1
|
Peng SY, Chen CY, Chen H, Yang YP, Wang ML, Tsai FT, Chien CS, Weng PY, Tsai ET, Wang IC, Hsu CC, Lin TC, Hwang DK, Chen SJ, Chiou SH, Chiao CC, Chien Y. Inhibition of angiogenesis by the secretome from iPSC-derived retinal ganglion cells with Leber's hereditary optic neuropathy-like phenotypes. Biomed Pharmacother 2024; 178:117270. [PMID: 39126773 DOI: 10.1016/j.biopha.2024.117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.
Collapse
Affiliation(s)
- Shih-Yuan Peng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Hsin Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan, ROC
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chian-Shiu Chien
- Institute of Physiology, National Yang Ming Chiao Tung University, Taiwan, ROC
| | - Pei-Yu Weng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - En-Tung Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - I-Chieh Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, ROC; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC.
| | - Chuan-Chin Chiao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC.
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC.
| |
Collapse
|
2
|
Velmurugan S, Chou TH, Eastwood JD, Porciatti V, Liu Y, Hauswirth WW, Guy J, Yu H. Comparison of different gene-therapy methods to treat Leber hereditary optic neuropathy in a mouse model. Front Neurosci 2023; 17:1119724. [PMID: 37051151 PMCID: PMC10083341 DOI: 10.3389/fnins.2023.1119724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/13/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionTherapies for Leber hereditary optic neuropathy (LHON), in common with all disorders caused by mutated mitochondrial DNA, are inadequate. We have developed two gene therapy strategies for the disease: mitochondrial-targeted and allotopic expressed and compared them in a mouse model of LHON.MethodsA LHON mouse model was generated by intravitreal injection of a mitochondrialtargeted Adeno-associated virus (AAV) carrying mutant human NADH dehydrogenase 4 gene (hND4/m.11778G>A) to induce retinal ganglion cell (RGC) degeneration and axon loss, the hallmark of the human disease. We then attempted to rescue those mice using a second intravitreal injection of either mitochondrial-targeted or allotopic expressed wildtype human ND4. The rescue of RGCs and their axons were assessed using serial pattern electroretinogram (PERG) and transmission electron microscopy.ResultsCompared to non-rescued LHON controls where PERG amplitude was much reduced, both strategies significantly preserved PERG amplitude over 15 months. However, the rescue effect was more marked with mitochondrial-targeted therapy than with allotopic therapy (p = 0.0128). Post-mortem analysis showed that mitochondrial-targeted human ND4 better preserved small axons that are preferentially lost in human LHON.ConclusionsThese results in a pre-clinical mouse model of LHON suggest that mitochondrially-targeted AAV gene therapy, compared to allotopic AAV gene therapy, is more efficient in rescuing the LHON phenotype.
Collapse
Affiliation(s)
- Sindhu Velmurugan
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeremy D. Eastwood
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Vittorio Porciatti,
| | - Yuan Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - William W. Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - John Guy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hong Yu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Hong Yu,
| |
Collapse
|
3
|
Creation of Mitochondrial Disease Models Using Mitochondrial DNA Editing. Biomedicines 2023; 11:biomedicines11020532. [PMID: 36831068 PMCID: PMC9953118 DOI: 10.3390/biomedicines11020532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial diseases are a large class of human hereditary diseases, accompanied by the dysfunction of mitochondria and the disruption of cellular energy synthesis, that affect various tissues and organ systems. Mitochondrial DNA mutation-caused disorders are difficult to study because of the insufficient number of clinical cases and the challenges of creating appropriate models. There are many cellular models of mitochondrial diseases, but their application has a number of limitations. The most proper and promising models of mitochondrial diseases are animal models, which, unfortunately, are quite rare and more difficult to develop. The challenges mainly arise from the structural features of mitochondria, which complicate the genetic editing of mitochondrial DNA. This review is devoted to discussing animal models of human mitochondrial diseases and recently developed approaches used to create them. Furthermore, this review discusses mitochondrial diseases and studies of metabolic disorders caused by the mitochondrial DNA mutations underlying these diseases.
Collapse
|
4
|
Carelli V, Newman NJ, Yu-Wai-Man P, Biousse V, Moster ML, Subramanian PS, Vignal-Clermont C, Wang AG, Donahue SP, Leroy BP, Sergott RC, Klopstock T, Sadun AA, Rebolleda Fernández G, Chwalisz BK, Banik R, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Indirect Comparison of Lenadogene Nolparvovec Gene Therapy Versus Natural History in Patients with Leber Hereditary Optic Neuropathy Carrying the m.11778G>A MT-ND4 Mutation. Ophthalmol Ther 2023; 12:401-429. [PMID: 36449262 PMCID: PMC9834474 DOI: 10.1007/s40123-022-00611-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Lenadogene nolparvovec is a promising novel gene therapy for patients with Leber hereditary optic neuropathy (LHON) carrying the m.11778G>A ND4 mutation (MT-ND4). A previous pooled analysis of phase 3 studies showed an improvement in visual acuity of patients injected with lenadogene nolparvovec compared to natural history. Here, we report updated results by incorporating data from the latest phase 3 trial REFLECT in the pool, increasing the number of treated patients from 76 to 174. METHODS The visual acuity of 174 MT-ND4-carrying patients with LHON injected in one or both eyes with lenadogene nolparvovec from four pooled phase 3 studies (REVERSE, RESCUE and their long-term extension trial RESTORE; and REFLECT trial) was compared to the spontaneous evolution of an external control group of 208 matched patients from 11 natural history studies. RESULTS Treated patients showed a clinically relevant and sustained improvement in their visual acuity when compared to natural history. Mean improvement versus natural history was - 0.30 logMAR (+ 15 ETDRS letters equivalent) at last observation (P < 0.01) with a maximal follow-up of 3.9 years after injection. Most treated eyes were on-chart as compared to less than half of natural history eyes at 48 months after vision loss (89.6% versus 48.1%; P < 0.01) and at last observation (76.1% versus 44.4%; P < 0.01). When we adjusted for covariates of interest (gender, age of onset, ethnicity, and duration of follow-up), the estimated mean gain was - 0.43 logMAR (+ 21.5 ETDRS letters equivalent) versus natural history at last observation (P < 0.0001). Treatment effect was consistent across all phase 3 clinical trials. Analyses from REFLECT suggest a larger treatment effect in patients receiving bilateral injection compared to unilateral injection. CONCLUSION The efficacy of lenadogene nolparvovec in improving visual acuity in MT-ND4 LHON was confirmed in a large cohort of patients, compared to the spontaneous natural history decline. Bilateral injection of gene therapy may offer added benefits over unilateral injection. TRIAL REGISTRATION NUMBERS NCT02652780 (REVERSE); NCT02652767 (RESCUE); NCT03406104 (RESTORE); NCT03293524 (REFLECT); NCT03295071 (REALITY).
Collapse
Affiliation(s)
- Valerio Carelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Via Altura, 3, 40139, Bologna, BO, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick Yu-Wai-Man
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Valerie Biousse
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark L Moster
- Department of Neurology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
| | - Prem S Subramanian
- Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Catherine Vignal-Clermont
- Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France
- Centre d'Investigation Clinique, Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sean P Donahue
- Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Bart P Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Robert C Sergott
- Department of Neurology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alfredo A Sadun
- David Geffen, Doheny Eye Institute, School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Bart K Chwalisz
- Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA
| | - Rudrani Banik
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean François Girmens
- Centre d'Investigation Clinique, Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France
| | - Chiara La Morgia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Via Altura, 3, 40139, Bologna, BO, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Adam A DeBusk
- Department of Neurology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
| | - Neringa Jurkute
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Department of Neuro-Ophthalmology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rustum Karanjia
- David Geffen, Doheny Eye Institute, School of Medicine, University of California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Ottawa Eye, Ottawa, ON, Canada
| | - Constant Josse
- eXYSTAT, Data Management and Statistic, Malakoff, France
| | | | | | | | | | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
- Rothschild Foundation Hospital, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France
| |
Collapse
|
5
|
Gene therapy restores mitochondrial function and protects retinal ganglion cells in optic neuropathy induced by a mito-targeted mutant ND1 gene. Gene Ther 2022; 29:368-378. [PMID: 35383288 PMCID: PMC9233058 DOI: 10.1038/s41434-022-00333-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
Therapies for genetic disorders caused by mutated mitochondrial DNA are an unmet need, in large part due barriers in delivering DNA to the organelle and the absence of relevant animal models. We injected into mouse eyes a mitochondrially targeted Adeno-Associated-Virus (MTS-AAV) to deliver the mutant human NADH ubiquinone oxidoreductase subunit I (hND1/m.3460G>A) responsible for Leber’s hereditary optic neuropathy, the most common primary mitochondrial genetic disease. We show that the expression of the mutant hND1 delivered to retinal ganglion cells (RGC) layer colocalizes with the mitochondrial marker PORIN and the assembly of the expressed hND1 protein into host respiration complex I. The hND1 injected eyes exhibit hallmarks of the human disease with progressive loss of RGC function and number, as well as optic nerve degeneration. We also show that gene therapy in the hND1 eyes by means of an injection of a second MTS-AAV vector carrying wild type human ND1 restores mitochondrial respiratory complex I activity, the rate of ATP synthesis and protects RGCs and their axons from dysfunction and degeneration. These results prove that MTS-AAV is a highly efficient gene delivery approach with the ability to create mito-animal models and has the therapeutic potential to treat mitochondrial genetic diseases.
