1
|
Koll KK, Zimmermann MM, Will PA, Kneser U, Hirche C. The Transcription Factor SOX18 Inhibitor Small Molecule 4 Is a Potential Treatment of Cancer-Induced Lymphatic Metastasis and Lymphangiosarcoma. Cancer Rep (Hoboken) 2025; 8:e70110. [PMID: 39791369 PMCID: PMC11726641 DOI: 10.1002/cnr2.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Malignant tumors release growth factors, promoting lymphangiogenesis in primary tumors and draining sentinel lymph nodes, ultimately facilitating lymph node metastasis. As a malignant lymphatic tumor entity, lymphangiosarcomas are characterized by low survival rates and limited treatment options. The transcription factor SOX18 plays a crucial role in both lymphatic endothelial cell differentiation and cancer-induced lymphangiogenesis. AIMS In this in vitro study, we investigated the potential therapeutic effect of a small molecule called Sm4, which inhibits SOX18, on lymphatic endothelial and lymphangiosarcoma cells in vitro. METHODS AND RESULTS Human dermal lymphatic endothelial cells (HDLECs), lymphangiosarcoma cells (MO-LAS), and other endothelial cell lines were cultured. We found that Sox18 exhibited high mRNA expression levels in both HDLEC and MO-LAS. Sm4 treatment decreased the Sox18 expression level at the mRNA and protein levels in both HDLEC and MO-LAS significantly, a phenomenon confirmed through immunofluorescence images. Additionally, Sm4 treatment suppressed the expression of key lymphatic phenotype markers (Prox1, Flt4, and Lyve1) and hindered migration in both HDLEC and MO-LAS, all while maintaining cell viability. CONCLUSION These findings suggest that targeting SOX18 with Sm4 may hold potential as a therapeutic strategy for lymphangiosarcoma and cancer-induced lymphatic metastasis. Further in vitro studies are warranted to investigate the mechanisms and conduct dose-response analyses to evaluate Sm4's potential as a targeted therapy for lymphangiosarcoma and cancer-induced lymphangiogenesis in the future.
Collapse
Affiliation(s)
- Katja K. Koll
- Department of Hand, Plastic and Reconstructive Surgery, MicrosurgeryBurn Centre BG Klinik LudwigshafenLudwigshafenGermany
- Medical Faculty of the University HeidelbergHeidelbergGermany
| | - Martin M. Zimmermann
- Department of Hand, Plastic and Reconstructive Surgery, MicrosurgeryBurn Centre BG Klinik LudwigshafenLudwigshafenGermany
- Medical Faculty of the University HeidelbergHeidelbergGermany
| | - Patrick A. Will
- Department of Plastic and Hand SurgeryFaculty of Medicine and University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, MicrosurgeryBurn Centre BG Klinik LudwigshafenLudwigshafenGermany
- Medical Faculty of the University HeidelbergHeidelbergGermany
| | - Christoph Hirche
- Department of Plastic, Hand, and Reconstructive Microsurgery, BG Unfallklinik Frankfurt Am MainAffiliated Hospital of Goethe‐UniversityFrankfurt am MainGermany
| |
Collapse
|
2
|
Jain V, Sakhuja P, Agarwal AK, Sirdeshmukh R, Siraj F, Gautam P. Lymph Node Metastasis in Gastrointestinal Carcinomas: A View from a Proteomics Perspective. Curr Oncol 2024; 31:4455-4475. [PMID: 39195316 PMCID: PMC11352871 DOI: 10.3390/curroncol31080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 08/29/2024] Open
Abstract
Lymph node metastasis (LNM) is one of the major prognostic factors in human gastrointestinal carcinomas (GICs). The lymph node-positive patients have poorer survival than node-negative patients. LNM is directly associated with the recurrence and poor survival of patients with GICs. The early detection of LNM in patients and designing effective therapies to suppress LNM may significantly impact the survival of these patients. The rapid progress made in proteomic technologies could be successfully applied to identify molecular targets for cancers at high-throughput levels. LC-MS/MS analysis enables the identification of proteins involved in LN metastasis, which can be utilized for diagnostic and therapeutic applications. This review summarizes the studies on LN metastasis in GICs using proteomic approaches to date.
Collapse
Affiliation(s)
- Vaishali Jain
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Puja Sakhuja
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Anil Kumar Agarwal
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ravi Sirdeshmukh
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Fouzia Siraj
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| | - Poonam Gautam
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| |
Collapse
|
3
|
Pandithar S, Galke D, Akume A, Belyakov A, Lomonaco D, Guerra AA, Park J, Reff O, Jin K. The role of CXCL1 in crosstalk between endocrine resistant breast cancer and fibroblast. Mol Biol Rep 2024; 51:331. [PMID: 38393465 PMCID: PMC10891235 DOI: 10.1007/s11033-023-09119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/06/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND ER positive breast cancer is currently targeted using various endocrine therapies. Despite the proven therapeutic efficacy, resistance to the drug and reoccurrence of tumor appears to be a complication that many patients deal with. Molecular pathways underlying the development of resistance are being widely studied. METHODS AND RESULTS In this study, using four established endocrine resistant breast cancer (ERBC) cell lines, we characterized CXCL1 as a secreted factor in crosstalk between ERBC cells and fibroblasts. Protein array revealed upregulation of CXCL1 and we confirmed the CXCL1 expression by real-time qRT-PCR and U-Plex assay. Co-culturing ERBC cells with fibroblasts enhanced the cell growth and migration compared to monoculture. The crosstalk of ERBC cells with fibroblasts significantly activates ERK/MAPK signaling pathway while reparixin, CXCR1/2 receptor inhibitor, attenuates the activity. Reparixin displayed the ERBC cell growth inhibition and the combination treatment with reparixin and CDK4/6 inhibitor (palbociclib and ribociclib) increased these inhibitory effect. CONCLUSIONS Taken together, our study implicates CXCL1 as a critical role in ERBC growth and metastasis via crosstalk with fibroblast and cotargeting CXCR1/2 and CDK4/6 could potentially overcome endocrine resistant breast cancer.
Collapse
Affiliation(s)
- Sneha Pandithar
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Daniel Galke
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Ahone Akume
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Artem Belyakov
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Dominick Lomonaco
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Amirah A Guerra
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Jay Park
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Olivia Reff
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Kideok Jin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA.
| |
Collapse
|
4
|
Li Y, Li S, Jiang Z, Tan K, Meng Y, Zhang D, Ma X. Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions. J Nanobiotechnology 2023; 21:212. [PMID: 37415161 PMCID: PMC10327386 DOI: 10.1186/s12951-023-01977-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Although cancer immunotherapy is a compelling approach against cancer, its effectiveness is hindered by the challenge of generating a robust and durable immune response against metastatic cancer cells. Nanovaccines, specifically engineered to transport cancer antigens and immune-stimulating agents to the lymph nodes, hold promise in overcoming these limitations and eliciting a potent and sustained immune response against metastatic cancer cells. This manuscript provides an in-depth exploration of the lymphatic system's background, emphasizing its role in immune surveillance and tumor metastasis. Furthermore, it delves into the design principles of nanovaccines and their unique capability to target lymph node metastasis. The primary objective of this review is to provide a comprehensive overview of the current advancements in nanovaccine design for targeting lymph node metastasis, while also discussing their potential to enhance cancer immunotherapy. By summarizing the state-of-the-art in nanovaccine development, this review aims to shed light on the promising prospects of harnessing nanotechnology to potentiate cancer immunotherapy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Shen Li
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Keqin Tan
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Yuanling Meng
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingyi Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
5
|
Li L, Liu J, Wang W, Fu Y, Deng Y, Li X, Liu Z, Pang Y, Xu Y, Yan M, Li Z. Cancer stem cells promote lymph nodes metastasis of breast cancer by reprogramming tumor microenvironment. Transl Oncol 2023; 35:101733. [PMID: 37421907 DOI: 10.1016/j.tranon.2023.101733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Breast cancer progression and metastasis are governed by a complex interplay within the tumor immune microenvironment (TIME), involving numerous cell types. Lymph node metastasis (LNM) is a key prognostic marker associated with distant organ metastasis and reduced patient survival, but the mechanisms underlying its promotion by breast cancer stem cells (CSCs) remain unclear. Our study sought to unravel how CSCs reprogram TIME to facilitate LNM. Utilizing single-cell RNA sequencing, we profiled TIME in primary cancer and corresponding metastatic lymph node samples from patients at our institution. To verify the derived data, we cultured CSCs and performed validation assays employing flow cytometry and CyTOF. Our analysis revealed distinct differences in cellular infiltration patterns between tumor and LNM samples. Importantly, RAC2 and PTTG1 double-positive CSCs, which exhibit the highest stem-like attributes, were markedly enriched in metastatic lymph nodes. These CSCs are hypothesized to foster metastasis via activation of specific metastasis-related transcription factors and signaling pathways. Additionally, our data suggest that CSCs might modulate adaptive and innate immune cell evolution, thereby further contributing to metastasis. In summary, this study illuminates a critical role of CSCs in modifying TIME to facilitate LNM. The enrichment of highly stem-like CSCs in metastatic lymph nodes offers novel therapeutic targeting opportunities and deepens our understanding of breast cancer metastasis.
Collapse
Affiliation(s)
- Lin Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Jianyu Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Wenzheng Wang
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yingqiang Fu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yuhan Deng
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Xin Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Zhuolin Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yuheng Pang
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yangyang Xu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zhigao Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China.
| |
Collapse
|
6
|
Steinberger KJ, Eubank TD. The Underexplored Landscape of Hypoxia-Inducible Factor 2 Alpha and Potential Roles in Tumor Macrophages: A Review. OXYGEN (BASEL, SWITZERLAND) 2023; 3:45-76. [PMID: 37124241 PMCID: PMC10137047 DOI: 10.3390/oxygen3010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low tissue oxygenation, termed hypoxia, is a characteristic of solid tumors with negative consequences. Tumor-associated macrophages (TAMs) accumulate in hypoxic tumor regions and correlate with worse outcomes in cancer patients across several tumor types. Thus, the molecular mechanism in which macrophages respond to low oxygen tension has been increasingly investigated in the last decade. Hypoxia stabilizes a group of hypoxia-inducible transcription factors (HIFs) reported to drive transcriptional programs involved in cell survival, metabolism, and angiogenesis. Though both tumor macrophage HIF-1α and HIF-2α correlate with unfavorable tumor microenvironments, most research focuses on HIF-1α as the master regulator of hypoxia signaling, because HIF-1α expression was originally identified in several cancer types and correlates with worse outcome in cancer patients. The relative contribution of each HIFα subunit to cell phenotypes is poorly understood especially in TAMs. Once thought to have overlapping roles, recent investigation of macrophage HIF-2α has demonstrated a diverse function from HIF-1α. Little work has been published on the differential role of hypoxia-dependent macrophage HIF-2α when compared to HIF-1α in the context of tumor biology. This review highlights cellular HIF-2α functions and emphasizes the gap in research investigating oxygen-dependent functions of tumor macrophage HIF-2α.
