1
|
Sha H, Duan Q, Lyu D, Qian F, Zheng X, Guo J, He Z, Lu X, Bukai A, Qin S, Duan R, Guli S, Zhang P, Xiao M, Jing H, Wang X. Follow-up of antibody changes in brucellosis patients in Gansu, China. Microbiol Spectr 2025:e0286224. [PMID: 40304471 DOI: 10.1128/spectrum.02862-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Brucellosis, caused by the intracellular bacterium Brucella, often leads to chronic infection with recurrent symptoms, posing significant therapeutic challenges. Effective monitoring of antibody dynamics is crucial for understanding disease progression and enhancing clinical outcomes. To investigate the longitudinal dynamics of antibody titers and antigen-specific responses in animal husbandry practitioners exposed to brucellosis in Gansu, China. We conducted a serological study involving 400 animal husbandry workers, identifying 21 seropositive individuals (5.25%). Antibody titers and antigen-specific responses to lipopolysaccharide (LPS) and BP26 protein were assessed using the Rose-Bengal test (RBT), serum agglutination test (SAT), and western blotting. Acute brucellosis patients displayed a distinct three-phase antibody titer pattern: a rapid rise (12-38 days), a rapid decline (19-41 days), and a slow decline (42-148 days). BP26-specific antibodies persisted significantly longer than LPS antibodies, remaining detectable up to 395 days post-infection. Early treatment reduced acute-phase antibody titers, correlating with disease control. This study combined dynamic antibody titer monitoring with specific antigen monitoring, enhancing the accuracy and specificity of brucellosis diagnosis and offering a basis for chronic infection detection. The findings are highly significant for clinical practice and public health strategies, particularly in high-incidence areas, prevention and control, as well as high-risk population surveillance. IMPORTANCE Brucella, a zoonotic intracellular bacterium, poses significant threats to both human health and economic security. Clinically, brucellosis can be challenging to differentiate from other long-term febrile illnesses, necessitating prompt and standardized treatment to prevent chronic persistent infections and multi-organ damage, which are notoriously difficult to treat. Thus, gaining a comprehensive understanding of the disease's progression is essential for early diagnosis and effective treatment strategies. This paper delves into the dynamics of serum antibody titers in patients with acute brucellosis, shedding light on the temporal patterns of antibody titers. Such insights are pivotal for monitoring disease progression and assessing the efficacy of treatment interventions. Furthermore, through western blotting analysis, the study reveals that antibodies against the BP26 protein in brucellosis patients persist over an extended period, which is helpful to identify the durable immune response of brucellosis and provides a theoretical basis for vaccine development and treatment strategy formulation.
Collapse
Affiliation(s)
- Hanyu Sha
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Qian
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Zheng
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Jiazhen Guo
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhaokai He
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Xinmin Lu
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Asaiti Bukai
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saier Guli
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Peng Zhang
- Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Meng Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Wang Z, Wang Y, Yang S, Wang Z, Yang Q. Brucella suis S2 strain inhibits IRE1/caspase-12/caspase-3 pathway-mediated apoptosis of microglia HMC3 by affecting the ubiquitination of CALR. mSphere 2025; 10:e0094124. [PMID: 40019270 PMCID: PMC11934333 DOI: 10.1128/msphere.00941-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 03/01/2025] Open
Abstract
Neurobrucellosis represents a severe complication of brucellosis, posing a considerable risk to human health and quality of life. This condition arises from an increased susceptibility to chronic Brucella infection, a significant clinical challenge. One key factor contributing to chronic neurobrucellosis is the regulation of microglial apoptosis by Brucella; however, the exact molecular mechanisms remain largely unresolved. In this study, human microglial clone 3 (HMC3) cells were infected with Brucella suis vaccine strain S2 (B. suis S2) at varying multiplicity of infection (MOI) and durations to assess its effects on the IRE1/caspase-12/caspase-3 signaling pathway. Following the suppression of this pathway by B. suis S2, calreticulin (CALR) was identified through ubiquitin-modified proteomics (data accessible via ProteomeXchange, identifier PXD056006). To further investigate, CALR-overexpression and knockdown HMC3 cell lines were infected with B. suis S2 to elucidate the mechanism by which B. suis S2 inhibits apoptosis in HMC3 cells. In conclusion, our findings demonstrate that B. suis S2 suppresses HMC3 cell apoptosis via the IRE1/caspase-12/caspase-3 pathway by modulating CALR ubiquitination. This study provides a theoretical basis for exploring the mechanisms of neurobrucellosis and offers insights into its clinical treatment.IMPORTANCENeurobrucellosis is a severe complication impacting the central nervous system (CNS) due to neurological deficits caused by Brucella, with primary clinical features including meningitis, encephalitis, brain abscesses, and demyelinating lesions. These nonspecific symptoms often lead to misdiagnosis or delayed diagnosis, increasing the risk of recurrent or chronic neurobrucellosis infections. Consequently, persistent infection and relapse are critical challenges in the clinical management of neurobrucellosis, which are closely linked to Brucella's survival and replication within microglia. Interestingly, Brucella may inhibit microglia apoptosis by mitigating endoplasmic reticulum (ER) stress, though the precise molecular mechanisms remain largely unexplored. Thus, this study will elucidate the specific mechanisms by which Brucella suppresses microglial apoptosis and provide deeper insights into the molecular pathogenesis and clinical treatment of neurobrucellosis.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Experimental Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yanbai Wang
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shulong Yang
- Department of Orthopedics, The People’s Hospital of Wuhai, Wuhai, China
| | - Zhenhai Wang
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qian Yang
- Department of Experimental Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Nakazawa Y, Kageyama M, Matsuzawa T, Liang Z, Kobayashi K, Shimizu H, Maeda K, Masuhiro M, Motouchi S, Kumano S, Tanaka N, Kuramochi K, Nakai H, Taguchi H, Nakajima M. Structure and function of a β-1,2-galactosidase from Bacteroides xylanisolvens, an intestinal bacterium. Commun Biol 2025; 8:66. [PMID: 39820076 PMCID: PMC11739564 DOI: 10.1038/s42003-025-07494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Galactosides are major carbohydrates that are found in plant cell walls and various prebiotic oligosaccharides. Studying the detailed biochemical functions of β-galactosidases in degrading these carbohydrates is important. In particular, identifying β-galactosidases with new substrate specificities could help in the production of potentially beneficial oligosaccharides. In this study, we identify a β-galactosidase with novel substrate specificity from Bacteroides xylanisolvens, an intestinal bacterium. The enzyme do not show hydrolytic activity toward natural β-galactosides during the first screening. However, when α-D-galactosyl fluoride (α-GalF) as a donor substrate and galactose or D-fucose as an acceptor substrate are incubated with a nucleophile mutant, reaction products are detected. The galactobiose produced from the α-GalF and galactose is identified as β-1,2-galactobiose using NMR. Kinetic analysis reveals that this enzyme effectively hydrolyzes β-1,2-galactobiose and β-1,2-galactotriose. In the complex structure with methyl β-galactopyranose as a ligand, the ligand is only located at subsite +1. The 2-hydroxy group and the anomeric methyl group of methyl β-galactopyranose faces in the direction of subsite -1 and the solvent, respectively. This observation is consistent with the substrate specificity of the enzyme regarding linkage position and chain length. Overall, we conclude that the enzyme is a β-galactosidase acting on β-1,2-galactooligosaccharides.
Collapse
Affiliation(s)
- Yutaka Nakazawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masumi Kageyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomohiko Matsuzawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Ziqin Liang
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kaito Kobayashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Tokyo, Koto-ku, 135-0064, Japan
| | - Hisaka Shimizu
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuki Maeda
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Miho Masuhiro
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Sei Motouchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Saika Kumano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-no-cho, Niigata, Nishi-ku, 950-2181, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
4
|
Zhang D, Calmanovici B, Marican H, Reisser J, Summers S. The assembly and ecological roles of biofilms attached to plastic debris of Ashmore reef. MARINE POLLUTION BULLETIN 2024; 205:116651. [PMID: 38917500 DOI: 10.1016/j.marpolbul.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Plastic pollution in the ocean is a global environmental hazard aggravated by poor management of plastic waste and growth of annual plastic consumption. Microbial communities colonizing the plastic's surface, the plastisphere, has gained global interest resulting in numerous efforts to characterize the plastisphere. However, there are insufficient studies deciphering the underlying metabolic processes governing the function of the plastisphere and the plastic they reside upon. Here, we collected plastic and seawater samples from Ashmore Reef in Australia to examine the planktonic microbes and plastic associated biofilm (PAB) to investigate the ecological impact, pathogenic potential, and plastic degradation capabilities of PAB in Ashmore Reef, as well as the role and impact of bacteriophages on PAB. Using high-throughput metagenomic sequencing, we demonstrated distinct microbial communities between seawater and PAB. Similar numbers of pathogenic bacteria were found in both sample types, yet plastic and seawater select for different pathogen populations. Virulence Factor analysis further illustrated stronger pathogenic potential in PAB, highlighting the pathogenicity of environmental PAB. Furthermore, functional analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed xenobiotic degradation and fatty acid degradation to be enriched in PABs. In addition, construction of metagenome-assembled genomes (MAG) and functional analysis further demonstrated the presence of a complete Polyethylene (PE) degradation pathway in multiple Proteobacteria MAGs, especially in Rhodobacteriaceae sp. Additionally, we identified viral population presence in PAB, revealing the key role of bacteriophages in shaping these communities within the PAB. Our result provides a comprehensive overview of the various ecological processes shaping microbial community on marine plastic debris.
