1
|
Gupta DS, Gupta DS, Abjani NK, Dave Y, Apte K, Kaur G, Kaur D, Saini AK, Sharma U, Haque S, Tuli HS. Vaccine-based therapeutic interventions in lung cancer management: A recent perspective. Med Oncol 2024; 41:249. [PMID: 39316239 DOI: 10.1007/s12032-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
The incidence of lung cancer continues to grow globally, contributing to an ever-increasing load on healthcare systems. Emerging evidence has indicated lowered efficacy of conventional treatment strategies, such as chemotherapy, surgical interventions and radiotherapy, prompting the need for exploring alternative interventions. A growing focus on immunotherapy and the development of personalized medicine has paved the way for vaccine-based delivery in lung cancer. With various prominent targets such as CD8+T cells and PD-L1, immune-targeted, anti-cancer vaccines have been evaluated in both, pre-clinical and clinical settings, to improve therapeutic outcomes. However, there are a number of challenges that must be addressed, including the scalability of such delivery systems, heterogeneity of lung cancers, and long-term safety as well as efficacy. In addition to this, natural compounds, in combination with immunotherapy, have gained considerable research interest in recent times. This makes it necessary to explore their role in synergism with immune-targeted agents. The authors of this review aim to offer an overview of recent advances in our understanding of lung cancer pathogenesis, detection and management strategies, and the emergence of immunotherapy with a special focus on vaccine delivery. This finding is supported with evidence from testing in non-human and human models, showcasing promising results. Prospects for phytotherapy have also been discussed, in order to combat some pitfalls and limitations. Finally, the future perspectives of vaccine usage in lung cancer management have also been discussed, to offer a holistic perspective to readers, and to prompt further research in the domain.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Daksh Sanjay Gupta
- Vivekanand Education Society's College of Pharmacy, Chembur, Mumbai, Maharashtra, 400074, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Yash Dave
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ketaki Apte
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India.
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Adesh Kumar Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
2
|
Ghadirian S, Tabibzadeh A, Rezvani H, Jafarzadeh M. Investigation of Fibroblast Growth Factor Peptide Antagonist on Mouse Model Breast Tumor through ERK/MAPK and PI3K/AKT Signaling Pathways. Asian Pac J Cancer Prev 2024; 25:473-483. [PMID: 38415533 PMCID: PMC11077103 DOI: 10.31557/apjcp.2024.25.2.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND In the majority of cancers, metastasis of tumor cells is the main cause of treatment failure. This study intended to investigate the effectiveness of basic fibroblast growth factor (bFGF) peptide designed to inhibit tumor growth in 4T1 metastatic breast cancer through the PI3K/AKT and ERK/MAPK signal transduction pathways. METHODS The tumor was induced through 4T1 tumor graft in BALB/c mice. The designed peptide was injected intraperitoneal at three selected doses after two weeks for 14 days. The PBS and doxorubicin were used as the negative and positive control groups, respectively. Tumor size was measured and after the treatment period, the mice underwent a surgery and tumors were used for the western blot examinations. RESULTS the peptide injection was effective in reducing or inhibiting tumor growth in mice model and in vitro. The western blot analysis results showed that the p-AKT and p-ERK levels in peptide treated tumors were reduced (p<0.05). CONCLUSION The peptide injection was effective in mice model. Findings showed that in the two signal transduction pathways, the p-AKT and p-ERK levels were significantly different from the negative control group.
Collapse
Affiliation(s)
- Shahrzad Ghadirian
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Rezvani
- Department of Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrzad Jafarzadeh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran.
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Jafarzadeh M, Mousavizadeh K, Joghataei MT, Bahremani MH, Safa M, Asghari SM. A Fibroblast Growth Factor Antagonist Peptide Inhibits Breast Cancer in BALB/c Mice. Open Life Sci 2018; 13:348-354. [PMID: 33817103 PMCID: PMC7874733 DOI: 10.1515/biol-2018-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/10/2018] [Indexed: 02/02/2023] Open
Abstract
Objective Given the role of basic fibroblastic growth factor (bFGF) in tumor growth, it has been considered as a potential target for tumor therapy. In this study, we investigate the effect of bFGF antagonistic peptide on the growth and angiogenesis of 4T1 mammary carcinoma tumor (MCT) in BALB/c mice. Methods An engineered peptide was injected into BALB/c mice in doses of 1, 2.5, 5 and 10 mg/kg daily for 14 days. Immunohistochemical analysis using anti-CD31 and anti-CD34 were conducted as indices of angiogenesis. In addition, blood samples were taken from the eyes of treated and control mice and the levels of Interleukin-8 (IL-8) and Tumor Necrosis Factor-α (TNF-α) were measured by ELISA. Data was analyzed by ANOVA using SPSS. Results The antagonistic peptide inhibited growth and angiogenesis of MCT (P ≤0.05), and decreased the serum level of IL-8 and TNF-α in treated groups compared to the control groups. Conclusion The inhibition of tumor angiogenesis has been considered as an important strategy to halt tumor growth. The results of current study confirm that the antiangiogenic peptide effectively inhibited the growth of MCT, and shows potential for clinical trials for the treatment of cancer in humans.