Collapse
|
6
|
Lo Faro V, Nolte IM, Ten Brink JB, Snieder H, Jansonius NM, Bergen AA. Mitochondrial Genome Study Identifies Association Between Primary Open-Angle Glaucoma and Variants in MT-CYB, MT-ND4 Genes and Haplogroups. Front Genet 2021; 12:781189. [PMID: 34976016 PMCID: PMC8719162 DOI: 10.3389/fgene.2021.781189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background and purpose: Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by death of retinal ganglion cells and atrophy of the optic nerve head. The susceptibility of the optic nerve to damage has been shown to be mediated by mitochondrial dysfunction. In this study, we aimed to determine a possible association between mitochondrial SNPs or haplogroups and POAG. Methods: Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) were genotyped using the Illumina Infinium Global Screening Array-24 (GSA) 700K array set. Genetic analyses were performed in a POAG case-control study involving the cohorts, Groningen Longitudinal Glaucoma Study-Lifelines Cohort Study and Amsterdam Glaucoma Study, including 721 patients and 1951 controls in total. We excluded samples not passing quality control for nuclear genotypes and samples with low call rate for mitochondrial variation. The mitochondrial variants were analyzed both as SNPs and haplogroups. These were determined with the bioinformatics software HaploGrep, and logistic regression analysis was used for the association, as well as for SNPs. Results: Meta-analysis of the results from both cohorts revealed a significant association between POAG and the allele A of rs2853496 [odds ratio (OR) = 0.64; p = 0.006] within the MT-ND4 gene, and for the T allele of rs35788393 (OR = 0.75; p = 0.041) located in the MT-CYB gene. In the mitochondrial haplogroup analysis, the most significant p-value was reached by haplogroup K (p = 1.2 × 10−05), which increases the risk of POAG with an OR of 5.8 (95% CI 2.7–13.1). Conclusion: We identified an association between POAG and polymorphisms in the mitochondrial genes MT-ND4 (rs2853496) and MT-CYB (rs35788393), and with haplogroup K. The present study provides further evidence that mitochondrial genome variations are implicated in POAG. Further genetic and functional studies are required to substantiate the association between mitochondrial gene polymorphisms and POAG and to define the pathophysiological mechanisms of mitochondrial dysfunction in glaucoma.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, Netherlands
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jacoline B. Ten Brink
- Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nomdo M. Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, Netherlands
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, Netherlands
- *Correspondence: Arthur A. Bergen,
| |
Collapse
|
7
|
Sabharwal A, Kar B, Restrepo-Castillo S, Holmberg SR, Mathew ND, Kendall BL, Cotter RP, WareJoncas Z, Seiler C, Nakamaru-Ogiso E, Clark KJ, Ekker SC. The FusX TALE Base Editor (FusXTBE) for Rapid Mitochondrial DNA Programming of Human Cells In Vitro and Zebrafish Disease Models In Vivo. CRISPR J 2021; 4:799-821. [PMID: 34847747 PMCID: PMC8742272 DOI: 10.1089/crispr.2021.0061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Functional analyses of mitochondria have been hampered by few effective approaches to manipulate mitochondrial DNA (mtDNA) and a lack of existing animal models. Recently a TALE-derived base editor was shown to induce C-to-T (or G-to-A) sequence changes in mtDNA. We report here the FusX TALE Base Editor (FusXTBE) to facilitate broad-based access to TALE mitochondrial base editing technology. TALE Writer is a de novo in silico design tool to map potential mtDNA base editing sites. FusXTBE was demonstrated to function with comparable activity to the initial base editor in human cells in vitro. Zebrafish embryos were used as a pioneering in vivo test system, with FusXTBE inducing 90+% editing efficiency in mtDNA loci as an example of near-complete induction of mtDNA heteroplasmy in vivo. Gene editing specificity as precise as a single nucleotide was observed for a protein-coding gene. Nondestructive genotyping enables single-animal mtDNA analyses for downstream biological functional genomic applications. FusXTBE is a new gene editing toolkit for exploring important questions in mitochondrial biology and genetics.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Santiago Restrepo-Castillo
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, Minnesota, USA
| | - Shannon R. Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Benjamin Luke Kendall
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan P. Cotter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christoph Seiler
- Zebrafish Core, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Sundaramurthy S, SelvaKumar A, Ching J, Dharani V, Sarangapani S, Yu-Wai-Man P. Leber hereditary optic neuropathy-new insights and old challenges. Graefes Arch Clin Exp Ophthalmol 2021; 259:2461-2472. [PMID: 33185731 DOI: 10.1007/s00417-020-04993-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) disorder with the majority of patients harboring one of three primary mtDNA point mutations, namely, m.3460G>A (MTND1), m.11778G>A (MTND4), and m.14484T>C (MTND6). LHON is characterized by bilateral subacute loss of vision due to the preferential loss of retinal ganglion cells (RGCs) within the inner retina, resulting in optic nerve degeneration. This review describes the clinical features associated with mtDNA LHON mutations and recent insights gained into the disease mechanisms contributing to RGC loss in this mitochondrial disorder. Although treatment options remain limited, LHON research has now entered an active translational phase with ongoing clinical trials, including gene therapy to correct the underlying pathogenic mtDNA mutation.
Collapse
Affiliation(s)
- Srilekha Sundaramurthy
- 1SN Oil and Natural Gas Corporation (ONGC) Department of Genetics & Molecular Biology, Vision Research Foundation, Chennai, India.
| | - Ambika SelvaKumar
- Department of Neuro-Ophthalmology, Medical Research Foundation, Chennai, India
| | - Jared Ching
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vidhya Dharani
- Department of Neuro-Ophthalmology, Medical Research Foundation, Chennai, India
| | - Sripriya Sarangapani
- 1SN Oil and Natural Gas Corporation (ONGC) Department of Genetics & Molecular Biology, Vision Research Foundation, Chennai, India
| | - Patrick Yu-Wai-Man
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
9
|
Ji MH, Kreymerman A, Belle K, Ghiam BK, Muscat SR, Mahajan VB, Enns GM, Mercola M, Wood EH. The Present and Future of Mitochondrial-Based Therapeutics for Eye Disease. Transl Vis Sci Technol 2021; 10:4. [PMID: 34232272 PMCID: PMC8267180 DOI: 10.1167/tvst.10.8.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Translational Relevance Mitochondria are viable therapeutic targets for a broad spectrum of ocular diseases.
Collapse
Affiliation(s)
- Marco H Ji
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alexander Kreymerman
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kinsley Belle
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Benjamin K Ghiam
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie R Muscat
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Edward H Wood
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
10
|
Vignal-Clermont C, Girmens JF, Audo I, Said SM, Errera MH, Plaine L, O'Shaughnessy D, Taiel M, Sahel JA. Safety of Intravitreal Gene Therapy for Treatment of Subjects with Leber Hereditary Optic Neuropathy due to Mutations in the Mitochondrial ND4 Gene: The REVEAL Study. BioDrugs 2021; 35:201-214. [PMID: 33566264 PMCID: PMC7952288 DOI: 10.1007/s40259-021-00468-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
Background Leber hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease whose primary clinical manifestation is bilateral visual loss. Only a single therapy, idebenone, is approved in Europe for use in exceptional circumstances and no therapy is currently approved in the USA. LHON remains a disease with a high unmet medical need. Objective This is a report of an open-label, single-center, dose-escalation study that evaluated the safety and tolerability of lenadogene nolparvovec in 15 subjects with LHON for up to 5 years following a single intravitreal injection at four dose levels. Methods Subjects were enrolled sequentially in four cohorts followed by an additional cohort at the dose selected, and safety was assessed by an independent data safety monitoring board (DSMB) prior to any dose escalation. Results Overall, the treatment was well tolerated during the 5-year follow-up. No serious adverse events were considered related to treatment, no unexpected adverse events occurred, and no grade 3 or 4 Common Terminology Criteria for Adverse Events were reported. Anterior chamber inflammation and vitritis were mostly managed with topical steroids, and ocular inflammation was considered to be dose limiting by the DSMB based on the benefits/risks for the subjects. Analysis of the logarithm of the minimal angle of resolution (LogMAR) visual acuity in both treated and untreated eyes showed clinically relevant and durable improvements compared with baseline. Mean improvements of − 0.44 and − 0.49 LogMAR for treated and untreated eyes, respectively, were noted, with a mean (± standard deviation) final value of LogMAR + 1.96 ± 0.60 and + 1.65 ± 0.34, respectively, at 5 years post-treatment administration. For the six subjects treated with the optimal dose level (9 × 1010 viral genomes [vg]/eye), the mean visual acuity improvement from baseline reached − 0.68 LogMAR for treated eyes and − 0.64 LogMAR for untreated eyes, with a mean final value of LogMAR + 1.77 ± 0.52 and + 1.78 ± 0.34, respectively. While there was a meaningful improvement in visual acuity for REVEAL subjects, the final visual acuity was less favorable than that seen in the two subsequent pivotal phase III studies in which subjects were treated earlier during the course of their disease. Conclusion Lenadogene nolparvovec was well tolerated with a good safety profile during 5 years of follow-up and may offer meaningful lasting improvements in vision for this LHON population. Clinical Trial Number EUDRACT N° 2013-001405-90.
