1
|
Zhang J, Li M, Wang T, Tian W, Ju J, Xu H. Association between visceral adiposity index and all-cause and cardiovascular mortality in the non-elderly adults. Front Endocrinol (Lausanne) 2025; 16:1523731. [PMID: 40060375 PMCID: PMC11885296 DOI: 10.3389/fendo.2025.1523731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Background The visceral adiposity index (VAI) reflects changes in visceral adipose function and is also linked to cardiometabolic risk. The study aimed to investigate the association between VAI and both all-cause mortality and cardiovascular mortality in the U.S. population aged 20-65 years. Methods This study included data from 9,094 American adults aged 20-65 years from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The exposure variable was VAI, while the outcome variables were all-cause and cardiovascular mortality. The Cox regression model was employed to explore the correlation between VAI and mortality among participants. Restricted cubic splines (RCS) were used to explore the nonlinear associations, and a two-piecewise Cox proportional hazards model was applied on both sides of the inflection point. We used subgroup analyses and interaction tests to further investigate the association between VAI and mortality in different populations. Additionally, time-dependent Receiver Operating Characteristic (ROC) curve analyses were performed to evaluate the capability of VAI in forecasting survival. Results During a median follow-up period of 74 months, 251 deaths from all causes and 50 cardiovascular-related deaths were recorded. RCS analyses did not find a nonlinear correlation between VAI and all-cause mortality (P for overall = 0.0006, P for nonlinear = 0.9927) but showed a nonlinear correlation with cardiovascular mortality (P for overall = 0.0010, P for nonlinear = 0.0062). For cardiovascular mortality, when VAI was below the threshold value (2.49), a significant positive association was observed with cardiovascular mortality. When VAI was below 2.49, the risk of cardiovascular mortality increased by 122 percent for each unit increase in VAI (HR=2.22, 95% CI:1.36-3.61). For VAI ≥ 2.49, changes in VAI did not significantly impact cardiovascular mortality risk. In subgroup analyses, the stratified results remained consistent, with no significant interactions observed in any of the subgroups (all P for interaction> 0.05). Furthermore, the areas under the curve (AUC) for 2-, 5-, and 10-year survival rates were 0.82, 0.80, and 0.79 for all-cause mortality and 0.86, 0.86, and 0.82 for cardiovascular mortality, respectively. Conclusion VAI was found to have a positive association with all-cause mortality and a nonlinear association with cardiovascular mortality in the non-elderly adults, with a threshold value of 2.49 for cardiovascular mortality.
Collapse
Affiliation(s)
- Jiqian Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Babajani A, Moeinabadi-Bidgoli K, Niknejad F, Rismanchi H, Shafiee S, Shariatzadeh S, Jamshidi E, Farjoo MH, Niknejad H. Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation. Stem Cell Res Ther 2022; 13:126. [PMID: 35337387 PMCID: PMC8949831 DOI: 10.1186/s13287-022-02794-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin-angiotensin-aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
A 3D Mathematical Model of Coupled Stem Cell-Nutrient Dynamics in Myocardial Regeneration Therapy. J Theor Biol 2022; 537:111023. [PMID: 35041851 DOI: 10.1016/j.jtbi.2022.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapy is a promising treatment for the regeneration of myocardial tissue injured by an ischemic event. Mathematical modeling of myocardial regeneration via stem cell therapy is a challenging task, since the mechanisms underlying the processes involved in the treatment are not yet fully understood. Many aspects must be accounted for, such as the spread of stem cells and nutrients, chemoattraction, cell proliferation, stages of cell maturation, differentiation, angiogenesis, stochastic effects, just to name a few. In this paper we propose a 3D mathematical model with a free boundary that aims to provide a qualitative description of some main aspects of the stem cell regenerative therapy in a simplified scenario. The paper mainly focuses on the description of the shrinking of the necrotic core during treatment. The stem cell and nutrients dynamics are described through coupled reaction-diffusion problems. Proliferation, chemoattraction, tissue regeneration and nutrient consumption are included in the model.
Collapse
|
4
|
Choi JH, Park S, Kim GD, Kim JY, Jun JH, Bae SH, Baik SK, Hwang SG, Kim GJ. Increased Phosphatase of Regenerating Liver-1 by Placental Stem Cells Promotes Hepatic Regeneration in a Bile-Duct-Ligated Rat Model. Cells 2021; 10:cells10102530. [PMID: 34685509 PMCID: PMC8533985 DOI: 10.3390/cells10102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphatase of regenerating liver-1 (PRL-1) controls various cellular processes and liver regeneration. However, the roles of PRL-1 in liver regeneration induced by chorionic-plate-derived mesenchymal stem cells (CP-MSCs) transplantation remain unknown. Here, we found that increased PRL-1 expression by CP-MSC transplantation enhanced liver regeneration in a bile duct ligation (BDL) rat model by promoting the migration and proliferation of hepatocytes. Engrafted CP-MSCs promoted liver function via enhanced hepatocyte proliferation through increased PRL-1 expression in vivo and in vitro. Moreover, higher increased expression of PRL-1 regulated CP-MSC migration into BDL-injured rat liver through enhancement of migration-related signals by increasing Rho family proteins. The dual effects of PRL-1 on proliferation of hepatocytes and migration of CP-MSCs were substantially reduced when PRL-1 was silenced with siRNA-PRL-1 treatment. These findings suggest that PRL-1 may serve as a multifunctional enhancer for therapeutic applications of CP-MSC transplantation.
Collapse
Affiliation(s)
- Jong Ho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si 25457, Korea;
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon-si 51767, Korea;
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Korea;
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seong-Gyu Hwang
- CHA Bundang Medical Center, Department of Internal Medicine, Division of Gastroenterology, CHA University School of Medicine, Seongnam-si 13496, Korea;
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7145
| |
Collapse
|
5
|
Kadkhodaeian HA, Salati A, Ansari M, Taghdiri Nooshabadi V. Tracking the Transplanted Neurosphere in Retinal Pigment Epithelium Degeneration Model. Basic Clin Neurosci 2021; 12:523-532. [PMID: 35154592 PMCID: PMC8817176 DOI: 10.32598/bcn.2021.12.4.2230.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/30/2020] [Accepted: 06/02/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Retinal Pigment Epithelium (RPE) layer deterioration is a leading cause of Age-Related Macular Degeneration (AMD), i.e., the most significant reason for irreversible blindness. The present study aimed to track the Neurosphere-Derived (NS) from Bone Marrow Stromal Stem Cells (BMSCs) grafted into the sub-retinal space (destruction of the RPE layer by sodium iodate). Methods RPE degeneration model was performed using the injection of 5% sodium iodate performed in the retro-orbital sinus of Wistar rats. BMSCs were extracted from the examined rat femur and induced into NS, using EGF, bFGF, and B27. BrdU-NS labeled cells were transplanted into the sub-retinal space. For detecting BMSCs and NS markers, immunocytochemistry was performed. Moreover, immunohistochemical was conducted for tracking the transplanted cells in the RPE and sensory retina. Results The immunocytochemistry of BMSCs cells displayed the expression of mesenchymal stem cells markers (CD90; 99%±1), CD166 (98%±2), CD44 (99%±1). Additionally, the expression of neural lineage markers in NS, such as SOX2, OCT4, Nanog, Nestin, and Neurofilaments (68, 160, 200) revealed the differentiation from BMSCs. Tracking BrdU-NS labeled suggested these aggregations in most layers of the retina. Conclusion Our study data indicated that BMSCs derived neurosphere had the potential to migrate in injured retinal and integrate into the neurosensory retina. These data can be useful in finding safe cells for replacement therapy in AMD.
Collapse
Affiliation(s)
- Hamid Aboutaleb Kadkhodaeian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Salati
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, University of Meybod, Meybod, Yazd, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Dollet PE, Hsu MJ, Ambroise J, Rozzi M, Ravau J, André F, Evraerts J, Najimi M, Sokal E, Lombard C. Evaluation of Strategies Aimed at Improving Liver Progenitor Cell Rolling and Subsequent Adhesion to the Endothelium. Cell Transplant 2021; 29:963689720912707. [PMID: 32425073 PMCID: PMC7444224 DOI: 10.1177/0963689720912707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adult-derived human liver stem/progenitor cells (ADHLSCs) are a promising
alternative to orthotopic liver transplantation in the treatment of inborn
errors of metabolism. However, as is the case with many mesenchymal stromal
cells, ADHLSCs have shown a low level of engraftment, which could be explained
by the fact that they lack expression of selectin ligand and LFA-1 and only
slightly express VLA- 4, molecules that have been shown to be involved in cell
adhesion to the endothelium. In this paper, we have investigated strategies to
increase their rolling and adhesion during the homing process by (1) adding a
selectin ligand (Sialyl Lewis X) to their surface using
biotinyl-N-hydroxy-succinimide–streptavidin bridges, and
(2) protecting the adhesion proteins from trypsinization-induced damage using a
thermosensitive polymer for cell culture and a nonenzymatic cell dissociation
solution (CDS) for harvest. Despite increasing adhesion of ADHLSCs to E-selectin
during an adhesion test in vitro performed under shear stress,
the addition of Sialyl Lewis X did not increase adhesion to endothelial cells
under the same conditions. Cultivating cells on a thermosensitive polymer and
harvesting them with CDS increased their adhesion to endothelial cells under
noninflammatory conditions, compared to the use of trypsin. However, we were not
able to demonstrate any improvement in cell adhesion to the endothelium
following culture on polymer and harvest with CDS, suggesting that alternative
methods of improving engraftment still need to be evaluated.