Collapse
Affiliation(s)
- Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| |
Collapse
|
7
|
Liu T, Liu C, Yan M, Zhang L, Zhang J, Xiao M, Li Z, Wei X, Zhang H. Single cell profiling of primary and paired metastatic lymph node tumors in breast cancer patients. Nat Commun 2022; 13:6823. [PMID: 36357424 PMCID: PMC9649678 DOI: 10.1038/s41467-022-34581-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
The microenvironment of lymph node metastasized tumors (LNMT) determines tumor progression and response to therapy, but a systematic study of LNMT is lacking. Here, we generate single-cell maps of primary tumors (PTs) and paired LNMTs in 8 breast cancer patients. We demonstrate that the activation, cytotoxicity, and proliferation of T cells are suppressed in LNMT compared with PT. CD4+CXCL13+ T cells in LNMT are more likely to differentiate into an exhausted state. Interestingly, LAMP3+ dendritic cells in LNMT display lower T cell priming and activating ability than in PT. Additionally, we identify a subtype of PLA2G2A+ cancer-associated fibroblasts enriched in HER2+ breast cancer patients that promotes immune infiltration. We also show that the antigen-presentation pathway is downregulated in malignant cells of the metastatic lymph node. Altogether, we characterize the microenvironment of LNMT and PT, which may shed light on the individualized therapeutic strategies for breast cancer patients with lymph node metastasis.
Collapse
Affiliation(s)
- Tong Liu
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Cheng Liu
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Meisi Yan
- grid.410736.70000 0001 2204 9268Department of Pathology, Harbin Medical University, Harbin, 150081 China
| | - Lei Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Jing Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Min Xiao
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhigao Li
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiaofan Wei
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Hongquan Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China ,grid.263488.30000 0001 0472 9649Department of Human Anatomy, Histology, and Embryology, Shenzhen University School of Medicine, Shenzhen, 518055 China
| |
Collapse
|
8
|
Hashiguchi S, Tanaka T, Mano R, Kondo S, Kodama S. CCN2-induced lymphangiogenesis is mediated by the integrin αvβ5-ERK pathway and regulated by DUSP6. Sci Rep 2022; 12:926. [PMID: 35042954 PMCID: PMC8766563 DOI: 10.1038/s41598-022-04988-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lymphangiogenesis is essential for the development of the lymphatic system and is important for physiological processes such as homeostasis, metabolism and immunity. Cellular communication network factor 2 (CCN2, also known as CTGF), is a modular and matricellular protein and a well-known angiogenic factor in physiological and pathological angiogenesis. However, its roles in lymphangiogenesis and intracellular signaling in lymphatic endothelial cells (LECs) remain unclear. Here, we investigated the effects of CCN2 on lymphangiogenesis. In in vivo Matrigel plug assays, exogenous CCN2 increased the number of Podoplanin-positive vessels. Subsequently, we found that CCN2 induced phosphorylation of ERK in primary cultured LECs, which was almost completely inhibited by the blockade of integrin αvβ5 and partially decreased by the blockade of integrin αvβ3. CCN2 promoted direct binding of ERK to dual-specific phosphatase 6 (DUSP6), which regulated the activation of excess ERK by dephosphorylating ERK. In vitro, CCN2 promoted tube formation in LECs, while suppression of Dusp6 further increased tube formation. In vivo, immunohistochemistry also detected ERK phosphorylation and DUSP6 expression in Podoplanin-positive cells on CCN2-supplemented Matrigel. These results indicated that CCN2 promotes lymphangiogenesis by enhancing integrin αvβ5-mediated phosphorylation of ERK and demonstrated that DUSP6 is a negative regulator of excessive lymphangiogenesis by CCN2.
Collapse
Affiliation(s)
- Shiho Hashiguchi
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryosuke Mano
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Seiji Kondo
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
9
|
Verteporfin-Loaded Mesoporous Silica Nanoparticles' Topical Applications Inhibit Mouse Melanoma Lymphangiogenesis and Micrometastasis In Vivo. Int J Mol Sci 2021; 22:ijms222413443. [PMID: 34948239 PMCID: PMC8705243 DOI: 10.3390/ijms222413443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) has been pointed out as a candidate for improving melanoma treatment. Nanotechnology application in PDT has increased its efficacy by reducing side effects. Herein, mesoporous silica nanoparticles (MSNs) conjugated with verteporfin (Ver-MSNs), in use with PDT, were administered in mice to evaluate their efficacy on lymphoangiogenesis and micrometastasis in melanoma. Melanoma was induced in mice by the subcutaneous injection of B16-F10 cells. The mice were transcutaneously treated with MSNs, Ver-MSNs, or glycerol and exposed to red light. The treatment was carried out four times until day 20. Lymphangiogenesis and micrometastasis were identified by the immunohistochemical method. Lymphoangiogenesis was halved by MSN treatment compared with the control animals, whereas the Ver-MSN treatment almost abolished it. A similar reduction was also observed in lung micrometastasis. PDT with topically administrated Ver-MSNs reduced melanoma lymphoangiogenesis and lung micrometastasis, as well as tumor mass and angiogenesis, and therefore their use could be an innovative and useful tool in melanoma clinical therapy.
Collapse
|
10
|
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021; 179:113914. [PMID: 34363861 PMCID: PMC9418125 DOI: 10.1016/j.addr.2021.113914] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Strategies of improving vaccine targeting ability toward lymph nodes have been attracting considerable interest in recent years, though there are remaining delivery barriers based on the inherent properties of lymphatic systems and limited administration routes of vaccination. Recently, emerging vaccine delivery systems using various materials as carriers are widely developed to achieve efficient lymph node targeting and improve vaccine-triggered adaptive immune response. In this review, to further optimize the vaccine targeting ability for future research, the design principles of lymph node targeting vaccine delivery based on the anatomy of lymph nodes and vaccine administration routes are first summarized. Then different designs of lymph node targeting vaccine delivery systems, including vaccine delivery systems in clinical applications, are carefully surveyed. Also, the challenges and opportunities of current delivery systems for vaccines are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
11
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
12
|
Sato T, Shimada Y, Mimae T, Tsutani Y, Miyata Y, Ito H, Nakayama H, Okada M, Ikeda N. The impact of pathological lymph node metastasis with lymphatic invasion on the survival of patients with clinically node-negative non-small cell lung cancer: A multicenter study. Lung Cancer 2021; 158:9-14. [PMID: 34090182 DOI: 10.1016/j.lungcan.2021.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Lymphatic vessel invasion (Ly) plays a crucial role in pathological lymph node metastasis (pN), and we consider pN + Ly + disease to indicate a high affinity for the lymphatic system. This study evaluated the outcomes of patients with clinically node-negative (N0) non-small cell lung cancer (NSCLC) who presented with pN + with Ly+. MATERIALS AND METHODS This retrospective study evaluated 1775 patients with clinically N0 stage I-III NSCLC who underwent R0 anatomical resection and systematic lymph node dissection at three institutions between January 2010 and December 2017. Patients were classified into four groups according to their pN and Ly statuses. Univariable and multivariable analyses were performed to identify factors associated with poor recurrence-free survival (RFS) and pN + Ly+. RESULTS Kaplan-Meier curves revealed that the 5-year RFS rates were 90.8 % for pN-Ly- patients, 55.6 % for pN-Ly + patients, 63.4 % for pN + Ly- patients, and 41.3 % for pN + Ly + patients. Distant and lymph node recurrences were more common in the pN + Ly + group, relative to in the pN-Ly- and pN-Ly + groups (both p < 0.001). Multivariable analyses revealed that pN and Ly statuses were independently associated with RFS, while the solid tumor size and maximum standardized uptake value were independently associated with pN + Ly + status. The proportion of pN + Ly + disease was 17.2 % in patients with a solid-part size of > 1.80 cm and a SUVmax of > 3.55. CONCLUSION pN and Ly statuses were independent prognostic factors in patients with clinically N0 stage I-III NSCLC. Diseases presenting with pN + with Ly + were associated with increased rates of distant and lymph node recurrence.
Collapse
Affiliation(s)
- Tomo Sato
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Takahiro Mimae
- Department of Surgical Oncology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-0037, Japan
| | - Yasuhiro Tsutani
- Department of Surgical Oncology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-0037, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-0037, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, 2-3-2 Nakano, Asahi-ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, 2-3-2 Nakano, Asahi-ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-0037, Japan
| | - Norihiko Ikeda
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
13
|
Bae MG, Hwang-Bo J, Lee DY, Lee YH, Chung IS. Effects of 6,8-Diprenylgenistein on VEGF-A-Induced Lymphangiogenesis and Lymph Node Metastasis in an Oral Cancer Sentinel Lymph Node Animal Model. Int J Mol Sci 2021; 22:ijms22020770. [PMID: 33466636 PMCID: PMC7828717 DOI: 10.3390/ijms22020770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The major determining factor of prognosis of oral squamous cell carcinoma is cervical lymph node metastasis. 6,8-Diprenylgenistein (6,8-DG), an isoflavonoid isolated from Cudrania tricuspidata has been reported to have anti-microbial and anti-obesity activities. However, its effects on lymphangiogenesis and lymph node metastasis in oral cancer have not yet been reported. METHODS To investigate the in vitro inhibitory effects of 6,8-DG on VEGF-A-induced lymphangiogenesis, we performed the proliferation, tube formation, and migration assay using human lymphatic microvascular endothelial cells (HLMECs). RT-PCR, Western blot, immunoprecipitation, ELISA and co-immunoprecipitation assays were used to investigate the expression levels of proteins, and mechanism of 6,8-DG. The in vivo inhibitory effects of 6,8-DG were investigated using an oral cancer sentinel lymph node (OCSLN) animal model. RESULTS 6,8-DG inhibited the proliferation, migration and tube formation of rhVEGF-A treated HLMECs. In addition, the in vivo lymphatic vessel formation stimulated by rhVEGF-A was significantly reduced by 6,8-DG. 6,8-DG inhibited the expression of VEGF-A rather than other lymphangiogenic factors in CoCl2-treated SCCVII cells. 6,8-DG inhibited the expression and activation of VEGFR-2 stimulated by rhVEGF-A in HLMECs. Also, 6,8-DG inhibited the activation of the lymphangiogenesis-related downstream signaling factors such as FAK, PI3K, AKT, p38, and ERK in rhVEGF-A-treated HLMECs. Additionally, 6,8-DG inhibited the expression of the hypoxia-inducible factor (HIF-1α), which is involved in the expression of VEGF-A in CoCl2-treated SCCVII cells, and 6,8-DG inhibited VEGF-A signaling via interruption of the binding of VEGF-A and VEGFR-2 in HLMECs. In the VEGF-A-induced OCSLN animal model, we confirmed that 6,8-DG suppressed tumor-induced lymphangiogenesis and SLN metastasis. CONCLUSION These data suggest that 6,8-DG inhibits VEGF-A-induced lymphangiogenesis and lymph node metastasis in vitro and in vivo. Furthermore, the inhibitory effects of 6,8-DG are probably mediated by inhibition of VEGF-A expression in cancer cells and suppression of the VEGF-A/VEGFR-2 signaling pathway in HLMEC. Thus, 6,8-DG could be novel and valuable therapeutic agents for metastasis prevention and treatment of oral cancer.
