1
|
Szymura SJ, Wang L, Zhang T, Cha SC, Song J, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottam S, Rao S, Olsem JB, Crumpton BN, Lee HC, Manasanch EE, Neelapu S, Kwak LW, Thomas SK. Personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma: a non-randomized phase 1 trial. Nat Commun 2024; 15:6874. [PMID: 39128904 PMCID: PMC11317512 DOI: 10.1038/s41467-024-50880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade lymphoma with no standard therapy. Nine asymptomatic patients treated with a first-in-human, neoantigen DNA vaccine experienced no dose limiting toxicities (primary endpoint, NCT01209871). All patients achieve stable disease or better, with one minor response, and median time to progression of 72+ months. Post-vaccine single-cell transcriptomics reveal dichotomous antitumor responses, with reduced tumor B-cells (tracked by unique B cell receptor) and their survival pathways, but no change in clonal plasma cells. Downregulation of human leukocyte antigen (HLA) class II molecules and paradoxical upregulation of insulin-like growth factor (IGF) by the latter suggest resistance mechanisms. Vaccine therapy activates and expands bone marrow T-cell clonotypes, and functional neoantigen-specific responses (secondary endpoint), but not co-inhibitory pathways or Treg, and reduces protumoral signaling by myeloid cells, suggesting favorable perturbation of the tumor immune microenvironment. Future strategies may require combinations of vaccines with agents targeting plasma cell subpopulations, or blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
- Szymon J Szymura
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Tiantian Zhang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Soung-Chul Cha
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Division of Hematopathology, Department of Pathology, City of Hope, Duarte, CA, USA
| | - Zhenyuan Dong
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Anderson
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Elizabeth Oh
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Vincent Lee
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Zhe Wang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Sapna Parshottam
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jasper B Olsem
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Brandon N Crumpton
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Larry W Kwak
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA.
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
de Winter N, Ji J, Sintou A, Forte E, Lee M, Noseda M, Li A, Koenig AL, Lavine KJ, Hayat S, Rosenthal N, Emanueli C, Srivastava PK, Sattler S. Persistent transcriptional changes in cardiac adaptive immune cells following myocardial infarction: New evidence from the re-analysis of publicly available single cell and nuclei RNA-sequencing data sets. J Mol Cell Cardiol 2024; 192:48-64. [PMID: 38734060 DOI: 10.1016/j.yjmcc.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.
Collapse
Affiliation(s)
- Natasha de Winter
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Jiahui Ji
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Amalia Sintou
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, United States
| | - Michael Lee
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Michela Noseda
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Aoxue Li
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrew L Koenig
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Nadia Rosenthal
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; The Jackson Laboratory, Bar Harbor, United States
| | - Costanza Emanueli
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Prashant K Srivastava
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Cardiology, Medical University of Graz, Austria; Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria.
| |
Collapse
|
3
|
Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury. Cells 2024; 13:581. [PMID: 38607020 PMCID: PMC11011519 DOI: 10.3390/cells13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.
Collapse
Affiliation(s)
- Tatyana Ageeva
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
4
|
Cardinez C, Hao Y, Kwong K, Davies AR, Downes MB, Roberts NA, Price JD, Hernandez RA, Lovell J, Chand R, Feng ZP, Enders A, Vinuesa CG, Miraghazadeh B, Cook MC. IKK2 controls the inflammatory potential of tissue-resident regulatory T cells in a murine gain of function model. Nat Commun 2024; 15:2345. [PMID: 38528069 PMCID: PMC10963799 DOI: 10.1038/s41467-024-45870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024] Open
Abstract
Loss-of-function mutations have provided crucial insights into the immunoregulatory actions of Foxp3+ regulatory T cells (Tregs). By contrast, we know very little about the consequences of defects that amplify aspects of Treg function or differentiation. Here we show that mice heterozygous for an Ikbkb gain-of-function mutation develop psoriasis. Doubling the gene dose (IkbkbGoF/GoF) results in dactylitis, spondylitis, and characteristic nail changes, which are features of psoriatic arthritis. IkbkbGoF mice exhibit a selective expansion of Foxp3 + CD25+ Tregs of which a subset express IL-17. These modified Tregs are enriched in both inflamed tissues, blood and spleen, and their transfer is sufficient to induce disease without conventional T cells. Single-cell transcriptional and phenotyping analyses of isolated Tregs reveal expansion of non-lymphoid tissue (tissue-resident) Tregs expressing Th17-related genes, Helios, tissue-resident markers including CD103 and CD69, and a prominent NF-κB transcriptome. Thus, IKK2 regulates tissue-resident Treg differentiation, and overactivity drives dose-dependent skin and systemic inflammation.