Collapse
Affiliation(s)
- Catherine Vignal-Clermont
- Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France
| | - Jean-François Girmens
- Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France.,CHNO des Quinze Vingts, Institut Hospitalo Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France
| | - Isabelle Audo
- Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France.,CHNO des Quinze Vingts, Institut Hospitalo Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France
| | - Saddek Mohand Said
- Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France.,CHNO des Quinze Vingts, Institut Hospitalo Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France
| | - Marie-Hélène Errera
- Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France.,CHNO des Quinze Vingts, Institut Hospitalo Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lise Plaine
- Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France.,CHNO des Quinze Vingts, Institut Hospitalo Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - José-Alain Sahel
- CHNO des Quinze Vingts, Institut Hospitalo Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,Fondation Ophtalmologique A. de Rothschild, 25-29 Rue Manin, 75019, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Prakash R, Kannan A. Mitochondrial DNA modification by CRISPR/Cas system: Challenges and future direction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:193-211. [PMID: 33685597 DOI: 10.1016/bs.pmbts.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR associated endonuclease), a hotshot genome editing tool which is originally known to be the form of prokaryotic adaptive immune system against viral infections has gained all the attention of scientific community as a promising genome editing platform. This review encompasses a brief description of mitochondrial disease conditions associated with the alteration in mitochondrial genome (mtDNA) and highlights the key role of the CRISPR/Cas system pertaining to its working mechanism and its involvement in gene-based therapeutics in treating the foresaid mitochondrial diseases. Here, we also extend the perception related to the detailed mechanism of CRISPR/Cas system in mtDNA modification.
Collapse
Affiliation(s)
- Rajalakshmi Prakash
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute (CSIR-CFTRI) Campus, Mysuru, India
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute (CSIR-CFTRI) Campus, Mysuru, India.
| |
Collapse
|
12
|
Newman NJ, Carelli V, Taiel M, Yu-Wai-Man P. Visual Outcomes in Leber Hereditary Optic Neuropathy Patients With the m.11778G>A (MTND4) Mitochondrial DNA Mutation. J Neuroophthalmol 2020; 40:547-557. [PMID: 32969847 DOI: 10.1097/wno.0000000000001045] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Leber hereditary optic neuropathy (LHON) is a maternally inherited bilaterally blinding optic neuropathy, predominantly affecting otherwise healthy young individuals, mostly men. The visual prognosis is generally poor, with most patients worsening to at least 20/200 visual acuity. The m.11778G>A (MTND4) mitochondrial DNA mutation is the most common cause of LHON and is associated with poor outcomes and limited potential for meaningful visual recovery. Treatments for LHON are limited, and clinical trials are hampered by inadequate data regarding the natural history of visual loss and recovery. In this article, we review the current literature specifically related to visual function of LHON patients with the m.11778G>A mutation. EVIDENCE ACQUISITION Literature review was performed using MEDLINE through PubMed, Cochrane Reviews Library, and Orpha.net with search terms of "Leber hereditary optic neuropathy," "LHON," "ND4," "G11778A," "visual acuity," "nadir," "natural history," and "registry." All English-language, peer-reviewed publications with study cohorts of at least 5 LHON patients with the molecularly confirmed m.11778G>A mutation were included. RESULTS Meta-analysis of 12 retrospective and 3 prospective studies provided visual function information on 695 LHON patients with the m.11778G>A mutation, 100 (14.4%) of whom were reported to have "recovered" some vision, although definitions of "recovery" varied among studies and idebenone use could not always be excluded. When incorporating age at onset of visual loss into the analyses, and specifically addressing those patients aged 15 years or older, meaningful visual recovery occurred in 23 of 204 (11.3%) patients. A younger age at onset, especially less than 12 years, portends a better visual prognosis and a different natural history of visual loss progression and recovery than in adults. CONCLUSIONS The classic presentation of LHON patients with the m.11778G>A mutation of severe visual loss with rare or poor recovery from nadir still holds true for most affected individuals. Among patients 15 years and older, recovery of meaningful vision likely occurs in less than 20% of patients, irrespective of how recovery is defined, and ultimate visual acuities of better than 20/200 are rare. Adequate prospective studies with sufficient sample sizes of genotypically homogeneous untreated LHON patients stratified by age, immediately enrolled when symptomatic, followed regularly for adequate periods of time with consistent measures of visual function, and analyzed with a standard definition of visual improvement are unfortunately lacking. Future clinical trials for LHON will require more standardized reporting of the natural history of this disorder.
Collapse
Affiliation(s)
- Nancy J Newman
- Departments of Ophthalmology (NJN), Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, Georgia, IRCCS Istituto Delle Scienze Neurologiche di Bologna (VC), UOC Clinica Neurologica, Bologna, Italy, Department of Biomedical and Neuromotor Sciences (DIBINEM) (VC), Unit of Neurology, University of Bologna, Bologna, Italy, GenSight Biologics (MT), Paris, France, Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit (PY-W-M), Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom, Cambridge Eye Unit (PY-W-M), Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom, Moorfields Eye Hospital (PY-W-M), London, United Kingdom, and UCL Institute of Ophthalmology (PY-W-M), University College London, London, United Kingdom
| | | | | | | |
Collapse
|
13
|
Piotrowska-Nowak A, Krawczyński MR, Kosior-Jarecka E, Ambroziak AM, Korwin M, Ołdak M, Tońska K, Bartnik E. Mitochondrial genome variation in male LHON patients with the m.11778G > A mutation. Metab Brain Dis 2020; 35:1317-1327. [PMID: 32740724 PMCID: PMC7584531 DOI: 10.1007/s11011-020-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Leber hereditary optic neuropathy (LHON) is a mitochondrial disorder with symptoms limited to a single tissue, optic nerve, resulting in vision loss. In the majority of cases it is caused by one of three point mutations in mitochondrial DNA (mtDNA) but their presence is not sufficient for disease development, since ~50% of men and ~10% women who carry them are affected. Thus additional modifying factors must exist. In this study, we use next generation sequencing to investigate the role of whole mtDNA variation in male Polish patients with LHON and m.11778G > A, the most frequent LHON mutation. We present a possible association between mtDNA haplogroup K and variants in its background, a combination of m.3480A > G, m.9055G > A, m.11299 T > C and m.14167C > T, and LHON mutation. These variants may have a negative effect on m.11778G > A increasing its penetrance and the risk of LHON in the Polish population. Surprisingly, we did not observe associations previously reported for m.11778G > A and LHON in European populations, particularly for haplogroup J as a risk factor, implying that mtDNA variation is much more complex. Our results indicate possible contribution of novel combination of mtDNA genetic factors to the LHON phenotype.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| | - Maciej R. Krawczyński
- Department of Medical Genetics, Poznań University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland
- Centers for Medical Genetics GENESIS, 4 Grudzieniec Street, 60-601 Poznań, Poland
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 1 Chmielna Street, 20-079 Lublin, Poland
| | - Anna M. Ambroziak
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena Korwin
- Department of Ophthalmology, Medical University of Warsaw, 13 Sierakowskiego Street, 03-709 Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego Street, 02-042 Warsaw, Poland
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 5 Chałubińskiego Street, 02-004 Warsaw, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
14
|
Yu H, Sant DW, Wang G, Guy J. Mitochondrial Transfer of the Mutant Human ND6T14484C Gene Causes Visual Loss and Optic Neuropathy. Transl Vis Sci Technol 2020; 9:1. [PMID: 33101779 PMCID: PMC7545076 DOI: 10.1167/tvst.9.11.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose To evaluate the long-term effects of mitochondrial gene transfer of mutant human NADH ubiquinone oxidoreductase subunit VI (hND6T14484C) in the mouse eye. Methods Adult mice were injected intravitreally with mitochondrial-targeted adeno-associated virus carrying either hND6T14484C or mitochondrial encoded mCherry. The delivery and expression of the interest gene were detected by polymerase chain reaction (PCR), quantitative PCR (qPCR), and immunostaining. The pathologic effects of the mutant gene in live mice were assessed with RNA-seq, serial spectral domain optical coherence tomography (SD-OCT), and pattern electroretinogram (PERG). Results Delivered hND6 was found 30-fold greater than endogenous mouse ND6 in microdissected retinal ganglion cells of hND6-injected mice. Compared to controls injected with mCherry, PERG amplitude of hND6 mice dropped significantly at 3 (P = 0.0023), 6 (P = 0.0058), and 15 (P = 0.031) months after injection. SD-OCT revealed swelling of the optic nerve head followed by the progressive retinal and optic nerve atrophy in hND6 mice. Furthermore, RNA-seq data showed a change in 381 transcripts’ expression in these mice compared to mCherry mice. Postmortem analysis showed hND6 mice had marked atrophy of the entire optic nerve, from the globe to the optic chiasm, and a significant loss of retinal ganglion cells compared to age-matched control mice (P = 1.7E-9). Conclusions Delivered hND6T14484C induces visual loss and optic neuropathy in mice, the hallmarks of human Leber's hereditary optic neuropathy (LHON). Translational Relevance Results from this study will help establish a novel strategy not only to generate an LHON animal model but also to provide a potential to treat this or any other mitochondrial diseases.