Collapse
Affiliation(s)
- Mun Gyeong Bae
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; (M.G.B.); (J.H.-B.)
| | - Jeon Hwang-Bo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; (M.G.B.); (J.H.-B.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticulture and Herbal Science, RDA, Eumseong 27709, Korea;
| | - Youn-Hyung Lee
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - In Sik Chung
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; (M.G.B.); (J.H.-B.)
- Correspondence:
| |
Collapse
|
14
|
VEGFC negatively regulates the growth and aggressiveness of medulloblastoma cells. Commun Biol 2020; 3:579. [PMID: 33067561 PMCID: PMC7568583 DOI: 10.1038/s42003-020-01306-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma (MB), the most common brain pediatric tumor, is a pathology composed of four molecular subgroups. Despite a multimodal treatment, 30% of the patients eventually relapse, with the fatal appearance of metastases within 5 years. The major actors of metastatic dissemination are the lymphatic vessel growth factor, VEGFC, and its receptors/co-receptors. Here, we show that VEGFC is inversely correlated to cell aggressiveness. Indeed, VEGFC decreases MB cell proliferation and migration, and their ability to form pseudo-vessel in vitro. Irradiation resistant-cells, which present high levels of VEGFC, lose the ability to migrate and to form vessel-like structures. Thus, irradiation reduces MB cell aggressiveness via a VEGFC-dependent process. Cells intrinsically or ectopically overexpressing VEGFC and irradiation-resistant cells form smaller experimental tumors in nude mice. Opposite to the common dogma, our results give strong arguments in favor of VEGFC as a negative regulator of MB growth. Manon Penco-Campillo, Yannick Comoglio et al. show that VEGFC decreases the proliferation and migration of medulloblastoma cells, as well as their ability to form pseudo vessels. Cells expressing high levels of VEGFC also form smaller tumors when subcutaneously injected into the flank of nude mice, thus highlighting a negative regulatory role for VEGFC on tumor growth.
Collapse
|
15
|
Gutierrez-Miranda L, Yaniv K. Cellular Origins of the Lymphatic Endothelium: Implications for Cancer Lymphangiogenesis. Front Physiol 2020; 11:577584. [PMID: 33071831 PMCID: PMC7541848 DOI: 10.3389/fphys.2020.577584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The lymphatic system plays important roles in physiological and pathological conditions. During cancer progression in particular, lymphangiogenesis can exert both positive and negative effects. While the formation of tumor associated lymphatic vessels correlates with metastatic dissemination, increased severity and poor patient prognosis, the presence of functional lymphatics is regarded as beneficial for anti-tumor immunity and cancer immunotherapy delivery. Therefore, a profound understanding of the cellular origins of tumor lymphatics and the molecular mechanisms controlling their formation is required in order to improve current strategies to control malignant spread. Data accumulated over the last decades have led to a controversy regarding the cellular sources of tumor-associated lymphatic vessels and the putative contribution of non-endothelial cells to this process. Although it is widely accepted that lymphatic endothelial cells (LECs) arise mainly from pre-existing lymphatic vessels, additional contribution from bone marrow-derived cells, myeloid precursors and terminally differentiated macrophages, has also been claimed. Here, we review recent findings describing new origins of LECs during embryonic development and discuss their relevance to cancer lymphangiogenesis.
Collapse
Affiliation(s)
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Munir H, Mazzaglia C, Shields JD. Stromal regulation of tumor-associated lymphatics. Adv Drug Deliv Rev 2020; 161-162:75-89. [PMID: 32783989 DOI: 10.1016/j.addr.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Recent advances have identified a growing array of roles played by lymphatics in the tumor microenvironment, from providing a route of metastasis to immune modulation. The tumor microenvironment represents an exceptionally complex, dynamic niche comprised of a diverse mixture of cancer cells and normal host cells termed the stroma. This review discusses our current understanding of stromal elements and how they regulate lymphatic growth and functional properties in the tumor context.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Corrado Mazzaglia
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Jacqueline D Shields
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ.
| |
Collapse
|
17
|
Li F, Zhang Z, Cai J, Chen X, Zhou Y, Ma X, Dong Q, Li F, Xi L. Primary Preclinical and Clinical Evaluation of 68Ga-DOTA-TMVP1 as a Novel VEGFR-3 PET Imaging Radiotracer in Gynecological Cancer. Clin Cancer Res 2019; 26:1318-1326. [PMID: 31843751 DOI: 10.1158/1078-0432.ccr-19-1845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor periphery and lymph nodes of tumor-induced lymphangiogenesis often abundantly express VEGFR-3. In our previous study, we identified a 5-amino acid peptide named TMVP1, which binds specifically to VEGFR-3. The objective of this study was to develop a novel 68Ga-labeled TMVP1 for VEGFR-3 PET imaging and to investigate its safety, biodistribution, and tumor-localizing efficacy in xenograft tumor models and a small cohort of patients with recurrent ovarian and cervical cancer. EXPERIMENTAL DESIGN The DOTA-conjugated TMVP1 peptide was labeled with radionuclide 68Ga. SPR and saturation binding assays were used for the receptor-binding studies. Gynecologic xenograft tumors were employed for small-animal PET imaging and biodistribution of 68Ga-DOTA-TMVP1 in vivo. In the clinical study, 5 healthy volunteers and 8 patients with gynecologic cancer underwent whole-body PET/CT after being injected with 68Ga-DOTA-TMVP1. RESULTS DOTA-TMVP1 was successfully labeled with 68Ga. LECs showed higher binding capacity with 68Ga-DOTA-TMVP1 than LEC(shVEGFR-3) and human umbilical vein endothelial cells. In mice with subcutaneous C33-A and SKOV-3 xenografts, the tracer was rapidly eliminated through the kidney to the bladder, and the small-animal PET/CT helped to clearly visualize the tumors. In patients with recurrent ovarian cancer and cervical cancer, tracer accumulation well above the background level was demonstrated in most identified sites of disease; especially with recurrent endodermal sinus tumors, the diagnostic value of 68Ga-DOTA-TMVP1 was comparable with that of 18F-FDG PET/CT. CONCLUSIONS 68Ga-DOTA-TMVP1 is a potential PET tracer for imaging VEGFR-3 with favorable pharmacokinetics.
Collapse
Affiliation(s)
- Fei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecological Oncology, Henan Provincial Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiong Cai
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingjian Dong
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ling Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Voss MH, Bhatt RS, Vogelzang NJ, Fishman M, Alter RS, Rini BI, Beck JT, Joshi M, Hauke R, Atkins MB, Burgess E, Logan TF, Shaffer D, Parikh R, Moazzam N, Zhang X, Glasser C, Sherman ML, Plimack ER. A phase 2, randomized trial evaluating the combination of dalantercept plus axitinib in patients with advanced clear cell renal cell carcinoma. Cancer 2019; 125:2400-2408. [PMID: 30951193 DOI: 10.1002/cncr.32061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND In a prior open-label study, the combination of dalantercept, a novel antiangiogenic targeting activin receptor-like kinase 1 (ALK1), plus axitinib was deemed safe and tolerable with a promising efficacy signal in patients with advanced renal cell carcinoma (RCC). METHODS In the current phase 2, randomized, double-blind, placebo-controlled study, patients with clear cell RCC previously treated with 1 prior angiogenesis inhibitor were randomized 1:1 to receive axitinib plus dalantercept versus axitinib plus placebo. Randomization was stratified by the type of prior therapy. The primary endpoint was progression-free survival (PFS). Secondary endpoints were PFS in patients with ≥2 prior lines of anticancer therapy, overall survival, and the objective response rate. RESULTS Between June 10, 2014, and February 23, 2017, a total of 124 patients were randomly assigned to receive axitinib plus dalantercept (59 patients) or placebo (65 patients). The median PFS was not found to be significantly different between the treatment groups (median, 6.8 months vs 5.6 months; hazard ratio, 1.11 [95% CI, 0.71-1.73; P = .670]). Neither group reached the median overall survival (hazard ratio, 1.39 [95% CI, 0.70-2.77; P = .349]). The objective response rate was 19.0% (11 of 58 patients; 95% CI, 9.9%-31.4%) in the dalantercept plus axitinib group and 24.6% (15 of 61 patients; 95% CI, 14.5%-37.3%) in the placebo plus axitinib group. At least 1 treatment-emergent adverse event of ≥grade 3 was observed in 59% of patients (34 of 58 patients) in the dalantercept group and 64% of patients (39 of 61 patients) in the placebo group. One treatment-related death occurred in the placebo plus axitinib group. CONCLUSIONS Although well tolerated, the addition of dalantercept to axitinib did not appear to improve treatment-related outcomes in previously treated patients with advanced RCC.