Collapse
Affiliation(s)
- Mehrzad Jafarzadeh
- Department of Biology, University Campus2, University of Guilan, Rasht, Iran
| | - Kazem Mousavizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi Bahremani
- Department of Pathology, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
4
|
Kraśko JA, Žilionytė K, Darinskas A, Dobrovolskienė N, Mlynska A, Riabceva S, Zalutsky I, Derevyanko M, Kulchitsky V, Karaman O, Fedosova N, Symchych TV, Didenko G, Chekhun V, Strioga M, Pašukonienė V. Post-operative unadjuvanted therapeutic xenovaccination with chicken whole embryo vaccine suppresses distant micrometastases and prolongs survival in a murine Lewis lung carcinoma model. Oncol Lett 2018; 15:5098-5104. [PMID: 29552144 DOI: 10.3892/ol.2018.7950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Immunotherapy in the form of anticancer vaccination relies on the mobilization of the patient's immune system against specific cancer antigens. Instead of focusing on an autologous cell lysate, which is not always available in clinical practice, the present study investigates vaccines utilizing xenogeneic foetal tissue that are rich in oncofoetal antigens. Lewis lung carcinoma (LLC)-challenged C57BL/6 mice were treated with either a xenogeneic vaccine made from chicken whole embryo, or a xenogeneic vaccine made from rat embryonic brain tissue, supplemented with a Bacillus subtilis protein fraction as an adjuvant. Median and overall survival, size of metastatic foci in lung tissue and levels of circulating CD8a+ T cells were evaluated and compared with untreated control mice. Following primary tumour removal, a course of three subcutaneous vaccinations with xenogeneic chicken embryo vaccine led to significant increase in overall survival rate (100% after 70 days of follow-up vs. 40% in untreated control mice), significant increase in circulating CD8a+ T cells (18.18 vs. 12.6% in untreated control mice), and a significant decrease in the area and incidence of metastasis foci. The xenogeneic rat brain tissue-based vaccine did not improve any of the investigated parameters, despite promising reports in other models. We hypothesize that the proper selection of antigen source (tissue) can constitute an effective immunotherapeutic product.
Collapse
Affiliation(s)
- Jan Aleksander Kraśko
- Laboratory of Immunology, National Cancer Institute, Vilnius, Vilnius LT-08660, Lithuania.,Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Vilnius LT-08406, Lithuania.,Department of Manufacturing, JSC 'Froceth', Vilnius, Vilnius LT-08217, Lithuania
| | - Karolina Žilionytė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Vilnius LT-08660, Lithuania
| | - Adas Darinskas
- Laboratory of Immunology, National Cancer Institute, Vilnius, Vilnius LT-08660, Lithuania.,Department of Manufacturing, JSC 'Froceth', Vilnius, Vilnius LT-08217, Lithuania.,JSC 'Innovita Research', Vilnius, Vilnius LT-06118, Lithuania
| | - Neringa Dobrovolskienė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Vilnius LT-08660, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, Vilnius, Vilnius LT-08660, Lithuania
| | - Svetlana Riabceva
- Departments of Neurophysiology and Pathology, Institute of Physiology, Minsk, Minsk BY-220072, Republic of Belarus
| | - Iosif Zalutsky
- Departments of Neurophysiology and Pathology, Institute of Physiology, Minsk, Minsk BY-220072, Republic of Belarus
| | - Marina Derevyanko
- Departments of Neurophysiology and Pathology, Institute of Physiology, Minsk, Minsk BY-220072, Republic of Belarus
| | - Vladimir Kulchitsky
- Departments of Neurophysiology and Pathology, Institute of Physiology, Minsk, Minsk BY-220072, Republic of Belarus
| | - Olga Karaman
- Laboratory of Oncoimmunology and Antitumour Vaccine Engineering, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Kyivs'ka 03022, Ukraine
| | - Natalia Fedosova
- Laboratory of Oncoimmunology and Antitumour Vaccine Engineering, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Kyivs'ka 03022, Ukraine
| | - Tatiana Vasyliyvna Symchych
- Laboratory of Oncoimmunology and Antitumour Vaccine Engineering, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Kyivs'ka 03022, Ukraine
| | - Gennady Didenko
- Laboratory of Oncoimmunology and Antitumour Vaccine Engineering, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Kyivs'ka 03022, Ukraine
| | - Vasyl Chekhun
- Laboratory of Oncoimmunology and Antitumour Vaccine Engineering, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Kyivs'ka 03022, Ukraine
| | - Marius Strioga
- Laboratory of Immunology, National Cancer Institute, Vilnius, Vilnius LT-08660, Lithuania