Collapse
Affiliation(s)
- Dong Zhang
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Tropical Marine Science Institute, St. John's Island National Marine Laboratory, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Bruna Calmanovici
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Hana Marican
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 117456, Singapore
| | - Julia Reisser
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Stephen Summers
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Tropical Marine Science Institute, St. John's Island National Marine Laboratory, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| |
Collapse
|
5
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
6
|
Gentile A, Fulgione A, Auzino B, Iovane V, Gallo D, Garramone R, Iaccarino N, Randazzo A, Iovane G, Cuomo P, Capparelli R, Iannelli D. In vivo biological validation of in silico analysis: A novel approach for predicting the effects of TLR4 exon 3 polymorphisms on brucellosis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105552. [PMID: 38218390 DOI: 10.1016/j.meegid.2024.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The role of the Toll-like receptor 4 (TLR4) is of recognising intracellular and extracellular pathogens and of activating the immune response. This process can be compromised by single nucleotide polymorphisms (SNPs) which might affect the activity of several TLRs. The aim of this study is of ascertaining whether SNPs in the TLR4 of Bubalus bubalis infected by Brucella abortus, compromise the protein functionality. For this purpose, a computational analysis was performed. Next, computational predictions were confirmed by performing genotyping analysis. Finally, NMR-based metabolomics analysis was performed to identify potential biomarkers for brucellosis. The results indicate two SNPs (c. 672 A > C and c. 902 G > C) as risk factor for brucellosis in Bubalus bubalis, and three metabolites (lactate, 3-hydroxybutyrate and acetate) as biological markers for predicting the risk of developing the disease. These metabolites, together with TLR4 structural modifications in the MD2 interaction domain, are a clear signature of the immune system alteration during diverse Gram-negative bacterial infections. This suggests the possibility to extend this study to other pathogens, including Mycobacterium tuberculosis. In conclusion, this study combines multidisciplinary approaches to evaluate the biological and structural effects of SNPs on protein function.
Collapse
Affiliation(s)
- Antonio Gentile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Andrea Fulgione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Barbara Auzino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Daniela Gallo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy.
| | - Domenico Iannelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| |
Collapse
|
7
|
Tanaka N, Saito R, Kobayashi K, Nakai H, Kamo S, Kuramochi K, Taguchi H, Nakajima M, Masaike T. Functional and structural analysis of a cyclization domain in a cyclic β-1,2-glucan synthase. Appl Microbiol Biotechnol 2024; 108:187. [PMID: 38300345 PMCID: PMC10834661 DOI: 10.1007/s00253-024-13013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Cyclic β-1,2-glucan synthase (CGS) is a key enzyme in production of cyclic β-1,2-glucans (CβGs) which are involved in bacterial infection or symbiosis to host organisms. Nevertheless, a mechanism of cyclization, the final step in the CGS reaction, has not been fully understood. Here we performed functional and structural analyses of the cyclization domain of CGS alone from Thermoanaerobacter italicus (TiCGSCy). We first found that β-glucosidase-resistant compounds are produced by TiCGSCy with linear β-1,2-glucans as substrates. The 1H-NMR analysis revealed that these products are CβGs. Next, action pattern analyses using β-1,2-glucooligosaccharides revealed a unique reaction pattern: exclusive transglycosylation without hydrolysis and a hexasaccharide being the minimum length of the substrate. These analyses also showed that longer substrate β-1,2-glucooligosaccharides are preferred, being consistent with the fact that CGSs generally produce CβGs with degrees of polymerization of around 20. Finally, the overall structure of the cyclization domain of TiCGSCy was found to be similar to those of β-1,2-glucanases in phylogenetically different groups. Meanwhile, the identified catalytic residues indicated clear differences in the reaction pathways between these enzymes. Overall, we propose a novel reaction mechanism of TiCGSCy. Thus, the present group of CGSs defines a new glycoside hydrolase family, GH189. KEY POINTS: • It was clearly evidenced that cyclization domain alone produces cyclic β-1,2-glucans. • The domain exclusively catalyzes transglycosylation without hydrolysis. • The present catalytic domain defines as a new glycoside hydrolase family 189.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Ryotaro Saito
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Shogo Kamo
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Tomoko Masaike
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
8
|
Wu CC, Qu JJ, Zhang HT, Gao MJ, Zhu L, Zhan XB. New two-stage pH combined with dissolved oxygen control strategy for cyclic β-1,2 glucans synthesis. Appl Microbiol Biotechnol 2023; 107:2235-2247. [PMID: 36894714 DOI: 10.1007/s00253-023-12463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
On the basis of a novel two-stage pH combined with dissolved oxygen (DO) control strategy in fed-batch fermentation, this research addresses the influence of pH on cyclic β-1,2-glucans (CβGs) biosynthesis and melanin accumulation during the production of CβGs by Rhizobium radiobacter ATCC 13,333. Under these optimal fermentation conditions, the maximum cell concentration and CβGs concentration in a 7-L stirred-tank fermenter were 7.94 g L-1 and 3.12 g L-1, which were the maximum production reported for R. radiobacter. The melanin concentration of the fermentation broth was maintained at a low level, which was beneficial to the subsequent separation and purification of the CβGs. In addition, a neutral extracellular oligosaccharide (COGs-1) purified by the two-stage pH combined with DO control strategy fermentation medium was structurally characterized. Structural analyses indicated that COGs-1 was a family of unbranched cyclic oligosaccharides composed of only β-1,2-linked D-glucopyranose residues with degree of polymerization between 17 and 23, namely CβGs. This research provides a reliable source of CβGs and structural basis for further studies of biological activity and function. KEY POINTS: • A two-stage pH combined with DO control strategy was proposed for CβGs production and melanin biosynthesis by Rhizobium radiobacter. • The final extracellular CβGs production reached 3.12 g L-1, which was the highest achieved by Rhizobium radiobacter. • The existence of CβGs could be detected by TLC quickly and accurately.
Collapse
Affiliation(s)
- Chuan-Chao Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Juan-Juan Qu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hong-Tao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Min-Jie Gao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- L & F Biotech. Ltd., Burnaby, BC, V5A3P6, Canada
| | - Xiao-Bei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
9
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
10
|
Guan X, Hu H, Tian M, Zhuang H, Ding C, Yu S. Differentially expressed long noncoding RNAs in RAW264.7 macrophages during Brucella infection and functional analysis on the bacterial intracellular replication. Sci Rep 2022; 12:21320. [PMID: 36494502 PMCID: PMC9734652 DOI: 10.1038/s41598-022-25932-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of functional RNA molecules without protein-coding potential and play vital roles in majority of biological processes. To date, the expression profiles of lncRNAs and their influence on Brucella replication in RAW264.7 cells are poorly understood. In this study, we performed high-throughput transcriptome analysis to investigate the differentially expressed lncRNAs associated with Brucella abortus S2308 infection. Of these, 8, 6, 130 and 94 cellular lncRNAs were differentially expressed at 4, 8, 24 and 48 h post-infection, respectively. Moreover, 1918 protein-coding genes are predicted as potential cis target genes of differentially expressed lncRNAs by searching protein-coding genes located at upstream and downstream of lncRNA loci on the chromosome DNA of Mus musculus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that majority of lncRNA target genes were associated with B. abortus infection. Fourteen lncRNAs from transcriptome data were selected for qRT-PCR verification, confirming 13 were differentially expressed. Animal experiments revealed three were differentially expressed in vivo by qRT-PCR analysis. Furthermore, knockdown of LNC_000428 by CRISPR/dCas9 inhibition or Locked Nucleic Acids transfection downregulated Tnfrsf8 expression at mRNA level and increased Brucella intracellular replication. Thus, we provide a novel evidence that lncRNAs induced by Brucella-infection function on Brucella intracellular replication.
Collapse
Affiliation(s)
- Xiang Guan
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Hai Hu
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Minxing Tian
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Hongxu Zhuang
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Chan Ding
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Shengqing Yu
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| |
Collapse
|
11
|
Mena-Bueno S, Poveda-Urkixo I, Irazoki O, Palacios L, Cava F, Zabalza-Baranguá A, Grilló MJ. Brucella melitensis Wzm/Wzt System: Changes in the Bacterial Envelope Lead to Improved Rev1Δwzm Vaccine Properties. Front Microbiol 2022; 13:908495. [PMID: 35875565 PMCID: PMC9306315 DOI: 10.3389/fmicb.2022.908495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The lipopolysaccharide (LPS) O-polysaccharide (O-PS) is the main virulence factor in Brucella. After synthesis in the cytoplasmic membrane, O-PS is exported to the periplasm by the Wzm/Wzt system, where it is assembled into a LPS. This translocation also engages a bactoprenol carrier required for further biosynthesis pathways, such as cell wall biogenesis. Targeting O-PS export by blockage holds great potential for vaccine development, but little is known about the biological implications of each Wzm/Wzt moiety. To improve this knowledge and to elucidate its potential application as a vaccine, we constructed and studied wzm/wzt single- and double-deletion mutants, using the attenuated strain Brucella melitensis Rev1 as the parental strain. This allowed us to describe the composition of Brucella peptidoglycan for the first time. We observed that these mutants lack external O-PS yet trigger changes in genetic transcription and in phenotypic properties associated with the outer membrane and cell wall. The three mutants are highly attenuated; unexpectedly, Rev1Δwzm also excels as an immunogenic and effective vaccine against B. melitensis and Brucella ovis in mice, revealing that low persistence is not at odds with efficacy. Rev1Δwzm is attenuated in BeWo trophoblasts, does not infect mouse placentas, and is safe in pregnant ewes. Overall, these attributes and the minimal serological interference induced in sheep make Rev1Δwzm a highly promising vaccine candidate.