Collapse
Affiliation(s)
- Martin H Voss
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rupal S Bhatt
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Robert S Alter
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey
| | - Brian I Rini
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Monika Joshi
- Penn State Cancer Institute, Hershey, Pennsylvania
| | - Ralph Hauke
- Nebraska Methodist Hospital, Omaha, Nebraska
| | | | - Earle Burgess
- Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina
| | - Theodore F Logan
- Indiana University Health Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | | | - Rahul Parikh
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
19
|
Cadamuro M, Brivio S, Mertens J, Vismara M, Moncsek A, Milani C, Fingas C, Cristina Malerba M, Nardo G, Dall'Olmo L, Milani E, Mariotti V, Stecca T, Massani M, Spirli C, Fiorotto R, Indraccolo S, Strazzabosco M, Fabris L. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma. J Hepatol 2019; 70:700-709. [PMID: 30553841 PMCID: PMC10878126 DOI: 10.1016/j.jhep.2018.12.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 11/22/2018] [Accepted: 12/02/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS In cholangiocarcinoma, early metastatic spread via lymphatic vessels often precludes curative therapies. Cholangiocarcinoma invasiveness is fostered by an extensive stromal reaction, enriched in cancer-associated fibroblasts (CAFs) and lymphatic endothelial cells (LECs). Cholangiocarcinoma cells recruit and activate CAFs by secreting PDGF-D. Herein, we investigated the role of PDGF-D and liver myofibroblasts in promoting lymphangiogenesis in cholangiocarcinoma. METHODS Human cholangiocarcinoma specimens were immunostained for podoplanin (LEC marker), α-SMA (CAF marker), VEGF-A, VEGF-C, and their cognate receptors (VEGFR2, VEGFR3). VEGF-A and VEGF-C secretion was evaluated in human fibroblasts obtained from primary sclerosing cholangitis explants. Using human LECs incubated with conditioned medium from PDGF-D-stimulated fibroblasts we assessed migration, 3D vascular assembly, transendothelial electric resistance and transendothelial migration of cholangiocarcinoma cells (EGI-1). We then studied the effects of selective CAF depletion induced by the BH3 mimetic navitoclax on LEC density and lymph node metastases in vivo. RESULTS In cholangiocarcinoma specimens, CAFs and LECs were closely adjacent. CAFs expressed VEGF-A and VEGF-C, while LECs expressed VEGFR2 and VEGFR3. Upon PDGF-D stimulation, fibroblasts secreted increased levels of VEGF-C and VEGF-A. Fibroblasts, stimulated by PDGF-D induced LEC recruitment and 3D assembly, increased LEC monolayer permeability, and promoted transendothelial EGI-1 migration. These effects were all suppressed by the PDGFRβ inhibitor, imatinib. In the rat model of cholangiocarcinoma, navitoclax-induced CAF depletion, markedly reduced lymphatic vascularization and reduced lymph node metastases. CONCLUSION PDGF-D stimulates VEGF-C and VEGF-A production by fibroblasts, resulting in expansion of the lymphatic vasculature and tumor cell intravasation. This critical process in the early metastasis of cholangiocarcinoma may be blocked by inducing CAF apoptosis or by inhibiting the PDGF-D-induced axis. LAY SUMMARY Cholangiocarcinoma is a highly malignant cancer affecting the biliary tree, which is characterized by a rich stromal reaction involving a dense population of cancer-associated fibroblasts that promote early metastatic spread. Herein, we show that cholangiocarcinoma-derived PDGF-D stimulates fibroblasts to secrete vascular growth factors. Thus, targeting fibroblasts or PDGF-D-induced signals may represent an effective tool to block tumor-associated lymphangiogenesis and reduce the invasiveness of cholangiocarcinoma.
Collapse
Affiliation(s)
- Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padua, Padova, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Simone Brivio
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Joachim Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Marta Vismara
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Chiara Milani
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Christian Fingas
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | | | - Giorgia Nardo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Luigi Dall'Olmo
- Department of Emergency and Urgency (DEU), Ulss 3 Serenissina, Mestre, Italy
| | - Eleonora Milani
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - Tommaso Stecca
- IV Department Of Surgery, Regional Center for HPB Surgery, Ca' Foncello Regional Hospital, Treviso, Italy
| | - Marco Massani
- IV Department Of Surgery, Regional Center for HPB Surgery, Ca' Foncello Regional Hospital, Treviso, Italy
| | - Carlo Spirli
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Romina Fiorotto
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Mario Strazzabosco
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, Padova, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Carvalho VPD, Grassi ML, Palma CDS, Carrara HHA, Faça VM, Candido Dos Reis FJ, Poersch A. The contribution and perspectives of proteomics to uncover ovarian cancer tumor markers. Transl Res 2019; 206:71-90. [PMID: 30529050 DOI: 10.1016/j.trsl.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Despite all the advances in understanding the mechanisms involved in ovarian cancer (OC) development, many aspects still need to be unraveled and understood. Tumor markers (TMs) are of special interest in this disease. Some aspects of clinical management of OC might be improved by the use of validated TMs, such as differentiating subtypes, defining the most appropriate treatment, monitoring the course of the disease, or predicting clinical outcome. The Food and Drug Administration (FDA) has approved a few TMs for OC: CA125 (cancer antigen 125; monitoring), HE4 (Human epididymis protein; monitoring), ROMA (Risk Of Malignancy Algorithm; HE4+CA125; prediction of malignancy) and OVA1 (Vermillion's first-generation Multivariate Index Assay [MIA]; prediction of malignancy). Proteomics can help advance the research in the field of TMs for OC. A variety of biological materials are being used in proteomic analysis, among them tumor tissues, interstitial fluids, tumor fluids, ascites, plasma, and ovarian cancer cell lines. However, the discovery and validation of new TMs for OC is still very challenging. The enormous heterogeneity of histological types of samples and the individual variability of patients (lifestyle, comorbidities, drug use, and family history) are difficult to overcome in research protocols. In this work, we sought to gather relevant information regarding TMs, OC, biological samples for proteomic analysis, as well as markers and algorithms approved by the FDA for use in clinical routine.
Collapse
Affiliation(s)
| | - Mariana Lopes Grassi
- Department of Biochemistry and Immunology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, Hemotherapy Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Camila de Souza Palma
- Department of Biochemistry and Immunology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, Hemotherapy Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, Hemotherapy Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Aline Poersch
- Department of Biochemistry and Immunology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, Hemotherapy Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
22
|
Abou-Alfa GK, Miksad RA, Tejani MA, Williamson S, Gutierrez ME, Olowokure OO, Sharma MR, El Dika I, Sherman ML, Pandya SS. A Phase Ib, Open-Label Study of Dalantercept, an Activin Receptor-Like Kinase 1 Ligand Trap, plus Sorafenib in Advanced Hepatocellular Carcinoma. Oncologist 2018; 24:161-e70. [PMID: 30352941 PMCID: PMC6369956 DOI: 10.1634/theoncologist.2018-0654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022] Open
Abstract
Lessons Learned. Patients with hepatocellular carcinoma (HCC) often have limited therapeutic responses to the vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor sorafenib, which is standard of care in advanced HCC. Targeting the activin receptor‐like kinase 1 (ALK1) and VEGF pathways simultaneously by combining the ALK1 ligand trap dalantercept with sorafenib may result in more effective angiogenic blockade and delay tumor progression in patients with advanced HCC. Although the combination was generally well tolerated, there was no additive antitumor activity with the combination of dalantercept plus sorafenib in patients with advanced HCC. No complete or partial responses were observed, and overall survival ranged from 1.9 to 23.3 months. These results suggest that, in this patient population, further development of the possible limited benefits of combination therapy with dalantercept plus sorafenib is not warranted.
Background. Targeting the activin receptor‐like kinase 1 (ALK1) and vascular endothelial growth factor (VEGF) pathways may result in more effective angiogenic blockade in patients with hepatocellular carcinoma (HCC). Methods. In this phase Ib study, patients with advanced HCC were enrolled to dose‐escalation cohorts, starting at 0.6 mg/kg dalantercept subcutaneously every 3 weeks plus 400 mg sorafenib orally once daily, or to a dose expansion cohort. The primary objective was to determine the safety and tolerability and the dalantercept maximum tolerated dose (MTD) level. Secondary objectives were to assess the preliminary activity and the association of pharmacodynamic biomarkers with tumor response. Results. A total of 21 patients were enrolled in the study. Five patients received 0.6 mg/kg dalantercept in the first dose escalation cohort. Based on the initial safety results, the dose level was de‐escalated to 0.4 mg/kg in the second cohort (n = 6). The MTD was identified as 0.4 mg/kg and used for the dose expansion cohort (n = 10). At this dose level, the combination was generally well tolerated. Overall survival ranged from 1.9 to 23.3 months, and the best overall response was stable disease. Conclusion. The addition of dalantercept to sorafenib did not improve antitumor activity in patients with HCC. The dalantercept program in this population was discontinued.
Collapse
Affiliation(s)
- Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Rebecca A Miksad
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | - Imane El Dika
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
23
|
Gentilini A, Pastore M, Marra F, Raggi C. The Role of Stroma in Cholangiocarcinoma: The Intriguing Interplay between Fibroblastic Component, Immune Cell Subsets and Tumor Epithelium. Int J Mol Sci 2018; 19:ijms19102885. [PMID: 30249019 PMCID: PMC6213545 DOI: 10.3390/ijms19102885] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a severe and mostly intractable adenocarcinoma of biliary epithelial cells. A typical feature of CCA is its highly desmoplastic microenvironment containing fibrogenic connective tissue and an abundance of immune cells (T lymphocytes, Natural Killer (NK) cells, and macrophages) infiltrating tumor epithelium. This strong desmoplasia is orchestrated by various soluble factors and signals, suggesting a critical role in shaping a tumor growth-permissive microenvironment that is responsible for CCA poor clinical outcome. Indeed stroma not only provides an abundance of factors that facilitate CCA initiation, growth and progression, but also a prejudicial impact on therapeutic outcome. This review will give an overview of tumor-stroma signaling in a microenvironment critically regulating CCA development and progression. Identification of CCA secreted factors by both the fibroblast component and immune cell subsets might provide ample opportunities for pharmacological targeting of this type of cancer.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano 20089, Italy.
