-CHIKV and recombinant E2 protein (rE2). Out of 44 samples that were positive against I-CHIKV, 43 were found reactive against rE2. The positivity of IgG1 either alone or together with other IgG subclasses using I-CHIKV was 89% samples, while 86% samples were positive using rE2. High titers of IgG1 are obtained with I-CHIKV (67%), while raised IgG4 levels are detected using rE2p (72%) in the samples that are positive for both these subclasses. Testing of 22 samples for neutralizing antibodies revealed 100% IgG1 positivity and neutralizing antibodies in 21, 1 sample negative for both. Overall, these data will be useful in assessing IgG subclass-specific CHIKV neutralization and response after CHIKV immunization.
Collapse
Affiliation(s)
- Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Mrunal Gosavi
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Ruta Kulkarni
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Akhilesh C Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
2
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Riemersma KK, Steiner C, Singapuri A, Coffey LL. Chikungunya Virus Fidelity Variants Exhibit Differential Attenuation and Population Diversity in Cell Culture and Adult Mice. J Virol 2019; 93:e01606-18. [PMID: 30429348 PMCID: PMC6340026 DOI: 10.1128/jvi.01606-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging global health threat that produces debilitating arthritis in people. Like other RNA viruses with high mutation rates, CHIKV produces populations of genetically diverse genomes within a host. While several known CHIKV mutations influence disease severity in vertebrates and transmission by mosquitoes, the role of intrahost diversity in chikungunya arthritic disease has not been studied. In this study, high- and low-fidelity CHIKV variants, previously characterized by altered in vitro population mutation frequencies, were used to evaluate how intrahost diversity influences clinical disease, CHIKV replication, and antibody neutralization in immunocompetent adult mice inoculated in the rear footpads. Both high- and low-fidelity mutations were hypothesized to attenuate CHIKV arthritic disease, replication, and neutralizing antibody levels compared to wild-type (WT) CHIKV. Unexpectedly, high-fidelity mutants elicited more severe arthritic disease than the WT despite comparable CHIKV replication, whereas a low-fidelity mutant produced attenuated disease and replication. Serum antibody developed against both high- and low-fidelity CHIKV exhibited reduced neutralization of WT CHIKV. Using next-generation sequencing (NGS), the high-fidelity mutations were demonstrated to be genetically stable but produced more genetically diverse populations than WT CHIKV in mice. This enhanced diversification was subsequently reproduced after serial in vitro passage. The NGS results contrast with previously reported population diversities for fidelity variants, which focused mainly on part of the E1 gene, and highlight the need for direct measurements of mutation rates to clarify CHIKV fidelity phenotypes.IMPORTANCE CHIKV is a reemerging global health threat that elicits debilitating arthritis in humans. There are currently no commercially available CHIKV vaccines. Like other RNA viruses, CHIKV has a high mutation rate and is capable of rapid intrahost diversification during an infection. In other RNA viruses, virus population diversity associates with disease progression; however, potential impacts of intrahost viral diversity on CHIKV arthritic disease have not been studied. Using previously characterized CHIKV fidelity variants, we addressed whether CHIKV population diversity influences the severity of arthritis and host antibody response in an arthritic mouse model. Our findings show that CHIKV populations with greater genetic diversity can cause more severe disease and stimulate antibody responses with reduced neutralization of low-diversity virus populations in vitro The discordant high-fidelity phenotypes in this study highlight the complexity of inferring replication fidelity indirectly from population diversity.
Collapse
Affiliation(s)
- Kasen K Riemersma
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cody Steiner
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
4
|
Banerjee N, Mukhopadhyay S. Oxidative damage markers and inflammatory cytokines are altered in patients suffering with post-chikungunya persisting polyarthralgia. Free Radic Res 2018; 52:887-895. [PMID: 29898618 DOI: 10.1080/10715762.2018.1489131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Redox homoeostasis is necessary for the maintenance of living systems. Chikungunya viral infection manifests into joint inflammation and debilitating polyarthralgia affecting the life style of the patient badly. The disease pathophysiology is poorly understood and there is a lack of targeted therapeutics. The pathogenic role of free radicals in arthritis is well established. This study aims for the first time to evaluate the status of several standard oxidative stress markers and their correlation in chikungunya patients suffering with polyarthralgia. Expression of Siglec-9 on monocytes; which can modulate oxidative stress is studied along with intracellular reactive oxygen species (ROS), cellular lipid and protein damage markers in chikungunya patients with/without persisting polyarthralgia along with healthy controls. Furthermore, plasma NO level, antioxidant status was investigated along with some inflammatory cytokines namely IL-6, IFN-γ, CXCL-9, IL-10 and TGFβ1. Interestingly, all oxidative damage markers are altered significantly in groups but their alteration levels vary in patients with/without persisting polyarthralgia. Siglec-9 expression level is increased in patients revealing cellular response to manage oxidative stress with respect to controls. Correlation studies reveal that intracellular ROS correlates well with most of the studied parameters but the correlation coefficient (Pearson r) differs with disease manifestation demonstrating strong role of these factors in a pro-oxidant milieu. The presence of free radicals increases the availability of neoantigens continuously, which possibly further cascades oxidative damage and development of persisting polyarthralgia.
