1
|
Koniar H, Wharton L, Ingham A, Rodríguez-Rodríguez C, Kunz P, Radchenko V, Yang H, Rahmim A, Uribe C, Schaffer P. In vivoquantitative SPECT imaging of actinium-226: feasibility and proof-of-concept. Phys Med Biol 2024; 69:155003. [PMID: 38925140 DOI: 10.1088/1361-6560/ad5c37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective.225Ac radiopharmaceuticals have tremendous potential for targeted alpha therapy, however,225Ac (t1/2= 9.9 d) lacks direct gamma emissions forin vivoimaging.226Ac (t1/2= 29.4 h) is a promising element-equivalent matched diagnostic radionuclide for preclinical evaluation of225Ac radiopharmaceuticals.226Ac has two gamma emissions (158 keV and 230 keV) suitable for SPECT imaging. This work is the first feasibility study forin vivoquantitative226Ac SPECT imaging and validation of activity estimation.Approach.226Ac was produced at TRIUMF (Vancouver, Canada) with its Isotope Separator and Accelerator (ISAC) facility. [226Ac]Ac3+was radiolabelled with the bioconjugate crown-TATE developed for therapeutic targeting of neuroendocrine tumours. Mice with AR42J tumour xenografts were injected with either 2 MBq of [226Ac]Ac-crown-TATE or 4 MBq of free [226Ac]Ac3+activity and were scanned at 1, 2.5, 5, and 24 h post injection in a preclinical microSPECT/CT. Quantitative SPECT images were reconstructed from the 158 keV and 230 keV photopeaks with attenuation, background, and scatter corrections. Image-based226Ac activity measurements were assessed from volumes of interest within tumours and organs of interest. Imaging data was compared withex vivobiodistribution measured via gamma counter.Main results. We present, to the best of our knowledge, the first everin vivoquantitative SPECT images of226Ac activity distributions. Time-activity curves derived from SPECT images quantify thein vivobiodistribution of [226Ac]Ac-crown-TATE and free [226Ac]Ac3+activity. Image-based activity measurements in the tumours and organs of interest corresponded well withex vivobiodistribution measurements.Significance. Here in, we established the feasibility ofin vivo226Ac quantitative SPECT imaging for accurate measurement of actinium biodistribution in a preclinical model. This imaging method could facilitate more efficient development of novel actinium labelled compounds by providing accurate quantitativein vivopharmacokinetic information essential for estimating toxicities, dosimetry, and therapeutic potency.
Collapse
Affiliation(s)
- Helena Koniar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Luke Wharton
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Aidan Ingham
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Cristina Rodríguez-Rodríguez
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Peter Kunz
- Accelerator Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
- Department of Radiology, University of British Columbia, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Integrative Oncology, BC Cancer Research Centre, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Integrative Oncology, BC Cancer Research Centre, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Radiology, University of British Columbia, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
2
|
Kvassheim M, Tornes AJK, Juzeniene A, Stokke C, Revheim MER. Imaging of 212Pb in mice with a clinical SPECT/CT. EJNMMI Phys 2023; 10:47. [PMID: 37603123 PMCID: PMC10442031 DOI: 10.1186/s40658-023-00571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION 212Pb is a promising radionuclide for targeted alpha therapy. Here, the feasibility of visualising the tumour uptake and biodistribution of 212Pb-NG001 in mice with a clinical SPECT/CT scanner was investigated. METHODS A mouse phantom with 212Pb was imaged with a clinical- and a preclinical SPECT/CT scanner. Different acquisition and reconstruction settings were investigated on the clinical system (Siemens Symbia Intevo Bold). Two athymic nude mice carrying PC-3 PIP prostate cancer tumours of 235-830 μl received 1.44 MBq of 212Pb-NG001 and were imaged 2, 6, and 24 h post-injection on the clinical SPECT/CT with a Medium Energy collimator and a 40% energy window centred on 79 keV. All acquisition times were 30 min, except the mouse imaging 24 h post-injection which was 60 min. After the final imaging, the organs were harvested and measured on a gamma counter to give an indication of how much activity was present in organs of interest at the last imaging time point. RESULTS Four volumes in the mouse phantom of ~ 300 μl with 246-303 kBq/ml of 212Pb were distinguishable on images acquired with the clinical SPECT/CT with a high number of reconstruction updates. With the preclinical SPECT, the same volumes were easily distinguished with 49 kBq/ml of 212Pb. Clinical SPECT/CT images of the mice revealed uptake in tumours and bladders 2 h after injection and in tumours containing down to approximately 15 kBq/ml at 6 and 24 h after injection. CONCLUSION Although the preclinical scanner should be used preferentially in biodistribution studies in mice, the clinical SPECT/CT confirmed uptake in small volumes (e.g. ~ 300 μl volume with ~ 250 kBq/ml). Regardless of system, the resolution and sensitivity limits should be carefully determined, otherwise false negative or too low uptakes can be wrongly interpreted.