Collapse
Affiliation(s)
- Hong Yu
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - David W Sant
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. MacDonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - John Guy
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
15
|
Yang YP, Nguyen PNN, Lin TC, Yarmishyn AA, Chen WS, Hwang DK, Chiou GY, Lin TW, Chien CS, Tsai CY, Chiou SH, Chen SJ, Peng CH, Hsu CC. Glutamate Stimulation Dysregulates AMPA Receptors-Induced Signal Transduction Pathway in Leber's Inherited Optic Neuropathy Patient-Specific hiPSC-Derived Retinal Ganglion Cells. Cells 2019; 8:cells8060625. [PMID: 31234430 PMCID: PMC6627514 DOI: 10.3390/cells8060625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial genetic disorder, Leber’s hereditary optic neuropathy (LHON), is caused by a mutation in MT-ND4 gene, encoding NADH dehydrogenase subunit 4. It leads to the progressive death of retinal ganglion cells (RGCs) and causes visual impairment or even blindness. However, the precise mechanisms of LHON disease penetrance and progression are not completely elucidated. Human-induced pluripotent stem cells (hiPSCs) offer unique opportunities to investigate disease-relevant phenotypes and regulatory mechanisms underlying LHON pathogenesis at the cellular level. In this study, we successfully generated RGCs by differentiation of LHON patient-specific hiPSCs. We modified the protocol of differentiation to obtain a more enriched population of single-cell RGCs for LHON study. Based on assessing morphology, expression of specific markers and electrophysiological activity, we found that LHON-specific hiPSC-derived were more defective in comparison with normal wild-type RGCs. Based on our previous study, whereby by using microarray analysis we identified that the components of glutamatergic synapse signaling pathway were significantly downregulated in LHON-specific RGCs, we focused our study on glutamate-associated α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. We found that the protein expression levels of the subunits of the AMPA receptor, GluR1 and GluR2, and their associated scaffold proteins were decreased in LHON-RGCs. By performing the co-immunoprecipitation assay, we found several differences in the efficiencies of interaction between AMPA subunits and scaffold proteins between normal and LHON-specific RGCs.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Phan Nguyen Nhi Nguyen
- Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan.
| | - Tai-Chi Lin
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wun-Syuan Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - De-Kuang Hwang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ching-Yao Tsai
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei City Hospital, Taipei 103, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan.
- Genomic Research Center, Academia Sinica, Taipei 115, Taiwan.
| | - Shih-Jen Chen
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- Department of Ophthalmology, Fu-Jen Catholic University, Taipei 242, Taiwan.
| | - Chih-Chien Hsu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| |
Collapse
|
16
|
Zhang Y, Tian Z, Yuan J, Liu C, Liu HL, Ma SQ, Li B. The Progress of Gene Therapy for Leber's Optic Hereditary Neuropathy. Curr Gene Ther 2019; 17:320-326. [PMID: 29189152 PMCID: PMC5902861 DOI: 10.2174/1566523218666171129204926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
Abstract
Introduction: Leber’s Optic Hereditary Neuropathy (LHON) is a common cause of teenaged blindness in both eyes for which there is currently no effective treatment. In 1871, the German ophthal-mologist Theodor Leber was the first to describe the clinical characteristics of his namesake disease, and through unremitting efforts over the past 100 years, researchers have continued to increase their under-standing of LHON. In recent years, using gene therapy, several groups have obtained breakthroughs in the treatment of the disease. Conclusion: In this article, we will review the challenging journey that researchers faced towards our current understanding of LHON, and describe the transition of gene therapy research for LHON from the bench to bedside.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Ophthalmology Shiyan, Hubei University of Medicine - Taihe Hospital, Hubei. China
| | - Zhen Tian
- Department of Ophthalmology Shiyan, Hubei University of Medicine - Taihe Hospital, Hubei. China
| | - Jiajia Yuan
- Department of Ophthalmology, Tongji Medical College, Huazhong University of Science and Technology - Tongji Hospital, Wuhan Shi. China
| | - Chang Liu
- Department of Ophthalmology, Tongji Medical College, Huazhong University of Science and Technology - Tongji Hospital, Wuhan Shi. China
| | - Hong Li Liu
- Department of Ophthalmology, Tongji Medical College, Huazhong University of Science and Technology - Tongji Hospital, Wuhan Shi. China
| | - Si Qi Ma
- Department of Ophthalmology, Tongji Medical College, Huazhong University of Science and Technology - Tongji Hospital, Wuhan Shi. China
| | - Bin Li
- Department of Ophthalmology Shiyan, Hubei University of Medicine - Taihe Hospital, Hubei. China
| |
Collapse
|
17
|
Sharma LK, Tiwari M, Rai NK, Bai Y. Mitophagy activation repairs Leber's hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival. Hum Mol Genet 2019; 28:422-433. [PMID: 30304398 PMCID: PMC6489411 DOI: 10.1093/hmg/ddy354] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a classical mitochondrial disease caused by mutations in the mitochondrial DNA encoding complex I subunits. Oxidative stress associated with complex I defect has been implicated in developing LHON phenotype such as retinal ganglion cell (RGC) death and loss of vision. However, the mechanism of LHON pathogenesis is still not very clear and thus no effective therapies are available to date. Using cybrid models for LHON, we show that autophagy is significantly compromised in cells carrying LHON-specific mtDNA mutations, which results in reduced clearance of dysfunctional mitochondria contributing to cell death. We further show that pharmacological activation of autophagy selectively clears the damaged mitochondria and thus repairs mitochondrial defects and improves overall cell survival in LHON cell models. Our results suggest that compromised autophagy is the missing link from oxidative stress to LHON pathogenesis. Activation of mitophagy ameliorates mitochondrial defects and exerts a protective role by improving cell survival in cells carrying LHON mutations that could be utilized as a potential therapeutic target for LHON treatment.
Collapse
Affiliation(s)
- Lokendra Kumar Sharma
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biotechnology, Centre for Biological Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Meenakshi Tiwari
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pathology / Lab Medicine, All India Institute of Medical Sciences-Patna, Phulwarisharif, Patna, Bihar, India
| | - Neeraj Kumar Rai
- Department of Biotechnology, Centre for Biological Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
18
|
Mazunin IO, Volodko NV. [Leber hereditary optic neuropathy]. Vestn Oftalmol 2018; 134:92-97. [PMID: 29771891 DOI: 10.17116/oftalma2018134292-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Leber hereditary optic neuropathy is characterized by bilateral, painless loss of vision in children and young adults (generally up to 25 years old). Since its first description in 1871, the understanding of its etiology and pathogenesis has improved considerably. The article considers Leber neuropathy from the points of view of ophthalmology, neurology and molecular genetics, and presents data on experimental treatment methods, one of which is undergoing clinical trial.
Collapse
Affiliation(s)
- I O Mazunin
- Immanuel Kant Baltic Federal University, 14 Nevskogo St., Kaliningrad, Russian Federation, 236016
| | - N V Volodko
- University of Alberta, 116 St. and 85 Ave., Edmonton, AB, Canada, T6G 2R3
| |
Collapse
|
19
|
Affiliation(s)
- Arthur Planul
- Inserm, Institut de la Vision, UMR S968, 75012 Paris, France;,
- Sorbonne Universités, UPMC Université Paris 6, UMR S968, 75012 Paris, France
- CNRS, UMR 7210, 75012 Paris, France
| | - Deniz Dalkara
- Inserm, Institut de la Vision, UMR S968, 75012 Paris, France;,
- Sorbonne Universités, UPMC Université Paris 6, UMR S968, 75012 Paris, France
- CNRS, UMR 7210, 75012 Paris, France
| |
Collapse
|
20
|
Abstract
The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.
Collapse
|
21
|
Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: An update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:349-366. [PMID: 27862925 DOI: 10.1002/ajmg.c.31534] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal degenerations present a unique challenge as disease progression is irreversible and the retina has little regenerative potential. No current treatments for inherited retinal disease have the ability to reverse blindness, and current dietary supplement recommendations only delay disease progression with varied results. However, the retina is anatomically accessible and capable of being monitored at high resolution in vivo. This, in addition to the immune-privileged status of the eye, has put ocular disease at the forefront of advances in gene- and cell-based therapies. This review provides an update on gene therapies and randomized control trials for inherited retinal disease, including Leber congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, X-linked retinoschisis, Leber hereditary optic neuropathy, and achromatopsia. New gene-modifying and cell-based strategies are also discussed. © 2016 Wiley Periodicals, Inc.