| |
Collapse
|
24
|
Hwang-Bo J, Bae MG, Park JH, Chung IS. 3-O-Acetyloleanolic acid inhibits VEGF-A-induced lymphangiogenesis and lymph node metastasis in an oral cancer sentinel lymph node animal model. BMC Cancer 2018; 18:714. [PMID: 29976150 PMCID: PMC6034267 DOI: 10.1186/s12885-018-4630-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023] Open
Abstract
Background Sentinel lymph node metastasis is a common and early event in the metastatic process of head and neck squamous cell carcinoma (HNSCC) and is the most powerful prognostic factor for survival of HNSCC patients. 3-O-acetyloleanolic acid (3AOA), a pentacyclic triterpenoid compound isolated from seeds of Vigna sinensis K., has been reported to have potent anti-angiogenesis and anti-tumor activities. However, its effects on tumor-related lymphangiogenesis and lymph node metastasis are not yet understood. Methods The in vitro inhibitory effects of 3AOA on VEGF-A-induced lymphangiogenesis were investigated via in vitro experiments using mouse oral squamous cell carcinoma (SCCVII) cells and human lymphatic microvascular endothelial cells (HLMECs). The in vivo inhibitory effects of 3AOA on VEGF-A-induced lymphangiogenesis and sentinel lymph node metastasis were investigated in an oral cancer sentinel lymph node (OCSLN) animal model. Results 3AOA inhibited tumor-induced lymphangiogenesis and sentinel lymph node metastasis in an OCSLN animal model, and reduced expression of VEGF-A, a lymphangiogenic factor in hypoxia mimetic agent CoCl2-treated SCCVII cells. 3AOA inhibited proliferation, tube formation, and migration of VEGF-A-treated HLMECs. The lymphatic vessel formation that was stimulated in vivo in a by VEGF-A Matrigel plug was reduced by 3AOA. 3AOA suppressed phosphorylation of vascular endothelial growth factor (VEGFR) -1 and − 2 receptors that was stimulated by VEGF-A. In addition, 3AOA suppressed phosphorylation of the lymphangiogenesis-related downstream signaling factors PI3K, FAK, AKT, and ERK1/2. 3AOA inhibited tumor growth, tumor-induced lymphangiogenesis, and sentinel lymph node metastasis in a VEGF-A-induced OCSLN animal model that was established using VEGF-A overexpressing SCCVII cells. Conclusion 3AOA inhibits VEGF-A-induced lymphangiogenesis and sentinel lymph node metastasis both in vitro and in vivo. The anti-lymphangiogenic effects of 3AOA are probably mediated via suppression of VEGF-A/VEGFR-1 and VEGFR-2 signaling in HLMECs, and can be a useful anti-tumor agent to restrict the metastatic spread of oral cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4630-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeon Hwang-Bo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Mun Gyeong Bae
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - In Sik Chung
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea.
| |
Collapse
|
25
|
Yamakawa M, Doh SJ, Santosa SM, Montana M, Qin EC, Kong H, Han KY, Yu C, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review. Med Res Rev 2018. [PMID: 29528507 DOI: 10.1002/med.21496] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.,Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
26
|
Steinskog ESS, Sagstad SJ, Wagner M, Karlsen TV, Yang N, Markhus CE, Yndestad S, Wiig H, Eikesdal HP. Impaired lymphatic function accelerates cancer growth. Oncotarget 2018; 7:45789-45802. [PMID: 27329584 PMCID: PMC5216761 DOI: 10.18632/oncotarget.9953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/22/2016] [Indexed: 12/12/2022] Open
Abstract
Increased lymphangiogenesis is a common feature of cancer development and progression, yet the influence of impaired lymphangiogenesis on tumor growth is elusive. C3HBA breast cancer and KHT-1 sarcoma cell lines were implanted orthotopically in Chy mice, harboring a heterozygous inactivating mutation of vascular endothelial growth factor receptor-3, resulting in impaired dermal lymphangiogenesis. Accelerated tumor growth was observed in both cancer models in Chy mice, coinciding with reduced peritumoral lymphangiogenesis. An impaired lymphatic washout was observed from the peritumoral area in Chy mice with C3HBA tumors, and the number of macrophages was significantly reduced. While fewer macrophages were detected, the fraction of CD163+ M2 macrophages remained constant, causing a shift towards a higher M2/M1 ratio in Chy mice. No difference in adaptive immune cells was observed between wt and Chy mice. Interestingly, levels of pro- and anti-inflammatory macrophage-associated cytokines were reduced in C3HBA tumors, pointing to an impaired innate immune response. However, IL-6 was profoundly elevated in the C3HBA tumor interstitial fluid, and treatment with the anti-IL-6 receptor antibody tocilizumab inhibited breast cancer growth. Collectively, our data indicate that impaired lymphangiogenesis weakens anti-tumor immunity and favors tumor growth at an early stage of cancer development.
Collapse
Affiliation(s)
| | | | - Marek Wagner
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Ning Yang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Synnøve Yndestad
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hans Petter Eikesdal
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
27
|
Jin K, Pandey NB, Popel AS. Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis. Oncotarget 2017; 8:60210-60222. [PMID: 28947965 PMCID: PMC5601133 DOI: 10.18632/oncotarget.19417] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) as a metastatic disease is currently incurable. Reliable and reproducible methods for testing drugs against metastasis are not available. Stromal cells may play a critical role in tumor progression and metastasis. In this study, we determined that fibroblasts and macrophages secreted IL-8 upon induction by tumor cell-conditioned media (TCM) from MDA-MB-231 cancer cells. Our data showed that the proliferation of MDA-MB-231 cells co-cultured with fibroblasts or macrophages was enhanced compared to the monoculture. Furthermore, TNBC cell migration, a key step in tumor metastasis, was promoted by conditioned media (CM) from TCM-induced fibroblasts or macrophages. Knockdown of the IL-8 receptor CXCR2 by CRISPR-Cas9 reduces MDA-MB-231 cell proliferation and migration compared to wild type. In a mouse xenograft tumor model, the growth of MDA-MB-231-CXCR2−/− tumor was significantly decreased compared to the growth of tumors from wild-type cells. In addition, the incidence of thoracic metastasis of MDA-MB-231-CXCR2−/− tumors was reduced compared to wild type. We found that the auto- and paracrine loop exists between TNBC cells and stroma, which results in enhanced IL-8 secretion from the stromal components. Significantly, inhibition of the IL-8 signaling pathway by reparixin, an inhibitor of the IL-8 receptor, CXCR1/2, reduced MDA-MB-231 tumor growth and metastasis. Taken together, these findings implicate IL-8 signaling as a critical event in TNBC tumor growth and metastasis via crosstalk with stromal components.
Collapse
Affiliation(s)
- Kideok Jin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Singh AP, Foley J, Tandon A, Phadke D, Karimi Kinyamu H, Archer TK. A role for BRG1 in the regulation of genes required for development of the lymphatic system. Oncotarget 2017; 8:54925-54938. [PMID: 28903392 PMCID: PMC5589631 DOI: 10.18632/oncotarget.18976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/16/2017] [Indexed: 12/02/2022] Open
Abstract
Lymphatic vasculature is an important part of the cardiovascular system with multiple functions, including regulation of the return of interstitial fluid (lymph) to the bloodstream, immune responses, and fat absorption. Consequently, lymphatic vasculature defects are involved in many pathological processes, including tumor metastasis and lymphedema. BRG1 is an important player in the developmental window when the lymphatic system is initiated. In the current study, we used tamoxifen inducible Rosa26CreERT2-BRG1floxed/floxed mice that allowed temporal analysis of the impact of BRG1 inactivation in the embryo. The BRG1floxed/floxed/Cre-TM embryos exhibited edema and hemorrhage at embryonic day-13 and began to die. BRG1 deficient embryos had abnormal lymphatic sac linings with fewer LYVE1 positive lymphatic endothelial cells. Indeed, loss of BRG1 attenuated expression of a subset of lymphatic genes in-vivo. Furthermore, BRG1 binds at the promoters of COUP-TFII and LYVE1, suggesting that BRG1 modulates expression of these genes in the developing embryos. Conversely, re-expression of BRG1 in cells lacking endogenous BRG1 resulted in induction of lymphatic gene expression in-vitro, suggesting that BRG1 was both required and sufficient for lymphatic gene expression. These studies provide important insights into intrinsic regulation of BRG1-mediated lymphatic-gene expression, and further an understanding of lymphatic gene dysregulation in lymphedema and other disease conditions.
Collapse
Affiliation(s)
- Ajeet Pratap Singh
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.,Present address: Cornell University, College of Veterinary Medicine, Ithaca, New York, USA
| | - Julie Foley
- Special Techniques Group, Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Arpit Tandon
- Sciome.com, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Dhiral Phadke
- Sciome.com, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
29
|
Maisel K, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv Drug Deliv Rev 2017; 114:43-59. [PMID: 28694027 PMCID: PMC6026542 DOI: 10.1016/j.addr.2017.07.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Lymphatic vessels are the primary route of communication from peripheral tissues to the immune system; as such, they represent an important component of local immunity. In addition to their transport functions, new immunomodulatory roles for lymphatic vessels and lymphatic endothelial cells have come to light in recent years, demonstrating that lymphatic vessels help shape immune responses in a variety of ways: promoting tolerance to self-antigens, archiving antigen for later presentation, dampening effector immune responses, and resolving inflammation, among others. In addition to these new biological insights, the growing field of immunoengineering has begun to explore therapeutic approaches to utilize or exploit the lymphatic system for immunotherapy.
Collapse
Affiliation(s)
- Katharina Maisel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Maria Stella Sasso
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lambert Potin
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
30
|
Brivio S, Cadamuro M, Strazzabosco M, Fabris L. Tumor reactive stroma in cholangiocarcinoma: The fuel behind cancer aggressiveness. World J Hepatol 2017; 9:455-468. [PMID: 28396716 PMCID: PMC5368623 DOI: 10.4254/wjh.v9.i9.455] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive epithelial malignancy still carrying a dismal prognosis, owing to early lymph node metastatic dissemination and striking resistance to conventional chemotherapy. Although mechanisms underpinning CCA progression are still a conundrum, it is now increasingly recognized that the desmoplastic microenvironment developing in conjunction with biliary carcinogenesis, recently renamed tumor reactive stroma (TRS), behaves as a paramount tumor-promoting driver. Indeed, once being recruited, activated and dangerously co-opted by neoplastic cells, the cellular components of the TRS (myofibroblasts, macrophages, endothelial cells and mesenchymal stem cells) continuously rekindle malignancy by secreting a huge variety of soluble factors (cyto/chemokines, growth factors, morphogens and proteinases). Furthermore, these factors are long-term stored within an abnormally remodeled extracellular matrix (ECM), which in turn can deleteriously mold cancer cell behavior. In this review, we will highlight evidence for the active role played by reactive stromal cells (as well as by the TRS-associated ECM) in CCA progression, including an overview of the most relevant TRS-derived signals possibly fueling CCA cell aggressiveness. Hopefully, a deeper knowledge of the paracrine communications reciprocally exchanged between cancer and stromal cells will steer the development of innovative, combinatorial therapies, which can finally hinder the progression of CCA, as well as of other cancer types with abundant TRS, such as pancreatic and breast carcinomas.