Collapse
Affiliation(s)
- Pierre Edouard Dollet
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Mei Ju Hsu
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Milena Rozzi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Joachim Ravau
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Floriane André
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Jonathan Evraerts
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Catherine Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
7
|
Chang CH, Lin YL, Tyan YS, Chiu YH, Liang YH, Chen CP, Wu JC, Wang HS. Interleukin-1β-induced matrix metalloproteinase-3 via ERK1/2 pathway to promote mesenchymal stem cell migration. PLoS One 2021; 16:e0252163. [PMID: 34019587 PMCID: PMC8139494 DOI: 10.1371/journal.pone.0252163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Human umbilical cord Wharton’s jelly derived mesenchymal stem cells (hUCMSCs), a source of cell therapy, have received a great deal of attention due to their homing or migrating ability in response to signals emanating from damaged sites. It has been found that IL-1β possesses the ability to induce the expression of matrix metalloproteinase-3 (MMP-3) in bone marrow MSCs. MMP-3 is involved in cell migration in various types of cells, including glioblastoma, vascular smooth muscle, and adult neural progenitor cells. In this study, we proposed that IL-1β influences hUCMSCs migration involving MMP-3. The expression level of MMP-3 in IL-1β-induced hUCMSCs was verified using cDNA microarray analysis, quantitative real-time PCR, ELISA and Western blot. Wound-healing and trans-well assay were used to investigate the cell migration and invasion ability of IL-1β-treated hUCMSCs. In addition, we pre-treated hUCMSCs with interleukin-1 receptor antagonist, MMP-3 inhibitors (ALX-260-165, UK 356618), or transfected with MMP-3 siRNA to confirm the role of MMP3 in IL-1β-induced cell migration. Our results showed that IL-1β induced MMP-3 expression is related to the migration of hUCMSCs. Moreover, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) inhibitor U0126, p38 inhibitor SB205380, JNK inhibitor SP600125 and Akt inhibitor GSK 690693 decreased IL-1β-induced MMP-3 mRNA and protein expression. The migration and invasion ability analyses showed that these inhibitors attenuated the IL-1β-induced migration and invasion ability of hUCMSCs. In conclusion, we have found that IL-1β induces the expression of MMP-3 through ERK1/2, JNK, p38 MAPK and Akt signaling pathways to enhance the migration of hUCMSCs. These results provide further understanding of the mechanisms in IL-1β-induced hUCMSCs migration to injury sites.
Collapse
Affiliation(s)
- Chun-Hao Chang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yun-Li Lin
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yeu-Sheng Tyan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Yun-Hsuan Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ya-Han Liang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan, ROC
| | - Jiahn-Chun Wu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
8
|
Srikanthan P, Horwich TB, Calfon Press M, Gornbein J, Watson KE. Sex Differences in the Association of Body Composition and Cardiovascular Mortality. J Am Heart Assoc 2021; 10:e017511. [PMID: 33619971 PMCID: PMC8174238 DOI: 10.1161/jaha.120.017511] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background To determine whether differences in body composition contribute to sex differences in cardiovascular disease (CVD) mortality, we investigated the relationship between components of body composition and CVD mortality in healthy men and women. Methods and Results Dual energy x-ray absorptiometry body composition data from the National Health and Nutrition Examination Survey 1999-2004 and CVD mortality data from the National Health and Nutrition Examination Survey 1999-2014 were evaluated in 11 463 individuals 20 years of age and older. Individuals were divided into 4 body composition groups (low muscle mass-low fat mass-the referent; low muscle-high fat; high muscle-low fat, and high muscle-high fat), and adjusted competing risks analyses were performed for CVD versus non-CVD mortality. In women, high muscle/high fat mass was associated with a significantly lower adjusted CVD mortality rate (hazard ratio [HR], 0.58; 95% CI, 0.39-0.86; P=0.01), but high muscle/low fat mass was not. In men, both high muscle-high fat (HR, 0.74; 95% CI, 0.53-1.04; P=0.08) and high muscle-low fat mass (HR, 0.40; 95% CI, 0.21-0.77; P=0.01) were associated with lower CVD. Further, in adjusted competing risks analyses stratified by sex, the CVD rate in women tends to significantly decrease as normalized total fat increase (total fat fourth quartile: HR, 0.56; 95% CI, 0.34-0.94; P<0.03), whereas this is not noted in men. Conclusions Higher muscle mass is associated with lower CVD and mortality in men and women. However, in women, high fat, regardless of muscle mass level, appears to be associated with lower CVD mortality risk. This finding highlights the importance of muscle mass in healthy men and women for CVD risk prevention, while suggesting sexual dimorphism with respect to the CVD risk associated with fat mass.
Collapse
Affiliation(s)
| | | | | | - Jeff Gornbein
- Division of Internal Medicine University of California Los Angeles CA.,Department of Medicine and Computational Medicine University of California Los Angeles CA
| | - Karol E Watson
- Division of Cardiology University of California Los Angeles CA
| |
Collapse
|
9
|
Jiang HH, Ji LX, Li HY, Song QX, Bano Y, Chen L, Liu G, Wang M. Combined Treatment With CCR1-Overexpressing Mesenchymal Stem Cells and CCL7 Enhances Engraftment and Promotes the Recovery of Simulated Birth Injury-Induced Stress Urinary Incontinence in Rats. Front Surg 2020; 7:40. [PMID: 32850943 PMCID: PMC7412717 DOI: 10.3389/fsurg.2020.00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Objective: To observe whether urethral injection of chemokine (c-c motif) ligand 7 (CCL7) and overexpressing CC receptor 1 (CCR1) in mesenchymal stem cells (MSCs) can promote their homing and engraftment to the injured tissue, and improve the recovery of simulated birth injury-induced stress urinary incontinence (SUI) in rats. Methods: Female rats underwent a dual injury consisting of vaginal distension (VD) and pudendal nerve crush (PNC) to induce SUI. Bone marrow-derived MSCs were transduced with lentivirus carrying CCR1 (MSC-CCR1) and green fluorescent protein (GFP). Forty virgin Sprague–Dawley rats were evenly distributed into four groups: sham SUI + MSC-CCR1+CCL7, SUI + MSCs, SUI + MSC-CCR1, and SUI + MSC-CCR1+CCL7 group. The engrafted MSCs in urethra were quantified. Another three groups of rats, including sham SUI + sham MSC-CCR1+CCL7 treatment, SUI + sham MSC-CCR1+CCL7 treatment, and SUI + MSC-CCR1+CCL7 treatment group, were used to evaluate the functional recovery by testing external urethral sphincter electromyography (EUS EMG), pudendal nerve motor branch potentials (PNMBP), and leak point pressure (LPP) 1 week after injury and injection. Urethra and vagina were harvested for histological examination. Results: The SUI + MSC-CCR1+CCL7 group received intravenous injection of CCR1-overexpressing MSCs and local injection of CCL7 after simulated birth injury had the most engraftment of MSCs to the injured tissues and best functional recovery from SUI compared to other groups. Histological examination showed a partial repair in the SUI + MSC-CCR1+CCL7 group. Conclusions: Our study demonstrated combined treatment with CCR1-overexpressing MSCs and CCL7 can increase engraftment of MSCs and promote the functional recovery of simulated birth trauma-induced SUI in rats, which could be a new therapeutic strategy for SUI.
Collapse
Affiliation(s)
- Hai-Hong Jiang
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling-Xiao Ji
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Yan Li
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi-Xiang Song
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yasmeen Bano
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guiming Liu
- Department of Surgery/Urology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Le Thi Bich P, Nguyen Thi H, Dang Ngo Chau H, Phan Van T, Do Q, Dong Khac H, Le Van D, Nguyen Huy L, Mai Cong K, Ta Ba T, Do Minh T, Vu Bich N, Truong Chau N, Van Pham P. Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: a pilot clinical study. Stem Cell Res Ther 2020; 11:60. [PMID: 32054512 PMCID: PMC7020576 DOI: 10.1186/s13287-020-1583-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. COPD results from chronic inflammation of the lungs. Current treatments, including physical and chemical therapies, provide limited results. Stem cells, particularly mesenchymal stem cells (MSCs), are used to treat COPD. Here, we evaluated the safety and efficacy of umbilical cord-derived (UC)-MSCs for treating COPD. Methods Twenty patients were enrolled, 9 at stage C and 11 at stage D per the Global Initiative for Obstructive Lung Disease (GOLD) classification. Patients were infused with 106 cells/kg of expanded allogeneic UC-MSCs. All patients were followed for 6 months after the first infusion. The treatment end-point included a comprehensive safety evaluation, pulmonary function testing (PFT), and quality-of-life indicators including questionnaires, the 6-min walk test (6MWT), and systemic inflammation assessments. All patients completed the full infusion and 6-month follow-up. Results No infusion-related toxicities, deaths, or severe adverse events occurred that were deemed related to UC-MSC administration. The UC-MSC-transplanted patients showed a significantly reduced Modified Medical Research Council score, COPD assessment test, and number of exacerbations. However, the forced expiratory volume in 1 s, C-reactive protein, and 6MWT values were nonsignificantly reduced after treatment (1, 3, and 6 months) compared with those before the treatment. Conclusion Systemic UC-MSC administration appears to be safe in patients with moderate-to-severe COPD, can significantly improve their quality of life, and provides a basis for subsequent cell therapy investigations. Trial registration ISRCTN, ISRCTN70443938. Registered 06 July 2019
Collapse
Affiliation(s)
| | - Ha Nguyen Thi
- Van Hanh General Hospital, Ho Chi Minh City, Viet Nam
| | | | - Tien Phan Van
- Van Hanh General Hospital, Ho Chi Minh City, Viet Nam
| | - Quyet Do
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | - Dong Le Van
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | | | - Thang Ta Ba
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | - Ngoc Vu Bich
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam
| | - Nhat Truong Chau
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam. .,Laboratory of Stem Cell Research and Application, VNUHCM University of Science, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
11
|
Zhao H, Xie L, Clemens JL, Zong L, McLane MW, Arif H, Feller MC, Jia B, Zhu Y, Facciabene A, Ozen M, Lei J, Burd I. Mouse Bone Marrow-Derived Mesenchymal Stem Cells Alleviate Perinatal Brain Injury Via a CD8 + T Cell Mechanism in a Model of Intrauterine Inflammation. Reprod Sci 2020; 27:1465-1476. [PMID: 31997258 DOI: 10.1007/s43032-020-00157-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
The objective of this study was to determine if mouse bone marrow-derived mesenchymal stem cells (BMMSCs) ameliorate preterm birth and perinatal brain injury induced by intrauterine inflammation (IUI). A mouse model of IUI-induced perinatal brain injury at embryonic (E) day 17 was utilized. BMMSCs were derived from GFP-transgenic mice and phenotypically confirmed to be CD44+, Sca-1+, CD45-, CD34-, CD11b-, and CD11c- by flow cytometry and sorted by fluorescence-activated cell sorting (FACS). Dams were assigned to four groups: phosphate-buffered saline (PBS) + PBS, PBS + BMMSCs, lipopolysaccharide (LPS) + PBS, and LPS + BMMSCs. Following maternal IUI, there was a significant increase in CD8+ T cells in the placentas. Maternally administered BMMSCs trafficked to the fetal side of the placenta and resulted in significantly decreased placental CD8+ T cells. Furthermore, fetal trafficking of maternally administered BMMSCs correlated with an improved performance on offspring neurobehavioral testing in LPS + BMMSC group compared with LPS + PBS group. Our data support that maternal administration of BMMSCs can alleviate perinatal inflammation-induced brain injury and improve neurobehavioral outcomes in the offspring via CD8+ T cell immunomodulation at the feto-placental interface.