Collapse
Affiliation(s)
- Nilotpal Banerjee
- a Department of Laboratory Medicine , School of Tropical Medicine , Kolkata , India
| | - Sumi Mukhopadhyay
- a Department of Laboratory Medicine , School of Tropical Medicine , Kolkata , India
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. Fever, rash and severe arthralgia are the hallmarks of chikungunya fever (CHIKF), the disease caused by this virus. The acute course of the disease usually lasts few weeks to months. Chronic, relapsing or persistent arthralgia and arthritis have been described mimicking rheumatoid arthritis (RA), requiring immunosuppressive drugs.The purpose of this review is to characterize both the chronic clinical course of CHIKF-associated arthritis and the immunological pathogenic mechanisms involved. RECENT FINDINGS The effect of postepidemic chronic persistent rheumatic course on the functional status of affected individuals, affecting large populations, has been studied. One-third of affected individuals had persistent pain months to years postepidemic and the identified risk factors for functional disability were identified.Inflammatory biomarkers associated with disease severity of RA such as interleukin 6 (IL6), and relevant chemokines have been found to correlate with the severity of postepidemic chronic disease. There are conflicting reports on antinuclear antibodies (ANAs) as well as rheumatoid factor and anti-citrullinated peptide antibody (ACPA) sero-positivity during infections.According to a recent study, eight out of 10 infected individuals developed chronic persistent rheumatic course and met classification criteria for seronegative RA.In a flow cytology analyses, these eight patients, similar to a group of RA patients, had a greater percentage of activated and effector CD4 and CD8 T cells than healthy controls. SUMMARY Patients with CHKV infections may have a chronic persistent course of musculoskeletal disease, overlapping clinical and immunologic features with RA patients. In the appropriate setting and awareness, CHIKV infection should be considered when a patient is evaluated with a new symmetric polyarthritis.The question to be raised: Is it possible that in genetic prone individuals and in a particular environmental and infectious setting, such as CHIKF outbreak, an autoimmune disease will emerge?
Collapse
|
6
|
Amdekar S, Parashar D, Alagarasu K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral Immunol 2017; 30:691-702. [PMID: 28910194 DOI: 10.1089/vim.2017.0052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV), a member of Alphavirus genus, is responsible for chikungunya fever (CHIKF), which is characterized by the presence of fever, rash, myalgia, and arthralgia. Reemergence of CHIKV has become a significant public health concern in Asian and African countries and is newly emerging in the Middle East, Pacific, American, and European countries. Cytokines, innate (monocytes, natural killer cells) and adaptive immune response (role of B cells and T cells i.e. CD4+ and CD8+), and/or viral factors contribute to CHIKV-induced arthritis. Vector factors such as vector competence (that includes extrinsic and intrinsic factors) and effect of genome mutations on viral replication and fitness in mosquitoes are responsible for the spread of virus, although they are not directly responsible for CHIKV-induced arthritis. CHIKV-induced arthritis mimics arthritis by involving joints and a common pattern of leukocyte infiltrate, cytokine production, and complement activation. Successful establishment of CHIKV infection and induction of arthritis depends on its ability to manipulate host cellular processes or host factors. CHIKV-induced joint damage is due to host inflammatory response mediated by macrophages, T cells, and antibodies, as well as the possible persistence of the virus in hidden sites. This review provides insight into mechanisms of CHIKV-induced arthritis. Understanding the pathogenesis of CHIKV-induced arthritis will help in developing novel strategies to predict and prevent the disease in virus-infected subjects and combat the disease, thereby decreasing the worldwide burden of the disease.
Collapse
Affiliation(s)
- Sarika Amdekar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | - Deepti Parashar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | | |
Collapse
|
7
|
Redel H. A Case of Chikungunya Virus Induced Arthralgia Responsive to Colchicine. Open Forum Infect Dis 2016; 3:ofw114. [PMID: 27419183 PMCID: PMC4943530 DOI: 10.1093/ofid/ofw114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/20/2016] [Indexed: 11/12/2022] Open
Abstract
Chikungunya virus is an emerging infectious disease that has started circulating throughout the Americas and Caribbean. It can lead to persistent arthralgia lasting months to years. Treatment has been symptomatic with nonsteroidal anti-inflammatory medications. This case report describes a trial of colchicine for chikungunya arthralgia in 1 patient.