| | - Vita Pašukonienė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Vilnius LT-08660, Lithuania
| |
Collapse
|
5
|
Grah JJ, Katalinic D, Juretic A, Santek F, Samarzija M. Clinical Significance of Immunohistochemical Expression of Cancer/Testis Tumor-associated Antigens (MAGE-A1, MAGE-A3/4, NY-ESO-1) in Patients with Non-small Cell Lung Cancer. TUMORI JOURNAL 2018. [DOI: 10.1177/1430.15817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Josip Joachim Grah
- Department of Oncology, University Hospital Center (KBC Zagreb), University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darko Katalinic
- Department of Oncology, University Hospital Center (KBC Zagreb), University of Zagreb School of Medicine, Zagreb, Croatia
| | - Antonio Juretic
- Department of Oncology, University Hospital Center (KBC Zagreb), University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fedor Santek
- Department of Oncology, University Hospital Center (KBC Zagreb), University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miroslav Samarzija
- Department of Pulmonary Medicine, University Hospital Center (KBC Zagreb), University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
6
|
Shao S, Risch E, Burner D, Lu L, Minev B, Ma W. IFNγ enhances cytotoxic efficiency of the cytotoxic T lymphocytes against human glioma cells. Int Immunopharmacol 2017; 47:159-165. [PMID: 28410529 DOI: 10.1016/j.intimp.2017.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) are a key player in cancer immunotherapies, and MHC class I molecules on the cell surface are crucial for cellular recognition. However, the aberrant expression of MHC class I molecules is frequently found in various malignancies. IFNγ has dual functions in cancer progression, and its effect on tumor immunity is controversial. To investigate whether IFNγ can enhance cytotoxic efficiency of the tumor antigen-specific CTLs, we generated the CTLs using modified human dendritic cells as antigen presenting cells, then studied the activities of CTLs on human leukocyte antigen (HLA)-A2 positive glioma cells treated with, or without IFNγ. The results from both ELISpot and cytotoxicity assays demonstrated that the CTLs recognized and eliminated the HLA-A2 positive glioma cells treated with IFNγ more effectively when compared to the glioma cells deprived of IFNγ treatment. In addition, in vitro experiments showed that the levels of MHC class I molecules were upregulated in all of the HLA-A2 positive glioma cells. Using the publicly accessed TCGA data of low-grade glioma, we found significantly positive associations between IFNγ and both MHC class I molecules and CD8+ T cell activation score (p<0.0001). Furthermore, we found a significantly reduced risk of death in the glioma patients with high T cell activation score in comparison to those with low score (p=0.022). These findings suggest that a clinical application of IFNγ treatment may have potential benefits.
Collapse
Affiliation(s)
- Shengwen Shao
- Institute of Microbiology and Immunology, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Eric Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT 06520, USA
| | - Danielle Burner
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT 06520, USA
| | - Boris Minev
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; StemImmune Inc., San Diego, CA 92122, USA.
| | - Wenxue Ma
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Institute for Cancer Biology and Stem Cell Research, Huzhou University, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
7
|
Abstract
Anticancer immunotherapy has undergone a long evolving journey for decades, and has been dramatically applied to mainstream treatments in oncology in recent 5 years. This progress represents an advanced milestone following cytotoxic medicine and targeted therapy. Cellular immunity plays a pivotal role in the immune responses of hosts to tumor antigens. Such immunity is notably suppressed during neoplastic progression due to immuno-editing processes. Cellular immunity can also be selectively re-activated to combat malignancies while exploiting the advantages of contemporary scientific breakthroughs in molecular immunology and genetic engineering. The rapid advancement of cellular immunity-based therapeutic approaches has achieved high efficacy in certain cancer patients. Consequently, the landscape of oncologic medicine and pharmaceutical innovation has transformed recently. In this regard, we present a comprehensive update on clinically established anti-cancer treatments with cell immunity augmentation as the major mechanism of action.