Collapse
Affiliation(s)
- Hongxi Zhao
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Li Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Julia L Clemens
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lu Zong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hattan Arif
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mia C Feller
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yan Zhu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Andreas Facciabene
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Maide Ozen
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
Han XJ, Li H, Liu CB, Luo ZR, Wang QL, Mou FF, Guo HD. Guanxin Danshen Formulation improved the effect of mesenchymal stem cells transplantation for the treatment of myocardial infarction probably via enhancing the engraftment. Life Sci 2019; 233:116740. [PMID: 31398416 DOI: 10.1016/j.lfs.2019.116740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Although intravenous injection is the most convenient and feasible approach for mesenchymal stem cells (MSCs) delivery, the proportion of donor stem cells in the target myocardium after transplantation is small. It is believed that TCM enhances the effect of stem cell therapy by improving the hostile microenvironment and promoting the migration and survival of stem cells. Guanxin Danshen (GXDS) formulation is one of the main prescriptions for clinical treatment of ischemic heart diseases in China. The purpose of this study was to evaluate the effects of GXDS formulation administration combined with MSCs transplantation on cardiac function improvement, apoptosis, angiogenesis and survival of transplanted cells in an acute model of acute myocardial infarction (MI). After being labeled with GFP, MSCs were transplanted via intravenous injection. Meanwhile, GXDS dripping pills were given by intragastric administration for 4 weeks from 2 days before MI. Echocardiography showed moderate improvement in cardiac function after administration of GXDS formulation or intravenous transplantation of MSCs. However, GXDS formulation combined with MSCs transplantation significantly improved cardiac function after MI. The myocardial infarct size in rats treated with MSCs was similar to that in rats treated with GXDS formulation. However, GXDS formulation combined with MSCs transplantation significantly reduced infarction area. In addition, GXDS formulation combined with MSCs transplantation not only decreased cell apoptosis according to the TUNEL staining, but also enhanced angiogenesis in the peri-infarction and infarction area. Interestingly, the use of GXDS formulation increased the number of injected MSCs in the infarct area. Furthermore, GXDS formulation combined with MSCs transplantation increased SDF-1 levels in the infarcted area, but did not affect the expression of YAP. Our study provided a more feasible and accessible strategy to enhance the migration of stem cells after intravenous injection by oral administration of GXDS formulation. The combination of GXDS formulation and stem cell therapy has practical significance and application prospects in the treatment of ischemic cardiomyopathy such as MI.
Collapse
Affiliation(s)
- Xiao-Jing Han
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | - Zhi-Rong Luo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang-Li Wang
- Department of Histoembryology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Al-Sowayan B, Keogh RJ, Abumaree M, Georgiou HM, Kalionis B. Valproic acid stimulates in vitro migration of the placenta-derived mesenchymal stem/stromal cell line CMSC29. Stem Cell Investig 2019; 6:3. [PMID: 30976600 DOI: 10.21037/sci.2019.01.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/11/2018] [Indexed: 01/07/2023]
Abstract
Background The placenta is an abundant source of mesenchymal stem/stromal cells (MSC), but our understanding of their functional properties remains limited. We previously created a placental-derived chorionic MSC (CMSC) cell line to overcome the difficulties associated with conducting extensive ex vivo optimization and experimental work on primary cells. The aim of this study was to characterize the migratory behavior of the CMSC29 cell line in vitro. Methods Stimulators of MSC migration, including two cytokines, stromal cell-derived factor-1α (SDF-1α) and hepatocyte growth factor (HGF), and a pharmacological agent, valproic acid (VPA), were tested for their ability to stimulate CMSC29 cell migration. Assessment of cell migration was performed using the xCELLigence Real-Time Cell Analyzer (RTCA). Results There was no significant increase in CMSC29 cell migration towards serum free medium with increasing concentration gradients of SDF-1α or HGF. In contrast, treating CMSC29 cells with VPA alone significantly increased their migration towards serum free medium. Conclusions Immortalized CMSC29 cells retain important properties of primary CMSC, but their migratory properties are altered. CMSC29 cells do not migrate in response to factors that reportedly stimulate primary MSC/CMSC migration. However, CMSC29 increase their migration in response to VPA treatment alone. Further studies are needed to determine the mechanism by which VPA acts alone to stimulate CMSC29 migration. Still, this study provides evidence that VPA pre-treatment may improve the benefits of cell-based therapies that employ certain MSC sub-types.
Collapse
Affiliation(s)
- Balta Al-Sowayan
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia.,Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Rosemary J Keogh
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mohammed Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11426, Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Harry M Georgiou
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Assessment of the Influence of Acetic Acid Residue on Type I Collagen during Isolation and Characterization. MATERIALS 2018; 11:ma11122518. [PMID: 30545004 PMCID: PMC6316942 DOI: 10.3390/ma11122518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Various methods for isolation of type I collagen using acids, bases, enzymes, and their combinations have been applied. However, a lack of standardization exists among type I collagens isolated by various approaches. Consequently, in this study, we assessed the influence of acetic acid residue on type I collagen isolated by pepsin-acetic acid treatment, the fabrication of collagen-based porous scaffolds, and the seeded cells on collagen scaffolds. Unlike the isolated collagen dialyzed by deionized water (DDW), collagen dialyzed by 0.5 M acetic acid (DAC) exhibited structural and thermal denaturation. Both DDW- and DAC-based porous scaffolds at all collagen concentrations (0.5, 1 and 2% w/v) showed the high degree of porosity (>98%), and their pore morphologies were comparable at the same concentrations. However, the DDW- and DAC-based collagen scaffolds displayed significant differences in their physical properties (weight, thickness, and volume) and swelling behaviors. In particular, the weight losses induced by mechanical stimulation reflected the high degradation of DAC-collagen scaffolds. In cell culture experiments using adipose-derived stem cells (ADSCs), the characteristics of mesenchymal stem cell (MSC) did not change in both DDW- and DAC-collagen scaffolds for 10 days, although cells proliferated less in the DAC-collagen scaffolds. Our results suggest that the elimination of acetic acid residue from isolated collagen is recommended to produce collagen scaffolds that provide a stable environment for cells and cell therapy-related applications.
Collapse
|
15
|
Bader AS, Levsky JM, Zalta BA, Shmukler A, Gohari A, Jain VR, Chernyak V, Lovihayeem M, Bellin EY, Haramati LB. Ventricular Myocardial Fat: An Unexpected Biomarker for Long-term Survival? Eur Radiol 2018; 29:241-250. [DOI: 10.1007/s00330-018-5546-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
|
16
|
IL-1 β-Induced Matrix Metalloprotease-1 Promotes Mesenchymal Stem Cell Migration via PAR1 and G-Protein-Coupled Signaling Pathway. Stem Cells Int 2018; 2018:3524759. [PMID: 30026761 PMCID: PMC6031215 DOI: 10.1155/2018/3524759] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/19/2017] [Accepted: 12/28/2017] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known for homing to sites of injury in response to signals of cellular damage. However, the mechanisms of how cytokines recruit stem cells to target tissue are still unclear. In this study, we found that the proinflammation cytokine interleukin-1β (IL-1β) promotes mesenchymal stem cell migration. The cDNA microarray data show that IL-1β induces matrix metalloproteinase-1 (MMP-1) expression. We then used quantitative real-time PCR and MMP-1 ELISA to verify the results. MMP-1 siRNA transfected MSCs, and MSC pretreatment with IL-1β inhibitor interleukin-1 receptor antagonist (IL-1RA), MMP tissue inhibitor of metalloproteinase 1 (TIMP1), tissue inhibitor of metalloproteinase 2 (TIMP2), MMP-1 inhibitor GM6001, and protease-activated receptor 1 (PAR1) inhibitor SCH79797 confirms that PAR1 protein signaling pathway leads to IL-1β-induced cell migration. In conclusion, IL-1β promotes the secretion of MMP-1, which then activates the PAR1 and G-protein-coupled signal pathways to promote mesenchymal stem cell migration.
Collapse
|
17
|
Immunomodulatory Behavior of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:73-84. [DOI: 10.1007/5584_2018_255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Rezaie J, Mehranjani MS, Rahbarghazi R, Shariatzadeh MA. Angiogenic and Restorative Abilities of Human Mesenchymal Stem Cells Were Reduced Following Treatment With Serum From Diabetes Mellitus Type 2 Patients. J Cell Biochem 2017; 119:524-535. [PMID: 28608561 DOI: 10.1002/jcb.26211] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
This experiment investigated the impact of serum from patients with type 2 diabetes mellitus on the angiogenic behavior of human mesenchymal stem cells in vitro. Changes in the level of Ang-1, Ang-2, cell migration, and trans-differentiation into pericytes and endothelial lineage were monitored after 7 days. The interaction of mesenchymal stem cells with endothelial cells were evaluated using surface plasmon resonance technique. Paracrine restorative effect of diabetic stem cells was tested on pancreatic β cells. Compared to data from FBS and normal serum, diabetic serum reduced the stem cell survival and chemotaxis toward VEGF and SDF-1α (P < 0.05). Diabetic condition were found to decline cell migration rate and the activity of MMP-2 and -9 (P < 0.05). The down-regulation of VEGFR-2 and CXCR-4 was observed with an increase in the level of miR-1-3p and miR-15b-5p at the same time. The paracrine angiogenic potential of diabetic stem cells was disturbed via the changes in the dynamic of Ang-1, Ang-2, and VEGF. Surface plasmon resonance analysis showed that diabetes could induce an aberrant increase in the interaction of stem cells with endothelial cells. After treatment with diabetic serum, the expression of VE-cadherin and NG2 and ability for uptake of Dil-Ac-LDL were reduced (P < 0.01). Conditioned media prepared from diabetic stem cells were unable to decrease fatty acid accumulation in β-cells (P < 0.05). The level of insulin secreted by β-cells was not affected after exposure to supernatant from diabetic or non-diabetic mesenchymal stem cells. Data suggest diabetes could decrease angiogenic and restorative effect of stem cells in vitro. J. Cell. Biochem. 119: 524-535, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jafar Rezaie
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
19
|
Al-Sowayan B, Keogh RJ, Abumaree M, Georgiou HM, Kalionis B. The effect of endothelial cell activation and hypoxia on placental chorionic mesenchymal stem/stromal cell migration. Placenta 2017; 59:131-138. [PMID: 28697979 DOI: 10.1016/j.placenta.2017.06.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/11/2017] [Accepted: 06/26/2017] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Chorionic mesenchymal stem/stromal cells (CMSC) can be isolated from the placenta in large numbers. Although their functions are yet to be fully elucidated, they have a role in tissue development and repair. To fulfil such a role, CMSC must be able to migrate to the microenvironment of the injury site. This process is not fully understood and the aim of this study therefore, was to examine in vitro CMSC migration in response to tissue inflammation and hypoxic conditioning. METHODS CMSC were derived from the chorionic villi. A trans-endothelium migration (TEM) assay was used to study CMSC migration through an activated endothelial cell monolayer using the HMEC-1 cell line. A cytokine array was used to identify and compare the cytokine production profile of activated versus non-activated HMEC-1. RESULTS There were significant changes in cytokine production by HMEC-1 cells following lipopolysaccharide (LPS) treatment and hypoxic conditioning. Despite this, results from the TEM assay showed no significant change in the average number of CMSC that migrated through the LPS activated HMEC-1 layer compared to the untreated control. Furthermore, there was no significant change in the average number of CMSC that migrated through the HMEC-1 monolayer when exposed to hypoxic (1% O2), normoxic (8% O2) or hyperoxic (21% O2) conditions. CONCLUSION These data suggest that cell functions such as transendothelial migration can vary between MSC derived from different tissues in response to the same biological cues.