Collapse
|
22
|
Barreda Gago D, Gómez Ledesma I, Santiago Rodríguez MDLÁ, Hernández Galilea E. Neuropatía óptica hereditaria de Leber por mutación G11778A del ADN mitocondrial. Manejo de un caso. REVISTA MEXICANA DE OFTALMOLOGÍA 2016. [DOI: 10.1016/j.mexoft.2015.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Wan X, Pei H, Zhao MJ, Yang S, Hu WK, He H, Ma SQ, Zhang G, Dong XY, Chen C, Wang DW, Li B. Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy. Sci Rep 2016; 6:21587. [PMID: 26892229 PMCID: PMC4759604 DOI: 10.1038/srep21587] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/26/2016] [Indexed: 11/09/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON.
Collapse
Affiliation(s)
- Xing Wan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Pei
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min-jian Zhao
- Department of Oncology, Central Hospital, Ezhou City, China
| | - Shuo Yang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-kun Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng He
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-qi Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-yan Dong
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing, China
| | - Chen Chen
- Center Genetic Diagnosis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao-wen Wang
- Center Genetic Diagnosis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber's hereditary optic neuropathy. Neural Regen Res 2016; 11:1685-1694. [PMID: 27904503 PMCID: PMC5116851 DOI: 10.4103/1673-5374.193251] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Stem Cell Ophthalmology Treatment Study (SCOTS) is currently the largest-scale stem cell ophthalmology trial registered at ClinicalTrials.gov (identifier: NCT01920867). SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs) to treat optic nerve and retinal diseases. Treatment approaches include a combination of retrobulbar, subtenon, intravitreal, intra-optic nerve, subretinal, and intravenous injection of autologous BMSCs according to the nature of the disease, the degree of visual loss, and any risk factors related to the treatments. Patients with Leber's hereditary optic neuropathy had visual acuity gains on the Early Treatment Diabetic Retinopathy Study (ETDRS) of up to 35 letters and Snellen acuity improvements from hand motion to 20/200 and from counting fingers to 20/100. Visual field improvements were noted. Macular and optic nerve head nerve fiber layer typically thickened. No serious complications were seen. The increases in visual acuity obtained in our study were encouraging and suggest that the use of autologous BMSCs as provided in SCOTS for ophthalmologic mitochondrial diseases including Leber's hereditary optic neuropathy may be a viable treatment option.
Collapse
Affiliation(s)
- Jeffrey N Weiss
- Retina Associates of South Florida, 5800 Colonial Drive, Suite 300, Margate, FL, USA
| | - Steven Levy
- MD Stem Cells, 3 Sylvan Road South, Westport, CT, USA
| | - Susan C Benes
- The Eye Center of Columbus, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
25
|
Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, Yuan H, Lalwani A, Lam BL, Guy J. Gene Therapy for Leber Hereditary Optic Neuropathy: Initial Results. Ophthalmology 2015; 123:558-70. [PMID: 26606867 DOI: 10.1016/j.ophtha.2015.10.025] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Leber hereditary optic neuropathy (LHON) is a disorder characterized by severe and rapidly progressive visual loss when caused by a mutation in the mitochondrial gene encoding NADH:ubiquinone oxidoreductase subunit 4 (ND4). We have initiated a gene therapy trial to determine the safety and tolerability of escalated doses of an adeno-associated virus vector (AAV) expressing a normal ND4 complementary DNA in patients with a G to A mutation at nucleotide 11778 of the mitochondrial genome. DESIGN In this prospective open-label trial (NCT02161380), the study drug (self-complementary AAV [scAAV]2(Y444,500,730F)-P1ND4v2) was intravitreally injected unilaterally into the eyes of 5 blind participants with G11778A LHON. Four participants with visual loss for more than 12 months were treated. The fifth participant had visual loss for less than 12 months. The first 3 participants were treated at the low dose of vector (5 × 10(9) vg), and the fourth participant was treated at the medium dose (2.46 × 10(10) vg). The fifth participant with visual loss for less than 12 months received the low dose. Treated participants were followed for 90 to 180 days and underwent ocular and systemic safety assessments along with visual structure and function examinations. PARTICIPANTS Five legally blind patients with G11778A LHON. MAIN OUTCOME MEASURES Loss of visual acuity. RESULTS Visual acuity as measured by the Early Treatment Diabetic Retinopathy Study (ETDRS) eye chart remained unchanged from baseline to 3 months in the first 3 participants. For 2 participants with 90-day follow-up, acuity increased from hand movements to 7 letters in 1 and by 15 letters in 1, representing an improvement equivalent to 3 lines. No one lost vision, and no serious adverse events were observed. Minor adverse events included a transient increase of intraocular pressure (IOP), exposure keratitis, subconjunctival hemorrhage, a sore throat, and a transient increase in neutralizing antibodies (NAbs) against AAV2 in 1 participant. All blood samples were negative for vector DNA. CONCLUSIONS No serious safety problems were observed in the first 5 participants enrolled in this phase I trial of virus-based gene transfer in this mitochondrial disorder. Additional study follow-up of these and additional participants planned for the next 4 years is needed to confirm these preliminary observations.
Collapse
Affiliation(s)
- William J Feuer
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Joyce C Schiffman
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Janet L Davis
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Phillip Gonzalez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Rajeshwari D Koilkonda
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Huijun Yuan
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Anil Lalwani
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - John Guy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
26
|
Leber hereditary optic neuropathy and multiple sclerosis: the mitochondrial connection. Can J Ophthalmol 2015; 50:e14-7. [DOI: 10.1016/j.jcjo.2014.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
|
27
|
Piotrowska A, Korwin M, Bartnik E, Tońska K. Leber hereditary optic neuropathy — Historical report in comparison with the current knowledge. Gene 2015; 555:41-9. [DOI: 10.1016/j.gene.2014.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022]
|
28
|
Sato M, Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T. Essential regions in the membrane domain of bacterial complex I (NDH-1): the machinery for proton translocation. J Bioenerg Biomembr 2014; 46:279-87. [PMID: 24973951 DOI: 10.1007/s10863-014-9558-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is the first and largest enzyme of the respiratory chain which has a central role in cellular energy production and is implicated in many human neurodegenerative diseases and aging. It is believed that the peripheral domain of complex I/NDH-1 transfers the electron from NADH to Quinone (Q) and the redox energy couples the proton translocation in the membrane domain. To investigate the mechanism of the proton translocation, in a series of works we have systematically studied all membrane subunits in the Escherichia coli NDH-1 by site-directed mutagenesis. In this mini-review, we have summarized our strategy and results of the mutagenesis by depicting residues essential for proton translocation, along with those for subunit connection. It is suggested that clues to understanding the driving forces of proton translocation lie in the similarities and differences of the membrane subunits, highlighting the communication of essential charged residues among the subunits. A possible proton translocation mechanism with all membrane subunits operating in unison is described.
Collapse
Affiliation(s)
- Motoaki Sato
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, CA, 92037, USA,
| | | | | | | | | |
Collapse
|
29
|
Zenner HP, Pfister M, Friese N, Zrenner E, Röcken M. [Personalized molecular medicine: new paradigms in the treatment of cochlear implant and cancer patients]. HNO 2014; 62:520-4. [PMID: 24920503 DOI: 10.1007/s00106-014-2859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate present options for the indication of cochlear implants (CI) and new forms of treatment for head and neck cancer, melanomas and basal cell carcinomas, with emphasis on future perspectives. METHODS A literature search was performed in the PubMed database. Search parameters were "personalized medicine", "individualized medicine" and "molecular medicine". RESULTS Personalized medicine based on molecular-genetic evaluation of functional proteins such as otoferlin, connexin 26 and KCNQ4 or the Usher gene is becoming increasingly important for the indication of CI in the context of infant deafness. Determination of HER2/EGFR mutations in the epithelial growth factor receptor (EGFR) gene may be an important prognostic parameter for therapeutic decisions in head and neck cancer patients. In basal cell carcinoma therapy, mutations in the Hedgehog (PCTH1) and Smoothened (SMO) pathways strongly influence the indication of therapeutic Hedgehog inhibition, e.g. using small molecules. Analyses of c-Kit receptor, BRAF-600E and NRAS mutations are required for specific molecular therapy of metastasizing melanomas. The significant advances in the field of specific molecular therapy are best illustrated by the availability of the first gene therapeutic procedures for treatment of RPE65-induced infantile retinal degradation. CONCLUSION The aim of personalized molecular medicine is to identify patients who will respond particularly positively or negatively (e.g. in terms of adverse side effects) to a therapy using the methods of molecular medicine. This should allow a specific therapy to be successfully applied or preclude its indication in order to avoid serious adverse side effects. This approach serves to stratify patients for adequate treatment.