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute of Biomedicine, Yiling Pharmacy, Shijiazhuang 050035, China
| | - Xiaoshi Zhang
- Research Institute of Biomedicine, Yiling Pharmacy, Shijiazhuang 050035, China
| |
Collapse
|
8
|
Behm B, Di Fazio P, Michl P, Neureiter D, Kemmerling R, Hahn EG, Strobel D, Gress T, Schuppan D, Wissniowski TT. Additive antitumour response to the rabbit VX2 hepatoma by combined radio frequency ablation and toll like receptor 9 stimulation. Gut 2016; 65:134-143. [PMID: 25524262 DOI: 10.1136/gutjnl-2014-308286] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Radiofrequency ablation (RFA), a palliative therapeutic option for solid hepatic tumours, stimulates localised and systemic antitumour cytotoxic T cells. We studied how far addition of CpG B oligonucleotides, toll like receptor (TLR) 9 agonists, would increase the antitumoural T cell response of RFA in the highly aggressive VX2 hepatoma. METHODS Rabbits were randomised to receive RFA, CpG B, their combination or no therapy. The antitumour efficacy of RFA alone or in combination with CpG B was further tested by rechallenging a separate group with intravenously injected VX2 tumour cells after 120 days. Animals were assessed for survival, tumour size and spread, and tumour and immune related histological markers after 120 days. Peripheral blood mononuclear cells were tested for tumour-specific T cell activation and cytotoxicity. Immune modulatory cytokines tumour necrosis factor α, interleukin (IL)-2/IL-8/IL-10/IL-12 and interferon γ, and vascular endothelial growth factor were measured in serum. RESULTS Mean survival of untreated animals was 36 days, as compared with 97, 78 and 114 days for RFA, CpG and combination therapy, respectively. Compared with untreated controls, antitumour T cell stimulation/cytotoxicity increased 26/16-fold, 32/17-fold and 50/38-fold 2 weeks after RFA, CpG and combination treatments, respectively. The combination inhibited tumour spread to lungs and peritoneum significantly and prohibited new tumour growth in animals receiving a secondary systemic tumour cell injection. RFA alone induced a Th1 cytokine pattern, while IL-8 and IL-10 were only upregulated in CpG treated animals and controls. CONCLUSIONS The combination of TLR9 stimulation with RFA resulted in a potentiated antitumour T cell response and cytotoxicity in the VX2 tumour model. Only this combination prevented subsequent tumour spread and resulted in a significantly improved survival, justifying the need for further exploration of the combination of ablative therapies and TLR9 agonists in liver cancer.
Collapse
Affiliation(s)
- Barbara Behm
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Philipps-University Marburg, Marburg, Germany
| | - Patrick Michl
- Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Ralf Kemmerling
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Eckhart Georg Hahn
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Deike Strobel
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Gress
- Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| | - Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Thaddaeus Till Wissniowski
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
9
|
Gérard C, Baudson N, Ory T, Segal L, Louahed J. A Comprehensive Preclinical Model Evaluating the Recombinant PRAME Antigen Combined With the AS15 Immunostimulant to Fight Against PRAME-expressing Tumors. J Immunother 2015; 38:311-20. [PMID: 26325375 PMCID: PMC4661047 DOI: 10.1097/cji.0000000000000095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/22/2015] [Indexed: 12/30/2022]
Abstract
The PRAME tumor antigen is a potential target for immunotherapy. We assessed the immunogenicity, the antitumor activity, and the safety and the tolerability of a recombinant PRAME protein (recPRAME) combined with the AS15 immunostimulant (recPRAME+ AS15) in preclinical studies in mice and Cynomolgus monkeys. Four groups of 12 CB6F1 mice received 4 injections of phosphate-buffered saline (PBS), recPRAME, AS15, or recPRAME+AS15. Immunized mice were injected with tumor cells expressing PRAME (CT26-PRAME) 2 weeks or 2 months after the last injection. The mean tumor surface was measured twice a week. Two groups of 10 monkeys received 7 injections of saline or recPRAME+ AS15. T-cell responses were measured by flow cytometry using intracellular cytokine staining (ICS). In CB6F1 mice, repeated injections of recPRAME+ AS15 induced high PRAME-specific antibody titers and mostly CD4+ T cells producing cytokines. This immune response was long-lasting in these animals and was associated with protection against a challenge with PRAME-expressing tumor cells (CT26-PRAME) applied either 2 weeks or 2 months after the last injection; these data indicate the induction of an immune memory. In HLA-A02.01/HLA-DR1 transgenic mice, recPRAME+ AS15 induced both CD4+ and CD8+ T-cell responses, indicating that this antigen can be processed by the human leukocyte antigen and is potentially immunogenic in humans. In addition, a repeated-dose toxicity study in monkeys showed that 7 biweekly injections of recPRAME+ AS15 were well tolerated, and induced PRAME-specific antibodies and T cells. In conclusion, these preclinical data indicate that repeated injections of the PRAME cancer immunotherapeutic are immunogenic and have an acceptable safety profile.