Collapse
Affiliation(s)
- Monika Kvassheim
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Anna Julie Kjøl Tornes
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- ARTBIO AS, Oslo, Norway
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Mona-Elisabeth R Revheim
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Assessment of mouse-specific pharmacokinetics in kidneys based on 131I activity measurements using micro-SPECT. EJNMMI Phys 2022; 9:13. [PMID: 35195790 PMCID: PMC8866625 DOI: 10.1186/s40658-022-00443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to acquire accurate drug pharmacokinetic information, which is required for tissue dosimetry, micro-SPECT must be quantitative to allow for an accurate assessment of radioligand activity in the relevant tissue. This study investigates the feasibility of deriving accurate mouse-specific time-integrated drug pharmacokinetic data in mouse kidneys from activity measurements using micro-SPECT. METHODS An animal experiment was carried out to evaluate the accuracy of 131I activity quantification in mouse kidneys (mean tissue volume of 0.140 mL) using a micro-SPECT system against conventional ex vivo gamma counting (GC) in a NaI(Tl) detector. The imaging setting investigated was that of the mouse biodistribution of a 131I-labelled single-domain antibody fragment (sdAb), currently being investigated for targeted radionuclide therapy of HER2-expressing cancer. SPECT imaging of 131I 365-keV photons was done with a VECTor/CT system (MILabs, Netherlands) using a high-energy mouse collimator with 1.6-mm-diameter pinholes. For both activity quantification techniques, the pharmacokinetic profile of the radioligand from approximately 1-73 h p.i. was derived and the time-integrated activity coefficient per gram of tissue (ã/M) was estimated. Additionally, SPECT activity recovery coefficients were determined in a phantom setting. RESULTS SPECT activities underestimate the reference activities by an amount that is dependent on the 131I activity concentration in the kidney, and thus on the time point of the pharmacokinetic profile. This underestimation is around - 12% at 1.5 h (2.89 MBq mL-1 mean reference activity concentration), - 13% at 6.6 h (149 kBq mL-1), - 40% at 24 h (17.6 kBq mL-1) and - 46% at 73 h (5.2 kBq mL-1) p.i. The ã/M value estimated from SPECT activities is, nevertheless, within - 14% from the reference (GC) ã/M value. Furthermore, better quantitative accuracy (within 2% from GC) in the SPECT ã/M value is achieved when SPECT activities are compensated for partial recovery with a phantom-based recovery coefficient of 0.85. CONCLUSION The SPECT imaging system used, together with a robust activity quantification methodology, allows an accurate estimation of time-integrated pharmacokinetic information of the 131I-labelled sdAb in mouse kidneys. This opens the possibility to perform mouse-specific kidney-tissue dosimetry based on pharmacokinetic data acquired in vivo on the same mice used in nephrotoxicity studies.
Collapse
|
4
|
Lukas M, Kluge A, Beindorff N, Brenner W. Accurate Monte Carlo Modeling of Small-Animal Multi-Pinhole SPECT for Non-Standard Multi-Isotope Applications. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2208-2220. [PMID: 33861700 DOI: 10.1109/tmi.2021.3073749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent advances in preclinical SPECT instrumentation enable non-standard multi-isotope acquisitions at the edge of physical feasibility to improve efficiency of pharmaceutical research. Due to the variety of applications, optimization of imaging hardware, acquisition protocols and reconstruction algorithms is a central and recurring task. For this purpose, we developed a Monte Carlo simulation model of a preclinical state-of-the-art multi-pinhole SPECT system, the NanoSPECT/CTPLUS, with emphasis on high accuracy for multi-isotope experiments operating near the system range limits. The GATE/ GEANT4 model included an accurate description of multi-pinhole collimators and all substructures of the detector back compartment. The readout electronics was modeled with a variety of signal processors partially extended to incorporate non-simplified measured response functions. The final model was able to predict energy spectra, planar images and tomographic reconstructions with high accuracy for both standard and non-standard multi-isotope experiments. Complex activity distributions could be reproduced for a wide range of noise levels and different modes of angular undersampling. Using the example of a dual-isotope triple-tracer experiment, the model has proven to be a powerful tool for protocol optimization and quantitative image correction at the performance range limits of multi-isotope multi-pinhole SPECT.