Collapse
Affiliation(s)
- H P Zenner
- Universitätsklinik für HNO-Heilkunde, Universität Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Deutschland,
| | | | | | | | | |
Collapse
|
30
|
Koilkonda RD, Yu H, Chou TH, Feuer WJ, Ruggeri M, Porciatti V, Tse D, Hauswirth WW, Chiodo V, Boye SL, Lewin AS, Neuringer M, Renner L, Guy J. Safety and effects of the vector for the Leber hereditary optic neuropathy gene therapy clinical trial. JAMA Ophthalmol 2014; 132:409-20. [PMID: 24457989 DOI: 10.1001/jamaophthalmol.2013.7630] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE We developed a novel strategy for treatment of Leber hereditary optic neuropathy (LHON) caused by a mutation in the nicotinamide adenine dinucleotide dehydrogenase subunit IV (ND4) mitochondrial gene. OBJECTIVE To demonstrate the safety and effects of the gene therapy vector to be used in a proposed gene therapy clinical trial. DESIGN AND SETTING In a series of laboratory experiments, we modified the mitochondrial ND4 subunit of complex I in the nuclear genetic code for import into mitochondria. The protein was targeted into the organelle by agency of a targeting sequence (allotopic expression). The gene was packaged into adeno-associated viral vectors and then vitreally injected into rodent, nonhuman primate, and ex vivo human eyes that underwent testing for expression and integration by immunohistochemical analysis and blue native polyacrylamide gel electrophoresis. During serial follow-up, the animal eyes underwent fundus photography, optical coherence tomography, and multifocal or pattern electroretinography. We tested for rescue of visual loss in rodent eyes also injected with a mutant G11778A ND4 homologue responsible for most cases of LHON. EXPOSURE Ocular infection with recombinant adeno-associated viral vectors containing a wild-type allotopic human ND4 gene. MAIN OUTCOMES AND MEASURES Expression of human ND4 and rescue of optic neuropathy induced by mutant human ND4. RESULTS We found human ND4 expressed in almost all mouse retinal ganglion cells by 1 week after injection and ND4 integrated into the mouse complex I. In rodent eyes also injected with a mutant allotopic ND4, wild-type allotopic ND4 prevented defective adenosine triphosphate synthesis, suppressed visual loss, reduced apoptosis of retinal ganglion cells, and prevented demise of axons in the optic nerve. Injection of ND4 in the ex vivo human eye resulted in expression in most retinal ganglion cells. Primates undergoing vitreal injection with the ND4 test article and followed up for 3 months had no serious adverse reactions. CONCLUSIONS AND RELEVANCE Expression of our allotopic ND4 vector in the ex vivo human eye, safety of the test article, rescue of the LHON mouse model, and the severe irreversible loss of visual function in LHON support clinical testing with mutated G11778A mitochondrial DNA in our patients.
Collapse
Affiliation(s)
- Rajeshwari D Koilkonda
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Hong Yu
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - William J Feuer
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Marco Ruggeri
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - David Tse
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville
| | - Vince Chiodo
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville
| | - Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Lauren Renner
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - John Guy
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
31
|
Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 2014; 337:193-206. [PMID: 24702846 DOI: 10.1016/j.crvi.2013.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022]
Abstract
Mitochondrial disorders cannot be ignored anymore in most medical disciplines; indeed their minimum estimated prevalence is superior to 1 in 5000 births. Despite the progress made in the last 25 years on the identification of gene mutations causing mitochondrial pathologies, only slow progress was made towards their effective treatments. Ocular involvement is a frequent feature in mitochondrial diseases and corresponds to severe and irreversible visual handicap due to retinal neuron loss and optic atrophy. Interestingly, three clinical trials for Leber Congenital Amaurosis due to RPE65 mutations are ongoing since 2007. Overall, the feasibility and safety of ocular Adeno-Associated Virus delivery in adult and younger patients and consistent visual function improvements have been demonstrated. The success of gene-replacement therapy for RPE65 opens the way for the development of similar approaches for a broad range of eye disorders, including those with mitochondrial etiology such as Leber Hereditary Optic Neuropathy (LHON).
Collapse
|
32
|
Sadun AA, La Morgia C, Carelli V. Leber’s hereditary optic neuropathy: new quinone therapies change the paradigm. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Aitullina A, Baumane K, Zalite S, Ranka R, Zole E, Pole I, Sepetiene S, Laganovska G, Baumanis V, Pliss L. Point mutations associated with Leber hereditary optic neuropathy in a Latvian population. Mol Vis 2013; 19:2343-51. [PMID: 24319328 PMCID: PMC3850976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 11/19/2013] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To study mutations associated with Leber hereditary optic neuropathy (LHON) in patients suspected of having this mitochondrial disorder in a Latvian population. Additional aims were to determine the heteroplasmy status of all non-synonymous polymorphisms identified in the current study and to identify the mitochondrial haplogroups of the studied participants because these factors may contribute to the manifestation of LHON. METHODS Twelve patients, including patients in two families, were enrolled in the current study. LHON was suspected based on the findings of ophthalmologic examinations. In clinically affected individuals, the presence of all previously reported LHON-associated mutations was assessed with sequencing analysis. Additionally, the SURVEYOR endonuclease assay was used to detect heteroplasmy. The mitochondrial haplogroups were identified with restriction analysis and the sequencing of hypervariable segment 1. RESULTS In one family (mother and son), there was one primary LHON-associated mutation, G11778A. In addition, one rare previously reported LHON-associated polymorphism, A13637G, was detected in two unrelated patients. A non-synonymous polymorphism at T6253C was found in one individual. This mutation was reported in the background of the 3460 mutation among LHON patients in a Chinese population. No non-synonymous point mutations in mitochondrial DNA were found in five of the study participants. CONCLUSIONS Molecular analysis of 12 patients with suspected LHON confirmed the diagnosis in four patients and allowed the use of appropriate prophylactic measures and treatment. Further investigations and additional studies of different populations are necessary to confirm the role of the non-synonymous polymorphisms A13637G and T6253C in the manifestation of LHON and the associations of these polymorphisms with mitochondrial haplogroups and heteroplasmy.
Collapse
Affiliation(s)
- Aleksandra Aitullina
- Riga Stradins University, Riga, Latvia,Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | - Renate Ranka
- Riga Stradins University, Riga, Latvia,Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Egija Zole
- Latvian Biomedical Research and Study Centre, Riga, Latvia,Faculty of Biology, University of Latvia, Riga, Latvia
| | - Ilva Pole
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Guna Laganovska
- Riga Stradins University, Riga, Latvia,Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Viesturs Baumanis
- Latvian Biomedical Research and Study Centre, Riga, Latvia,Faculty of Biology, University of Latvia, Riga, Latvia
| | - Liana Pliss
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
34
|
Pinto M, Moraes CT. Mitochondrial genome changes and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1198-207. [PMID: 24252612 DOI: 10.1016/j.bbadis.2013.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential organelles within the cell where most of the energy production occurs by the oxidative phosphorylation system (OXPHOS). Critical components of the OXPHOS are encoded by the mitochondrial DNA (mtDNA) and therefore, mutations involving this genome can be deleterious to the cell. Post-mitotic tissues, such as muscle and brain, are most sensitive to mtDNA changes, due to their high energy requirements and non-proliferative status. It has been proposed that mtDNA biological features and location make it vulnerable to mutations, which accumulate over time. However, although the role of mtDNA damage has been conclusively connected to neuronal impairment in mitochondrial diseases, its role in age-related neurodegenerative diseases remains speculative. Here we review the pathophysiology of mtDNA mutations leading to neurodegeneration and discuss the insights obtained by studying mouse models of mtDNA dysfunction.
Collapse
Affiliation(s)
- Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
35
|
NADH-dehydrogenase type-2 suppresses irreversible visual loss and neurodegeneration in the EAE animal model of MS. Mol Ther 2013; 21:1876-88. [PMID: 23752309 DOI: 10.1038/mt.2013.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/21/2013] [Indexed: 11/08/2022] Open
Abstract
To address mitochondrial dysfunction that mediates irreversible visual loss and neurodegeneration of the optic nerve in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis (MS), mice sensitized for EAE were vitreally injected with self-complementary adenoassociated virus (scAAV) containing the NADH-dehydrogenase type-2 (NDI1) complex I gene that quickly expressed in mitochondria of almost all retinal ganglion cells (RGCs). Visual function assessed by pattern electroretinograms (PERGs) reduced by half in EAE showed no significant reductions with NDI1. Serial optical coherence tomography (OCT) revealed significant inner retinal thinning with EAE that was suppressed by NDI1. Although complex I activity reduced 80% in EAE was not improved by NDI1, in vivo fluorescent probes indicated mitochondrial oxidative stress and apoptosis of the EAE retina were reduced by NDI1. Finally, the 42% loss of axons in the EAE optic nerve was ameliorated by NDI1. Targeting the dysfunctional complex I of EAE responsible for loss of respiration, mitochondrial oxidative stress and apoptosis may be a novel approach to address neuronal and axonal loss responsible for permanent disability that is unaltered by current disease modifying drugs for MS that target inflammation.