Collapse
Affiliation(s)
- Balta Al-Sowayan
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, 3052, Australia; Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, 3052, Australia; Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Saudi Arabia
| | - Rosemary J Keogh
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, 3052, Australia; Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Mohammed Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Saudi Arabia; College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 3124, P.O. Box 3660, Riyadh, 11481, Saudi Arabia
| | - Harry M Georgiou
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, 3052, Australia; Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Bill Kalionis
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, 3052, Australia; Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
20
|
Comprehensive Screening of Cell Surface Markers Expressed by Adult-Derived Human Liver Stem/Progenitor Cells Harvested at Passage 5: Potential Implications for Engraftment. Stem Cells Int 2016; 2016:9302537. [PMID: 27956903 PMCID: PMC5124472 DOI: 10.1155/2016/9302537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are known to have potential therapeutic benefits for a number of diseases. However, many studies report low engraftment levels, regardless of the target organ. One possible explanation could be that MSCs do not express the necessary receptors for engraftment. Indeed, MSCs appear to use a similar mechanism to leukocytes to engraft into injured organs, relying on various receptors for rolling, firm adhesion, and transmigration. In this study, we conducted an extensive surface molecule screening of adult-derived human liver stem/progenitor cells (ADHLSC) in an attempt to shed some light on this subject. We observed that ADHLSCs lack expression of most of the costimulatory molecules tested. Furthermore, study of the adhesion molecule profile of ADHLSCs revealed that they do not express selectin ligands or LFA-1 which are, respectively, involved in the rolling process and the firm adhesion. In addition, ADHLSCs slightly express VLA-4 and lose expression of CXCR4 altogether on their surface during culture expansion. However, ADHLSCs express all the integrin couples and matrix metalloproteinases needed to bind and integrate the extracellular matrix once the endothelial barrier is crossed. Collectively, these results suggest that binding to the endothelium may be the critical weak point in the engraftment process.
Collapse
|
21
|
Rivera-Delgado E, Sadeghi Z, Wang NX, Kenyon J, Satyanarayan S, Kavran M, Flask C, Hijaz AZ, von Recum HA. Local release from affinity-based polymers increases urethral concentration of the stem cell chemokine CCL7 in rats. ACTA ACUST UNITED AC 2016; 11:025022. [PMID: 27097800 DOI: 10.1088/1748-6041/11/2/025022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protein chemokine (C-C motif) ligand 7 (CCL7) is significantly over-expressed in urethral and vaginal tissues immediately following vaginal distention in a rat model of stress urinary incontinence. Further evidence, in this scenario and other clinical scenarios, indicates CCL7 stimulates stem cell homing for regenerative repair. This CCL7 gradient is likely absent or compromised in the natural repair process of women who continue to suffer from SUI into advanced age. We evaluated the feasibility of locally providing this missing CCL7 gradient by means of an affinity-based implantable polymer. To engineer these polymers we screened the affinity of different proteoglycans, to use them as CCL7-binding hosts. We found heparin to be the strongest binding host for CCL7 with a 0.323 nM dissociation constant. Our experimental approach indicates conjugation of heparin to a polymer backbone (using either bovine serum albumin or poly (ethylene glycol) as the base polymer) can be used as a delivery system capable of providing sustained concentrations of CCL7 in a therapeutically useful range up to a month in vitro. With this approach we are able to detect, after polymer implantation, significant increase in CCL7 in the urethral tissue directly surrounding the polymer implants with only trace amounts of human CCL7 present in the blood of the animals. Whole animal serial sectioning shows evidence of retention of locally injected human mesenchymal stem cells (hMSCs) only in animals with sustained CCL7 delivery, 2 weeks after affinity-polymers were implanted.
Collapse
Affiliation(s)
- Edgardo Rivera-Delgado
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Balaji S, Watson CL, Ranjan R, King A, Bollyky PL, Keswani SG. Chemokine Involvement in Fetal and Adult Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:660-672. [PMID: 26543680 DOI: 10.1089/wound.2014.0564] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets.
Collapse
Affiliation(s)
- Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Carey L. Watson
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Rajeev Ranjan
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford School of Medicine, Palo Alto, California
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
23
|
Marković M, Tomić S, Djokić J, Čolić M. Mesenchymal Stem Cells from Periapical Lesions Upregulate the Production of Immunoregulatory Cytokines by Inflammatory Cells in Culture / Mezenhimske matične ćelije iz periapeksnih lezija stimulišu produkciju imunoregulacijskih citokina od strane inflamacijskih ćelija u kulturi. ACTA FACULTATIS MEDICAE NAISSENSIS 2015. [DOI: 10.1515/afmnai-2015-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The pathophysiology of periapical lesions (PLs) is under control of pro-inflammatory and anti-inflammatory (mainly immunoregulatory) cytokines. We have recently established mesenchymal stem cells (MSCs) from PLs and showed their suppressive effects on the production of proinflammatory cytokines from PLs inflammatory cells (ICs). In this work we studied the production of interleukin (IL)-10, IL-27 and transforming growth factor (TGF)-β, by PL-ICs in direct or indirect contacts with PL-MSCs. PL-ICs, which were isolated from four different asymptomatic PLs, predominantly composed of lymphocytes, followed by neutrophil granulocytes, macrophages and plasma cells. PLMSCs, expressing typical MSC markers, were co-cultivated with PL-ICs at 1:10 ratio, either in direct contact or in a transwell-system, for 24 hours. The levels of cytokines in cell-culture supernatants were tested by ELISA. The results showed that PL-MSCs up-regulated the production of all three immunoregulatory cytokines by PL-ICs. PL-MSCs stimulated the production of IL-10 and IL-27 via soluble factors, whereas the up-regulation of TGF-β required direct cell-to-cell contacts. In conclusion, our results showed for the first time the involvement of PL-MSCs in restriction of inflammation in PLs by up-regulation of immunoregulatory cytokines.
Collapse
|
24
|
Lei J, Firdaus W, Rosenzweig JM, Alrebh S, Bakhshwin A, Borbiev T, Fatemi A, Blakemore K, Johnston MV, Burd I. Murine model: maternal administration of stem cells for prevention of prematurity. Am J Obstet Gynecol 2015; 212:639.e1-10. [PMID: 25555657 DOI: 10.1016/j.ajog.2014.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/01/2014] [Accepted: 12/21/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Using a mouse model of intrauterine inflammation, we have demonstrated that exposure to inflammation induces preterm birth and perinatal brain injury. Mesenchymal stem cells (MSCs) have been shown to exhibit immunomodulatory effects in many inflammatory conditions. We hypothesized that treatment with human adipose tissue-derived MSCs may decrease the rate of preterm birth and perinatal brain injury through changes in antiinflammatory and regulatory milieu. STUDY DESIGN A mouse model of intrauterine inflammation was used with the following groups: (1) control; (2) intrauterine inflammation (lipopolysaccharide); and (3) intrauterine lipopolysaccharide+intraperitoneal (MSCs). Preterm birth was investigated. Luminex multiplex enzyme-linked immunosorbent assays were performed for protein levels of cytokines in maternal and fetal compartments. Immunofluorescent staining was used to identify and localize MSCs and to examine microglial morphologic condition and neurotoxicity in perinatal brain. Behavioral testing was performed at postnatal day 5. RESULTS Pretreatment with MSCs significantly decreased the rate of preterm birth by 21% compared with the lipopolysaccharide group (P<.01). Pretreatment was associated with increased interleukin-10 in maternal serum, increased interleukin-4 in placenta, decreased interleukin-6 in fetal brain (P<.05), decreased microglial activation (P<.05), and decreased fetal neurotoxicity (P<.05). These findings were associated with improved neurobehavioral testing at postnatal day 5 (P<.05). Injected MSCs were localized to placenta. CONCLUSION Maternally administered MSCs appear to modulate maternal and fetal immune response to intrauterine inflammation in the model and decrease preterm birth, perinatal brain injury, and motor deficits in offspring mice.