Collapse
|
10
|
Peptide-Based Vaccination and Induction of CD8+ T-Cell Responses Against Tumor Antigens in Breast Cancer. BioDrugs 2014; 29:15-30. [DOI: 10.1007/s40259-014-0114-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Toomer KH, Chen Z. Autoimmunity as a double agent in tumor killing and cancer promotion. Front Immunol 2014; 5:116. [PMID: 24672527 PMCID: PMC3957029 DOI: 10.3389/fimmu.2014.00116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/05/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy through manipulation of the immune system holds great potential for the treatment of human cancers. However, recent trials targeting the negative immune regulators cytotoxic T-lymphocyte antigen 4, programed death 1 (PD-1), and PD-1 receptor ligand (PD-L1) demonstrated that clinically significant antitumor responses were often associated with the induction of autoimmune toxicity. This finding suggests that the same immune mechanisms that elicit autoimmunity may also contribute to the destruction of tumors. Given the fact that the immunological identity of tumors might be largely an immunoprivileged self, autoimmunity may not represent a wholly undesirable outcome in the context of cancer immunotherapy. Rather, targeted killing of cancer cells and autoimmune damage to healthy tissues may be intricately linked through molecular mechanisms, in particular inflammatory cytokine signaling. On the other hand, since chronic inflammation is a well-recognized condition that promotes tumor development, it appears that autoimmunity can be a "double agent" in mediating either pro-tumor or antitumor effects. This review surveys the tumor-promoting and tumoricidal activities of several prominent cytokines: IFN-γ, TNF-α, TGF-β, IL-17, IL-23, IL-4, and IL-13, produced by three major subsets of T helper cells that interact with innate immune cells. Many of these cytokines exert divergent and seemingly contradictory effects on cancer development in different human and animal models, suggesting a high degree of context dependence in their functions. We hypothesize that these inflammatory cytokines could mediate a feedback loop of autoimmunity, antitumor immunity, and tumorigenesis. Understanding the diverse and paradoxical roles of cytokines from autoimmune responses in the setting of cancer will advance the long-term goal of improving cancer immunotherapy, while minimizing the hazards of immune-mediated tissue damage and the possibility of de novo tumorigenesis, through proper monitoring and preventive measures.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine , Miami, FL , USA ; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
12
|
Geary SM, Salem AK. Prostate cancer vaccines: Update on clinical development. Oncoimmunology 2013; 2:e24523. [PMID: 23762812 PMCID: PMC3667918 DOI: 10.4161/onci.24523] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer is a common malignancy among elderly men and is essentially incurable once it becomes metastatic. Results from clinical trials testing a panel of specific vaccines in patients with castration-resistant prostate cancer (CRPC) suggest that alternative therapies may one day substitute or support the current gold standard (docetaxel plus prednisone). Here, we summarize the results of germane clinical trials completed during the last 12 y and provide updates on some currently ongoing studies. As it stands, prostate cancer vaccines appear to be safe and capable of generating prostate-specific T lymphocyte responses with potential antitumor activity.
Collapse
Affiliation(s)
- Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, IA USA
| | | |
Collapse
|
13
|
Cancer treatment using peptides: current therapies and future prospects. JOURNAL OF AMINO ACIDS 2012; 2012:967347. [PMID: 23316341 PMCID: PMC3539351 DOI: 10.1155/2012/967347] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/07/2012] [Indexed: 12/12/2022]
Abstract
This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field.