Collapse
|
36
|
Iyer S. Novel therapeutic approaches for Leber's hereditary optic neuropathy. DISCOVERY MEDICINE 2013; 15:141-149. [PMID: 23545042 PMCID: PMC5652312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many human childhood mitochondrial disorders result from abnormal mitochondrial DNA (mtDNA) and altered bioenergetics. These abnormalities span most of the mtDNA, demonstrating that there are no "unique" positions on the mitochondrial genome that when deleted or mutated produce a disease phenotype. This diversity implies that the relationship between mitochondrial genotype and clinical phenotype is very complex. The origins of clinical phenotypes are thus unclear, fundamentally difficult-to-treat, and are usually clinically devastating. Current treatment is largely supportive and the disorders progress relentlessly causing significant morbidity and mortality. Vitamin supplements and pharmacological agents have been used in isolated cases and clinical trials, but the efficacy of these interventions is unclear. In spite of recent advances in the understanding of the pathogenesis of mitochondrial diseases, a cure remains elusive. An optimal cure would be gene therapy, which involves introducing the missing gene(s) into the mitochondria to complement the defect. Our recent research results indicate the feasibility of an innovative protein-transduction ("protofection") technology, consisting of a recombinant mitochondrial transcription factor A (TFAM) that avidly binds mtDNA and permits efficient targeting into mitochondria in situ and in vivo. Thus, the development of gene therapy for treating mitochondrial disease offers promise, because it may circumvent the clinical abnormalities and the current inability to treat individual disorders in affected individuals. This review aims to focus on current treatment options and future therapeutics in mitochondrial disease treatment with a special emphasis on Leber's hereditary optic neuropathy.
Collapse
Affiliation(s)
- Shilpa Iyer
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284, USA.
| |
Collapse
|
37
|
Al-Ettribi GM, Effat LK, El-Bassyouni HT, Zaki MS, Shanab G, Karim AM. Clinical and molecular findings in eight Egyptian patients with suspected mitochondrial disorders and optic atrophy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2012.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Abstract
The hereditary optic neuropathies are inherited disorders in which optic nerve dysfunction is a prominent feature in the phenotypic expression of disease. Optic neuropathy may be primarily an isolated finding, such as in Leber hereditary optic neuropathy and dominant optic atrophy, or part of a multisystem disorder. The pathophysiological mechanisms underlying the hereditary optic neuropathies involve mitochondrial dysfunction owing to mutations in mitochondrial or nuclear DNA that encodes proteins essential to mitochondrial function. Effective treatments are limited, and current management includes therapies directed at enhancing mitochondrial function and preventing oxidative damage, as well as genetic counselling, and supportive and symptomatic measures. New therapies, including gene therapy, are emerging via animal models and human clinical trials. Leber hereditary optic neuropathy, in particular, provides a unique model for testing promising treatments owing to its characteristic sequential bilateral involvement and the accessibility of target tissue within the eye. Lessons learned from treatment of the hereditary optic neuropathies may have therapeutic implications for other disorders of presumed mitochondrial dysfunction. In this Review, the natural history of the common inherited optic neuropathies, the presumed pathogenesis of several of these disorders, and the literature to date regarding potential therapies are summarized.
Collapse
Affiliation(s)
- Nancy J Newman
- Neuro-ophthalmology Unit, Department of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, 1365-B Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
39
|
Shi H, Gao J, Pei H, Liu R, Hu WK, Wan X, Li T, Li B. Adeno-associated virus-mediated gene delivery of the human ND4 complex I subunit in rabbit eyes. Clin Exp Ophthalmol 2012; 40:888-94. [PMID: 22612072 DOI: 10.1111/j.1442-9071.2012.02815.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND To assess intravitreal injection dose and safety of recombinant adeno-associated virus-mediated gene delivery of human NADH dehydrogenase subunit 4 (ND4) in rabbit eyes. METHODS An open reading frame for human ND4 or adeno-associated virus-green fluorescent protein were fused to the mitochondrial targeting sequence and packed into separate adeno-associated virus capsids. Rabbits of three treatment groups were administered 0.1 mL adeno-associated virus-ND4, 0.1 mL adeno-associated virus-green fluorescent protein or 0.1 mL vehicle via intravitreal injection, respectively. The safety of recombinant adenoassociated virus-mediated gene delivery of human ND4 in rabbit eyes was assessed with a slit-lamp microscope and direct ophthalmoscope, measurements of intraocular pressure and flash visual evoked potential, and optical coherence tomography. The mRNA and protein expressions of human ND4 in the retina of rabbits were determined with real-time polymer chain reaction (PCR), immunofluorescence and Western blot. RESULTS No complications occurred in any of the three treatment groups after the intravitreal injection. At 1-month post-injection, no significant difference in the mean thickness of retinal nerve fibre layer was found among the three groups. Results of the visual evoked potential test showed that there was no difference in the latency of the visual P100 wave among the three groups. Real-time PCR, immunofluorescence and Western blot analyses verified the expressions of ND4 and green fluorescent protein in the retinal nerve fibre layer. CONCLUSIONS Intravitreal injection of adeno-associated virus-ND4 expression vectors was effectively and safely performed in our study. The data on the dose and method of intravitreal injection from our study will provide a valuable reference for clinical intravitreal injection of adeno-associated virus-ND4 for the treatment of Leber's hereditary optic neuropathy.
Collapse
Affiliation(s)
- Hui Shi
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu H, Ozdemir SS, Koilkonda RD, Chou TH, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, Lewin AS, Guy J. Mutant NADH dehydrogenase subunit 4 gene delivery to mitochondria by targeting sequence-modified adeno-associated virus induces visual loss and optic atrophy in mice. Mol Vis 2012; 18:1668-83. [PMID: 22773905 PMCID: PMC3388991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/17/2012] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Although mutated G11778A NADH ubiquinone oxidoreductase subunit 4 (ND4) mitochondrial DNA (mtDNA) is firmly linked to the blindness of Leber hereditary optic neuropathy (LHON), a bona fide animal model system with mutated mtDNA complex I subunits that would enable probing the pathogenesis of optic neuropathy and testing potential avenues for therapy has yet to be developed. METHODS The mutant human ND4 gene with a guanine to adenine transition at position 11778 with an attached FLAG epitope under control of the mitochondrial heavy strand promoter (HSP) was inserted into a modified self-complementary (sc) adeno-associated virus (AAV) backbone. The HSP-ND4FLAG was directed toward the mitochondria by adding the 23 amino acid cytochrome oxidase subunit 8 (COX8) presequence fused in frame to the N-terminus of green fluorescent protein (GFP) into the AAV2 capsid open reading frame. The packaged scAAV-HSP mutant ND4 was injected into the vitreous cavity of normal mice (OD). Contralateral eyes received scAAV-GFP (OS). Translocation and integration of mutant human ND4 in mouse mitochondria were assessed with PCR, reverse transcription-polymerase chain reaction (RT-PCR), sequencing, immunoblotting, and immunohistochemistry. Visual function was monitored with serial pattern electroretinography (PERG) and in vivo structure with spectral domain optical coherence tomography (OCT). Animals were euthanized at 1 year and processed for light and transmission electron microscopy. RESULTS The PCR products of the mitochondrial and nuclear DNA extracted from infected retinas and optic nerves gave the expected 500 base pair bands. RT-PCR confirmed transcription of the mutant human ND4 DNA in mice. DNA sequencing confirmed that the PCR and RT-PCR products were mutant human ND4 (OD only). Immunoblotting revealed the expression of mutant ND4FLAG (OD only). Pattern electroretinograms showed a significant decrement in retinal ganglion cell function OD relative to OS at 1 month and 6 months after AAV injections. Spectral domain optical coherence tomography showed optic disc edema starting at 1 month post injection followed by optic nerve head atrophy with marked thinning of the inner retina at 1 year. Histopathology of optic nerve cross sections revealed reductions in the optic nerve diameters of OD versus OS where transmission electron microscopy revealed significant loss of optic nerve axons in mutant ND4 injected eyes where some remaining axons were still in various stages of irreversible degeneration with electron dense aggregation. Electron lucent mitochondria accumulated in swollen axons where fusion of mitochondria was also evident. CONCLUSIONS Due to the UGA codon at amino acid 16, mutant G11778A ND4 was translated only in the mitochondria where its expression led to significant loss of visual function, loss of retinal ganglion cells, and optic nerve degeneration recapitulating the hallmarks of human LHON.