Collapse
Affiliation(s)
- Sara Mena-Bueno
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- Agronomy, Biotecnology and Food Department, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Irati Poveda-Urkixo
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Leyre Palacios
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ana Zabalza-Baranguá
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - María Jesús Grilló
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- *Correspondence: María Jesús Grilló,
| |
Collapse
|
12
|
The Tip of Brucella O-Polysaccharide Is a Potent Epitope in Response to Brucellosis Infection and Enables Short Synthetic Antigens to Be Superior Diagnostic Reagents. Microorganisms 2022; 10:microorganisms10040708. [PMID: 35456759 PMCID: PMC9024974 DOI: 10.3390/microorganisms10040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
Brucellosis is a global disease and the world’s most prevalent zoonosis. All cases in livestock and most cases in humans are caused by members of the genus Brucella that possess a surface O-polysaccharide (OPS) comprised of a rare monosaccharide 4-deoxy-4-formamido-D-mannopyranose assembled with α1,2 and α1,3 linkages. The OPS of the bacterium is the basis for serodiagnostic tests for brucellosis. Bacteria that also contain the same rare monosaccharide can induce antibodies that cross-react in serological tests. In previous work we established that synthetic oligosaccharides, representing elements of the Brucella A and M polysaccharide structures, were excellent antigens to explore the antibody response in the context of infection, immunisation and cross reaction. These studies suggested the existence of antibodies that are specific to the tip of the Brucella OPS. Sera from naturally and experimentally Brucella abortus-infected cattle as well as from cattle experimentally infected with the cross-reactive bacterium Yersinia enterocolitica O:9 and field sera that cross react in conventional serological assays were studied here with an expanded panel of synthetic antigens. The addition of chemical features to synthetic antigens that block antibody binding to the tip of the OPS dramatically reduced their polyclonal antibody binding capability providing conclusive evidence that the OPS tip (non-reducing end) is a potent epitope. Selected short oligosaccharides, including those that were exclusively α1,2 linked, also demonstrated superior specificity when evaluated with cross reactive sera compared to native smooth lipopolysaccharide (sLPS) antigen and capped native OPS. This surprising discovery suggests that the OPS tip epitope, even though common to both Brucella and Y. enterocolitica O:9, has more specific diagnostic properties than the linear portion of the native antigens. This finding opens the way to the development of improved serological tests for brucellosis.
Collapse
|
13
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
14
|
Cao J, Cai Q, Su W, Ge Z, Zhao H, Zhou X, Ma K, Xia Z. Case Report: Metagenomic Next-Generation Sequencing Confirmed a Case of Central Nervous System Infection With Brucella melitensis in Non-endemic Areas. Front Med (Lausanne) 2021; 8:723197. [PMID: 34595192 PMCID: PMC8476800 DOI: 10.3389/fmed.2021.723197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Brucellosis is a highly contagious zoonotic disease caused by bacteria that belong to the genus Brucella. It is a major endemic disease in northern China. We reported a rare case of central nervous system (CNS) infection caused by Brucella melitensis in a patient living in non-endemic areas. The medical history of the patient included chronic headache and trunk numbness. Based on the presented clinical symptoms and medical examinations, a clinical diagnosis of binocular uveo-encephalitis was made in the local hospital. The patient's symptoms were unrelieved after being treated with empiric therapy. Soon after, the patient was admitted to our hospital because of the obnubilation and coma in the trip. We ran a few examinations and sent the cerebrospinal fluid (CSF) for metagenomic next-generation sequencing (mNGS) immediately. The Magnetic resonance imaging (MRI) examination was unremarkable, and bilateral mastoid inflammation was attached. Metagenomic next-generation sequencing suggested a CNS infection caused by Brucella melitensis. Then, the results of the serum agglutination test and quantitative polymerase chain reaction assay also confirmed that. After being treated with doxycycline, rifampin, and cefatriaxone, consciousness of the patient was restored and headache diminished. Two months later, a lumbar puncture was used to check the pressure of the CSF, and the total course of treatment was more than 6 months. This case highlighted the potential value of mNGS in early clinal diagnosis. We believe that mNGS may be a complementary method for rapid identification of infection of CNS caused by the pathogen.
Collapse
Affiliation(s)
- Jun Cao
- Department of Emergency and Critical Care Medicine, Fudan University Affiliated North Huashan Hospital, Shanghai, China
| | - Qingqing Cai
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Wentao Su
- Department of Emergency and Critical Care Medicine, Fudan University Affiliated North Huashan Hospital, Shanghai, China
| | - Zi Ge
- Department of Emergency and Critical Care Medicine, Fudan University Affiliated North Huashan Hospital, Shanghai, China
| | - Hui Zhao
- Department of Emergency and Critical Care Medicine, Fudan University Affiliated North Huashan Hospital, Shanghai, China
| | - Xinjian Zhou
- Department of Emergency and Critical Care Medicine, Fudan University Affiliated North Huashan Hospital, Shanghai, China
| | - Ke Ma
- Department of Emergency and Critical Care Medicine, Fudan University Affiliated North Huashan Hospital, Shanghai, China
| | - Zhijie Xia
- Department of Emergency and Critical Care Medicine, Fudan University Affiliated North Huashan Hospital, Shanghai, China
| |
Collapse
|
15
|
Tilocca B, Soggiu A, Greco V, Sacchini F, Garofolo G, Paci V, Bonizzi L, Urbani A, Tittarelli M, Roncada P. Comparative proteomics of Brucella melitensis is a useful toolbox for developing prophylactic interventions in a One-Health context. One Health 2021; 13:100253. [PMID: 33997237 PMCID: PMC8100217 DOI: 10.1016/j.onehlt.2021.100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Brucellosis caused by Brucella melitensis is a zoonosis frequently reported in the Mediterranean and Middle-East regions and responsible for important economic losses and reduced animal welfare. To date, current strategies applied to control or eradicate the disease relies on diagnostic tests that suffer from limited specificity in non-vaccinated animals; while prophylactic measures, when applied, use a live attenuated bacterial strain characterized by residual virulence on adult pregnant animals and difficulties in distinguishing vaccinated from infected animals. To overcome these issues, studies are desired to elucidate the bacterial biology and the pathogenetic mechanisms of both the vaccinal strain and the pathogenic strains. Proteomics has a potential in tackling issues of One-Health concern; here, we employed label-free shotgun proteomics to investigate the protein repertoire of the vaccinal strain B. melitensis Rev.1 and compare it with the proteome of the Brucella melitensis 16 M, a reference strain representative of B. melitensis field strains. Comparative proteomics profiling underlines common and diverging traits between the two strains. Common features suggest the potential biochemical routes responsible for the residual virulence of the vaccinal strain, whilst the diverging traits are suggestive biochemical signatures to be further investigated to provide an optimized diagnostic capable of discriminating the vaccinated from infected animals. The data presented in this study are openly available in PRIDE data repository at https://www.ebi.ac.uk/pride/, reference number PXD022472.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Alessio Soggiu
- Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Valentina Paci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Luigi Bonizzi
- Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Paola Roncada
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
16
|
Genomic Analysis of Natural Rough Brucella melitensis Rev.1 Vaccine Strains: Identification and Characterization of Mutations in Key Genes Associated with Bacterial LPS Biosynthesis and Virulence. Int J Mol Sci 2020; 21:ijms21249341. [PMID: 33302421 PMCID: PMC7762576 DOI: 10.3390/ijms21249341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Brucella species are facultative intracellular bacteria that cause brucellosis, a zoonotic world-wide disease. The live attenuated B. melitensis Rev.1 vaccine strain is widely used for the control of brucellosis in the small ruminant population. However, Rev.1 induces antibodies against the O-polysaccharide (O-PS) of the smooth lipopolysaccharide thus, it is difficult to differentiate between infected and vaccinated animals. Hence, rough Brucella strains lacking the O-PS have been introduced. In the current study, we conducted a comprehensive comparative analysis of the genome sequence of two natural Rev.1 rough strains, isolated from sheep, against that of 24 Rev.1 smooth strains and the virulent reference strain B. melitensis 16M. We identified and characterized eight vital mutations within highly important genes associated with Brucella lipopolysaccharide (LPS) biosynthesis and virulence, which may explain the mechanisms underlying the formation of the Rev.1 rough phenotype and may be used to determine the mechanism underlying virulence attenuation. Further complementation studies aimed to estimate the specific role of these mutations in affecting Brucella morphology and virulence will serve as a basis for the design of new attenuated vaccines for animal immunization against brucellosis.
Collapse
|
17
|
Ouahrani-Bettache S, Jiménez De Bagüés MP, De La Garza J, Freddi L, Bueso JP, Lyonnais S, Al Dahouk S, De Biase D, Köhler S, Occhialini A. Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis. Virulence 2020; 10:868-878. [PMID: 31635539 PMCID: PMC6844557 DOI: 10.1080/21505594.2019.1682762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Brucella microti was isolated a decade ago from wildlife and soil in Europe. Compared to the classical Brucella species, it exhibits atypical virulence properties such as increased growth in human and murine macrophages and lethality in experimentally infected mice. A spontaneous rough (R) mutant strain, derived from the smooth reference strain CCM4915T, showed increased macrophage colonization and was non-lethal in murine infections. Whole-genome sequencing and construction of an isogenic mutant of B. microti and Brucella suis 1330 revealed that the R-phenotype was due to a deletion in a single gene, namely wbkE (BMI_I539), encoding a putative glycosyltransferase involved in lipopolysaccharide (LPS) O-polysaccharide biosynthesis. Complementation of the R-strains with the wbkE gene restored the smooth phenotype and the ability of B. microti to kill infected mice. LPS with an intact O-polysaccharide is therefore essential for lethal B. microti infections in the murine model, demonstrating its importance in pathogenesis.