Collapse
Affiliation(s)
- Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wance Firdaus
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason M Rosenzweig
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shorouq Alrebh
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ahmed Bakhshwin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Talaibek Borbiev
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ali Fatemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD
| | - Karin Blakemore
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael V Johnston
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD.
| |
Collapse
|
25
|
Cai SX, Liu AR, Chen S, He HL, Chen QH, Xu JY, Pan C, Yang Y, Guo FM, Huang YZ, Liu L, Qiu HB. Activation of Wnt/β-catenin signalling promotes mesenchymal stem cells to repair injured alveolar epithelium induced by lipopolysaccharide in mice. Stem Cell Res Ther 2015; 6:65. [PMID: 25889393 PMCID: PMC4414385 DOI: 10.1186/s13287-015-0060-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/03/2015] [Accepted: 03/20/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have potential for re-epithelization and recovery in acute respiratory distress syndrome (ARDS). In a previous in vitro study, the results showed that the canonical Wnt/β-catenin pathway promoted the differentiation of MSCs into type II alveolar epithelial cells, conferred resistance to oxidative stress, and promoted their migration, suggesting that the Wnt/β-catenin pathway might be one of the key mechanisms underling the therapeutic effect of mouse MSCs in ARDS. Methods Mouse MSCs stable transfected with β-catenin or green fluorescent protein control were transplanted intratracheally into the ARDS mice induced by lipopolysaccharide. Lung tissue injury and repair assessment were examined using haematoxylin and eosin staining, lung injury scoring, Masson’s trichrome staining and fibrosis scoring. Homing and differentiation of mouse MSCs were assayed by labelling and tracing MSCs using NIR815 dye, immunofluorescent staining, and Western immunoblot analysis. The inflammation and permeability were evaluated by detecting the cytokine and protein measurements in bronchoalveolar lavage fluid using enzyme-linked immunosorbent assay. Results In this study, β-catenin-overexpressing MSC engraftment led to more significant effects than the GFP controls, including the retention of the MSCs in the lung, differentiation into type II alveolar epithelial cells, improvement in alveolar epithelial permeability, and the pathologic impairment of the lung tissue. Conclusion These results suggest that the activation of canonical Wnt/β-catenin pathway by mouse MSCs by overexpressing β-catenin could further improve the protection of mouse MSCs against epithelial impair and the therapeutic effects of mouse MSCs in ARDS mice.
Collapse
Affiliation(s)
- Shi-xia Cai
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China. .,Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, People's Republic of China.
| | - Ai-ran Liu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Song Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Hong-li He
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Qi-hong Chen
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Jing-yuan Xu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Chun Pan
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Yi Yang
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Feng-mei Guo
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Ying-zi Huang
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Ling Liu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| | - Hai-bo Qiu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
26
|
Shankar V, Hori H, Kihira K, Lei Q, Toyoda H, Iwamoto S, Komada Y. Mesenchymal stromal cell secretome up-regulates 47 kDa CXCR4 expression, and induce invasiveness in neuroblastoma cell lines. PLoS One 2015; 10:e0120069. [PMID: 25774696 PMCID: PMC4361348 DOI: 10.1371/journal.pone.0120069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/31/2015] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma accounts for 15% of childhood cancer deaths and presents with metastatic disease of the bone and the bone marrow at diagnosis in 70% of the cases. Previous studies have shown that the Mesenchymal Stromal Cell (MSC) secretome, triggers metastases in several cancer types such as breast and prostate cancer, but the specific role of the MSC factors in neuroblastoma metastasis is unclear. To better understand the effect of MSC secretome on chemokine receptors in neuroblastoma, and its role in metastasis, we studied a panel of 20 neuroblastoma cell lines, and compared their invasive potential towards MSC-conditioned-RPMI (mRPMI) and their cytokine receptor expression profiles. Western blot analysis revealed the expression of multiple CXCR4 isoforms in neuroblastoma cells. Among the five major isoforms, the expression of the 47 kDa isoform showed significant correlation with high invasiveness. Pretreatment with mRPMI up-regulated the expression of the 47 kDa CXCR4 isoform and also increased MMP-9 secretion, expression of integrin α3 and integrin β1, and the invasive potential of the cell; while blocking CXCR4 either with AMD 3100, a CXCR4 antagonist, or with an anti-47 kDa CXCR4 neutralizing antibody decreased the secretion of MMP-9, the expression of integrin α3 and integrin β1, and the invasive potential of the cell. Pretreatment with mRPMI also protected the 47 kDa CXCR4 isoform from ubiquitination and subsequent degradation. Our data suggest a modulatory role of the MSC secretome on the expression of the 47 kDa CXCR4 isoform and invasion potential of the neuroblastoma cells to the bone marrow.
Collapse
Affiliation(s)
- Vipin Shankar
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
- * E-mail:
| | - Kentaro Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Qi Lei
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| |
Collapse
|
27
|
Zhou SB, Wang J, Chiang CA, Sheng LL, Li QF. Mechanical stretch upregulates SDF-1α in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin. Stem Cells 2015; 31:2703-13. [PMID: 23836581 DOI: 10.1002/stem.1479] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/23/2013] [Accepted: 06/14/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Skin and soft tissue expansion is a procedure that stimulates skin regeneration by applying continuous mechanical stretching of normal donor skin for reconstruction purposes. We have reported that topical transplantation of bone marrow-derived mesenchymal stem cells (MSCs) can accelerate mechanical stretch induced skin regeneration. However, it is unclear how circulating MSCs respond to mechanical stretch in skin tissue. METHODS MSCs from luciferase-Tg Lewis rats were transplanted into a rat tissue expansion model and tracked in vivo by luminescence imaging. Expression levels of chemokines including macrophage inflammatory protein-1α, thymus and activation-regulated chemokine, secondary lymphoid tissue chemokine, cutaneous T-cell attracting chemokine, and stromal-derived factor-1α (SDF-1α) were elevated in mechanically stretched tissues, as were their related chemokine receptors in MSCs. Chemotactic assays were conducted in vitro and in vivo to assess the impact of chemokine expression on MSC migration. RESULTS MSC migration was observed in mechanically stretched skin. Mechanical stretching induced temporal upregulation of chemokine expression. Among all the tested chemokines, SDF-1α showed the most significant increase in stretched skin, suggesting a strong connection to migration of MSCs. The in vitro chemotactic assay showed that conditioned medium from mechanically stretched cells induced MSC migration, which could be blocked with the CXCR4 antagonist AMD3100, as effectively as medium containing 50 ng/ml rat recombinant SDF-1α. Results from in vivo study also showed that MSC migration to mechanically stretched skin was significantly blocked by AMD3100. Moreover, migrating MSCs expressed differentiation markers, suggesting a contribution of MSCs to skin regeneration through differentiation. CONCLUSION Mechanical stretching can upregulate SDF-1α in skin and recruit circulating MSCs through the SDF-1α/CXCR4 pathway.
Collapse
Affiliation(s)
- Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
28
|
Mirzamohammadi S, Aali E, Najafi R, Kamarul T, Mehrabani M, Aminzadeh A, Sharifi AM. Effect of 17β-estradiol on mediators involved in mesenchymal stromal cell trafficking in cell therapy of diabetes. Cytotherapy 2014; 17:46-57. [PMID: 25457279 DOI: 10.1016/j.jcyt.2014.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have shown great promise for cell therapy of a wide range of diseases such as diabetes. However, insufficient viability of transplanted cells reaching to damaged tissues has limited their potential therapeutic effects. Expression of estrogen receptors on stem cells may suggest a role for 17β-estradiol (E2) in regulating some functions in these cells. There is evidence that E2 enhances homing of stem cells. Induction of hypoxia-inducible factor-1α (HIF-1α) by E2 and the profound effect of HIF-1α on migration of cells have previously been demonstrated. We investigated the effect of E2 on major mediators involved in trafficking and subsequent homing of MSCs both in vitro and in vivo in diabetic rats. METHODS E2 has been selected to improve the poor migration capacity of MSCs toward sites of injury. MSCs were incubated with different concentrations of E2 for varying periods of time to investigate whether estradiol treatment could be effective to enhance the efficiency of MSC transplantation. RESULTS E2 significantly enhanced the viability of the cells that were blocked by ICI 182,780 (estrogen receptor antagonist). E2 also increased HIF-1α, CXC chemokine receptor 4 and C-C chemokine receptor 2 protein and messenger RNA levels measured by Western blot and reverse transcription-polymerase chain reaction. The enzymatic activity of matrix metalloproteinase 2 and metalloproteinase 9 was elevated in E2-treated cells through the use of gelatin zymography. Finally, the improved migration capacity of E2-treated MSCs was evaluated with the use of a Boyden chamber and in vivo migration assays. CONCLUSIONS Our data support that conditioning of MSCs with E2 promotes migration of cells in cultured MSCs in vitro and in a diabetic rat model in vivo through regulation of major mediators of cell trafficking.
Collapse
Affiliation(s)
- Solmaz Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Aali
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Tunku Kamarul
- Tissue Engineering Group (TEG) and Research, National Orthopedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopedics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehrnaz Mehrabani
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aminzadeh
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Sun B. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins. Proteomics 2014; 15:1152-63. [DOI: 10.1002/pmic.201400300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/07/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Bingyun Sun
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University; Burnaby British Columbia Canada
| |
Collapse
|
30
|
Grigoryeva OA, Korovina IV, Gogia BS, Sysoeva VY. Migration properties of adipose-tissue-derived mesenchymal stromal cells cocultured with activated monocytes in vitro. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14050022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Saito Y, Shimada M, Utsunomiya T, Ikemoto T, Yamada S, Morine Y, Imura S, Mori H, Arakawa Y, Kanamoto M, Iwahashi S, Takasu C. Homing effect of adipose-derived stem cells to the injured liver: the shift of stromal cell-derived factor 1 expressions. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:873-80. [PMID: 25131380 DOI: 10.1002/jhbp.147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Whether systemically transplanted human adipose-derived stem cells (ADSCs) homed to the injured liver in nude mice under stress with subsequent hepatectomy (Hx) and ischemia-reperfusion (I/R) was investigated in the present study. The types of cells in the liver that were involved in the homing of ADSCs were clarified, with focus on the stromal-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR-4) axis. METHODS Adipose-derived stem cells were transplanted intravenously immediately after 70% Hx and I/R. ADSCs were traced by in vivo imaging for 24 h after transplantation and ADSCs were histologically detected in the liver. SDF-1 and CXCR-4 expressions in the liver were evaluated by real time RT-PCR. The immunohistochemical analysis of SDF-1 was also performed to identify SDF-1 expressing cells in the liver. RESULTS Adipose-derived stem cells were found in various organs immediately following transplantation and almost accumulated in remnant liver or spleen at 6 h after transplantation. ADSCs were also histologically revealed in the harvested liver. Hx and I/R injury significantly enhanced SDF-1 expressions regardless of ADSCs transplantation, and only ADSC transplantation increased CXCR-4 expressions. The predominant SDF-1 positive cells in the liver were equally identified in parenchymal and non-parenchymal cells at 6 h, but shifted to non-parenchymal cells at 24 h after transplantation. CONCLUSIONS Systemically transplanted ADSCs homed to the injured liver after transplantation, possibly based on the mechanisms of SDF-1/CXCR-4 axis. Therefore, systemic transplantation might be an effective and practical route for the transplantation of ADSCs.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pelekanos RA, Ting MJ, Sardesai VS, Ryan JM, Lim YC, Chan JKY, Fisk NM. Intracellular trafficking and endocytosis of CXCR4 in fetal mesenchymal stem/stromal cells. BMC Cell Biol 2014; 15:15. [PMID: 24885150 PMCID: PMC4065074 DOI: 10.1186/1471-2121-15-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/02/2014] [Indexed: 12/13/2022] Open
Abstract
Background Fetal mesenchymal stem/stromal cells (MSC) represent a developmentally-advantageous cell type with translational potential. To enhance adult MSC migration, studies have focussed on the role of the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12), but more recent work implicates an intricate system of CXCR4 receptor dimerization, intracellular localization, multiple ligands, splice variants and nuclear accumulation. We investigated the intracellular localization of CXCR4 in fetal bone marrow-derived MSC and role of intracellular trafficking in CXCR4 surface expression and function. Results We found that up to 4% of human fetal MSC have detectable surface-localized CXCR4. In the majority of cells, CXCR4 is located not at the cell surface, as would be required for ‘sensing’ migratory cues, but intracellularly. CXCR4 was identified in early endosomes, recycling endosomes, and lysosomes, indicating only a small percentage of CXCR4 travelling to the plasma membrane. Notably CXCR4 was also found in and around the nucleus, as detected with an anti-CXCR4 antibody directed specifically against CXCR4 isoform 2 differing only in N-terminal sequence. After demonstrating that endocytosis of CXCR4 is largely independent of endogenously-produced SDF-1, we next applied the cytoskeletal inhibitors blebbistatin and dynasore to inhibit endocytotic recycling. These increased the number of cells expressing surface CXCR4 by 10 and 5 fold respectively, and enhanced the number of cells migrating to SDF1 in vitro (up to 2.6 fold). These molecules had a transient effect on cell morphology and adhesion, which abated after the removal of the inhibitors, and did not alter functional stem cell properties. Conclusions We conclude that constitutive endocytosis is implicated in the regulation of CXCR4 membrane expression, and suggest a novel pharmacological strategy to enhance migration of systemically-transplanted cells.