Collapse
|
5
|
Lukas M, Kluge A, Beindorff N, Brenner W. Multi-Isotope Capabilities of a Small-Animal Multi-Pinhole SPECT System. J Nucl Med 2020; 61:152-161. [PMID: 31896726 DOI: 10.2967/jnumed.119.226027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
The quantitative accuracy and image quality of multi-isotope SPECT is affected by various hardware-related perturbations. The present study evaluates the simultaneous acquisition of multiple isotopes using a multiplexed multi-pinhole SPECT system, assesses the extent of different error sources, and proposes experimental procedures for its objective characterization. Methods: Phantom measurements with single-, dual- and triple-isotope combinations of 99mTc, 111In, 123I, 177Lu, and 201Tl were performed with the NanoSPECT/CTPLUS to evaluate system energy resolution, count rate performance, sensitivity, collimator penetration, hardware versus object scatter, spectral crosstalk, spatial resolution, spatial registration accuracy, image uniformity, image noise, and image quality. Results: The intrinsic detector properties were suitable for the simultaneous acquisition of up to 3 isotopes with limitations for count rates exceeding 104 kcps and γ-energies lower than 75 keV. Spectral crosstalk between isotopes was more likely mediated by hardware than by source scatter and was strongly dependent on the isotope combination. Simultaneous multi-isotope acquisitions slightly degraded spatial resolution and image uniformity for spatially superimposed but not for spatially separated activity distributions while the background noise level was increased for all multi-isotope studies. For particular isotopes, collimator penetration and x-ray fluorescence contributed a significant portion of error. Conclusion: The NanoSPECT/CTPLUS enables the simultaneous acquisition of 3 radioisotopes with high quantitative accuracy and only little loss of image quality when the activity ratio is adapted to isotope-specific count rate sensitivities and when the system calibration is performed with phantoms of appropriate size.
Collapse
Affiliation(s)
- Mathias Lukas
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Kluge
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, Charité Campus Berlin, Berlin, Germany
| |
Collapse
|
6
|
Gupta A, Lee MS, Kim JH, Lee DS, Lee JS. Preclinical Voxel-Based Dosimetry in Theranostics: a Review. Nucl Med Mol Imaging 2020; 54:86-97. [PMID: 32377260 DOI: 10.1007/s13139-020-00640-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Due to the increasing use of preclinical targeted radionuclide therapy (TRT) studies for the development of novel theranostic agents, several studies have been performed to accurately estimate absorbed doses to mice at the voxel level using reference mouse phantoms and Monte Carlo (MC) simulations. Accurate dosimetry is important in preclinical theranostics to interpret radiobiological dose-response relationships and to translate results for clinical use. Direct MC (DMC) simulation is believed to produce more realistic voxel-level dose distribution with high precision because tissue heterogeneities and nonuniform source distributions in patients or animals are considered. Although MC simulation is considered to be an accurate method for voxel-based absorbed dose calculations, it is time-consuming, computationally demanding, and often impractical in daily practice. In this review, we focus on the current status of voxel-based dosimetry methods applied in preclinical theranostics and discuss the need for accurate and fast voxel-based dosimetry methods for pretherapy absorbed dose calculations to optimize the dose computation time in preclinical TRT.