Collapse
|
14
|
Myers MB, Wang Y, McKim KL, Parsons BL. Hotspot oncomutations: implications for personalized cancer treatment. Expert Rev Mol Diagn 2012; 12:603-20. [PMID: 22845481 DOI: 10.1586/erm.12.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the extent to which specific tumor mutations impact or mediate patient response to particular cancer therapies has become a rapidly increasing area of research. Recent research findings regarding four predominant mutational targets (KRAS, BRAF, EGFR and PIK3CA) show that these tumor mutations have predictive power for identifying which patients are likely to respond to particular therapies, and have prognostic significance irrespective of treatment. However, in this regard, the literature is frequently nuanced and sometimes contradictory. This lack of clarity may be due, at least in part, to the utilization of mutation detection methods with varying sensitivities across studies of different patient populations. Nevertheless, considerable evidence suggests minor tumor subpopulations may be contributing to inappropriate patient stratification, development of resistance to treatment, and the relapse that often follows treatment with molecularly targeted therapies. Consequently, mutant tumor subpopulations need to be considered in order to improve strategies for personalized cancer treatment.
Collapse
Affiliation(s)
- Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|
15
|
Sala-Valdés M, Ailane N, Greco C, Rubinstein E, Boucheix C. Targeting tetraspanins in cancer. Expert Opin Ther Targets 2012; 16:985-97. [PMID: 22880813 DOI: 10.1517/14728222.2012.712688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tetraspanins are a family of small proteins that cross the membrane four times and form complexes by interacting between themselves and with a variety of transmembrane and cytosolic proteins, building a network of interactions referred to as tetraspanin web or tetraspanin enriched microdomains (TEMs). These domains provide a signaling platform involved in many important cellular functions and malignant processes. AREAS COVERED The authors describe the methods and the rationale for targeting tetraspanins in the therapy of cancer in this review. EXPERT OPINION Targeting tetraspanins in cancer may be a promising therapy due to the importance of tetraspanins in several steps of tumor formation, communication with the environment, dissemination, and metastasis.
Collapse
Affiliation(s)
- Mónica Sala-Valdés
- André Lwoff Institute, Inserm U1004, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, Villejuif 94800, France.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Castrate-resistant prostate cancer (CRPC) occurs when disease progresses in the presence of castrate levels of androgens and remains sensitive to further hormonal manipulation. For many years the treatment of CRPC was limited to the use of docetaxel for metastatic disease. However, this has recently changed with the approval of several new agents. Sipuleucel-T, an immunotherapeutic vaccine, is now available in the US for patients with non-metastatic CRPC and abiraterone, an oral enzyme inhibitor of androgen biosynthesis, as well as cabazitaxel, a cytotoxic chemotherapeutic, have been approved for the treatment of metastatic CRPC. Also, denosumab, a subcutaneous antibody, is now an option for the treatment of patients with CRPC with bone metastases, in addition to zoledronic acid, an intravenous bisphosphonate. Further treatment advances for metastatic CRPC therapeutics are in late stage phase III development. These include therapies affecting the androgen receptor (MDV3100) as well as additional immune-based therapeutics, PROSTVAC and ipilimumab. A broad range of agents is also emerging under the term targeted therapies. The endothelin-A receptor antagonist zibotentan, the tyrosine kinase inhibitors dasatinib, sorafenib and cabozantinib, the anti-angiogenic agent aflibercept, and the clusterin inhibitor custirsen, are all currently being tested for efficacy in metastatic CRPC. The mechanism of action of these and other promising agents are discussed alongside current therapeutic options and their potential place in the treatment landscape for CRPC is considered.
Collapse
Affiliation(s)
- N Shore
- Carolina Urologic Research Center, Atlantic Urology Clinics, Myrtle Beach, SC 29572, USA.