Collapse
Affiliation(s)
- Rebecca A Pelekanos
- UQ Centre for Clinical Research, The University of Queensland, Herston QLD 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Among lean populations, cardiovascular disease (CVD) is rare. Among those with increased adiposity, CVD is the commonest cause of worldwide death. The "obesity paradox" describes seemingly contrary relationships between body fat and health/ill-health. Multiple obesity paradoxes exist, and include the anatomic obesity paradox, physiologic obesity paradox, demographic obesity paradox, therapeutic obesity paradox, cardiovascular event/procedure obesity paradox, and obesity treatment paradox. Adiposopathy ("sick fat") is defined as adipocyte/adipose tissue dysfunction caused by positive caloric balance and sedentary lifestyle in genetically and environmentally susceptible individuals. Adiposopathy contributes to the commonest metabolic disorders encountered in clinical practice (high glucose levels, high blood pressure, dyslipidemia, etc.), all major CVD risk factors. Ockham's razor is a principle of parsimony which postulates that among competing theories, the hypothesis with the fewest assumptions is the one best selected. Ockham's razor supports adiposopathy as the primary cause of most cases of adiposity-related metabolic diseases, which in turn helps resolve the obesity paradox.
Collapse
Affiliation(s)
- Harold Bays
- Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, Louisville, KY, 40213, USA,
| |
Collapse
|
34
|
Involvement of TNF-α in differential gene expression pattern of CXCR4 on human marrow-derived mesenchymal stem cells. Mol Biol Rep 2014; 41:1059-66. [PMID: 24395293 DOI: 10.1007/s11033-013-2951-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 12/20/2013] [Indexed: 01/14/2023]
Abstract
Cell therapy and tissue repair are used in a variety of diseases including tissue and organ transplantation, autoimmune diseases and cancers. Now mesenchymal stem cells (MSCs) are an attractive and promising source for cell-based therapy according to their individual characteristics. Soluble factors which are able to induce MSCs migration have a vital role in cell engraftment and tissue regeneration. Tumor necrosis factor α (TNF-α) is a major cytokine present in damaged tissues. We have investigated the pattern of gene expression of chemokine receptor CXCR4 in nine groups of human bone marrow-derived MSCs stimulated with TNF-α in different dose and time manner. Comparison of TNF-α treated with untreated MSCs revealed the highest expression level of CXCR4 after treatment with 1, and 10 ng/ml of TNF-α in 24 h, and the production of CXCR4 mRNA was regulated up to 216 and 512 fold, respectively. Our results demonstrated the differential gene expression pattern of chemokine receptor CXCR4 in human marrow-derived MSCs stimulated with inflammatory cytokine TNF-α. These findings suggest that in vitro control of both dose and time factors may be important in stem cell migration capacity, and perhaps in future-stem cell transplantation therapies.
Collapse
|
35
|
Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:561098. [PMID: 24381939 PMCID: PMC3870125 DOI: 10.1155/2013/561098] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-)1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair.
Collapse
|
36
|
Halabian R, Tehrani HA, Jahanian-Najafabadi A, Habibi Roudkenar M. Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell Stress Chaperones 2013; 18:785-800. [PMID: 23620204 PMCID: PMC3789877 DOI: 10.1007/s12192-013-0430-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022] Open
Abstract
Despite many advantages of mesenchymal stem cells (MSCs) that make them suitable for cell therapy purposes, their therapeutic application has been limited due to their susceptibility to several stresses (e.g., nutrient-poor environment, oxidative stress, and hypoxic and masses of cytotoxic factors) to which they are exposed during their preparation and following transplantation. Hence, reinforcing MSCs against these stresses is a challenge for both basic and clinician scientists. Recently, much attention has been directed toward equipping MSCs with cytoprotective factors to strengthen them against unfavorable microenvironments. Here, we engineered MSCs with lipocalin 2 (Lcn2), a cytoprotective factor that is naturally induced following exposure of cells to stresses imposed by the microenvironment. Lcn2 overexpression not only did not interfere with the multidifferentiation capacity of the MSCs but also granted many protective properties to them. Lcn2 potentiated MSCs to withstand oxidative, hypoxia, and serum deprivation (SD) conditions via antagonizing their induced cytotoxicity and apoptosis. Adhesion rate of MSCs to coated culture plates was also enhanced by Lcn2 overexpression. In addition, Lcn2 induced antioxidants and upregulated some growth factors in MSCs. Our findings suggested a new strategy for prevention of graft cell death in MSC-based cell therapy.
Collapse
Affiliation(s)
- Raheleh Halabian
- />Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- />Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665-1157, Tehran, Iran
| |
Collapse
|
37
|
Ox-LDL promotes migration and adhesion of bone marrow-derived mesenchymal stem cells via regulation of MCP-1 expression. Mediators Inflamm 2013; 2013:691023. [PMID: 23956504 PMCID: PMC3730161 DOI: 10.1155/2013/691023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/28/2013] [Indexed: 02/02/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression.
Collapse
|
38
|
Specific chemotaxis of magnetically labeled mesenchymal stem cells: implications for MRI of glioma. Mol Imaging Biol 2013; 14:676-87. [PMID: 22418788 DOI: 10.1007/s11307-012-0553-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a lethal disease marked by infiltration of cancerous cells into the surrounding normal brain. The dire outcome of GBM patients stems in part from the limitations of current neuroimaging methods. Notably, early cancer detection methodologies are lacking, without the ability to identify aggressive, metastatic tumor cells. We propose a novel approach for tumor detection using magnetic resonance imaging (MRI) based on imaging specific tumor tropism of mesenchymal stem cells (MSCs) labeled with micron-sized iron oxide particles (MPIOs). PROCEDURES MPIO labeled and unlabeled MSCs were compared for viability, multi-lineage differentiation, and migration, where both chemotactic and chemokinetic movement were assessed in the presence of serum-free medium, serum-containing medium, and glioma-conditioned medium. MRI was performed on agarose samples, consisting of MPIO-labeled single MSCs, to confirm the capability to detect single cells. RESULTS We determined that MPIO-labeled MSCs exhibit specific and significant chemotactic migration towards glioma-conditioned medium in vitro. Confocal fluorescence microscopy confirmed that MPIOs are internalized and do not impact important cell processes of MSCs. Lastly, MPIO-labeled MSCs appear as single distinct, dark spots on T(2)*-weighted MRI, supporting the robustness of this contrast agent for cell tracking. CONCLUSIONS This is the first study to show that MPIO-labeled MSCs exhibit specific tropism toward tumor-secreted factors in vitro. The potential for detecting single MPIO-labeled MSCs provides rationale for in vivo extension of this methodology to visualize GBM in animal models.
Collapse
|
39
|
Liu AR, Liu L, Chen S, Yang Y, Zhao HJ, Liu L, Guo FM, Lu XM, Qiu HB. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J Cell Physiol 2013; 228:1270-83. [PMID: 23154940 DOI: 10.1002/jcp.24282] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 11/02/2012] [Indexed: 01/31/2023]
Abstract
The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells in vivo and in vitro, is critical for reepithelization and recovery in acute lung injury (ALI), but the mechanisms responsible for differentiation are unclear. In the present study, we investigated the role of the canonical wnt pathway in the differentiation of mouse bone marrow-derived MSCs (mMSCs) into AT II cells. Using a modified co-culture system with murine lung epithelial-12 (MLE-12) cells and small airway growth media (SAGM) to efficiently drive mMSCs differentiation, we found that GSK 3β and β-catenin in the canonical wnt pathway were up-regulated during differentiation. The levels of surfactant protein (SP) C, SPB, and SPD, the specific markers of AT II cells, correspondingly increased in mMSCs when Wnt3a or LiCl was added to the co-culture system to activate wnt/β-catenin signaling. The expression of these factors was depressed to some extent by inhibiting the pathway with the addition of DKK 1. The differentiation rate of mMSCs also depends on their abilities to accumulate and survive in inflammatory tissue. Our results suggested that the activation of wnt/β-catenin signaling promoted mMSCs migration towards ALI mouse-derived lung tissue in a Transwell assay, and ameliorated the cell death and the reduction of Bcl-2/Bax induced by H(2) O(2), which simultaneously caused reduced GSK 3β and β-catenin in mMSCs. These data supports a potential mechanism for the differentiation of mMSCs into AT II cells involving canonical wnt pathway activation, which may be significant to their application in ALI.