Collapse
Affiliation(s)
- Arun Gupta
- 1Department of Radiology & Imaging, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Min Sun Lee
- 2Department of Radiology, School of Medicine, Stanford University, Stanford, CA USA
| | - Joong Hyun Kim
- 3Center for Ionizing Radiation, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Dong Soo Lee
- 4Department of Nuclear Medicine, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Jae Sung Lee
- 4Department of Nuclear Medicine, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,5Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, South Korea.,6Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Cicone F, Gnesin S, Denoël T, Stora T, van der Meulen NP, Müller C, Vermeulen C, Benešová M, Köster U, Johnston K, Amato E, Auditore L, Coukos G, Stabin M, Schaefer N, Viertl D, Prior JO. Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice. EJNMMI Res 2019; 9:53. [PMID: 31187358 PMCID: PMC6560118 DOI: 10.1186/s13550-019-0524-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/28/2019] [Indexed: 11/10/2022] Open
Abstract
Background Biodistribution studies based on organ harvesting represent the gold standard pre-clinical technique for dose extrapolations. However, sequential imaging is becoming increasingly popular as it allows the extraction of longitudinal data from single animals, and a direct correlation with deterministic radiation effects. We assessed the feasibility of mouse-specific, microPET-based dosimetry of an antibody fragment labeled with the positron emitter 152Tb [(T1/2 = 17.5 h, Eβ+mean = 1140 keV (20.3%)]. Image-based absorbed dose estimates were compared with those obtained from the extrapolation to 152Tb of a classical biodistribution experiment using the same antibody fragment labeled with 111In. 152Tb was produced by proton-induced spallation in a tantalum target, followed by mass separation and cation exchange chromatography. The endosialin-targeting scFv78-Fc fusion protein was conjugated with the chelator p-SCN-Bn-CHX-A”-DTPA, followed by labeling with either 152Tb or 111In. Micro-PET images of four immunodeficient female mice bearing RD-ES tumor xenografts were acquired 4, 24, and 48 h after the i.v. injection of 152Tb-CHX-DTPA-scFv78-Fc. After count/activity camera calibration, time-integrated activity coefficients (TIACs) were obtained for the following compartments: heart, lungs, liver, kidneys, intestines, tumor, and whole body, manually segmented on CT. For comparison, radiation dose estimates of 152Tb-CHX-DTPA-scFv78-Fc were extrapolated from mice dissected 4, 24, 48, and 96 h after the injection of 111In-CHX-DTPA-scFv78-Fc (3–5 mice per group). Imaging-derived and biodistribution-derived organ TIACs were used as input in the 25 g mouse model of OLINDA/EXM® 2.0, after appropriate mass rescaling. Tumor absorbed doses were obtained using the OLINDA2 sphere model. Finally, the relative percent difference (RD%) between absorbed doses obtained from imaging and biodistribution were calculated. Results RD% between microPET-based dosimetry and biodistribution-based dose extrapolations were + 12, − 14, and + 17 for the liver, the kidneys, and the tumors, respectively. Compared to biodistribution, the imaging method significantly overestimates the absorbed doses to the heart and the lungs (+ 89 and + 117% dose difference, respectively). Conclusions MicroPET-based dosimetry of 152Tb is feasible, and the comparison with organ harvesting resulted in acceptable dose discrepancies for body districts that can be segmented on CT. These encouraging results warrant additional validation using radiolabeled biomolecules with a different biodistribution pattern.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland.
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, CH, Switzerland
| | - Thibaut Denoël
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland
| | | | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland.,Laboratory of Radiochemistry, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland
| | - Christiaan Vermeulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland
| | - Ulli Köster
- Institut Laue-Langevin, Grenoble, FR, France
| | | | - Ernesto Amato
- Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, IT, Italy
| | - Lucrezia Auditore
- Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, IT, Italy
| | - George Coukos
- Department of Oncology and Ludwig Center for Cancer Research, Lausanne, CH, Switzerland
| | | | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland
| |
Collapse
|
8
|
Gerdekoohi SK, Vosoughi N, Tanha K, Assadi M, Ghafarian P, Rahmim A, Ay MR. Implementation of absolute quantification in small-animal SPECT imaging: Phantom and animal studies. J Appl Clin Med Phys 2017; 18:215-223. [PMID: 28508491 PMCID: PMC5874931 DOI: 10.1002/acm2.12094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/22/2017] [Accepted: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Presence of photon attenuation severely challenges quantitative accuracy in single-photon emission computed tomography (SPECT) imaging. Subsequently, various attenuation correction methods have been developed to compensate for this degradation. The present study aims to implement an attenuation correction method and then to evaluate quantification accuracy of attenuation correction in small-animal SPECT imaging. METHODS Images were reconstructed using an iterative reconstruction method based on the maximum-likelihood expectation maximization (MLEM) algorithm including resolution recovery. This was implemented in our designed dedicated small-animal SPECT (HiReSPECT) system. For accurate quantification, the voxel values were converted to activity concentration via a calculated calibration factor. An attenuation correction algorithm was developed based on the first-order Chang's method. Both phantom study and experimental measurements with four rats were used in order to validate the proposed method. RESULTS The phantom experiments showed that the error of -15.5% in the estimation of activity concentration in a uniform region was reduced to +5.1% when attenuation correction was applied. For in vivo studies, the average quantitative error of -22.8 ± 6.3% (ranging from -31.2% to -14.8%) in the uncorrected images was reduced to +3.5 ± 6.7% (ranging from -6.7 to +9.8%) after applying attenuation correction. CONCLUSION The results indicate that the proposed attenuation correction algorithm based on the first-order Chang's method, as implemented in our dedicated small-animal SPECT system, significantly improves accuracy of the quantitative analysis as well as the absolute quantification.