Collapse
Affiliation(s)
| | - María P Jiménez De Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Luca Freddi
- IRIM, CNRS, University Montpellier, INSERM, Montpellier, France
| | - Juan P Bueso
- Laboratorio Agroalimentario, Gobierno de Aragón, Zaragoza, Spain
| | | | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to the Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Latina, Italy
| | - Stephan Köhler
- IRIM, CNRS, University Montpellier, INSERM, Montpellier, France
| | | |
Collapse
|
18
|
Gómez LA, Alvarez FI, Molina RE, Soto-Shara R, Daza-Castro C, Flores MR, León Y, Oñate AA. A Zinc-Dependent Metalloproteinase of Brucella abortus Is Required in the Intracellular Adaptation of Macrophages. Front Microbiol 2020; 11:1586. [PMID: 32765455 PMCID: PMC7379133 DOI: 10.3389/fmicb.2020.01586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 01/19/2023] Open
Abstract
Brucella abortus is a pathogen that survives in macrophages. Several virulence factors participate in this process, including the open reading frame (ORF) BAB1_0270 codifying for a zinc-dependent metalloproteinase (ZnMP). Here, its contribution in the intracellular adaptation of B. abortus was analyzed by infecting RAW264.7 macrophages with the mutant B. abortus Δ270 strain. Results showed that this ZnMP did not participated in either the adherence or the initial intracellular traffic of B. abortus in macrophages. Nevertheless, its deletion significantly increased the co-localization of B. abortus Δ270 with phagolysosomal cathepsin D and reduced its co-localization with calnexin present in endoplasmic reticulum (RE)-derived vesicles. Although B. abortus Δ270 showed an upregulated expression of genes involved in virulence (vjbR, hutC, bvrR, virB1), it was insufficient to reach a successful intracellular replication within macrophages. Furthermore, its attenuation favored in macrophages infected the production of high levels of cytokines (TNF-α and IL-6) and co-stimulatory proteins (CD80 and CD86), signals required in T cell activation. Finally, its deletion significantly reduced the ability of B. abortus Δ270 to adapt, grow and express several virulence factors under acidic conditions. Based on these results, and considering that this ZnMP has homology with ImmA/IrrE proteases, we discuss its role in the virulence of this pathogen, concluding that ZnMP is required in the intracellular adaptation of B. abortus 2308 during the infection of macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Angel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
19
|
Coloma-Rivero RF, Gómez L, Alvarez F, Saitz W, Del Canto F, Céspedes S, Vidal R, Oñate AA. The Role of the Flagellar Protein FlgJ in the Virulence of Brucella abortus. Front Cell Infect Microbiol 2020; 10:178. [PMID: 32411617 PMCID: PMC7198779 DOI: 10.3389/fcimb.2020.00178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus is a facultative intracellular pathogen that causes a zoonosis called brucellosis. This disease leads to abortion and infertility in cattle, and diverse complications in humans. B. abortus is a successful intracellular bacterium that has developed the ability to evade the host's immune system and it replicates in professional and non-professional phagocytic cells, persisting in the different tissues, and organs of its hosts. It has been described that Brucella expresses a polar flagellum under certain conditions, but its function is still unknown. In this study we evaluated the role of the FlgJ, a protein, presumably a peptidoglycan hydrolase involved in flagellum formation and in the virulence of B. abortus strain 2308. B. abortus 2308 ΔflgJ mutant and complemented strains were constructed to study the function of the FlgJ protein in the context of the virulence of this pathogen in in vitro and in vivo assays. The results showed that the elimination of the flgJ gene delays the growth rate of B. abortus in culture, reduces its intracellular survival capacity in professional and non-professional phagocytic cells, rendering it unable to escape from the endocytic route and not reaching the endoplasmic reticulum. It also negatively affects their persistence in BALB/c mice. Functionally, the B. abortus 2308 flgJ gene restored motility to an E. coli flgJ mutant gene. Furthermore, it was discovered that the production of FlgJ protein is associated with the bacterial adherence by B. abortus. Therefore, although the specific function of the polar flagellum for Brucella is unknown, the data indicates that the flagellar flgJ gene and its product are required for full virulence of B. abortus 2308, since its deletion significantly reduces the fitness of this pathogen in vitro and in vivo.
Collapse
Affiliation(s)
- Roberto F Coloma-Rivero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Leonardo Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Francisco Alvarez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Waleska Saitz
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.,Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Felipe Del Canto
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra Céspedes
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.,Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Angel A Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
20
|
Yi J, Wang Y, Li Q, Zhang H, Shao Z, Deng X, He J, Xiao C, Wang Z, Wang Y, Chen C. Interaction between Brucella melitensis 16M and small ubiquitin-related modifier 1 and E2 conjugating enzyme 9 in mouse RAW264.7 macrophages. J Vet Sci 2020; 20:e54. [PMID: 31565897 PMCID: PMC6769333 DOI: 10.4142/jvs.2019.20.e54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Brucella is an intracellular pathogen that invades a host and settles in its immune cells; however, the mechanism of its intracellular survival is unclear. Modification of small ubiquitin-related modifier (SUMO) occurs in many cellular activities. E2 conjugating enzyme 9 (Ubc9) is the only reported ubiquitin-conjugating enzyme that links the SUMO molecule with a target protein. Brucella's intracellular survival mechanism has not been studied with respect to SUMO-related proteins and Ubc9. Therefore, to investigate the relationship between Brucella melitensis 16M and SUMO, we constructed plasmids and cells lines suitable for overexpression and knockdown of SUMO1 and Ubc9 genes. Brucella 16M activated SUMO1/Ubc9 expression in a time-dependent manner, and Brucella 16M intracellular survival was inhibited by SUMO1/Ubc9 overexpression and promoted by SUMO1/Ubc9 depletion. In macrophages, Brucella 16M-dependent apoptosis and immune factors were induced by SUMO1/Ubc9 overexpression and restricted by SUMO1/Ubc9 depletion. We noted no effect on the expressions of SUMO1 and Ubc9 in B. melitensis 16M lipopolysaccharide-prestimulated mouse RAW264.7 macrophages. Additionally, intracellular survival of the 16M△VirB2 mutant was lower than that of Brucella 16M (p < 0.05). VirB2 can affect expression levels of Ubc9, thereby increasing intracellular survival of Brucella in macrophages at the late stage of infection. Collectively, our results demonstrate that B. melitensis 16M may use the VirB IV secretion system of Brucella to interact with SUMO-related proteins during infection of host cells, which interferes with SUMO function and promotes pathogen survival in host cells.
Collapse
Affiliation(s)
- Jihai Yi
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yueli Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Qifeng Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Huan Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhiran Shao
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - XiaoYu Deng
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jinke He
- Department of Biology, School of Life Science, Shihezi University, Shihezi 832000, China
| | - Chencheng Xiao
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhen Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.
| | - Chuangfu Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
21
|
Masjedian Jezi F, Razavi S, Mirnejad R, Zamani K. Immunogenic and protective antigens of Brucella as vaccine candidates. Comp Immunol Microbiol Infect Dis 2019; 65:29-36. [PMID: 31300122 DOI: 10.1016/j.cimid.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 01/18/2023]
Abstract
Brucella is an intracellular pathogen that causes abortion in domestic animals and undulant fever in humans. Due to the lack of a human vaccine against brucellosis, animal vaccines play an important role in the management of animal and human brucellosis for decades. Strain 19, RB51 and Rev1 are the approved Brucella spp. vaccine strains that are most commonly used to protect livestock against infection and abortion. However, due to some disadvantages of these vaccines, numerous studies have been conducted for the development of effective vaccines that could also be used in other susceptible animals. In this review, we compare different aspects of immunogenic antigens that have been a candidate for the brucellosis vaccine.
Collapse
Affiliation(s)
- Faramarz Masjedian Jezi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I
| | - Reza Mirnejad
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Zamani
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Dabral N, Burcham GN, Jain-Gupta N, Sriranganathan N, Vemulapalli R. Overexpression of wbkF gene in Brucella abortus RB51WboA leads to increased O-polysaccharide expression and enhanced vaccine efficacy against B. abortus 2308, B. melitensis 16M, and B. suis 1330 in a murine brucellosis model. PLoS One 2019; 14:e0213587. [PMID: 30856219 PMCID: PMC6411116 DOI: 10.1371/journal.pone.0213587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Brucella abortus RB51 is an attenuated, stable, spontaneous rough mutant derived in the laboratory from the virulent strain B. abortus 2308. Previous studies discovered that the wboA gene, which encodes a glycosyltransferase required for synthesis of the O-polysaccharide, is disrupted in strain RB51 by an IS711 element. However, complementation of strain RB51 with a functional wboA gene (strain RB51WboA) does not confer it a smooth phenotype but results in low levels of cytoplasmic O-polysaccharide synthesis. In this study, we asked if increasing the potential availability of bactoprenol priming precursors in strain RB51WboA would increase the levels of O-polysaccharide synthesis and enhance the protective efficacy against virulent Brucella challenge. To achieve this, we overexpressed the wbkF gene, which encodes a putative undecaprenyl-glycosyltransferase involved in bactoprenol priming for O-polysaccharide polymerization, in strain RB51WboA to generate strain RB51WboAKF. In comparison to strain RB51WboA, strain RB51WboAKF expressed higher levels of O-polysaccharide, but was still attenuated and remained phenotypically rough. Mice immunized with strain RB51WboAKF developed increased levels of smooth LPS-specific serum antibodies, primarily of IgG2a and IgG3 isotype. Splenocytes from mice vaccinated with strain RB51WboAKF secreted higher levels of antigen-specific IFN-γ and TNF-α and contained more numbers of antigen-specific IFN-γ secreting CD4+ and CD8+ T lymphocytes when compared to those of the RB51 or RB51WboA vaccinated groups. Immunization with strain RB51WboAKF conferred enhanced protection against virulent B. abortus 2308, B. melitensis 16M and B. suis 1330 challenge when compared to the currently used vaccine strains. Our results suggest that strain RB51WboAKF has the potential to be a more efficacious vaccine than its parent strain in natural hosts.