Collapse
Affiliation(s)
- Ai-Ran Liu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sole A, Spriet M, Padgett KA, Vaughan B, Galuppo LD, Borjesson DL, Wisner ER, Vidal MA. Distribution and persistence of technetium-99 hexamethyl propylene amine oxime-labelled bone marrow-derived mesenchymal stem cells in experimentally induced tendon lesions after intratendinous injection and regional perfusion of the equine distal limb. Equine Vet J 2013; 45:726-31. [PMID: 23574488 DOI: 10.1111/evj.12063] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 01/27/2013] [Indexed: 12/25/2022]
Abstract
REASONS FOR PERFORMING STUDY Intralesional (i.l.) injection is currently the most commonly used technique for stem cell therapy in equine tendon injury. A comparison of different techniques of injection of mesenchymal stem cells for the treatment of tendon lesions is required. OBJECTIVES We hypothesised that vascular perfusion of the equine distal limb with mesenchymal stem cells (MSCs) would result in preferential distribution of MSCs to acute tendon injuries. STUDY DESIGN In vivo experimental study. METHODS Lesions were surgically induced in forelimb superficial digital flexor tendons of 8 horses. Three or 10 days after lesion induction, technetium-99 hexamethyl propylene amine oxime-labelled MSCs were injected via i.v. or intra-arterial (i.a.) regional limb perfusion (RLP) at the level of the distal antebrachium and compared to i.l. injection. Mesenchymal stem cell persistence and distribution within the forelimb and tendon lesions was assessed with scintigraphy for 24 h. RESULTS Lesion uptake was higher with i.l. injection than with RLP, but MSC persistence decreased similarly over time in all 3 techniques. Intra-arterial RLP resulted in a better distribution of MSCs and a higher uptake at the lesion site than i.v. RLP. Limbs perfused i.a. on Day 10 showed greater accumulation of MSCs in the lesion than limbs perfused on Day 3. Arterial thrombosis occurred in 50% of the i.v. RLP limbs and in 100% of the i.a. RLP limbs, which led to clinical complications in one horse. CONCLUSIONS AND POTENTIAL RELEVANCE Compared with i.l. injection, RLP results in lower uptake but similar persistence of MSCs at the site of tendon lesions. A time dependent accumulation of MSCs was identified with i.a. RLP. The i.a. RLP appears more advantageous than the i.v. RLP in terms of distribution and uptake. However, the described i.a. technique produced arterial thrombosis and thus cannot currently be recommended for clinical use.
Collapse
Affiliation(s)
- A Sole
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shinojima N, Hossain A, Takezaki T, Fueyo J, Gumin J, Gao F, Nwajei F, Marini FC, Andreeff M, Kuratsu JI, Lang FF. TGF-β mediates homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells. Cancer Res 2013; 73:2333-44. [PMID: 23365134 DOI: 10.1158/0008-5472.can-12-3086] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although studies have suggested that bone marrow human mesenchymal stem cells (BM-hMSC) may be used as delivery vehicles for cancer therapy, it remains unclear whether BM-hMSCs are capable of targeting cancer stem cells, including glioma stem cells (GSC), which are the tumor-initiating cells responsible for treatment failures. Using standard glioma models, we identify TGF-β as a tumor factor that attracts BM-hMSCs via TGF-β receptors (TGFβR) on BM-hMSCs. Using human and rat GSCs, we then show for the first time that intravascularly administered BM-hMSCs home to GSC-xenografts that express TGF-β. In therapeutic studies, we show that BM-hMSCs carrying the oncolytic adenovirus Delta-24-RGD prolonged the survival of TGF-β-secreting GSC xenografts and that the efficacy of this strategy can be abrogated by inhibition of TGFβR on BM-hMSCs. These findings reveal the TGF-β/TGFβR axis as a mediator of the tropism of BM-hMSCs for GSCs and suggest that TGF-β predicts patients in whom BM-hMSC delivery will be effective.
Collapse
Affiliation(s)
- Naoki Shinojima
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Drey F, Choi YH, Neef K, Ewert B, Tenbrock A, Treskes P, Bovenschulte H, Liakopoulos OJ, Brenkmann M, Stamm C, Wittwer T, Wahlers T. Noninvasive in vivo tracking of mesenchymal stem cells and evaluation of cell therapeutic effects in a murine model using a clinical 3.0 T MRI. Cell Transplant 2012; 22:1971-80. [PMID: 23050950 DOI: 10.3727/096368912x657747] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiac cell therapy with mesenchymal stem cells (MSCs) represents a promising treatment approach for end-stage heart failure. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work is to determine the feasibility of magnetic resonance imaging (MRI) and in vivo monitoring after transplantation into infarcted mouse hearts using a clinical 3.0 T MRI device. The labeling procedure of bone marrow-derived MSCs with micron-sized paramagnetic iron oxide particles (MPIOs) did not affect the viability of the cells and their cell type-defining properties when compared to unlabeled cells. Using a clinical 3.0 T MRI scanner equipped with a dedicated small animal solenoid coil, 10(5) labeled MSCs could be detected and localized in the mouse hearts for up to 4 weeks after intramyocardial transplantation. Weekly ECG-gated scans using T1-weighted sequences were performed, and left ventricular function was assessed. Histological analysis of hearts confirmed the survival of labeled MSCs in the target area up to 4 weeks after transplantation. In conclusion, in vivo tracking of labeled MSCs using a clinical 3.0 T MRI scanner is feasible. In combination with assessment of heart function, this technology allows the monitoring of the therapeutic efficacy of regenerative therapies in a small animal model.
Collapse
Affiliation(s)
- Florian Drey
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Weeks S, Kulkarni A, Smith H, Whittall C, Yang Y, Middleton J. The effects of chemokine, adhesion and extracellular matrix molecules on binding of mesenchymal stromal cells to poly(l-lactic acid). Cytotherapy 2012; 14:1080-8. [PMID: 22809223 DOI: 10.3109/14653249.2012.700704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) are pluripotent adult stem cells capable of osteogenesis and chondrogenesis to form bone and cartilage. This characteristic gives them the potential for bone and cartilage regeneration. Synthetic polymers have been studied to examine whether they could be used as a scaffold for tissue engineering. In the current study a two-dimensional (2-D) poly(l-lactic acid) (PLLA) scaffold was treated with chemokine, adhesion and extracellular matrix molecules with the aim of using biologic molecules to improve the attachment of human MSC. METHODS MSC were isolated from human bone marrow and applied to a 2-D PLLA scaffold. Chemokines ligand (CXCL12 and CXCL13), adhesion molecules [P-selectin, vascular cell adhesion molecule (VCAM)-1 and heparin] and extracellular matrix molecules (fibronectin and type IV collagen) were coated on the scaffold and their effects on the number of MSC that adhered were recorded. RESULTS When used alone CXCL12 and CXCL13 enhanced MSC adhesion, as did VCAM-1, P-selectin, fibronectin and collagen, but not heparin. The effects of VCAM-1, P-selectin and heparin were enhanced by the addition of CXCL12. Incubation of MSC with antibodies to integrins α4 and α5β1 inhibited their adhesion to VCAM-1 and fibronectin-treated PLLA respectively, suggesting that these integrins were involved in the MSC interactions. CONCLUSIONS The use of certain chemokines and adhesion and extracellular matrix molecules, alone or in combination, is beneficial for the attachment of MSC to PLLA, and may be helpful as natural molecules in scaffolds for regenerative medicine.
Collapse
Affiliation(s)
- Sylvia Weeks
- Leopold Muller Arthritis Research Centre, Institute for Science and Technology in Medicine, Medical School, Keele University, RJAH Orthopaedic Hospital, Oswestry, UK
| | | | | | | | | | | |
Collapse
|
44
|
Dokić J, Tomić S, Cerović S, Todorović V, Rudolf R, Colić M. Characterization and immunosuppressive properties of mesenchymal stem cells from periapical lesions. J Clin Periodontol 2012; 39:807-16. [PMID: 22775529 DOI: 10.1111/j.1600-051x.2012.01917.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2012] [Indexed: 12/13/2022]
Abstract
AIM Mesenchymal stem cells (MSCs) isolated from healthy dental tissues are being investigated as an alternative source of MSCs for the treatment of damaged tissues and inflammatory diseases. Here we investigated whether MSCs from periapical lesions (PL-MSCs) also possess multi-lineage differentiation capacity and immunomodulatory properties. MATERIAL & METHODS PL-MSCs, isolated by collagenase/DNAse digestion from surgically extracted PLs, were compared with MSCs from non-inflamed dental pulp (DP-MSCs) and dental follicle (DF-MSCs) for their phenotype and multi-potent differentiation potential. The anti-inflammatory and immunomodulatory effects of PL-MSCs were studied in co-culture with peripheral blood mononuclear cells (PB-MNCs) and PL-inflammatory cells (PL-ICs). RESULTS PL-MSCs were characterized by typical MSCs phenotype, lower clonogenicity and self-renewal rate, compared to DF-MSCs and DP-MSCs. These cells possess the potential to differentiate into adipocyte-, osteoblast- and chondrocyte-like cells in vitro, which differs from that of DP-MSCs and DF-MSCs. PL-MSCs inhibited phytohemaglutinine-induced proliferation of PB-MNCs and production of IL-2, IFNγ and IL-5 in the co-culture, probably via TGF-β-dependent mechanisms. These cells also suppressed the production of IL-1β, IL-6, and TNF-α by PL-ICs via soluble mediators, whereas the suppression of IL-8 production required a direct cell-to-cell contact. CONCLUSION The differentiation potential of PL-MSCs and their immunosuppressive/anti-inflammatory properties could be beneficial for the treatment of chronic periodontal diseases.
Collapse
Affiliation(s)
- Jelena Dokić
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
45
|
Singh JA. Stem cells and other innovative intra-articular therapies for osteoarthritis: what does the future hold? BMC Med 2012; 10:44. [PMID: 22551396 PMCID: PMC3364907 DOI: 10.1186/1741-7015-10-44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/02/2012] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), the most common type of arthritis in the world, is associated with suffering due to pain, productivity loss, decreased mobility and quality of life. Systemic therapies available for OA are mostly symptom modifying and have potential gastrointestinal, renal, hepatic, and cardiac side effects. BMC Musculoskeletal Disorders recently published a study showing evidence of reparative effects demonstrated by homing of intra-articularly injected autologous bone marrow stem cells in damaged cartilage in an animal model of OA, along with clinical and radiographic benefit. This finding adds to the growing literature showing the potential benefit of intra-articular (IA) bone marrow stem cells. Other emerging potential IA therapies include IL-1 receptor antagonists, conditioned autologous serum, botulinum toxin, and bone morphogenetic protein-7. For each of these therapies, trial data in humans have been published, but more studies are needed to establish that they are safe and effective. Several additional promising new OA treatments are on the horizon, but challenges remain to finding safe and effective local and systemic therapies for OA.Please see related article: http://www.biomedcentral.com/1471-2474/12/259.