Collapse
Affiliation(s)
- Shabnam Khorasani Gerdekoohi
- Department of Energy EngineeringSharif University of TechnologyTehranIran
- Research Center for Molecular and Cellular ImagingTehran University of Medical SciencesTehranIran
| | - Naser Vosoughi
- Department of Energy EngineeringSharif University of TechnologyTehranIran
| | - Kaveh Tanha
- The Persian Gulf Nuclear Medicine Research CenterBushehr University of Medical SciencesBushehrIran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research CenterBushehr University of Medical SciencesBushehrIran
| | - Pardis Ghafarian
- Chronic Respiratory Diseases Research CenterNational Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
- PET/CT and Cyclotron CenterMasih Daneshvari HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Arman Rahmim
- Department of RadiologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mohammad Reza Ay
- Research Center for Molecular and Cellular ImagingTehran University of Medical SciencesTehranIran
- Departmen of Medical Physics and Biomedical EngineeringTehran University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Denis-Bacelar AM, Cronin SE, Da Pieve C, Paul RL, Eccles SA, Spinks TJ, Box C, Hall A, Sosabowski JK, Kramer-Marek G, Flux GD. Pre-clinical quantitative imaging and mouse-specific dosimetry for 111In-labelled radiotracers. EJNMMI Res 2016; 6:85. [PMID: 27885618 PMCID: PMC5122527 DOI: 10.1186/s13550-016-0238-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/14/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Accurate quantification in molecular imaging is essential to improve the assessment of novel drugs and compare the radiobiological effects of therapeutic agents prior to in-human studies. The aim of this study was to investigate the challenges and feasibility of pre-clinical quantitative imaging and mouse-specific dosimetry of 111In-labelled radiotracers. Attenuation, scatter and partial volume effects were studied using phantom experiments, and an activity calibration curve was obtained for varying sphere sizes. Six SK-OV-3-tumour bearing mice were injected with 111In-labelled HER2-targeting monoclonal antibodies (mAbs) (range 5.58-8.52 MBq). Sequential SPECT imaging up to 197 h post-injection was performed using the Albira SPECT/PET/CT pre-clinical scanner. Mice were culled for quantitative analysis of biodistribution studies. The tumour activity, mass and percentage of injected activity per gram of tissue (%IA/g) were calculated at the final scan time point and compared to the values determined from the biodistribution data. Delivered 111In-labelled mAbs tumour absorbed doses were calculated using mouse-specific convolution dosimetry, and absorbed doses for 90Y-labelled mAbs were extrapolated under the assumptions of equivalent injected activities, biological half-lives and uptake distributions as for 111In. RESULTS For the sphere sizes investigated (volume 0.03-1.17 ml), the calibration factor varied by a factor of 3.7, whilst for the range of tumour masses in the mice (41-232 mg), the calibration factor changed by a factor of 2.5. Comparisons between the mice imaging and the biodistribution results showed a statistically significant correlation for the tumour activity (r = 0.999, P < 0.0001) and the tumour mass calculations (r = 0.977, P = 0.0008), whilst no correlation was found for the %IA/g (r = 0.521, P = 0.29). Median tumour-absorbed doses per injected activity of 52 cGy/MBq (range 36-69 cGy/MBq) and 649 cGy/MBq (range 441-950 cGy/MBq) were delivered by 111In-labelled mAbs and extrapolated for 90Y-labelled mAbs, respectively. CONCLUSIONS This study demonstrates the need for multidisciplinary efforts to standardise imaging and dosimetry protocols in pre-clinical imaging. Accurate image quantification can improve the calculation of the activity, %IA/g and absorbed dose. Diagnostic imaging could be used to estimate the injected activities required for therapeutic studies, potentially reducing the number of animals used.
Collapse
Affiliation(s)
- Ana M Denis-Bacelar
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, United Kingdom.