Collapse
Affiliation(s)
- Chelisa Cardinez
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yuwei Hao
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kristy Kwong
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ainsley R Davies
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Morgan B Downes
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nadia A Roberts
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jason D Price
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Raquel A Hernandez
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jessica Lovell
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Rochna Chand
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Zhi-Ping Feng
- ANU Bioinformatics Consultancy, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Anselm Enders
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Francis Crick Institute, London, UK
| | - Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Matthew C Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia.
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
6
|
Morin S, Bélanger S, Cortez Ghio S, Pouliot R. Eicosapentaenoic acid reduces the proportion of IL-17A-producing T cells in a 3D psoriatic skin model. J Lipid Res 2023; 64:100428. [PMID: 37597582 PMCID: PMC10509711 DOI: 10.1016/j.jlr.2023.100428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Psoriasis is a skin disease presenting as erythematous lesions with accentuated proliferation of epidermal keratinocytes, infiltration of leukocytes, and dysregulated lipid metabolism. T cells play essential roles in the disease. n-3 polyunsaturated fatty acids are anti-inflammatory metabolites, which exert an immunosuppressive effect on healthy T cells. However, the precise mechanistic processes of n-3 polyunsaturated fatty acids on T cells in psoriasis are still unrevealed. In this study, we aimed to evaluate the action of eicosapentaenoic acid (EPA) on T cells in a psoriatic skin model produced with T cells. A coculture of psoriatic keratinocytes and polarized T cells was prepared using culture media, which was either supplemented with 10 μM EPA or left unsupplemented. Healthy and psoriatic skin substitutes were produced according to the self-assembly method. In the coculture model, EPA reduced the proportion of IL-17A-positive cells, while increasing that of FOXP3-positive cells, suggesting an increase in the polarization of regulatory T cells. In the 3D psoriatic skin model, EPA normalized the proliferation of psoriatic keratinocytes and diminished the levels of IL-17A. The expression of the proteins of the signal transducer and activator of transcription was influenced following EPA supplementation with downregulation of the phosphorylation levels of signal transducer and activator of transcription 3 in the dermis. Finally, the NFκB signaling pathway was modified in the EPA-supplemented substitutes with an increase in Fas amounts. Ultimately, our results suggest that in this psoriatic model, EPA exerts its anti-inflammatory action by decreasing the proportion of IL-17A-producing T cells.
Collapse
Affiliation(s)
- Sophie Morin
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | - Sarah Bélanger
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | | | - Roxane Pouliot
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada.
| |
Collapse
|
7
|
Golzari-Sorkheh M, Zúñiga-Pflücker JC. Development and function of FOXP3+ regulators of immune responses. Clin Exp Immunol 2023; 213:13-22. [PMID: 37085947 PMCID: PMC10324550 DOI: 10.1093/cei/uxad048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 04/23/2023] Open
Abstract
The Forkhead Box P3 (FOXP3) protein is an essential transcription factor for the development and function of regulatory T cells (Tregs), involved in the maintenance of immunological tolerance. Although extensive research over the last decade has investigated the critical role of FOXP3+ cells in preserving immune homeostasis, our understanding of their specific functions remains limited. Therefore, unveiling the molecular mechanisms underpinning the up- and downstream transcriptional regulation of and by FOXP3 is crucial for developing Treg-targeted therapeutics. Dysfunctions in FOXP3+ Tregs have also been found to be inherent drivers of autoimmune disorders and have been shown to exhibit multifaceted functions in the context of cancer. Recent research suggests that these cells may also be involved in tissue-specific repair and regeneration. Herein, we summarize current understanding of the thymic-transcriptional regulatory landscape of FOXP3+ Tregs, their epigenetic modulators, and associated signaling pathways. Finally, we highlight the contributions of FOXP3 on the functional development of Tregs and reflect on the clinical implications in the context of pathological and physiological immune responses.