Collapse
Affiliation(s)
- Neha Dabral
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Grant N. Burcham
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Neeta Jain-Gupta
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
A. A, Naserpour Farivar T, Peymani A, Aslanimehr M, Bagheri Nejad R. Extraction and characterisation of Brucella abortus strain RB51 rough lipopolysaccharide. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2019. [DOI: 10.15547/bjvm.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brucellosis is an important zoonotic disease with considerable impacts on human and animal health. Brucella abortus strain RB51 vaccine is used for prevention of bovine brucellosis in Iran. Due to strain roughness, available serological tests cannot detect vaccinated animals. Detection of serological responses to the vaccine is important to monitor accurate vaccination implementation. Rough lipopolysaccharide (RLPS) of RB51 strain was extracted and characterised to develop serological tests for diagnosis of vaccinated animals. RLPS was extracted using phenol-chloroform-petroleum ether and evaluated by limulus amebocyte lysate (LAL) assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and agar gel immunodiffusion (AGID). According to our results, the extracted RLPS caused positive reaction in LAL assay. In SDS-PAGE, a band with a molecular weight around 14 kDa was identified after specific staining using silver nitrate. Double AGID of the RLPS with a hyperimmune serum resulted in a precipitation line formation. Our study showed that the method can be successfully used to extract RLPS from Brucella abortus strain RB51 as confirmed by LAL assay, PAGE and AGID.
Collapse
|
24
|
Leya M, Kim WK, Cho JS, Yu EC, Kim YJ, Yeo Y, Lyoo KS, Yang MS, Han SS, Lee JH, Tark D, Hur J, Kim B. Vaccination of goats with a combination Salmonella vector expressing four Brucella antigens (BLS, PrpA, Omp19, and SOD) confers protection against Brucella abortus infection. J Vet Sci 2018; 19:643-652. [PMID: 29929362 PMCID: PMC6167338 DOI: 10.4142/jvs.2018.19.5.643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023] Open
Abstract
Salmonella is an intracellular pathogen with a cellular infection mechanism similar to that of Brucella, making it a suitable choice for use in an anti-Brucella immune boost system. This study explores the efficacy of a Salmonella Typhimurium delivery-based combination vaccine for four heterologous Brucella antigens (Brucella lumazine synthase, proline racemase subunit A, outer-membrane protein 19, and Cu/Zn superoxide dismutase) targeting brucellosis in goats. We inoculated the attenuated Salmonella delivery-based vaccine combination subcutaneously at two different inoculation levels; 5 × 109 colony-forming unit (CFU)/mL (Group B) and 5 × 1010 CFU/mL (Group C) and challenged the inoculations with virulent Brucella abortus at 6 weeks post-immunization. Serum immunoglobulin G titers against individual antigens in Salmonella immunized goats (Group C) were significantly higher than those of the non-immunized goats (Group A) at 3 and 6 weeks after vaccination. Upon antigenic stimulation, interferon-γ from peripheral blood mononuclear cells was significantly elevated in Groups B and C compared to that in Group A. The immunized goats had a significantly higher level of protection as demonstrated by the low bacterial loads in most tissues from the goats challenged with B. abortus. Relative real-time polymerase chain reaction results revealed that the expression of Brucella antigens was lower in spleen, kidney, and lung of immunized goats than of non-immunized animals. Also, treatment with our combination vaccine ameliorated histopathological lesions induced by the Brucella infection. Overall, the Salmonella Typhimurium delivery-based combination vaccine was effective in delivering immunogenic Brucella proteins, making it potentially useful in protecting livestock from brucellosis.
Collapse
Affiliation(s)
- Mwense Leya
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Won Kyong Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Jeong Sang Cho
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Eun-Chae Yu
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Young-Jee Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Yoonhwan Yeo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Myeon-Sik Yang
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Sang-Seop Han
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Jin Hur
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
25
|
Sidhu-Muñoz RS, Sancho P, Cloeckaert A, Zygmunt MS, de Miguel MJ, Tejedor C, Vizcaíno N. Characterization of Cell Envelope Multiple Mutants of Brucella ovis and Assessment in Mice of Their Vaccine Potential. Front Microbiol 2018; 9:2230. [PMID: 30294312 PMCID: PMC6158377 DOI: 10.3389/fmicb.2018.02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Brucella ovis is a non-zoonotic Brucella species lacking specific vaccine. It presents a narrow host range, a unique biology relative to other Brucella species, and important distinct surface properties. To increase our knowledge on its peculiar surface and virulence features, and seeking to develop a specific vaccine, multiple mutants for nine relevant cell-envelope-related genes were investigated. Mutants lacking Omp10 plus Omp19 could not be obtained, suggesting that at least one of these lipoproteins is required for viability. A similar result was obtained for the double deletion of omp31 and omp25 that encode two major surface proteins. Conversely, the absence of major Omp25c (proved essential for internalization in HeLa cells) together with Omp25 or Omp31 was tolerated by the bacterium. Although showing important in vitro and in vivo defects, the Δomp10Δomp31Δomp25c mutant was obtained, demonstrating that B. ovis PA survives to the simultaneous absence of Omp10 and four out seven proteins of the Omp25/Omp31 family (i.e., Omp31, Omp25c, Omp25b, and Omp31b, the two latter naturally absent in B. ovis). Three multiple mutants were selected for a detailed analysis of virulence in the mouse model. The Δomp31Δcgs and Δomp10Δomp31Δomp25c mutants were highly attenuated when inoculated at 106 colony forming units/mouse but they established a persistent infection when the infection dose was increased 100-fold. The Δomp10ΔugpBΔomp31 mutant showed a similar behavior until week 3 post-infection but was then totally cleared from spleen. Accordingly, it was retained as vaccine candidate for mice protection assays. When compared to classical B. melitensis Rev1 heterologous vaccine, the triple mutant induced limited splenomegaly, a significantly higher antibody response against whole B. ovis PA cells, an equivalent memory cellular response and, according to spleen colonization measurements, better protection against a challenge with virulent B. ovis PA. Therefore, it would be a good candidate to be evaluated in the natural host as a specific vaccine against B. ovis that would avoid the drawbacks of B. melitensis Rev1. In addition, the lack in this attenuated strain of Omp31, recognized as a highly immunogenic protein during B. ovis infection, would favor the differentiation between infected and vaccinated animals using Omp31 as diagnostic target.
Collapse
Affiliation(s)
- Rebeca Singh Sidhu-Muñoz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Axel Cloeckaert
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - Michel Stanislas Zygmunt
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2, Zaragoza, Spain
| | - Carmen Tejedor
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| |
Collapse
|
26
|
Cao XA, Hu W, Shang YJ, Liu YS, Han SY, Wang YN, Zhao L, Li XR, Zhou JH. Analyses of nucleotide, synonymous codon and amino acid usages at gene levels of Brucella melitensis strain QY1. INFECTION GENETICS AND EVOLUTION 2018; 65:257-264. [PMID: 30092351 DOI: 10.1016/j.meegid.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/20/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
Brucella melitensis is the causative pathogen of the zoonotic disease brucellosis in China. This work focused on analyses of genetic features represented by nucleotide, synonymous codon and amino acid usages at gene levels of B. melitensis strain QY1 isolated from China. Although nucleotide usage biases at different codon positions all work on synonymous codon usage bias, nucleotide usage biases at the 1st and 3rd positions play more important roles in codon usages. Mutation pressure caused by nucleotide composition constraint influences the formation of over-representative synonymous codons, but neighboring nucleotides surrounding a codon strongly influence synonymous codon usage bias for B. melitensis strain QY1. There is significant correlation between amino acid usage bias and hydropathicity of proteins for B. melitensis strain QY1. Compared with different Brucella species about synonymous codon usage patterns, synonymous codon usages are not obviously influenced by hosts. Due to nucleotide usage bias at the 1st codon position influencing synonymous codon and amino acid usages, good interactions among nucleotide, synonymous codon and amino acid usages exist in the evolutionary process of B. melitensis.