| | - Sarah E Cronin
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, United Kingdom
| | - Chiara Da Pieve
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, United Kingdom
| | - Rowena L Paul
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, United Kingdom
| | - Sue A Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Terence J Spinks
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, United Kingdom
| | - Carol Box
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Adrian Hall
- Radiopharmacy Department, The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5PT, United Kingdom
| | - Jane K Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Gabriela Kramer-Marek
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Glenn D Flux
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, SM2 5NG, United Kingdom
| |
Collapse
|
10
|
Jennings L, Ivashchenko O, Marsman IJC, Laan AC, Denkova AG, Waton G, Beekman FJ, Schosseler F, Mendes E. In vivo biodistribution of stable spherical and filamentous micelles probed by high-sensitivity SPECT. Biomater Sci 2016; 4:1202-11. [PMID: 27286085 DOI: 10.1039/c6bm00297h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Understanding how nanoparticle properties such as size, morphology and rigidity influence their circulation time and biodistribution is essential for the development of nanomedicine therapies. Herein we assess the influence of morphology on cellular internalization, in vivo biodistribution and circulation time of nanocarriers using polystyrene-b-poly(ethylene oxide) micelles of spherical or elongated morphology. The glassy nature of polystyrene guarantees the morphological stability of the carriers in vivo and by encapsulating Indium-111 in their core, an assessment of the longitudinal in vivo biodistribution of the particles in healthy mice is performed with single photon emission computed tomography imaging. Our results show prolonged blood circulation, longer than 24 hours, for all micelle morphologies studied. Dynamics of micelle accumulation in the liver and other organs of the reticuloendothelial system show a size-dependent nature and late stage liver clearance is observed for the elongated morphology. Apparent contradictions between recent similar studies can be resolved by considering the effects of flexibility and degradation of the elongated micelles on their circulation time and biodistribution.
Collapse
Affiliation(s)
- L Jennings
- Institut Charles Sadron (CNRS), University of Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Apostolova I, Niedzielska D, Derlin T, Koziolek EJ, Amthauer H, Salmen B, Pahnke J, Brenner W, Mautner VF, Buchert R. Perfusion single photon emission computed tomography in a mouse model of neurofibromatosis type 1: towards a biomarker of neurologic deficits. J Cereb Blood Flow Metab 2015; 35:1304-12. [PMID: 25785829 PMCID: PMC4528004 DOI: 10.1038/jcbfm.2015.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 12/16/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a single-gene disorder affecting neurologic function in humans. The NF1+/- mouse model with germline mutation of the NF1 gene presents with deficits in learning, attention, and motor coordination, very similar to NF1 patients. The present study performed brain perfusion single-photon emission computed tomography (SPECT) in NF1+/- mice to identify possible perfusion differences as surrogate marker for altered cerebral activity in NF1. Cerebral perfusion was measured with hexamethyl-propyleneamine oxime (HMPAO) SPECT in NF1+/- mice and their wild-type littermates longitudinally at juvenile age and at young adulthood. Histology and immunohistochemistry were performed to test for structural changes. There was increased HMPAO uptake in NF1 mice in the amygdala at juvenile age, which reduced to normal levels at young adulthood. There was no genotype effect on thalamic HMPAO uptake, which was confirmed by ex vivo measurements of F-18-fluorodeoxyglucose uptake in the thalamus. Morphologic analyses showed no major structural abnormalities. However, there was some evidence of increased density of microglial somata in the amygdala of NF1-deficient mice. In conclusion, there is evidence of increased perfusion and increased density of microglia in juvenile NF1 mice specifically in the amygdala, both of which might be associated with altered synaptic plasticity and, therefore, with cognitive deficits in NF1.
Collapse
Affiliation(s)
- Ivayla Apostolova
- 1] Department of Nuclear Medicine, University Medicine Charité Berlin, Berlin, Germany [2] Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Dagmara Niedzielska
- Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Eva J Koziolek
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Amthauer
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Benedikt Salmen
- Neuroscience Research Center, University Medicine Charité Berlin, Berlin, Germany
| | - Jens Pahnke
- 1] Department of Neuropathology, Oslo University Hospital (OUS), University of Oslo (UiO), Oslo, Norway [2] LIED, University of Lübeck, Lübeck, Germany [3] Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, University Medicine Charité Berlin, Berlin, Germany
| | - Victor F Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralph Buchert
- Department of Nuclear Medicine, University Medicine Charité Berlin, Berlin, Germany
| |
Collapse
|
12
|
Ren L, Wu D, Li Y, Wang G, Wu X, Liu H. Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom. Med Phys 2014; 41:031902. [PMID: 24593720 DOI: 10.1118/1.4863510] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE X-ray fluorescence (XRF) is a promising technique with sufficient specificity and sensitivity for identifying and quantifying features in small samples containing high atomic number (Z) materials such as iodine, gadolinium, and gold. In this study, the feasibility of applying XRF to early breast cancer diagnosis and treatment is studied using a novel approach for three-dimensional (3D) x-ray fluorescence mapping (XFM) of gold nanoparticle (GNP)-loaded objects in a physical phantom at the technical level. METHODS All the theoretical analysis and experiments are conducted under the condition of using x-ray pencil beam and a compactly integrated x-ray spectrometer. The penetrability of the fluorescence x-rays from GNPs is first investigated by adopting a combination of BR12 with 70 mm/50 mm in thickness on the excitation/emission path to mimic the possible position of tumor goldin vivo. Then, a physical phantom made of BR12 is designed to translate in 3D space with three precise linear stages and subsequently the step by step XFM scanning is performed. The experimental technique named as background subtraction is applied to isolate the gold fluorescence from each spectrum obtained by the spectrometer. Afterwards, the attenuations of both the incident primary x-ray beam with energies beyond the gold K-edge energy (80.725 keV) and the isolated gold Kα fluorescence x-rays (65.99 -69.80 keV) acquired after background subtraction are well calibrated, and finally the unattenuated Kα fluorescence counts are used to realize mapping reconstruction and to describe the linear relationship between gold fluorescence counts and corresponding concentration of gold solutions. RESULTS The penetration results show that the goldKα fluorescence x-rays have sufficient penetrability for this phantom study, and the reconstructed mapping results indicate that both the spatial distribution and relative concentration of GNPs within the designed BR12 phantom can be well identified and quantified. CONCLUSIONS Although the XFM method in this investigation is still studied at the technical level and is not yet practical for routinein vivo mapping tasks with GNPs, the current penetrability measurements and phantom study strongly suggest the feasibility to establish and develop a 3D XFM system.