Collapse
Affiliation(s)
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
8
|
Shi P, Xu J, Cui H. The Recent Research Progress of NF-κB Signaling on the Proliferation, Migration, Invasion, Immune Escape and Drug Resistance of Glioblastoma. Int J Mol Sci 2023; 24:10337. [PMID: 37373484 PMCID: PMC10298967 DOI: 10.3390/ijms241210337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor in humans, accounting for approximately 45-50% of all primary brain tumors. How to conduct early diagnosis, targeted intervention, and prognostic evaluation of GBM, in order to improve the survival rate of glioblastoma patients, has always been an urgent clinical problem to be solved. Therefore, a deeper understanding of the molecular mechanisms underlying the occurrence and development of GBM is also needed. Like many other cancers, NF-κB signaling plays a crucial role in tumor growth and therapeutic resistance in GBM. However, the molecular mechanism underlying the high activity of NF-κB in GBM remains to be elucidated. This review aims to identify and summarize the NF-κB signaling involved in the recent pathogenesis of GBM, as well as basic therapy for GBM via NF-κB signaling.
Collapse
Affiliation(s)
- Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
9
|
Zubair M, Khalil S, Rasul I, Nadeem H, Noor F, Ahmad S, Alrumaihi F, Allemailem KS, Almatroudi A, Alshehri FF, Alshehri ZS. Integrated molecular modeling and dynamics approaches revealed potential natural inhibitors of NF-κB transcription factor as breast cancer therapeutics. J Biomol Struct Dyn 2023; 41:14715-14729. [PMID: 37301608 DOI: 10.1080/07391102.2023.2214209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/08/2023] [Indexed: 06/12/2023]
Abstract
Breast cancer is a silent killer malady among women and a serious economic burden in health care management. A case of breast cancer is diagnosed among women every 19 s, and every 74 s, a woman dies of breast cancer somewhere in the world. Despite the pop-up of progressive research, advanced treatment approaches, and preventive measures, breast cancer remains amplifying ailment. The nuclear factor kappa B (NF-κB) is a key transcription factor that links inflammation with cancer and is demonstrated as being involved in the tumorigenesis of breast cancer. The NF-κB transcription factor family in mammals consists of five proteins; c-Rel, RelA(p65), RelB, NF-κB1(p50), and NF-κB2(p52). The antitumor effect of NF-κB has also been explored in breast cancer, however, the actual treatment for breast cancer is yet to be discovered. This study is attributed to the identification of novel drug targets against breast cancer by targeting c-Rel, RelA(p65), RelB, NF-κB1(p50), and NF-κB2(p52) proteins. To identify the putative active compounds, a structure-based 3D pharmacophore model to the protein active site cavity was generated followed by virtual screening, molecular docking, and molecular dynamics (MD) simulation. Initially, a library of 45000 compounds were docked against the target protein and five compounds namely Z56811101, Z653426226, Z1097341967, Z92743432, and Z464101066 were selected for further analysis. The relative binding affinity of Z56811101, Z653426226, Z1097341967, Z92743432, and Z464101066 with NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB, and c-Rel proteins were -6.8, -8, -7.0, -6.9, and -7.2 kcal/mol, respectively which remained stable throughout the simulations of 200 ns. Furthermore, all of these compounds depict maximum drug-like properties. Therefore, the proposed compounds can be a potential candidate for patients with breast cancer, but, experimental validation is needed to ensure their safety.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sidra Khalil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faez Falah Alshehri
- College of Applied Medical Sciences, Shaqra University, Aldawadmi, Saudi Arabia
| | - Zafer Saad Alshehri
- College of Applied Medical Sciences, Shaqra University, Aldawadmi, Saudi Arabia
| |
Collapse
|
10
|
Jorge J, Neves J, Alves R, Geraldes C, Gonçalves AC, Sarmento-Ribeiro AB. Parthenolide Induces ROS-Mediated Apoptosis in Lymphoid Malignancies. Int J Mol Sci 2023; 24:ijms24119167. [PMID: 37298119 DOI: 10.3390/ijms24119167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Lymphoid malignancies are a group of highly heterogeneous diseases frequently associated with constitutive activation of the nuclear factor kappa B (NF-κB) signaling pathway. Parthenolide is a natural compound used to treat migraines and arthritis and found to act as a potent NF-κB signaling inhibitor. This study evaluated in vitro parthenolide efficacy in lymphoid neoplasms. We assessed parthenolide metabolic activity in NCI-H929 (MM), Farage (GCB-DLBCL), Raji (BL), 697 and KOPN-8 (B-ALL), and CEM and MOLT-4 (T-ALL), by resazurin assay. Cell death, cell cycle, mitochondrial membrane potential (ΔΨmit), reactive oxygen species (ROS) and reduced glutathione (GSH) levels, activated caspase-3, FAS-ligand, and phosphorylated NF-κB p65 were evaluated using flow cytometry. CMYC, TP53, GPX1, and TXRND1 expression levels were assessed using qPCR. Our results showed that parthenolide promoted a metabolic activity decrease in all cell lines in a time-, dose-, and cell-line-dependent manner. The mechanism induced by parthenolide was demonstrated to be cell line dependent. Nonetheless, parthenolide promoted cell death by apoptosis with significant ROS increase (peroxides and superoxide anion) and GSH decrease combined with a ΔΨmit reduction across all studied cell lines. Despite the need to further understand parthenolide mechanisms, parthenolide should be considered as a possible new therapeutic approach for B- and T-lymphoid malignancies.