Collapse
Affiliation(s)
- Henry Redel
- Department of Medicine , Robert Wood Johnson Medical School, Rutgers University , New Brunswick, New Jersey
| |
Collapse
|
8
|
Zuluaga-Gómez M, Universidad Pontificia Bolivariana, Vanegas-Isaza D, Universidad Pontificia Bolivariana. El virus Chikungunya en Colombia: aspectos clínicos y epidemiológicos y revisión de la literatura. IATREIA 2015. [DOI: 10.17533/udea.iatreia.v29n1a06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
9
|
Rashad AA, Mahalingam S, Keller PA. Chikungunya virus: emerging targets and new opportunities for medicinal chemistry. J Med Chem 2013; 57:1147-66. [PMID: 24079775 DOI: 10.1021/jm400460d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chikungunya virus is an emerging arbovirus that is widespread in tropical regions and is spreading quickly to temperate climates with recent epidemics in Africa and Asia and documented outbreaks in Europe and the Americas. It is having an increasingly major impact on humankind, with potentially life-threatening and debilitating arthritis. There is no treatment available, and only in the past 24 months have lead compounds for development as potential therapeutics been reported. This Perspective discusses the chikungunya virus as a significant, new emerging topic for medicinal chemistry, highlighting the key viral target proteins and their molecular functions that can be used in drug design, as well as the most important ongoing developments for anti-chikungunya virus research. It represents a complete picture of the current medicinal chemistry of chikungunya, supporting the development of chemotherapeutics through drug discovery and design targeting this virus.
Collapse
Affiliation(s)
- Adel A Rashad
- Centre for Medicinal Chemistry, School of Chemistry, University of Wollongong , Wollongong, 2522, Australia
| | | | | |
Collapse
|
10
|
Kaur P, Chu JJH. Chikungunya virus: an update on antiviral development and challenges. Drug Discov Today 2013; 18:969-83. [PMID: 23684571 PMCID: PMC7108317 DOI: 10.1016/j.drudis.2013.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022]
Abstract
Chikungunya virus (CHIKV) has re-emerged as a significant public health threat since the 2005 chikungunya fever epidemic in La Réunion. Driven by the medical importance of this virus, as well as the lack of approved antivirals, research into the field of CHIKV antivirals has recently intensified. Potential therapeutics that have been reported to show anti-CHIKV activity in vitro range from known broad-spectrum antivirals like chloroquine to novel strategies involving RNA silencing technology. Although most of the earlier efforts focused on compounds that target host components, some recent studies have reported viral targets such as nonstructural proteins. This article examines the reported in vitro and in vivo efficacies, as well as the therapeutic potential of these antiviral compounds.
Collapse
Affiliation(s)
- Parveen Kaur
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, MD4, Level 5, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | | |
Collapse
|
11
|
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for a recent, unexpectedly severe epidemic in countries of the Indian Ocean region. Although many alphaviruses have been well studied, little was known about the biology and pathogenesis of CHIKV at the time of the 2005 outbreak. Over the past 5 years there has been a multidisciplinary effort aimed at deciphering the clinical, physiopathological, immunological and virological features of CHIKV infection. This Review highlights some of the most recent advances in our understanding of the biology of CHIKV and its interactions with the host.
Collapse
Affiliation(s)
- Olivier Schwartz
- Institut Pasteur, 28 rue du Dr Roux, Paris 75724 Cedex 15, France.
| | | |
Collapse
|
12
|
Warter L, Lee CY, Thiagarajan R, Grandadam M, Lebecque S, Lin RTP, Bertin-Maghit S, Ng LFP, Abastado JP, Desprès P, Wang CI, Nardin A. Chikungunya virus envelope-specific human monoclonal antibodies with broad neutralization potency. THE JOURNAL OF IMMUNOLOGY 2011; 186:3258-64. [PMID: 21278338 DOI: 10.4049/jimmunol.1003139] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics in Africa and Asia. Infection by CHIKV is often characterized by long-lasting, incapacitating arthritis, and some fatal cases have been described among elderly and newborns. Currently, there is no available vaccine or specific treatment against CHIKV. Blood B cells from a donor with history of CHIKV infection were activated, immortalized, amplified, and cloned. Two human mAbs against CHIKV, 5F10 and 8B10, were identified, sequenced, and expressed in recombinant form for characterization. In a plaque reduction neutralization test, 5F10 and 8B10 show mean IC(50) of 72 and 46 ng/ml, respectively. Moreover, both mAbs lead to a strong decrease in extracellular spreading of infectious viral particles from infected to uninfected cells. Importantly, the mAbs neutralize different CHIKV isolates from Singapore, Africa, and Indonesia, as well as O'nyong-nyong virus, but do not recognize other alphaviruses tested. Both mAbs are specific for the CHIKV envelope: 5F10 binds to the E2 glycoprotein ectodomain and 8B10 to E1 and/or E2. In conclusion, these two unique human mAbs strongly, broadly, and specifically neutralize CHIKV infection in vitro and might become possible therapeutic tools against CHIKV infection, especially in individuals at risk for severe disease. Importantly, these mAbs will also represent precious tools for future studies on host-pathogen interactions and the rational design of vaccines against CHIKV.
Collapse
Affiliation(s)
- Lucile Warter
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|