Collapse
Affiliation(s)
- Jasvinder A Singh
- Medicine Service, Birmingham VA Medical Center and Department of Medicine, University of Alabama, Faculty Office Tower 805B, 510 20th Street S, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
|
47
|
Mohammadi Gorji S, Karimpor Malekshah AA, Hashemi-Soteh MB, Rafiei A, Parivar K, Aghdami N. Effect of mesenchymal stem cells on Doxorubicin-induced fibrosis. CELL JOURNAL 2012; 14:142-51. [PMID: 23508361 PMCID: PMC3584430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/04/2012] [Indexed: 10/29/2022]
Abstract
OBJECTIVE The aim of this study was to test the effect of intravenous injection of mesenchymal stem cells (MSCs) on doxorubicin (DOX)-induced fibrosis in the heart. We investigated the mechanisms that possibly mediate this effect. MATERIALS AND METHODS In this experimental study, fibrosis in the myocardium of adult male Wistar rats (weights 180-200 g, 9-10 weeks of age, total n=30) was created by DOX administration. DOX (2.5 mg/kg) was administered intraperitoneally 3 times a week, for a total dose of 15 mg/kg over a period of 2 weeks. MSCs from Wistar rats were separated and cultured in Dulbecco's modified eagle medium (DMEM). The condition medium (CM) which contained factors secreted by MSCs was also collected from MSCs cultured in serum-free DMEM. Two weeks after the first injection of DOX, MSCs, CM and standard medium (SM) were transplanted via intravenous injection. Four weeks after transplantation, histological (Masson's trichrome staining for fibrosis detection) and molecular [real-time polymerase chain reaction (RT-PCR)] analyses were conducted. In addition, insulin-like growth factor (IGF-1) and hepatocyte growth factor (HGF) in the CM were measured with an enzyme-linked immunosorbent assay (ELISA). For immunosuppressive treatment, cyclosporine A was given (intraperitoneally, 5 mg/kg/day) starting on the day of surgery until the end of study in all groups. Fibrosis rate and relative gene expression were compared by analysis of variance (ANOVA) and post-Tukey's test. HGF and (IGF-1 in the CM were analyzed by independent sample t test. P<0.01 was considered statistically significant. RESULTS Our data demonstrated that intravenously transplanted MSCs and CM significantly reduced fibrosis and significantly increased Bcl-2 expression levels in the myocardium compared to the DOX group (p<0.01). However, there was no significant difference between Bax expression levels in these groups. In addition, secretion of HGF and IGF-1 was detected in the CM (p<0.01). CONCLUSION We conclude that intravenous transplantation of MSCs and CM can attenuate myocardial fibrosis and increase Bcl-2 expression. This may be mediated by paracrine signaling from MSCs via anti-fibrotic and anti-apoptotic factors such as HGF and IGF-1.
Collapse
Affiliation(s)
- Simin Mohammadi Gorji
- 1. Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Abbas Ali Karimpor Malekshah
- 2. Department of Anatomy and Embryology, Cellular and Molecular Research Center, Faculty of
Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohammad Baghere Hashemi-Soteh
- 3. Department of Biochemistry and Genetics, Cellular and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- 4. Department of Immunology, Cellular and Molecular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kazem Parivar
- 1. Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran, * Corresponding Address:
P.O.Box: 14515-775Department of BiologyIslamic Azad UniversityScience and Research BranchTehranIran
kazem_
| | - Nasser Aghdami
- 5. Department of Regenerative Medicine and Cell Therapy, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran,6. Department of stem cell and Developmental biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, * Corresponding Address:
P.O.Box: 14515-775Department of BiologyIslamic Azad UniversityScience and Research BranchTehranIran
kazem_
| |
Collapse
|
48
|
Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Disord 2011; 12:259. [PMID: 22085445 PMCID: PMC3232438 DOI: 10.1186/1471-2474-12-259] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 11/15/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This work aimed to study the homing evidence and the reparative effect of mesenchymal stem cells (MSCs) in the healing process of induced osteoarthritis in experimental animal model (donkeys). METHODS Twenty-seven donkeys were equally divided into 3 groups based on the observation period after induction of arthritis (3, 6 and 9 weeks) to achieve different degrees of osteoarthritis. Each group was subdivided into three subgroups of three animals each based on the follow-up period (1, 2 and 6 months) after treatment. The induction was done through intra-articular (IA) injection of 2 ml of Amphotericin-B in both carpal joints. MSCs were harvested in a separate procedure, labeled with green fluorescent protein (GFP) using monster GFP vector and suspended in hyaluronic acid for IA injection. Treatment approaches consisted of cell-treatment using MSCs suspended in 3 ml of hyaluronic acid (HA) for the right carpal joint; and using the same amount of (HA) but without MSCs for the left contralateral carpal joint to serve as a control. Animals were assessed clinically and radiologically before and after treatment. Synovial fluid was also evaluated. Histopathologically; articular cartilage structural changes, reduction of articular cartilage matrix staining, osteophyte formation, and subchondral bone plate thickening were graded. Data was summarized using median and percentile for scores of histopathologic grading. Comparison between groups was done using non-parametric Mann Whitney test. RESULTS The reparative effect of MSCs was significant both clinically and radiologically in all treated groups (P < 0.05) compared to the control groups. Fluorescence microscopy of sections of the cell-treated joints of all animals indicated that the GFP-transduced injected cells have participated effectively in the reparative process of the damaged articular surface and have integrated within the existing articular cartilage. The cells were associated with the surface of the cartilage and, were also detected in the interior. CONCLUSIONS Homing was confirmed by the incorporation of injected GFP-labeled MSCs within the repaired newly formed cartilage. Significant recovery proves that the use of IA injection of autologous MSCs is a viable and a practical option for treating different degrees of osteoarthritis.
Collapse
Affiliation(s)
- Abir N Mokbel
- Department of rheumatology and rehabilitation, Faculty of Medicine. Cairo University, Egypt
| | - Omar S El Tookhy
- Department of surgery, anesthesiology and radiology, Faculty of Veterinary Medicine. Cairo University, Egypt
| | - Ashraf A Shamaa
- Department of surgery, anesthesiology and radiology, Faculty of Veterinary Medicine. Cairo University, Egypt
| | - Laila A Rashed
- Department of medical biochemistry and molecular biology, Faculty of Medicine. Cairo University, Egypt
| | - Dina Sabry
- Department of medical biochemistry and molecular biology, Faculty of Medicine. Cairo University, Egypt
| | - Abeer M El Sayed
- Department of pathology, National Cancer Institute. Cairo University, Egypt
| |
Collapse
|
49
|
Yazid MD, Zainal Ariffin SH, Senafi S, Zainal Ariffin Z, Megat Abdul Wahab R. Stem cell heterogeneity of mononucleated cells from murine peripheral blood: molecular analysis. ScientificWorldJournal 2011; 11:2150-9. [PMID: 22125464 PMCID: PMC3217593 DOI: 10.1100/2011/340278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/18/2011] [Indexed: 01/15/2023] Open
Abstract
The main purpose of this paper was to determine the heterogeneity of primary isolated mononucleated cells that originated from the peripheral blood system by observing molecular markers. The isolated cells were cultured in complete medium for 4 to 7 days prior to the separation of different cell types, that is, adherent and suspension. Following a total culture time of 14 days, adherent cells activated the Cd105 gene while suspension cells activated the Sca-1 gene. Both progenitor markers, Cbfa-1 and Ostf-1, were inactivated in both suspension and adherent cells after 14-day culture compared to cells cultured 3 days in designated differentiation medium. In conclusion, molecular analyses showed that primary mononucleated cells are heterogeneous, consisting of hematopoietic stem cells (suspension) and mesenchymal stem cells (adherent) while both cells contained no progenitor cells.
Collapse
Affiliation(s)
- Muhammad Dain Yazid
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, 43600 Bangi, Malaysia
| | | | - Sahidan Senafi
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, 43600 Bangi, Malaysia
| | - Zaidah Zainal Ariffin
- Department of Microbiology, Faculty of Applied Science, Universiti Teknologi MARA, Selangor, 40450 Shah Alam, Malaysia
| | - Rohaya Megat Abdul Wahab
- Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur Campus, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Pratama G, Vaghjiani V, Tee JY, Liu YH, Chan J, Tan C, Murthi P, Gargett C, Manuelpillai U. Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One 2011; 6:e26136. [PMID: 22073147 PMCID: PMC3206797 DOI: 10.1371/journal.pone.0026136] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/20/2011] [Indexed: 12/16/2022] Open
Abstract
Human amniotic epithelial cells (hAEC) isolated from term placenta have stem cell-like properties, differentiate into tissue specific cells and reduce lung and liver inflammation and fibrosis following transplantation into disease models established in mice. These features together with their low immunogenicity and immunosuppressive properties make hAEC an attractive source of cells for potential therapeutic applications. However, generation of large cell numbers required for therapies through serial expansion in xenobiotic-free media may be a limiting factor. We investigated if hAEC could be expanded in xenobiotic-free media and if expansion altered their differentiation capacity, immunophenotype, immunosuppressive properties and production of immunomodulatory factors. Serial expansion in xenobiotic-free media was limited with cumulative cell numbers and population doubling times significantly lower than controls maintained in fetal calf serum. The epithelial morphology of primary hAEC changed into mesenchymal-stromal like cells by passage 4–5 (P4–P5) with down regulation of epithelial markers CK7, CD49f, EpCAM and E-cadherin and elevation of mesenchymal-stromal markers CD44, CD105, CD146 and vimentin. The P5 hAEC expanded in xenobiotic-free medium differentiated into osteocyte and alveolar epithelium-like cells, but not chondrocyte, hepatocyte, α- and β-pancreatic-like cells. Expression of HLA Class IA, Class II and co-stimulatory molecules CD80, CD86 and CD40 remained unaltered. The P5 hAEC suppressed mitogen stimulated T cell proliferation, but were less suppressive compared with primary hAEC at higher splenocyte ratios. Primary and P5 hAEC did not secrete the immunosuppressive factors IL-10 and HGF, whereas TGF-β1 and HLA-G were reduced and IL-6 elevated in P5 hAEC. These findings suggest that primary and expanded hAEC may be suitable for different cellular therapeutic applications.
Collapse
Affiliation(s)
- Gita Pratama
- Centre for Reproduction & Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|