Collapse
Affiliation(s)
- Liqiang Ren
- Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019
| | - Di Wu
- Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019
| | - Yuhua Li
- Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019
| | - Ge Wang
- Biomedical Imaging Cluster and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Xizeng Wu
- Department of Radiology, University of Alabama, Birmingham, Alabama 35233
| | - Hong Liu
- Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|
13
|
Vandeghinste B, Van Holen R, Vanhove C, De Vos F, Vandenberghe S, Staelens S. Use of a Ray-Based Reconstruction Algorithm to Accurately Quantify Preclinical MicroSPECT Images. Mol Imaging 2014. [DOI: 10.2310/7290.2014.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bert Vandeghinste
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Roel Van Holen
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Christian Vanhove
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filip De Vos
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Stefaan Vandenberghe
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Steven Staelens
- From the Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP) Research Group, Ghent University-IBBT-IBiTech, Ghent, Belgium; Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium; and Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
14
|
Tsartsalis S, Moulin-Sallanon M, Dumas N, Tournier BB, Ghezzi C, Charnay Y, Ginovart N, Millet P. Quantification of GABAA receptors in the rat brain with [123I]Iomazenil SPECT from factor analysis-denoised images. Nucl Med Biol 2014; 41:186-95. [DOI: 10.1016/j.nucmedbio.2013.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 10/26/2022]
|
15
|
Lange C, Apostolova I, Lukas M, Huang KP, Hofheinz F, Gregor-Mamoudou B, Brenner W, Buchert R. Performance evaluation of stationary and semi-stationary acquisition with a non-stationary small animal multi-pinhole SPECT system. Mol Imaging Biol 2013; 16:311-6. [PMID: 24214814 DOI: 10.1007/s11307-013-0702-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
PURPOSE Step-and-shoot mode with many angular steps results in long frame duration limiting the capability of single-photon emission computed tomography (SPECT) for fast dynamic scans. The present study evaluates acquisition with reduced angular sampling for fast imaging in preclinical research with the nanoSPECT/CTplus four-head multi-pinhole system. PROCEDURES Measurements with line sources, homogeneity phantoms and a Jaszczak phantom filled with (99m)Tc or (123)I were performed to evaluate the 'stationary' and 'semi-stationary' acquisition mode (one or two detector positions, respectively) with respect to spatial resolution, quantification, noise properties and image artefacts. An in vivo mouse study was performed with (99m)Tc-MAG3. RESULTS The fast acquisition modes resulted in only minor degradation of spatial resolution and quantification accuracy. Statistical noise in reconstructed images was significantly reduced compared to conventional SPECT, particularly at low count statistics. Stationary acquisition resulted in streak artefacts and spatial distortion. CONCLUSIONS The semi-stationary acquisition mode of the nanoSPECT/CTplus allows fast dynamic SPECT with tolerable loss of image quality.