Collapse
Affiliation(s)
- Hong Yu
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL
| | - Sacide S. Ozdemir
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL
| | | | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL
| | - Vince Chiodo
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL,Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL,Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL
| | - William W. Hauswirth
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL,Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL
| | - John Guy
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL,Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL
| |
Collapse
|
41
|
Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci 2012; 35:364-72. [PMID: 22578891 DOI: 10.1016/j.tins.2012.04.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 12/12/2022]
Abstract
Axonal degeneration is a major contributor to neuronal dysfunction in many neurological conditions and has additional roles in development. It can be triggered by divergent stimuli including mechanical, metabolic, infectious, toxic, hereditary and inflammatory stresses. Axonal mitochondria are an important convergence point as regulators of bioenergetic metabolism, reactive oxygen species (ROS), Ca²⁺ homeostasis and protease activation. The challenges likely to render axonal mitochondria more vulnerable than their cellular counterparts are reviewed, including axonal transport, replenishing nuclear-encoded proteins and maintenance of quality control, fusion and fission in locations remote from the cell body. The potential for mitochondria to act as a decision node in axon loss is considered, highlighting the need to understand the biology of axonal mitochondria and their contributions to degenerative mechanisms for novel therapeutic strategies.
Collapse
Affiliation(s)
- Felipe A Court
- Millennium Nucleus for Regenerative Biology, Faculty of Biology, Catholic University of Chile, Santiago 8331150, Chile.
| | | |
Collapse
|
42
|
Abstract
Leber's hereditary optic neuropathy (LHON) is a rare disease primarily affecting the retinal ganglion cells. In most cases patients with LHON develop permanent visual loss with a large central scotoma in the visual field of both eyes. The optic disc becomes partially or completely pale. At the onset of the disease many patients are considered to suffer from an optic neuritis and are treated under the diagnostic and therapeutic regimen of optic neuritis. LHON is mostly only considered when high dose cortisone therapy fails to be effective or the second eye is affected. Thereafter, molecular genetic analysis will prove LHON in these cases. Detailed anamnesis including pedigree analysis in combination with observance of the peripapillary microangiopathic alterations at the fundus will help to speed up the diagnosis of LHON, but even after exact clinical and molecular genetic diagnosis of LHON some aspects of the disease still remain a mystery today.
Collapse
Affiliation(s)
- B Leo-Kottler
- Department für Augenheilkunde, Augenklinik, Schleichstr. 12-16, 72076, Tübingen, Deutschland.
| | | |
Collapse
|
43
|
Pan G, Wang T, Yao H, Pei D. Somatic cell reprogramming for regenerative medicine: SCNT vs. iPS cells. Bioessays 2012; 34:472-6. [PMID: 22419173 DOI: 10.1002/bies.201100174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reprogramming of somatic cells to a pluripotent state holds huge potentials for regenerative medicine. However, a debate over which method is better, somatic cell nuclear transfer (SCNT) or induced pluripotent stem (iPS) cells, still persists. Both approaches have the potential to generate patient-specific pluripotent stem cells for replacement therapy. Yet, although SCNT has been successfully applied in various vertebrates, no human pluripotent stem cells have been generated by SCNT due to technical, legal and ethical difficulties. On the other hand, human iPS cell lines have been reported from both healthy and diseased individuals. A recent study reported the generation of triploid human pluripotent stem cells by transferring somatic nuclei into oocytes, a variant form of SCNT. In this essay, we discuss this progress and the potentials of these two reprogramming approaches for regenerative medicine.
Collapse
Affiliation(s)
- Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | |
Collapse
|
44
|
Grzybowska-Szatkowska L, Slaska B. Polymorphisms in genes encoding mt-tRNA in female breast cancer in Poland. ACTA ACUST UNITED AC 2012; 23:106-11. [PMID: 22397379 DOI: 10.3109/19401736.2012.660925] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, there have been indications of participation of mitochondria in the carcinogenic process and the role of polymorphisms in increasing the risk of cancer. The aim of the study was to detect possible changes in the sequence of 22 genes encoding mitochondrial tRNA in breast cancer carcinoma, which take part in protein synthesis in the translation process. The analysis of tumour tissue and blood material sampled from 50 patients revealed that few mutations have been found. It cannot be excluded that, through their impact on the secondary and tertiary tRNA structure, polymorphisms may cause mitochondrial dysfunction and contribute to appearance of other changes in mtDNA. Mutations in tRNA genes in breast cancer may affect the cell and cause its dysfunction, as in mitochondrial diseases.
Collapse
|
45
|
Shu L, Zhang YM, Huang XX, Chen CY, Zhang XN. Complete mitochondrial DNA sequence analysis in two southern Chinese pedigrees with Leber hereditary optic neuropathy revealed secondary mutations along with the primary mutation. Int J Ophthalmol 2012; 5:28-31. [PMID: 22553750 DOI: 10.3980/j.issn.2222-3959.2012.01.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/10/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS Two unrelated southern Chinese families with LHON and 10 matched healthy controls were recruited, and their entire mitochondrial DNA (mtDNA) was amplified and sequenced with the universal M13 primer. Then DNA sequence analysis and variation identification were perfomed by DNAssist and Chromas 2 software and compared with authoritative databases such as Mitomap. RESULTS Mutational analysis of mtDNA in these two Chinese pedigrees revealed one common LHON-associated mutation, G11778A (Arg→His), in the MT-ND4 gene. In addition, there were two secondary mutations in Pedigree 1: C3497T (Ala→Val), and C3571T (Leu→Phe) in the MT-ND1 gene, which have not been reported; and two secondary mutations occurred in Pedigree 2: A10398G (Thr→Ala) in the MT-ND3 gene, and T14502C (Ile→Val) in the MT-ND6 gene. Three polymorphisms, A73G, G94A and A263G in the mtDNA control region, were also found. CONCLUSION Our study confirmed that the known MT-ND4*G11778A mutation is the most significant cause of LHON. The C3497T and C3571T mutations in Pedigree 1 were also both at hot-spots of MT-ND1; they may affect the respiratory chain in coordination with the primary mutation G11778A. In Pedigree 2, the two secondary mutations A10398G of MT-ND3 and T14502C of MT-ND6 may influence mitochondrial respiratory complex I, leading to the mitochondrial respiratory chain dysfunction which results in optic atrophy together with G11778A. Therefore, not only the common primary LHON mutation is responsible for the visual atrophy, but other secondary mtDNA mutations should also be considered when giving genetic counseling.
Collapse
Affiliation(s)
- Lei Shu
- Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
46
|
Haber M, Youhanna SC, Balanovsky O, Saade S, Martínez-Cruz B, Ghassibe-Sabbagh M, Shasha N, Osman R, el Bayeh H, Koshel S, Zaporozhchenko V, Balanovska E, Soria-Hernanz DF, Platt DE, Zalloua PA. mtDNA lineages reveal coronary artery disease-associated structures in the Lebanese population. Ann Hum Genet 2011; 76:1-8. [PMID: 22017296 DOI: 10.1111/j.1469-1809.2011.00682.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Population origins and ancestry have previously been found to be important determinants of coronary artery disease (CAD). This study investigates associations of Lebanese mitochondrial DNA lineages with CAD and studies their correlation with other populations, exploring population structures that may infer mitochondria functional associations and reveal population movements and origins. Sequencing the mitochondrial hypervariable sequence 1 (HVS-1) of 363 controls and 448 cases revealed that haplogroup W was more frequent (P = 0.013) in cases compared to controls, and was associated with increased risk of CAD (OR = 5.50, 95% CI = 1.50-35.30, P = 0.026) among Lebanese samples. Haplogroup A was only found in controls (P = 0.029). We have detected stronger geographic correlation between haplogroup W and CAD (Pearson's r = 0.316, P < 0.001) than between haplogroup A and CAD (r = 0.149, P < 0.001). HVS-1 phylogenetic network of haplogroup W shows controls are restricted to European clusters while cases belong mostly to Middle Eastern natives. The network of haplogroup A shows that the controls belong to a cluster dominated by Central Asians. Our results show evidence of a gene flow into Lebanon, creating CAD-associated population structures that are similar to those in the source populations, maintained by limited admixture, and probably encompassing variations on the nuclear and/or the mitochondrial genome that are correlated with the disease.
Collapse
Affiliation(s)
- Marc Haber
- The Lebanese American University, Chouran, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Van Bergen NJ, Chakrabarti R, O’Neill EC, Crowston JG, Trounce IA. Mitochondrial disorders and the eye. Eye Brain 2011; 3:29-47. [PMID: 28539774 PMCID: PMC5436186 DOI: 10.2147/eb.s16192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The clinical significance of disturbed mitochondrial function in the eye has emerged since mitochondrial DNA (mtDNA) mutation was described in Leber's hereditary optic neuropathy. The spectrum of mitochondrial dysfunction has become apparent through increased understanding of the contribution of nuclear and somatic mtDNA mutations to mitochondrial dynamics and function. Common ophthalmic manifestations of mitochondrial dysfunction include optic atrophy, pigmentary retinopathy, and ophthalmoplegia. The majority of patients with ocular manifestations of mitochondrial disease also have variable central and peripheral nervous system involvement. Mitochondrial dysfunction has recently been associated with age-related retinal disease including macular degeneration and glaucoma. Therefore, therapeutic targets directed at promoting mitochondrial biogenesis and function offer a potential to both preserve retinal function and attenuate neurodegenerative processes.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Rahul Chakrabarti
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Evelyn C O’Neill
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Ian A Trounce
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Affiliation(s)
- Nancy J Newman
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.
| |
Collapse
|