Collapse
Affiliation(s)
- Xiao-An Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Wen Hu
- Gansu Police Vocational College, Lanzhou 730046, Gansu, PR China
| | - You-Jun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Yong-Sheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Sheng-Yi Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, PR China
| | - Yi-Ning Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Lu Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Xue-Rui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China.
| |
Collapse
|
27
|
Abbassi-Daloii T, Yousefi S, Sekhavati MH, Tahmoorespur M. Impact of heat shock protein 60KD in combination with outer membrane proteins on immune response against Brucella melitensis. APMIS 2017; 126:65-75. [PMID: 29154438 DOI: 10.1111/apm.12778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Brucellosis caused by the bacterium Brucella affects various domestic and wild species. The outer membrane proteins 25 and 31 play key roles on stimulation of cell-mediated immune response against Brucella. GroEL as one of the major Brucella antigens stimulates the immune system and increases intracellular survival of bacteria. In the present study, we assumed injection of GroEL in combination with OMP25 and OMP31 would offer higher immunity levels. So, the impact of GroEL with different concentrations of recombinant outer membrane proteins emulsified in Chitosan Nanoparticles on immune responses was evaluated in mice model. Results showed both univalent (except rGroEL) and divalent immunized groups induced higher IFN-γ, TNF-α, and IL-4 titers in comparison to negative control groups. While GroEL showed negative effect on TNF-α titer, there were positive increase trends in IFN-γ in some treatments. Analysis of humoral antibody response revealed both univalent and divalent immunized groups induced higher IgG2a titer than IgG1 titer, indicating strong bent of Th1 immune response. Also, results showed GroEL can have positive impact on lymphocyte proliferation response. Overall, mice immunization using individual OMP25 or OMP31 demonstrated more effective cell-mediated immunity, although some combinations of rGroEL and rOMP31 vaccines were more efficient than other divalent ones.
Collapse
Affiliation(s)
- Tooba Abbassi-Daloii
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Human Genetics, Leiden University of Medical Center, Leiden, The Netherlands
| | - Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
28
|
Escalona E, Sáez D, Oñate A. Immunogenicity of a Multi-Epitope DNA Vaccine Encoding Epitopes from Cu-Zn Superoxide Dismutase and Open Reading Frames of Brucella abortus in Mice. Front Immunol 2017; 8:125. [PMID: 28232837 PMCID: PMC5298974 DOI: 10.3389/fimmu.2017.00125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/25/2017] [Indexed: 01/08/2023] Open
Abstract
Brucellosis is a bacterial zoonotic disease affecting several mammalian species that is transmitted to humans by direct or indirect contact with infected animals or their products. In cattle, brucellosis is almost invariably caused by Brucella abortus. Live, attenuated Brucella vaccines are commonly used to prevent illness in cattle, but can cause abortions in pregnant animals. It is, therefore, desirable to design an effective and safer vaccine against Brucella. We have used specific Brucella antigens that induce immunity and protection against B. abortus. A novel recombinant multi-epitope DNA vaccine specific for brucellosis was developed. To design the vaccine construct, we employed bioinformatics tools to predict epitopes present in Cu-Zn superoxide dismutase and in the open reading frames of the genomic island-3 (BAB1_0260, BAB1_0270, BAB1_0273, and BAB1_0278) of Brucella. We successfully designed a multi-epitope DNA plasmid vaccine chimera that encodes and expresses 21 epitopes. This DNA vaccine induced a specific humoral and cellular immune response in BALB/c mice. It induced a typical T-helper 1 response, eliciting production of immunoglobulin G2a and IFN-γ particularly associated with the Th1 cell subset of CD4+ T cells. The production of IL-4, an indicator of Th2 activation, was not detected in splenocytes. Therefore, it is reasonable to suggest that the vaccine induced a predominantly Th1 response. The vaccine induced a statistically significant level of protection in BALB/c mice when challenged with B. abortus 2308. This is the first use of an in silico strategy to a design a multi-epitope DNA vaccine against B. abortus.
Collapse
Affiliation(s)
- Emilia Escalona
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Darwin Sáez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
29
|
Tabynov K, Yespembetov B, Matikhan N, Ryskeldinova S, Zinina N, Kydyrbayev Z, Assanzhanova N, Tabynov K, Renukaradhya GJ, Mukhitdinova G, Sansyzbay A. First evaluation of an influenza viral vector based Brucella abortus vaccine in sheep and goats: Assessment of safety, immunogenicity and protective efficacy against Brucella melitensis infection. Vet Microbiol 2016; 197:15-20. [PMID: 27938677 DOI: 10.1016/j.vetmic.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/22/2023]
Abstract
Previously we developed and evaluated a candidate influenza viral vector based Brucella abortus vaccine (Flu-BA) administered with a potent adjuvant Montanide Gel01 in cattle, which was found safe and highly effective. This study was aimed to establish a proof-of-concept of the efficacy of Flu-BA vaccine formulation in sheep and goats. We vaccinated sheep and goats with Flu-BA vaccine and as a positive control vaccinated a group of animals with a commercial B. melitensis Rev.1 vaccine. Clinically, both Flu-BA and Rev.1 vaccines were found safe. Serological analysis showed the animals received Flu-BA vaccine did not induce antibody response against Brucella Omp16 and L7/L12 proteins during the period of our study (56days post-initial vaccination, PIV). But observed significant antigen-specific T cell response indicated by increased lymphocyte stimulation index and enhanced secretion of IFN-γ at day 56 PIV in Flu-BA group. The Flu-BA vaccinated animals completely protected 57.1% of sheep and 42.9% of goats against B. melitensis 16M challenge. The severity of brucellosis in terms of infection index and colonization of Brucella in tissues was significantly lower in the Flu-BA group compared to negative control animals group. Nevertheless, positive control commercial Rev.1 vaccine provided strong antigen-specific T cell immunity and protection against B. melitensis 16M infection. We conclude that the Flu-BA vaccine induces a significant antigen-specific T-cell response and provides complete protection in approximately 50% of sheep and goats against B. melitensis 16M infection. Further investigations are needed to improve the efficacy of Flu-BA and explore its practical application in small ruminants.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409, Gvardeiskiy, Kazakhstan.
| | - Bolat Yespembetov
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409, Gvardeiskiy, Kazakhstan
| | - Nurali Matikhan
- Faculty of Veterinary Science, Kazakh National Agrarian University (KazNAU), Almaty 050010, Kazakhstan
| | - Sholpan Ryskeldinova
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409, Gvardeiskiy, Kazakhstan
| | - Nadezhda Zinina
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409, Gvardeiskiy, Kazakhstan
| | - Zhailaubay Kydyrbayev
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409, Gvardeiskiy, Kazakhstan
| | - Nurika Assanzhanova
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409, Gvardeiskiy, Kazakhstan
| | - Kairat Tabynov
- Faculty of Veterinary Science, Kazakh National Agrarian University (KazNAU), Almaty 050010, Kazakhstan
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University (OSU), Wooster, OH 44691, USA
| | - Gulnara Mukhitdinova
- Faculty of Veterinary Science, Kazakh National Agrarian University (KazNAU), Almaty 050010, Kazakhstan
| | - Abylai Sansyzbay
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409, Gvardeiskiy, Kazakhstan
| |
Collapse
|
30
|
Goodwin ZI, Pascual DW. Brucellosis vaccines for livestock. Vet Immunol Immunopathol 2016; 181:51-58. [DOI: 10.1016/j.vetimm.2016.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/18/2023]
|
31
|
Li ZQ, Gui D, Sun ZH, Zhang JB, Zhang WZ, Zhang H, Guo F, Chen CF. Immunization of BALB/c mice with Brucella abortus 2308ΔwbkA confers protection against wild-type infection. J Vet Sci 2016; 16:467-73. [PMID: 26040616 PMCID: PMC4701739 DOI: 10.4142/jvs.2015.16.4.467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/26/2015] [Accepted: 04/04/2015] [Indexed: 12/16/2022] Open
Abstract
Brucellosis is a zoonotic disease that causes animal and human diseases. Vaccination is a major measure for prevention of brucellosis, but it is currently not possible to distinguish vaccinated animals from those that have been naturally infected. Therefore, in this study, we constructed the Brucella (B.) abortus 2380 wbkA mutant (2308ΔwbkA) and evaluated its virulence. The survival of 2308ΔwbkA was attenuated in murine macrophage (RAW 264.7) and BALB/c mice, and it induced high protective immunity in mice. The wbkA mutant elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon. Antibodies to 2308ΔwbkA could be detected in sera from mice, implying the potential for use of this protein as a diagnostic antigen. The WbkA antigen would allow serological differentiation between infected and vaccinated animals. These results suggest that 2308ΔwbkA is a potential attenuated vaccine against 16M. This vaccine will be further evaluated in sheep.
Collapse
Affiliation(s)
- Zhi-qiang Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.,School of life sciences, Shangqiu normal university, Shangqiu 476000, China
| | - Dan Gui
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhi-hua Sun
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jun-bo Zhang
- College of Biology, Agriculture and Forestry, Tongren University, Tongren 554300, China
| | - Wen-zhi Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.,College of Co-Innovation Center for Zoonotic Infectious Diseases in the Western Region, Shihezi University, Shihezi 832000, China
| | - Fei Guo
- College of Biology, Agriculture and Forestry, Tongren University, Tongren 554300, China.,College of Medicine, Shihezi University, Shihezi 832000, China
| | - Chuang-fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.,College of Co-Innovation Center for Zoonotic Infectious Diseases in the Western Region, Shihezi University, Shihezi 832000, China
| |
Collapse
|
32
|
Saeb ATM. Presence of Bacterial Virulence Gene Homologues in the dibenzo-p-dioxins degrading bacterium Sphingomonas wittichii. Bioinformation 2016; 12:241-248. [PMID: 28197061 PMCID: PMC5290665 DOI: 10.6026/97320630012241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022] Open
Abstract
Sphingomonas wittichii, a close relative of the human pathogen Sphingomonas paucimobilis, is a microorganism of great interest to the bioremediation community for its ability of biodegradation to a large number of toxic polychlorinated dioxins. In the present study we investigated the presence of different virulence factors and genes in S. wittichii. We utilized phylogenetic, comparative genomics and bioinformatics analysis to investigate the potentiality of S. wittichii as a potential virulent pathogen. The 16SrDNA phylogenetic tree showed that the closest bacterial taxon to S. wittichii is Brucella followed by Helicobacter, Campylobacter, Pseudomonas then Legionella. Despite their close phylogenetic relationship, S. wittichii did not share any virulence factors with Helicobacter or Campylobacter. On the contrary, in spite of the phylogenetic divergence between S. wittichii and Pseudomonas spp., they shared many major virulence factors, such as, adherence, antiphagocytosis, Iron uptake, proteases and quorum sensing. S. wittichii contains several major virulence factors resembling Pseudomonas sp., Legionella sp., Brucella sp. and Bordetella sp. virulence factors. Similarity of virulence factors did not match phylogenetic relationships. These findings suggest horizontal gene transfer of virulence factors rather than sharing a common pathogenic ancestor. S. wittichii is a potential virulent bacterium. Another possibility is that reductive evolution process attenuated S. wittichii pathogenic capabilities. Thus plenty of care must be taken when using this bacterium in soil remediation purposes.