Collapse
Affiliation(s)
- Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Joana Neves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Alves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Catarina Geraldes
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| |
Collapse
|
11
|
Bressy C, Zemani A, Goyal S, Jishkariani D, Lee CN, Chen YH. Inhibition of c-Rel expression in myeloid and lymphoid cells with distearoyl -phosphatidylserine (DSPS) liposomal nanoparticles encapsulating therapeutic siRNA. PLoS One 2022; 17:e0276905. [PMID: 36520934 PMCID: PMC9754606 DOI: 10.1371/journal.pone.0276905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
c-Rel, a member of the nuclear factor kappa B (NF-κB) family, is preferentially expressed by immune cells and is known to regulate inflammation, autoimmune diseases and cancer. However, there is a lack of therapeutic intervention to specifically inhibit c-Rel in immune cells. Recent success with Pfizer and Moderna mRNA lipid-encapsulated vaccines as well as FDA approved medicines based on siRNA prompted us to test a lipid nanoparticle-based strategy to silence c-Rel in immune cells. Specifically, we encapsulated c-Rel-targeting siRNA into distearoyl-phosphatidylserine (DSPS)-containing nanoparticles. DSPS is a saturated phospholipid that serves as the "eat-me" signal for professional phagocytes such as macrophages and neutrophils of the immune system. We demonstrated here that incorporation of DSPS in liposome nanoparticles (LNP) improved their uptake by immune cells. LNP containing high concentrations of DSPS were highly effective to transfect not only macrophages and neutrophils, but also lymphocytes, with limited toxicity to cells. However, LNP containing low concentrations of DSPS were more effective to transfect myeloid cells than lymphoid cells. Importantly, DSPS-LNP loaded with a c-Rel siRNA were highly effective to inhibit c-Rel expression in several professional phagocytes tested, which lasted for several days. Taken together, our results suggest that DSPS-LNP armed with c-Rel siRNA could be exploited to target immune cells to limit the development of inflammatory diseases or cancer caused by c-Rel upregulation. In addition, this newly developed DSPS-LNP system may be further tested to encapsulate and deliver other small molecule drugs to immune cells, especially macrophages, neutrophils, and lymphocytes for the treatment of diseases.
Collapse
Affiliation(s)
- Christian Bressy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ali Zemani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shreya Goyal
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Davit Jishkariani
- Chemical and Nanoparticle Synthesis Core (CNSC), The University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chin Nien Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Youhai H. Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Faculty of Pharmaceutical Sciences, CAS Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
12
|
Al-Harbi NO, Ahmad SF, Almutairi M, Alanazi AZ, Ibrahim KE, Alqarni SA, Alqahtani F, Alhazzani K, Alharbi M, Alasmari F, Nadeem A. Lck signaling inhibition causes improvement in clinical features of psoriatic inflammation through reduction in inflammatory cytokines in CD4+ T cells in imiquimod mouse model. Cell Immunol 2022; 376:104531. [DOI: 10.1016/j.cellimm.2022.104531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
|
13
|
Songkiatisak P, Rahman SMT, Aqdas M, Sung MH. NF-κB, a culprit of both inflamm-ageing and declining immunity? Immun Ageing 2022; 19:20. [PMID: 35581646 PMCID: PMC9112493 DOI: 10.1186/s12979-022-00277-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 04/21/2023]
Abstract
NF-κB is generally recognized as an important regulator of ageing, through its roles in cellular senescence and inflammatory pathways. Activated in virtually all cell-cell communication networks of the immune system, NF-κB is thought to affect age-related defects of both innate and adaptive immune cells, relevant to inflamm-ageing and declining adaptive immunity, respectively. Moreover, the family of NF-κB proteins that exist as heterodimers and homodimers exert their function beyond the immune system. Given their involvement in diverse areas such as DNA damage to metabolism, NF-κB has the potential to serve as linkages between known hallmarks of ageing. However, the complexity of NF-κB dimer composition, dynamic signaling, and tissue-specific actions has received relatively little attention in ageing research. Here, we discuss some areas where further research may bear fruit in our understanding the impact of NF-κB in healthy ageing and longevity.