Collapse
Affiliation(s)
- Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun L, Zhu X, Xu L, Wang Z, Shao G, Zhao J. Antitumor effects of 32P-chromic-poly (L-lactide) brachytherapy in nude mice with human prostate cancer. Oncol Lett 2013; 6:687-692. [PMID: 24137391 PMCID: PMC3789100 DOI: 10.3892/ol.2013.1443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/05/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the antitumor effects and tissue distribution of 32P-chromic-poly (L-lactide) (32P-CP-PLLA) in nude mice with human prostate cancer. Tumor models were obtained by transplantation of PC-3M tumor cells into male BALB/c nude mice. Animals were randomly divided into control, 32P-chromic phosphate (32P-CP) colloid and 32P-CP-PLLA groups (all n=20). A series of indices were investigated, including apoptosis of tumor cells, rate of apoptosis, expression of caspase 3 and 8, biodistribution and intratumoral concentration of 32P-CP-PLLA, intensity of radioactivity, tumor volume and microvessel density (MVD). Highly concentrated radioactivity of 32P-CP-PLLA in the tumor mass was detected by single photon emission computed tomography (SPECT) scanning. The residual activities of the 32P-CP-PLLA and 32P-CP colloid groups were 3.02±0.32 and 1.76±0.31 MBq, respectively, on day 14 following treatment. The tumor inhibition rates were 67.24±3.55 and 55.92±7.65%, respectively (P<0.01). Necrotic changes, in conjunction with apoptosis, were observed in the treatment group. MVD values for the 32P-CP-PLLA and 32P-CP colloid groups were 28.24±10.07 and 36.15±11.06, respectively. 32P-CP-PLLA showed an excellent capacity for killing tumor cells, inducing apoptosis and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Liujing Sun
- Department of Urinary Surgery, Changzhou No. 3 People's Hospital, Jiangsu 213000, P.R. China
| | | | | | | | | | | |
Collapse
|
17
|
Apostolova I, Wunder A, Dirnagl U, Michel R, Stemmer N, Lukas M, Derlin T, Gregor-Mamoudou B, Goldschmidt J, Brenner W, Buchert R. Brain perfusion SPECT in the mouse: Normal pattern according to gender and age. Neuroimage 2012; 63:1807-17. [DOI: 10.1016/j.neuroimage.2012.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/12/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022] Open
|
18
|
Vrachimis A, Hermann S, Máthé D, Schober O, Schäfers M. Systematic evaluation of 99mTc-tetrofosmin versus 99mTc-sestamibi to study murine myocardial perfusion in small animal SPECT/CT. EJNMMI Res 2012; 2:21. [PMID: 22626255 PMCID: PMC3413527 DOI: 10.1186/2191-219x-2-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The "back-translation" of clinically available protocols to measure myocardial perfusion to preclinical imaging in mouse models of human disease is attractive for basic biomedical research. With respect to single-photon emission computed tomography (SPECT) approaches, clinical myocardial perfusion imaging protocols are established with different 99mTc-labeled perfusion tracers; however, studies evaluating and optimizing protocols for these tracers in high-resolution pinhole SPECT in mice are lacking. This study aims at evaluating two clinically available 99mTc-labeled myocardial perfusion tracers (99mTc-sestamibi vs. 99mTc-Tetrofosmin) in mice using four different imaging protocols. METHODS Adult C57BL/6 male mice were injected with 99mTc-sestamibi (MIBI) or 99mTc-Tetrofosmin (TETRO) (4 MBq/g body weight) either intravenously through the tail vein (n = 5) or retroorbitally (n = 5) or intraperitoneally (i.p.) under anesthesia (n = 3) or i.p. in an awake state (n = 3) at rest. Immediately after injection, a multi-frame single-photon emission computed tomography/computed tomography (SPECT/CT) acquisition was initiated with six subsequent time frames of 10 min each. Reconstructed images of the different protocols were assessed and compared by visual analysis by experts and by time-activity-curves generated from regions-of-interest for various organs (normalized uptake values). RESULTS Visually assessing overall image quality, the best image quality was found for MIBI for both intravenous injection protocols, whereas TETRO only had comparable image quality after retroorbital injections. These results were confirmed by quantitative analysis where left ventricular (LV) uptake of MIBI after tail vein injections was found significantly higher for all time points accompanied with a significantly slower washout of 16% for MIBI vs. 33% for TETRO (p = 0.009) from 10 to 60 min post injection (PI). Interestingly, LV washout from 10 to 60 min PI was significantly higher for TETRO when applied by tail vein injections when compared to retroorbital injections (22%, p = 0.008). However, liver uptake was significant and comparable for both tracers at all time points. Radioactivity concentration in the lungs was negligible for all time points and both tracers. CONCLUSION Intravenous MIBI injection (both tail vein and retroorbital) results in the best image quality for assessing myocardial perfusion of the murine heart by SPECT/CT. TETRO has a comparable image quality only for the retroorbital injection route.
Collapse
Affiliation(s)
- Alexis Vrachimis
- European Institute for Molecular Imaging, University of Muenster, Mendelstrasse 11, Building L1, Muenster, 48149, Germany.
| | | | | | | | | |
Collapse
|