Collapse
Affiliation(s)
- Amr T. M. Saeb
- Biotechnology Department, Strategic Center for Diabetes Research, College of medicine, King Saud University, Saudi Arabia
| |
Collapse
|
33
|
Yin D, Li L, Song D, Liu Y, Ju W, Song X, Wang J, Pang B, Xu K, Li J. A novel recombinant multi-epitope protein against Brucella melitensis infection. Immunol Lett 2016; 175:1-7. [DOI: 10.1016/j.imlet.2016.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
|
34
|
Simultaneous immunization of mice with Omp31 and TF provides protection against Brucella melitensis infection. Vaccine 2015; 33:5532-5538. [DOI: 10.1016/j.vaccine.2015.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
|
35
|
Saeedinia AR, Zeinoddini M, Soleimani M, Sadeghizadeh M. A new method for simultaneous gene deletion and down-regulation in Brucella melitensis Rev.1. Microbiol Res 2015; 170:114-123. [PMID: 25249309 DOI: 10.1016/j.micres.2014.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/17/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
In this study, our aim was to integrate an antisense expression cassette in bacterial chromosome for providing a long-term expression down-regulation in a bid to develop a new approach for simultaneous deletion and down-regulation of target genes in bacterial system. Therefore, we were used this approach for simultaneous deletion of the perosamine synthetase (per) gene and down-regulation of the virB1 expression in Brucella melitensis Rev.1. The per gene, which is one of the LPS O-chain coding genes, was replaced by homologous recombination with an antisense virB1 expression cassette together with kanamycin resistance cassette (kan(R)). Deletion of the per gene was characterized by PCR analysis and DNA sequencing. The expression of antisense virB1 cassette was confirmed by RT-PCR. Down-regulation of the virB1 mRNA expression was quantified by real-time RT-PCR using virB1 specific primers relative to the groEL reference gene. The survival rate of mutant strain was evaluated by CFU count in the BALB/c mice. The virB1 mRNA expression was down-regulated on average 10-fold in mutant strain as compared to parental strain. The loss of per gene function and decrease of the virB1 mRNA expression resulted in reduced entry and survival of the mutant Rev.1 strain in BALB/c mice splenocytes. We propose that this method can be used for simultaneous regulation of multiple genes expression.
Collapse
Affiliation(s)
- Ali Reza Saeedinia
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Genetics, Science and Biotechnology Research Center, Mallek-Ashtar University of Technology, P.O. Box: 15875-1774, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| |
Collapse
|
36
|
Saeb AT, David SK, Al-Brahim H. In silico detection of virulence gene homologues in the human pathogen sphingomonas spp. Evol Bioinform Online 2014; 10:229-38. [PMID: 25574122 PMCID: PMC4266192 DOI: 10.4137/ebo.s20710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 11/05/2022] Open
Abstract
There is an ongoing debate about the clinical significance of Sphingomonas paucimobilis as a virulent bacterial pathogen. In the present study, we investigated the presence of different virulence factors and genes in Sphingomonas bacteria. We utilized phylogenetic, comparative genomics and bioinformatics analysis to investigate the potentiality of Sphingomonas bacteria as virulent pathogenic bacteria. The 16S ribosomal RNA gene (16S rDNA) phylogenetic tree showed that the closest bacterial taxon to Sphingomonas is Brucella with a bootstrap value of 87 followed by Helicobacter, Campylobacter, Pseudomonas, and then Legionella. Sphingomonas shared no virulence factors with Helicobacter or Campylobacter, despite their close phylogenic relationship. In spite of the phylogenetic divergence between Sphingomonas and Pseudomonas, they shared many major virulence factors, such as adherence, antiphagocytosis, iron uptake, proteases, and quorum sensing. In conclusion, Sphingomonas spp. contains several major virulence factors resembling Pseudomonas sp., Legionella sp., Brucella sp., and Bordetella sp. virulence factors. Similarity of virulence factors did not match phylogenetic relationships. These findings suggest horizontal gene transfer of virulence factors rather than sharing a common pathogenic ancestor. Sphingomonas spp. is potential virulent bacterial pathogen.
Collapse
Affiliation(s)
- Amr Tm Saeb
- Biotechnology Department, Strategic Center for Diabetes Research, King Saud University, Riyadh, Saudi Arabia
| | - Satish Kumar David
- Information Technology Department, Strategic Center for Diabetes Research, King Saud University, Riyadh, Saudi Arabia
| | - Hissa Al-Brahim
- Biotechnology Department, Strategic Center for Diabetes Research, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Mechanism of Asp24 upregulation in Brucella abortus rough mutant with a disrupted O-antigen export system and effect of Asp24 in bacterial intracellular survival. Infect Immun 2014; 82:2840-50. [PMID: 24752516 DOI: 10.1128/iai.01765-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that Brucella abortus rough mutant strain 2308 ΔATP (called the ΔrfbE mutant in this study) exhibits reduced intracellular survival in RAW264.7 cells and attenuated persistence in BALB/c mice. In this study, we performed microarray analysis to detect genes with differential expression between the ΔrfbE mutant and wild-type strain S2308. Interestingly, acid shock protein 24 gene (asp24) expression was significantly upregulated in the ΔrfbE mutant compared to S2308, as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Further studies using additional strains indicated that the upregulation of asp24 occurred only in rough mutants with disrupted O-antigen export system components, including the ATP-binding protein gene rfbE (bab1_0542) and the permease gene rfbD (bab1_0543), while the ΔwboA rough mutant (which lacks an O-antigen synthesis-related glycosyltransferase) and the RB51 strain (a vaccine strain with the rough phenotype) showed no significant changes in asp24 expression compared to S2308. In addition, abolishing the intracellular O-antigen synthesis of the ΔrfbE mutant by deleting the wboA gene (thereby creating the ΔrfbE ΔwboA double-knockout strain) recovered asp24 expression. These results indicated that asp24 upregulation is associated with intracellular O-antigen synthesis and accumulation but not with the bacterial rough phenotype. Further studies indicated that asp24 upregulation in the ΔrfbE mutant was associated neither with bacterial adherence and invasion nor with cellular necrosis on RAW264.7 macrophages. However, proper expression of the asp24 gene favors intracellular survival of Brucella in RAW264.7 cells and HeLa cells during an infection. This study reveals a novel mechanism for asp24 upregulation in B. abortus mutants.
Collapse
|
38
|
WANG XIURAN, WANG LIN, LU TIANCHENG, YANG YANLING, CHEN SI, ZHANG RUI, LANG XULONG, YAN GUANGMOU, QIAN JING, WANG XIAOXU, MENG LINGYI, WANG XINGLONG. Effects of partial deletion of the wzm and wzt genes on lipopolysaccharide synthesis and virulence of Brucella abortus S19. Mol Med Rep 2014; 9:2521-7. [DOI: 10.3892/mmr.2014.2104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 02/21/2014] [Indexed: 11/06/2022] Open
|
39
|
Paunova-Krasteva TS, Pavlova VA, De Castro C, Ivanova RM, Molinaro A, Nikolova EB, Stoitsova SR. Cyclic enterobacterial common antigens from Escherichia coli O157 as microbe-associated molecular patterns. Can J Microbiol 2014; 60:173-6. [PMID: 24588391 DOI: 10.1139/cjm-2013-0697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study, we described 2 forms of cyclic enterobacterial common antigen (ECACYC), a tetramer and a pentamer, from Escherichia coli O157. ECACYC is present in several representatives of the Enterobacteriaceae. To date, functional studies on ECACYC are sparse. Cyclic oligosaccharides in other bacteria, like the cyclic β-glucans in Rhizobiaceae, represent microbe-associated molecular patterns involved in host-bacteria interaction. This observation determined the aim of the present study: to test whether the tetrameric and pentameric ECACYC from E. coli O157 can be recognised by host humoral and cellular mechanisms. ELISA tests designed to compare the 2 ECACYC with the O157 lipopolysaccharide showed that both ECACYC were not recognised by polyclonal anti-O157 serum but were good ligands for mannan-binding lectin. The lectin had a higher affinity for the tetramer than the pentamer. ECACYC deposited more C3b than did the lipopolysaccharide. To examine the interactions with human circulating neutrophils, the antigens were loaded onto fluorescent latex beads and applied in a phagocytosis experiment. Spheres coated with the 2 ECACYC occasionally adhered to phagocyte surfaces but, unlike O157-loaded spheres, failed to induce free-radical release. The results show that the 2 ECACYC represent microbe-associated molecular patterns recognised by host humoral non-self-recognition mechanisms.