Collapse
|
31
|
Park KJ, Cho SB, Park YL, Kim N, Park SY, Myung DS, Lee WS, Kweon SS, Joo YE. Prospero homeobox 1 mediates the progression of gastric cancer by inducing tumor cell proliferation and lymphangiogenesis. Gastric Cancer 2017; 20:104-115. [PMID: 26759228 DOI: 10.1007/s10120-015-0592-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prospero homeobox 1 (PROX1) functions as a tumor suppressor gene or an oncogene in various cancer types. However, the distinct function of PROX1 in gastric cancer is unclear. We determined whether PROX1 affected the oncogenic behavior of gastric cancer cells and investigated its prognostic value in patients with gastric cancer. METHODS A small interfering RNA against PROX1 was used to silence PROX1 expression in gastric cancer cell lines AGS and SNU638. Expression of PROX1 in gastric cancer tissues was investigated by performing immunohistochemistry. Apoptosis, proliferation, angiogenesis, and lymphangiogenesis were determined by performing the TUNEL assay and immunohistochemical staining for Ki-67, CD34, and D2-40. RESULTS PROX1 knockdown induced apoptosis by activating cleaved caspase-3, caspase-7, caspase-9, and poly(ADP-ribose) polymerase, and by decreasing the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL. PROX1 knockdown also suppressed tumor cell proliferation. In addition, PROX1 knockdown decreased lymphatic endothelial cell invasion and tube formation and the expression of vascular endothelial growth factor (VEGF)-C and -D and cyclooxygenase (COX)-2. However, PROX1 knockdown only decreased umbilical vein endothelial cell invasion, not tube formation. The mean Ki-67 labeling index and lymphatic vessel density value of PROX1-positive tumors were significantly higher than those of PROX1-negative tumors. However, no significant difference was observed between PROX1 expression and apoptotic index or microvessel density. PROX1 expression was significantly associated with age, cell differentiation, lymph node metastasis, cancer stage, and poor survival. CONCLUSIONS These results indicate that PROX1 mediates the progression of gastric cancer by inducing tumor cell proliferation and lymphangiogenesis.
Collapse
Affiliation(s)
- Kang-Jin Park
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Nuri Kim
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
32
|
Leng Q, Woodle MC, Mixson AJ. NRP1 transport of cancer therapeutics mediated by tumor-penetrating peptides. DRUG FUTURE 2017; 42:95-104. [PMID: 28603338 DOI: 10.1358/dof.2017.042.02.2564106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas uptake of low molecular weight agents is generally inhibited in tumors due to high interstitial pressure, tumor uptake of macromolecules is increased due to enhanced permeability and retention (EPR). Small molecule drugs alone or incorporated in nanoparticles (NP) have largely been dependent on such physical tumor uptake (passive) for therapeutic activity. Although passive targeted NP such as Stealth Liposomal Doxorubicin (Doxil ®) are effective with improved safety, drug delivery to tumors is still significantly limited. To improve tumor delivery and efficacy, tumor-penetrating peptides (TPP), which contain sequences that target the tumor and activate the neuropilin-1 receptor (NRP1), have either been co-administered with or conjugated to both small and large therapeutic molecules. In this review, we will discuss TPP-mediated therapeutics which target the NRP1 transport system of tumors.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | - A James Mixson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
33
|
Voss MH, Bhatt RS, Plimack ER, Rini BI, Alter RS, Beck JT, Wilson D, Zhang X, Mutyaba M, Glasser C, Attie KM, Sherman ML, Pandya SS, Atkins MB. The DART Study: Results from the Dose-Escalation and Expansion Cohorts Evaluating the Combination of Dalantercept plus Axitinib in Advanced Renal Cell Carcinoma. Clin Cancer Res 2016; 23:3557-3565. [PMID: 28031424 DOI: 10.1158/1078-0432.ccr-16-2395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Activin receptor-like kinase 1 (ALK1) is a novel target in angiogenesis. Concurrent targeting of ALK1 and VEGF signaling results in augmented inhibition of tumor growth in renal cell carcinoma (RCC) xenograft models. Dalantercept is an ALK1-receptor fusion protein that acts as a ligand trap for bone morphogenetic proteins 9 and 10. The DART Study evaluated the safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of dalantercept plus axitinib in patients with advanced RCC and determined the optimal dose for further testing.Experimental Design: Patients received dalantercept 0.6, 0.9, or 1.2 mg/kg subcutaneously every 3 weeks plus axitinib 5 mg by mouth twice daily until disease progression or intolerance.Results: Twenty-nine patients were enrolled in the dose escalation (n = 15) and expansion (n = 14) cohorts. There were no dose-limiting toxicities or grade 4/5 treatment-related adverse events. In addition to common VEGFR tyrosine kinase inhibitor effects, such as fatigue and diarrhea, commonly seen treatment-related adverse events were peripheral edema, epistaxis, pericardial effusion, and telangiectasia. The objective response rate by RECIST v1.1 was 25% with responses seen at all dose levels. The overall median progression-free survival was 8.3 months.Conclusions: The combination of dalantercept plus axitinib is well tolerated and associated with clinical activity. On the basis of safety and efficacy results, the 0.9 mg/kg dose level was chosen for further study in a randomized phase II trial of dalantercept plus axitinib versus placebo plus axitinib. Clin Cancer Res; 23(14); 3557-65. ©2016 AACR.
Collapse
Affiliation(s)
- Martin H Voss
- Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Rupal S Bhatt
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Brian I Rini
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Robert S Alter
- John Theurer Cancer Center Hackensack UMC, Hackensack, New Jersey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
BACKGROUND Metastasis is the main cause of mortality in cancer patients. Two major routes of cancer cell spread are currently being recognized: dissemination via blood vessels (hematogenous spread) and dissemination via the lymphatic system (lymphogenous spread). Here, our current knowledge on the role of both blood and lymphatic vessels in cancer cell metastasis is summarized. In addition, I will discuss why cancer cells select one or both of the two routes to disseminate and I will provide a short description of the passive and active models of intravasation. Finally, lymphatic vessel density (LVD), blood vessel density (BVD), interstitial fluid pressure (IFP) and tumor hypoxia, as well as regional lymph node metastasis and the recently discovered primo vascular system (PVS) will be highlighted as important factors influencing tumor cell motility and spread and, ultimately, clinical outcome. CONCLUSIONS Lymphangiogenesis and angiogenesis are important phenomena involved in the spread of cancer cells and they are associated with a poor prognosis. It is anticipated that new discoveries and advancing knowledge on these phenomena will allow an improvement in the treatment of cancer patients.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
35
|
Hwang-Bo J, Park JH, Bae MG, Chung IS. Recombinant canstatin inhibits VEGF-A-induced lymphangiogenesis and metastasis in an oral squamous cell carcinoma SCC-VII animal model. Cancer Med 2016; 5:2977-2988. [PMID: 27650585 PMCID: PMC5083751 DOI: 10.1002/cam4.866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/22/2016] [Accepted: 07/24/2016] [Indexed: 01/30/2023] Open
Abstract
We describe the inhibitory effects of recombinant canstatin on tumor growth and lymphangiogenesis induced by an oral squamous cell carcinoma (SCC) using an orthotropic oral SCC animal model. Recombinant canstatin treatment decreased final tumor volumes and weights, as well as densities of blood and lymphatic vessels. Lung metastasis of oral SCC was significantly reduced in recombinant canstatin‐treated animals. Recombinant canstatin reduced vascular endothelial growth factor (VEGF)‐A expression in SCC‐VII cells treated with the hypoxia mimetic agent, CoCl2. VEGF‐A induced in vivo lymphatic vessel formation in a Matrigel plug, but this was remarkably reduced in a recombinant canstatin‐treated Matrigel. Recombinant canstatin suppressed the expression of vascular endothelial growth factor receptors (VEGFR)‐1 and ‐2 stimulated by VEGF‐A. Based on immunohistochemical analysis, recombinant canstatin significantly reduced the expression of VEGF‐A, VEGFR‐1, and ‐2 in SCC‐VII‐induced tumors. Recombinant canstatin did not affect the expression of VEGF‐C or VEGFR‐3. In addition, recombinant canstatin suppressed the VEGF‐A‐induced phosphorylation of VEGFR‐1 and ‐2. Our results indicate that recombinant canstatin exhibits antitumoral and antilymphangiogenic activities against oral SCC cells. Antilymphangiogenic signaling by recombinant canstatin is probably mediated by the suppression of the integrin αvβ3/VEGFR‐1 and/or ‐2 signaling induced by VEGF‐A. Our results also suggest that recombinant canstatin has a high potential to inhibit oral SCC‐induced tumors and lymphatic metastasis.
Collapse
Affiliation(s)
- Jeon Hwang-Bo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Mun Gyeong Bae
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - In Sik Chung
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
36
|
Sabine A, Saygili Demir C, Petrova TV. Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels. Antioxid Redox Signal 2016; 25:451-65. [PMID: 27099026 DOI: 10.1089/ars.2016.6685] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SIGNIFICANCE Lymphatic vessels are important components of the cardiovascular and immune systems. They contribute both to the maintenance of normal homeostasis and to many pathological conditions, such as cancer and inflammation. The lymphatic vasculature is subjected to a variety of biomechanical forces, including fluid shear stress and vessel circumferential stretch. RECENT ADVANCES This review will discuss recent advances in our understanding of biomechanical forces in lymphatic vessels and their role in mammalian lymphatic vascular development and function. CRITICAL ISSUES We will highlight the importance of fluid shear stress generated by lymph flow in organizing the lymphatic vascular network. We will also describe how mutations in mechanosensitive genes lead to lymphatic vascular dysfunction. FUTURE DIRECTIONS Better understanding of how biomechanical and biochemical stimuli are perceived and interpreted by lymphatic endothelial cells is important for targeting regulation of lymphatic function in health and disease. Important remaining critical issues and future directions in the field will be discussed in this review. Antioxid. Redox Signal. 25, 451-465.