| | | | | |
Collapse
|
17
|
Hansen J, Lindenstrøm T, Lindberg-Levin J, Aagaard C, Andersen P, Agger EM. CAF05: cationic liposomes that incorporate synthetic cord factor and poly(I:C) induce CTL immunity and reduce tumor burden in mice. Cancer Immunol Immunother 2012; 61:893-903. [PMID: 22095092 PMCID: PMC11028613 DOI: 10.1007/s00262-011-1156-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/03/2011] [Indexed: 01/13/2023]
Abstract
Considerable effort has been put into targeting tumors through therapeutic vaccination using dendritic cell-, DNA-, protein-, or peptide-based vaccines. Purified peptides and proteins are generally not immunogenic and need to be administered with an adjuvant that will trigger an appropriate immune response. Safe adjuvants that favor induction of tumor reactive CD8(+) T cells with the capacity to directly kill tumor cells are therefore a high priority. We have previously reported on the effect and mechanism of a cationic adjuvant formulation, CAF01, which incorporates synthetic mycobacterial cord factor and primes protective Th1, Th17, and antibody responses in animal models of bacterial, viral, and parasitic infections. The CAF01 adjuvant is currently in clinical trial. Using CAF01 as a backbone, we recently demonstrated that incorporating the TLR3 ligand polyinosinic/polycytidylic acid [poly(I:C)] primes CD8(+) T cells specific to the SIINFEKL epitope of the model antigen ovalbumin. In the present study, we demonstrate that CAF01/poly(I:C), termed cationic adjuvant formulation 05 or CAF05, can induce CD8(+) T cells that efficiently lyse target cells and significantly reduce tumor growth in two different mouse tumor models: lung B16-OVA melanoma expressing ovalbumin and the self-antigen TRP2, and subcutaneous TC-1 tumors expressing the human papillomavirus-16 protein E7.
Collapse
Affiliation(s)
- Jon Hansen
- Infectious Disease Immunology, Statens Serum Institut, Building 81/306, Copenhagen S, Denmark.
| | | | | | | | | | | |
Collapse
|
18
|
Donia M, Mangano K, Fagone P, De Pasquale R, Dinotta F, Coco M, Padron J, Al-Abed Y, Giovanni Lombardo GA, Maksimovic-Ivanic D, Mijatovic S, Zocca MB, Perciavalle V, Stosic-Grujicic S, Nicoletti F. Unique antineoplastic profile of Saquinavir-NO, a novel NO-derivative of the protease inhibitor Saquinavir, on the in vitro and in vivo tumor formation of A375 human melanoma cells. Oncol Rep 2012; 28:682-8. [PMID: 22665020 DOI: 10.3892/or.2012.1840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/16/2012] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that covalent attachment of the nitric oxide (NO) moiety to the HIV protease inhibitor Saquinavir (Saq) produced a qualitatively new chemical entity, named Saquinavir-NO (Saq-NO), with enhanced anticancer properties and reduced toxicity both in vitro and in vivo. The aim of this study was to address several unanswered questions both on the pharmacological profile of Saq-NO as well as on the in vivo role of NO in the oncogenesis of A375 human melanoma cells. To this end, we have evaluated here the impact of single and combined effects of Saq-NO, Saq, the NO-donor DETA NONOate and the iNOS inhibitor L-NAME on the in vitro as well as in vivo growth of the iNOS positive A375 cells. Our data confirm clear-cut evidence for a strong and powerful anti-melanoma action of Saq-NO that is not duplicable by the combined use of Saq and DETA NONOate. Surprisingly, but also in agreement with the complex and multifaceted role of endogenous NO in A375 cells, both DETA NONOate and L-NAME significantly suppressed the in vivo growth of xenotransplants.
Collapse
Affiliation(s)
- Marco Donia
- Department of Bio-Medical Sciences, University of Catania, and Department of Plastic and Reconstructive Surgery, Cannizzaro Hospital, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dayoub EJ, Davis MM. Relationship of therapeutic cancer vaccine development to population disease burden and five-year survival. HUMAN VACCINES 2011; 7:1124-9. [PMID: 22048113 DOI: 10.4161/hv.7.11.17837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the United States, therapeutic vaccines may provide considerable benefit to cancer patients. Yet, there has been no assessment of whether vaccines currently in the research and development pipeline reflect the burden of disease and current survival patterns for different malignancies. The authors used data from the National Cancer Institute, Surveillance Epidemiology and End Results (SEER) database, and clinicaltrials.gov registry to characterize the vaccine development pipeline with respect to 5 measures of disease burden and treatment effectiveness for cancer: annual incidence, annual mortality, five-year survival rate, recent change in five-year survival (1999-2006 vs 1990-1992), and five-year mortality estimate (=annual incidence*[1 - 5-yr survival rate]). In 2011, the authors identified 231 active clinical trials for therapeutic cancer vaccines. Of these trials, 81 vaccines are currently in Phase I, 140 in Phase II, and 10 vaccines in Phase III. Vaccine trials for melanoma are most common (n=40), followed by breast cancer (34), lung cancer (30), and prostate cancer (22). Correlation analyses revealed that only annual cancer incidence is significantly associated with current therapeutic cancer vaccine trial activity (r=.60; p=.003). Annual mortality, 5-year survival rate and 5-year mortality estimates were not associated with vaccine trial activity. The authors conclude that therapeutic cancer vaccine clinical trials correspond with disease incidence in the U.S., but not with measures of mortality and survival that reflect the effectiveness of currently available treatment modalities. Future development of therapeutic vaccines for cancer may benefit patients more if there is stronger complementarity with other therapeutic options.