Collapse
Affiliation(s)
- Tsvetelina S Paunova-Krasteva
- a The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, Sofia 1113, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang XR, Yan GM, Zhang R, Lang XL, Yang YL, Li XY, Chen S, Qian J, Wang XL. Immunogenic response induced by wzm and wzt gene deletion mutants from Brucella abortus S19. Mol Med Rep 2013; 9:653-8. [PMID: 24247358 DOI: 10.3892/mmr.2013.1810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 11/13/2013] [Indexed: 11/06/2022] Open
Abstract
Brucellosis is an infectious disease affecting humans and animals worldwide. Effective methods of control include inducing immunity in animals by vaccination and elimination. Brucella abortus S19 is one of the popular vaccines for control of cattle brucellosis, as it has low virulence. In this paper, allelic exchange plasmids of wzm and wzt genes were constructed and partially knocked out to evaluate the effects on the induction of immunity to Brucella abortus S19 mutants. Cytokine secretion in vitro, INF-γ induction in vivo and antibody dynamics were evaluated. These data suggested that the immunity-eliciting ability of the wzm and wzt gene deletion mutants was similar, although reduced compared with the S19 strain. The results demonstrated that the wzt gene may be more important in the regulation of the induction of immunity than the wzm gene.
Collapse
Affiliation(s)
- Xiu-Ran Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Guang-Mou Yan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Rui Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Xu-Long Lang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, P.R. China
| | - Yan-Ling Yang
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130122, P.R. China
| | - Xiao-Yan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, P.R. China
| | - Si Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, P.R. China
| | - Jing Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, P.R. China
| | - Xing-Long Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
41
|
Ben-Tekaya H, Gorvel JP, Dehio C. Bartonella and Brucella--weapons and strategies for stealth attack. Cold Spring Harb Perspect Med 2013; 3:3/8/a010231. [PMID: 23906880 DOI: 10.1101/cshperspect.a010231] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host's immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies.
Collapse
Affiliation(s)
- Houchaima Ben-Tekaya
- Focal Area Infection Biology, Biozentrum, University of Basel, 4052 Basel, Switzerland
| | | | | |
Collapse
|
42
|
Gomez G, Adams LG, Rice-Ficht A, Ficht TA. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol 2013; 3:17. [PMID: 23720712 PMCID: PMC3655278 DOI: 10.3389/fcimb.2013.00017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/26/2013] [Indexed: 01/18/2023] Open
Abstract
Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
43
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium–legume symbiosis. FEMS Microbiol Rev 2013; 37:364-83. [DOI: 10.1111/1574-6976.12003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023] Open
|
44
|
YANG X, SKYBERG JA, CAO L, CLAPP B, THORNBURG T, PASCUAL DW. Progress in Brucella vaccine development. FRONTIERS IN BIOLOGY 2013; 8:60-77. [PMID: 23730309 PMCID: PMC3666581 DOI: 10.1007/s11515-012-1196-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/16/2012] [Indexed: 01/18/2023]
Abstract
Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines.
Collapse
Affiliation(s)
- Xinghong YANG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Jerod A. SKYBERG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Ling CAO
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Beata CLAPP
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Theresa THORNBURG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - David W. PASCUAL
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| |
Collapse
|
45
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium-legume symbiosis. FEMS Microbiol Rev 2012. [DOI: 10.1111/1574-6976.2012.12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Andreas F. Haag
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Markus F. F. Arnold
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Kamila K. Myka
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Bernhard Kerscher
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Sergio Dall'Angelo
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | | | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique; Gif-sur-Yvette Cedex; France
| | - Gail P. Ferguson
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| |
Collapse
|
46
|
Ramelot TA, Rossi P, Forouhar F, Lee HW, Yang Y, Ni S, Unser S, Lew S, Seetharaman J, Xiao R, Acton TB, Everett JK, Prestegard JH, Hunt JF, Montelione GT, Kennedy MA. Structure of a specialized acyl carrier protein essential for lipid A biosynthesis with very long-chain fatty acids in open and closed conformations. Biochemistry 2012; 51:7239-49. [PMID: 22876860 DOI: 10.1021/bi300546b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solution nuclear magnetic resonance (NMR) structures and backbone (15)N dynamics of the specialized acyl carrier protein (ACP), RpAcpXL, from Rhodopseudomonas palustris, in both the apo form and holo form modified by covalent attachment of 4'-phosphopantetheine at S37, are virtually identical, monomeric, and correspond to the closed conformation. The structures have an extra α-helix compared to the archetypical ACP from Escherichia coli, which has four helices, resulting in a larger opening to the hydrophobic cavity. Chemical shift differences between apo- and holo-RpAcpXL indicated some differences in the hinge region between α2 and α3 and in the hydrophobic cavity environment, but corresponding changes in nuclear Overhauser effect cross-peak patterns were not detected. In contrast to the NMR structures, apo-RpAcpXL was observed in an open conformation in crystals that diffracted to 2.0 Å resolution, which resulted from movement of α3. On the basis of the crystal structure, the predicted biological assembly is a homodimer. Although the possible biological significance of dimerization is unknown, there is potential that the resulting large shared hydrophobic cavity could accommodate the very long-chain fatty acid (28-30 carbons) that this specialized ACP is known to synthesize and transfer to lipid A. These structures are the first representatives of the AcpXL family and the first to indicate that dimerization may be important for the function of these specialized ACPs.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Department of Chemistry and Biochemistry, Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio 45056, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
de Barsy M, Mirabella A, Letesson JJ, De Bolle X. A Brucella abortus cstA mutant is defective for association with endoplasmic reticulum exit sites and displays altered trafficking in HeLa cells. MICROBIOLOGY-SGM 2012; 158:2610-2618. [PMID: 22820839 DOI: 10.1099/mic.0.060509-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the genus Brucella are facultative intracellular pathogenic bacteria able to control maturation of their vacuoles. In several cell types, Brucella is able to reach a proliferation compartment derived from the endoplasmic reticulum (ER). Since ER exit site (ERES) functions are required for Brucella proliferation, we performed a yeast two-hybrid screen between human ERES-associated proteins and the predicted brucella proteome. This screening led to the identification of CstA, a conserved protein that specifically interacts with Sec24A, a component of the ERES. We found that a tagged CstA is secreted in Brucella abortus culture medium. This secretion is independent of the type IV secretion system VirB and the flagellum, suggesting that CstA is secreted through another system. We also discovered that a B. abortus cstA mutant is impaired for its association with the Sec23 ERES marker. The B. abortus cstA mutant displayed peculiar trafficking, with reduced association with LAMP1 and Calnexin 12 h post-infection in HeLa cells. However, its intracellular proliferation kinetics was not affected. The data reported here suggest that CstA could be directly or indirectly involved in the control of B. abortus intracellular trafficking in HeLa cells.
Collapse
Affiliation(s)
- Marie de Barsy
- Research Unit in Microorganisms Biology (URBM), University of Namur (FUNDP), Namur, Belgium
| | - Aurélie Mirabella
- Research Unit in Microorganisms Biology (URBM), University of Namur (FUNDP), Namur, Belgium
| | - Jean-Jacques Letesson
- Research Unit in Microorganisms Biology (URBM), University of Namur (FUNDP), Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM), University of Namur (FUNDP), Namur, Belgium
| |
Collapse
|
48
|
von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev 2012; 36:533-62. [PMID: 22373010 DOI: 10.1111/j.1574-6976.2012.00334.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/10/2012] [Accepted: 02/16/2012] [Indexed: 01/18/2023] Open
Abstract
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.
Collapse
Affiliation(s)
- Kristine von Bargen
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
| | | | | |
Collapse
|
49
|
Quorum-sensing and BvrR/BvrS regulation, the type IV secretion system, cyclic glucans, and BacA in the virulence of Brucella ovis: similarities to and differences from smooth brucellae. Infect Immun 2012; 80:1783-93. [PMID: 22392933 DOI: 10.1128/iai.06257-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella ovis is a rough bacterium--lacking O-polysaccharide chains in the lipopolysaccharide--that is virulent in its natural host and whose virulence mechanisms remain almost unexplored. In a search for additional traits that distinguish B. ovis from smooth Brucella, which require O-polysaccharide chains for virulence, we have analyzed the significance in B. ovis of the main virulence factors described for smooth Brucella. Attempts to obtain strains of virulent B. ovis strain PA that are mutated in the BvrR/BvrS two-component regulatory system were unsuccessful, suggesting the requirement of that system for in vitro survival, while the inactivation of bacA--in contrast to the results seen with smooth Brucella--did not affect splenic colonization in mice or behavior in J774.A1 murine macrophages. Defects in the synthesis of cyclic ß-1,2 glucans reduced the uptake of B. ovis PA in macrophages and, although the intracellular multiplication rate was unaffected, led to attenuation in mice. Growth of strains with mutations in the type IV secretion system (encoded by the virB operon) and the quorum-sensing-related regulator VjbR was severely attenuated in the mouse model, and although the mutant strains internalized like the parental strain in J774.A1 murine macrophages, they were impaired for intracellular replication. As described for B. melitensis, VjbR regulates the transcription of the virB operon positively, and the N-dodecanoyl-dl-homoserine lactone (C(12)-HSL) autoinducer abrogates this effect. In contrast, no apparent VjbR-mediated regulation of the fliF flagellar gene was observed in B. ovis, probably due to the two deletions detected upstream of fliF. These results, together with others reported in the text, point to similarities between rough virulent B. ovis and smooth Brucella species as regards virulence but also reveal distinctive traits that could be related to the particular pathogenicity and host tropism characteristics of B. ovis.
Collapse
|