Collapse
Affiliation(s)
- Amélie Sabine
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland
| | - Cansaran Saygili Demir
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland
| | - Tatiana V Petrova
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland .,2 Division of Experimental Pathology, Institute of Pathology , CHUV, Lausanne, Switzerland .,3 Swiss Institute for Experimental Cancer Research , EPFL, Switzerland
| |
Collapse
|
37
|
Stachura J, Wachowska M, Kilarski WW, Güç E, Golab J, Muchowicz A. The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development. Oncoimmunology 2016; 5:e1182278. [PMID: 27622039 PMCID: PMC5006909 DOI: 10.1080/2162402x.2016.1182278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Lymphatic vasculature plays a crucial role in the immune response, enabling transport of dendritic cells (DCs) and antigens (Ags) into the lymph nodes. Unfortunately, the lymphatic system has also a negative role in the progression of cancer diseases, by facilitating the metastatic spread of many carcinomas to the draining lymph nodes. The lymphatics can promote antitumor immune response as well as tumor tolerance. Here, we review the role of lymphatic endothelial cells (LECs) in tumor progression and immunity and mechanism of action in the newest anti-lymphatic therapies, including photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Joanna Stachura
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Wachowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Witold W Kilarski
- Institute for Molecular Engineering, University of Chicago , Chicago, IL, USA
| | - Esra Güç
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh , Edinburgh, UK
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw , Warsaw, Poland
| | | |
Collapse
|
38
|
Kim N, Cho SB, Park YL, Park SY, Myung E, Kim SH, Yu HM, Son YA, Myung DS, Lee WS, Joo YE. Effect of Recepteur d'Origine Nantais expression on chemosensitivity and tumor cell behavior in colorectal cancer. Oncol Rep 2016; 35:3331-40. [PMID: 27035413 DOI: 10.3892/or.2016.4721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 11/05/2022] Open
Abstract
Recepteur d'Origine Nantais (RON) expression is known to induce oncogenic properties including tumor cell growth, survival, motility, angiogenesis and chemoresistance. In the present study, we evaluated whether RON affects chemosensitivity and oncogenic behavior of colorectal cancer cells and investigated its prognostic value in colorectal cancer. To evaluate the impact of RON on chemosensitivity and tumor cell behavior, we treated colorectal cancer cells with small interfering RNAs specific to RON. This was followed by flow cytometric analyses and migration, Matrigel invasion and endothelial tube formation assays. The expression of RON was investigated by immunohistochemistry in colorectal cancer tissues. TUNEL assay and immunohistochemical staining for CD34 and D2-40 were deployed to determine apoptosis, angiogenesis and lymphangiogenesis. RON knockdown enhanced 5-fluorouracil (FU)-induced apoptosis by upregulating the activities of caspases and expression of proapoptotic genes. Moreover, it enhanced 5-FU-induced cell cycle arrest by decreasing the expression of cyclins and cyclin‑dependent kinases and inducing that of p21. Furthermore, RON knockdown augmented the 5-FU-induced inhibition of invasion and migration of colorectal cancer cells. The β-catenin signaling cascade was blocked by RON knockdown upon 5-FU treatment. RON knockdown also decreased endothelial tube formation and expression of VEGF-A and HIF-1α and increased angiostatin expression. Furthermore, it inhibited lymphatic endothelial cell tube formation and the expression of VEGF-C and COX-2. RON expression was observed to be associated with age, tumor size, lymphovascular and perineural invasion, tumor stage, lymph node and distant metastasis, and poor survival rate. The mean microvessel density value of RON-positive tumors was significantly higher than that of RON-negative ones. These results indicate that RON is associated with tumor progression by inhibiting chemosensitivity and enhancing angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Nuri Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Eun Myung
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Seung-Hun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Hyung-Min Yu
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Ae Son
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| |
Collapse
|
39
|
Klaus M, Prokoph N, Girbig M, Wang X, Huang YH, Srivastava Y, Hou L, Narasimhan K, Kolatkar PR, Francois M, Jauch R. Structure and decoy-mediated inhibition of the SOX18/Prox1-DNA interaction. Nucleic Acids Res 2016; 44:3922-35. [PMID: 26939885 PMCID: PMC4856986 DOI: 10.1093/nar/gkw130] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/22/2016] [Indexed: 12/25/2022] Open
Abstract
The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis.
Collapse
Affiliation(s)
- Miriam Klaus
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Nina Prokoph
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | - Mathias Girbig
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Xuecong Wang
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong-Heng Huang
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yogesh Srivastava
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Linlin Hou
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kamesh Narasimhan
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | - Prasanna R Kolatkar
- Qatar Biomedical Research Institute, Hamad Bin Khalifa Unversity, QatarFoundation, PO Box 5825, Doha, Qatar
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
40
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
41
|
Oh HH, Park KJ, Kim N, Park SY, Park YL, Oak CY, Myung DS, Cho SB, Lee WS, Kim KK, Joo YE. Impact of KITENIN on tumor angiogenesis and lymphangiogenesis in colorectal cancer. Oncol Rep 2015; 35:253-60. [PMID: 26496979 DOI: 10.3892/or.2015.4337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis and lymphangiogenesis are involved in the dissemination of tumor cells from solid tumors to regional lymph nodes and various distant sites. KAI1 COOH-terminal interacting tetraspanin (KITENIN) contributes to tumor progression and poor clinical outcomes in various cancers including colorectal cancer. The aim of the present study was to evaluate whether KITENIN affects tumor angiogenesis and lymphangiogenesis in colorectal cancer. A KITENIN small interfering RNA vector was used to silence KITENIN expression in colorectal cancer cell lines including DLD1 and SW480 cells. To evaluate the ability of KITENIN to induce angiogenesis and lymphangiogenesis in human umbilical vein endothelial cells (HUVECs) and lymphatic endothelial cells (HLECs), we performed Matrigel invasion and tube formation assays. Immunohistochemistry was used to determine the expression of KITENIN in colorectal cancer tissues. Angiogenesis and lymphangiogenesis were evaluated by immunostaining with CD34 and D2-40 antibodies. KITENIN silencing inhibited both HUVEC invasion and tube formation in the DLD1 and SW480 cells. KITENIN silencing led to decreased expression of the angiogenic inducers vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α and increased expression of the angiogenic inhibitor angiostatin. KITENIN silencing did not inhibit either HLEC invasion or tube formation in all tested cells, but it resulted in decreased expression of the lymphangiogenic inducer VEGF-C. KITENIN expression was significantly associated with tumor stage, depth of invasion, lymph node and distant metastases and poor survival. The mean microvessel density was significantly higher in the KITENIN-positive tumors than that in the KITENIN-negative tumors. However, the mean lymphatic vessel density of KITENIN-positive tumors was not significantly higher than that of the KITENIN-negative tumors. These results suggest that KITENIN promotes tumor progression by enhancing angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Hyung-Hoon Oh
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Kang-Jin Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Nuri Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Chan-Young Oak
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Kyung-Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| |
Collapse
|
42
|
Berta J, Hoda MA, Laszlo V, Rozsas A, Garay T, Torok S, Grusch M, Berger W, Paku S, Renyi-Vamos F, Masri B, Tovari J, Groger M, Klepetko W, Hegedus B, Dome B. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget 2015; 5:4426-37. [PMID: 24962866 PMCID: PMC4147335 DOI: 10.18632/oncotarget.2032] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Whereas the role of the G-protein-coupled APJ receptor and its ligand, apelin, in angiogenesis has been well documented, the ability of the apelin/APJ system to induce lymphangiogenesis and lymphatic metastasis has been largely unexplored. To this end, we first show that APJ is expressed in lymphatic endothelial cells (LECs) and, moreover, that it responds to apelin by activating the apelinergic signaling cascade. We find that although apelin treatment does not influence the proliferation of LECs in vitro, it enhances their migration, protects them against UV irradiation-induced apoptosis, increases their spheroid numbers in 3D culture, stimulates their in vitro capillary-like tube formation and, furthermore, promotes the invasive growth of lymphatic microvessels in vivo in the matrigel plug assay. We also demonstrate that apelin overexpression in malignant cells is associated with accelerated in vivo tumor growth and with increased intratumoral lymphangiogenesis and lymph node metastasis. These results indicate that apelin induces lymphangiogenesis and, accordingly, plays an important role in lymphatic tumor progression. Our study does not only reveal apelin as a novel lymphangiogenic factor but might also open the door for the development of novel anticancer therapies targeting lymphangiogenesis.
Collapse
Affiliation(s)
- Judit Berta
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Austria; Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Austria; Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary; Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary
| |
Collapse
|
43
|
Suarez-Carmona M, Hubert P, Gonzalez A, Duray A, Roncarati P, Erpicum C, Boniver J, Castronovo V, Noel A, Saussez S, Peulen O, Delvenne P, Herfs M. ΔNp63 isoform-mediated β-defensin family up-regulation is associated with (lymph)angiogenesis and poor prognosis in patients with squamous cell carcinoma. Oncotarget 2015; 5:1856-68. [PMID: 24732135 PMCID: PMC4039122 DOI: 10.18632/oncotarget.1819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Beside a role in normal development/differentiation, high p63 immunoreactivity is also frequently observed in squamous cell carcinoma (SCC). Due to the complexity of the gene, the role of each p63 isotype in tumorigenesis is still confusing. Constitutively produced or induced in inflammatory conditions, human beta-defensins (HβDs) are cationic peptides involved in host defenses against bacteria, viruses and fungi. Here, we investigated both the role of p63 proteins in the regulation of HβDs and the implication of these antimicrobial peptides in tumor (lymph)angiogenesis. Thus, in contrast to TAp63 isotypes, we observed that ΔNp63 proteins (α, β, γ) induce HβD1, 2 and 4 expression. Similar results were observed in cancer tissues and cell lines. We next demonstrated that ΔNp63-overexpressing SCC are associated with both a poor prognosis and a high tumor vascularisation and lymphangiogenesis. Moreover, we showed that HβDs exert a chemotactic activity for (lymphatic) endothelial cells in a CCR6-dependent manner. The ability of HβDs to enhance (lymph)angiogenesis in vivo was also evaluated. We observed that HβDs increase the vessel number and induce a significant increase in relative vascular area compared to negative control. Taken together, the results of this study suggest that ΔNp63-regulated HβD could promote tumor (lymph)angiogenesis in SCC microenvironment.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Marien KM, Croons V, Martinet W, De Loof H, Ung C, Waelput W, Scherer SJ, Kockx MM, De Meyer GRY. Predictive tissue biomarkers for bevacizumab-containing therapy in metastatic colorectal cancer: an update. Expert Rev Mol Diagn 2015; 15:399-414. [PMID: 25585649 DOI: 10.1586/14737159.2015.993972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bevacizumab is the first anti-angiogenic agent approved for the treatment of metastatic colorectal cancer. The need for patient selection before initiating therapy necessitates the study of various proteins expressed in metastatic colorectal cancer tissue as candidate predictive markers. Immunohistochemistry is a valuable, commonly available and cost-effective method to assess predictive biomarkers. However, it is subject to variations and therefore requires rigorous protocol standardizations. Furthermore, validated quantification methodologies to study these angiogenic elements have to be applied. Based on their function in tumor angiogenesis and their relation to the mechanism of action of bevacizumab, protein markers were divided in four groups: VEGF A-signaling proteins; other relevant angiogenesis factors; factors regarding the tumor microenvironment and tumor intrinsic markers. Conceivably, nimbly selecting a small but relevant group of therapy-guided patients by the appropriate combination of predictive biomarkers may confer great value to this angiogenic inhibitor.