Collapse
Affiliation(s)
- Elias J Dayoub
- University of Michigan Medical School, University of Michigan, Ann Arbor, MI USA
| | | |
Collapse
|
20
|
Kurosaki T, Kitahara T, Nakamura T, Nishida K, Fumoto S, Kodama Y, Nakagawa H, Higuchi N, Sasaki H. Development of effective cancer vaccine using targeting system of antigen protein to APCs. Pharm Res 2011; 29:483-9. [PMID: 21887598 DOI: 10.1007/s11095-011-0571-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE To develop a novel cancer vaccine using the targeting system of antigen protein to antigen-presenting cells (APCs) for efficient and safe cancer therapy. METHODS The novel delivery system was constructed with antigen protein, benzalkonium chloride (BK), and γ-polyglutamic acid (γ-PGA), using ovalbumin (OVA) as a model antigen protein and evaluating its immune induction effects and utilities for cancer vaccine. RESULTS BK and γ-PGA enabled encapsulation of OVA and formed stable anionic particles at nanoscale, OVA/BK/γ-PGA complex. Complex was taken up by dendritic cell line DC2.4 cells efficiently. We subcutaneously administered the complex to mice and examined induction of IgGs. The complex induced not only Th2-type immunoglobulins but also Th1-type immunoglobulins. OVA/BK/γ-PGA complex inhibited tumor growth of E.G7 cells expressing OVA regularly; administered OVA/BK/γ-PGA complex completely rejected tumor cells. CONCLUSION The novel vaccine could be platform technology for a cancer vaccine.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Department of Drug Delivery Research Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pellicciotta I, Yang CPH, Goldberg GL, Shahabi S. Epothilone B enhances Class I HLA and HLA-A2 surface molecule expression in ovarian cancer cells. Gynecol Oncol 2011; 122:625-31. [PMID: 21621254 DOI: 10.1016/j.ygyno.2011.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/04/2011] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Ovarian cancer is the leading cause of death from gynecologic cancers in the United States. Epothilone B (EpoB), Taxol and vinblastine are anti-neoplastic agents that interfere with microtubules and arrest the cell cycle in the G2/M phase. EpoB is being evaluated in phase III clinical trials, and its analogs are currently being used in the treatment of taxane-resistant metastatic breast cancer. Little is known about the effect of these drugs on the immune response to tumors. Cancer cells evade immune recognition by down-regulating HLA Class I expression, allowing escape from immune surveillance and destruction. Our data illustrates the effect of microtubule-interacting agents on HLA Class I and HLA-A2 expression as well as the modulation of cytokine expression in ovarian cancer cells. METHODS Ovarian cancer cells were treated with different concentrations of drugs. Cell surface expression and mRNA transcription of HLA Class I molecules and HLA-A2 was examined. IFNα, IL1β, IL12 and IL6 mRNA expression was also evaluated upon EpoB treatment. RESULTS Low-dose EpoB, Taxol and vinblastine greatly increased expression of HLA Class I and HLA-A2 molecules in Hey ovarian cancer cells. EpoB does not modulate HLA expression in drug-resistant ovarian cancer cells. The expression of IFNα, IL1β, IL12 and IL6 is also markedly increased upon EpoB treatment. CONCLUSIONS Nanomolar concentrations of microtubule-interacting agents enhance immune-visibility of ovarian cancer cells by increasing HLA Class I and pro-inflammatory cytokine expression. Immune recognition of tumor cells may be improved.
Collapse
Affiliation(s)
- Ilenia Pellicciotta
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center, the Albert Einstein College of Medicine and the Albert Einstein Cancer Center, Bronx, New York, NY 10461, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
In this feature, leading researchers in the field of microbial biotechnology speculate on the technical and conceptual developments that will drive innovative research and open new vistas over the next few years.
Collapse
|