Collapse
Affiliation(s)
- Koen M Marien
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ren B. Endothelial Cells: A Key Player in Angiogenesis and Lymphangiogenesis. MOJ CELL SCIENCE & REPORT 2014; 1. [DOI: 10.15406/mojcsr.2014.01.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
46
|
Antilymphangiogenic therapy to promote transplant survival and to reduce cancer metastasis: what can we learn from the eye? Semin Cell Dev Biol 2014; 38:117-30. [PMID: 25460541 DOI: 10.1016/j.semcdb.2014.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/01/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022]
Abstract
The lymphatic vasculature is - amongst other tasks - essentially involved in inflammation, (auto)immunity, graft rejection and cancer metastasis. The eye is mainly devoid of lymphatic vessels except for its adnexa, the conjunctiva and the limbus. However, several pathologic conditions can result in the secondary ingrowth of lymphatic vessels into physiologically alymphatic parts of the eye such as the cornea or the inner eye. Therefore, the cornea has served as an excellent in vivo model system to study lymphangiogenesis, and findings from such studies have substantially contributed to the understanding of central principles of lymphangiogenesis also with relevance outside the eye. Grafting experiments at the cornea have been extensively used to analyze the role of lymphangiogenesis in transplant immunology. In this regard, we recently demonstrated the crucial role of lymphatic vessels in mediating corneal allograft rejection and could show that antilymphangiogenic therapy increases graft survival. In the field of cancer research, we recently detected tumor-associated lymphangiogenesis in the most common malignant tumors of the eye, such as conjunctival carcinoma and melanoma, and ciliochoroidal melanoma with extraocular extension. These neolymphatics correlate with an increased risk of local recurrence, metastasis and tumor related death, and may offer potential therapeutic targets for the treatment of these tumors. This review will focus on corneal and tumor-associated ocular lymphangiogenesis. First, we will describe common experimentally used corneal lymphangiogenesis models and will recapitulate recent findings regarding the involvement of lymphatic vessels in corneal diseases and transplant immunology. The second part of this article will summarize findings about the participation of tumor-associated lymphangiogenesis in ocular malignancies and their implications for the development of future therapeutic strategies.
Collapse
|
47
|
Liu D, Li L, Zhang XX, Wan DY, Xi BX, Hu Z, Ding WC, Zhu D, Wang XL, Wang W, Feng ZH, Wang H, Ma D, Gao QL. SIX1 promotes tumor lymphangiogenesis by coordinating TGFβ signals that increase expression of VEGF-C. Cancer Res 2014; 74:5597-607. [PMID: 25142796 DOI: 10.1158/0008-5472.can-13-3598] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lymphatic vessels are one of the major routes for the dissemination of cancer cells. Malignant tumors release growth factors such as VEGF-C to induce lymphangiogenesis, thereby promoting lymph node metastasis. Here, we report that sine oculis homeobox homolog 1 (SIX1), expressed in tumor cells, can promote tumor lymphangiogenesis and lymph node metastasis by coordinating with TGFβ to increase the expression of VEGF-C. Lymphangiogenesis and lymph node metastasis in cervical cancer were closely correlated with higher expression of SIX1 in tumor cells. By enhancing VEGF-C expression in tumor cells, SIX1 could augment the promoting effect of tumor cells on the migration and tube formation of lymphatic endothelial cells (LEC) in vitro and lymphangiogenesis in vivo. SIX1 enhanced TGFβ-induced activation of SMAD2/3 and coordinated with the SMAD pathway to modulate VEGF-C expression. Together, SIX1 and TGFβ induced much higher expression of VEGF-C in tumor cells than each of them alone. Despite its effect in promoting VEGF-C expression, TGFβ could inhibit lymphangiogenesis by directly inhibiting tube formation by LECs. However, the increased production of VEGF-C not only directly promoted migration and tube formation of LECs but also thwarted the inhibitory effect of TGFβ on LECs. That is, tumor cells that expressed high levels of SIX1 could promote lymphangiogenesis and counteract the negative effects of TGFβ on lymphangiogenesis by increasing the expression of VEGF-C. These findings provide new insights into tumor lymphangiogenesis and the various roles of TGFβ signaling in tumor regulation. Our results also suggest that SIX1/TGFβ might be a potential therapeutic target for preventing lymph node metastasis of tumor.
Collapse
Affiliation(s)
- Dan Liu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao-Xue Zhang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dong-Yi Wan
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bi-Xin Xi
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zheng Hu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wen-Cheng Ding
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Da Zhu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao-Li Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, People's Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Qing-Lei Gao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
48
|
Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J. Releasing Pressure in Tumors: What Do We Know So Far and Where Do We Go from Here? A Review. Cancer Res 2014; 74:2655-62. [DOI: 10.1158/0008-5472.can-13-3696] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Yu J, Zhang X, Kuzontkoski PM, Jiang S, Zhu W, Li DY, Groopman JE. Slit2N and Robo4 regulate lymphangiogenesis through the VEGF-C/VEGFR-3 pathway. Cell Commun Signal 2014; 12:25. [PMID: 24708522 PMCID: PMC4122147 DOI: 10.1186/1478-811x-12-25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Background Signaling through vascular endothelial growth factor C (VEGF–C) and
VEGF receptor 3 (VEGFR-3) plays a central role in lymphangiogenesis and the
metastasis of several cancers via the lymphatics. Recently, the Slit2/Robo4
pathway has been recognized as a modulator of vascular permeability and
integrity. Signaling via the Robo receptor inhibits VEGF-mediated effects;
however, its effects on lymphatic endothelial cell function have not been
well characterized. Results We found that pretreatment with Slit2N, an active fragment of Slit2,
inhibited VEGF-C-mediated lung-derived lymphatic endothelial cell (L-LEC)
proliferation, migration, and in vitro tube formation. Slit2N
induced the internalization of VEGFR-3, which blocked its activation, and
inhibited the activation of the PI3K/Akt pathway by VEGF-C in L-LECs.
Moreover, we found that inhibition of VEGF-C-induced effects by Slit2N was
Robo4-dependent. Conclusion These results indicate that Slit2N/Robo4 modulates several key cellular
functions, which contribute to lymphangiogenesis, and identify this
ligand-receptor pair as a potential therapeutic target to inhibit lymphatic
metastasis of VEGF-C-overexpressing cancers and manage lymphatic
dysfunctions characterized by VEGF-C/VEGFR-3 activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 2014; 5:75. [PMID: 24634660 PMCID: PMC3942647 DOI: 10.3389/fphys.2014.00075] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 02/06/2014] [Indexed: 12/12/2022] Open
Abstract
Tumor angiogenesis is an essential process for supplying rapidly growing malignant tissues with essential nutrients and oxygen. An angiogenic switch allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic disease. Monocyte-derived macrophages recruited and reprogrammed by tumor cells serve as a major source of angiogenic factors boosting the angiogenic switch. Tumor endothelium releases angiopoietin-2 and further facilitates recruitment of TIE2 receptor expressing monocytes (TEM) into tumor sites. Tumor-associated macrophages (TAM) sense hypoxia in avascular areas of tumors, and react by production of angiogenic factors such as VEGFA. VEGFA stimulates chemotaxis of endothelial cells (EC) and macrophages. In some tumors, TAM appeared to be a major source of MMP9. Elevated expression of MMP9 by TAM mediates extracellular matrix (ECM) degradation and the release of bioactive VEGFA. Other angiogenic factors released by TAM include basic fibroblast growth factor (bFGF), thymidine phosphorylase (TP), urokinase-type plasminogen activator (uPA), and adrenomedullin (ADM). The same factors used by macrophages for the induction of angiogenesis [like vascular endothelial growth factor A (VEGF-A) and MMP9] support lymphangiogenesis. TAM can express LYVE-1, one of the established markers of lymphatic endothelium. TAM support tumor lymphangiogenesis not only by secretion of pro-lymphangiogenic factors but also by trans-differentiation into lymphatic EC. New pro-angiogenic factor YKL-40 belongs to a family of mammalian chitinase-like proteins (CLP) that act as cytokines or growth factors. Human CLP family comprises YKL-40, YKL-39, and SI-CLP. Production of all three CLP in macrophages is antagonistically regulated by cytokines. It was recently established that YKL-40 induces angiogenesis in vitro and in animal tumor models. YKL-40-neutralizing monoclonal antibody blocks tumor angiogenesis and progression. The role of YKL-39 and SI-CLP in tumor angiogenesis and lymphangiogenesis remains to be investigated.
Collapse
Affiliation(s)
- Vladimir Riabov
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany ; Department of Nanopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Alexandru Gudima
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany ; Department of Innate Immunity and Tolerance, University Medical Center and Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg Mannheim, Germany
| | - Nan Wang
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany
| | - Amanda Mickley
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany ; Department of Innate Immunity and Tolerance, University Medical Center and Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg Mannheim, Germany
| | - Alexander Orekhov
- Department of Nanopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Julia Kzhyshkowska
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany ; Department of Nanopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia ; Department of Innate Immunity and Tolerance, University Medical Center and Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg Mannheim, Germany
| |
Collapse
|