Collapse
Affiliation(s)
- Preeyaporn Songkiatisak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 21224, Baltimore, MD, USA
| | - Shah Md Toufiqur Rahman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 21224, Baltimore, MD, USA
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 21224, Baltimore, MD, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 21224, Baltimore, MD, USA.
| |
Collapse
|
14
|
Zhang Z, Zhang K, Zhang M, Zhang X, Zhang R. Parthenolide Suppresses T Helper 17 and Alleviates Experimental Autoimmune Encephalomyelitis. Front Immunol 2022; 13:856694. [PMID: 35514960 PMCID: PMC9066638 DOI: 10.3389/fimmu.2022.856694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
T helper (Th) cells play crucial roles in inflammation and adaptive immune system. Importantly, Th17 cells, a major pathogenic Th cell subset, are involved in the pathogenesis of multiple sclerosis (MS) and its classical animal modal experimental autoimmune encephalomyelitis (EAE). Previous studies have shown that parthenolide (PTL), a sesquiterpene lactone, possesses potent anti-cancer and anti-inflammatory activities. However, the immunosuppressive effect of PTL on the pathogenic Th17 cell and MS is unclear. In this study, we showed that PTL treatment could alleviate clinical symptoms by inhibiting inflammatory cell infiltration, reducing inflammation and demyelination of CNS. In addition, the mRNA expression of cytokines and inflammatory factors in CD4+ T cells, especially Th1 and Th17 cells, reduced in both CNS and peripheral immune tissue of EAE mice. Furthermore, PTL could inhibit the reactivation of MOG-specific T cells and the differentiation of naïve CD4+ T cells into Th17 cells in vitro. We also found that PTL inhibited nuclear factor kappa B (NF-κB) signaling and retinoid-related orphan receptor-γt (RORγt) in mouse Th17 cell and human Jurkat cell line. Taken together, our data demonstrated a critical immune-suppressive effect of PTL on autoimmune inflammation through regulating Th17 cells and the NF-κB/RORγt pathway.
Collapse
Affiliation(s)
- Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Kai Zhang
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Bąska P, Norbury LJ. The Role of Nuclear Factor Kappa B (NF-κB) in the Immune Response against Parasites. Pathogens 2022; 11:pathogens11030310. [PMID: 35335634 PMCID: PMC8950322 DOI: 10.3390/pathogens11030310] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The immune system consists of various cells, organs, and processes that interact in a sophisticated manner to defend against pathogens. Upon initial exposure to an invader, nonspecific mechanisms are raised through the activation of macrophages, monocytes, basophils, mast cells, eosinophils, innate lymphoid cells, or natural killer cells. During the course of an infection, more specific responses develop (adaptive immune responses) whose hallmarks include the expansion of B and T cells that specifically recognize foreign antigens. Cell to cell communication takes place through physical interactions as well as through the release of mediators (cytokines, chemokines) that modify cell activity and control and regulate the immune response. One regulator of cell states is the transcription factor Nuclear Factor kappa B (NF-κB) which mediates responses to various stimuli and is involved in a variety of processes (cell cycle, development, apoptosis, carcinogenesis, innate and adaptive immune responses). It consists of two protein classes with NF-κB1 (p105/50) and NF-κB2 (p100/52) belonging to class I, and RelA (p65), RelB and c-Rel belonging to class II. The active transcription factor consists of a dimer, usually comprised of both class I and class II proteins conjugated to Inhibitor of κB (IκB). Through various stimuli, IκB is phosphorylated and detached, allowing dimer migration to the nucleus and binding of DNA. NF-κB is crucial in regulating the immune response and maintaining a balance between suppression, effective response, and immunopathologies. Parasites are a diverse group of organisms comprised of three major groups: protozoa, helminths, and ectoparasites. Each group induces distinct effector immune mechanisms and is susceptible to different types of immune responses (Th1, Th2, Th17). This review describes the role of NF-κB and its activity during parasite infections and its contribution to inducing protective responses or immunopathologies.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
- Correspondence:
| | - Luke J. Norbury
- Department of Biosciences and Food Technology, School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
16
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
17
|
Luu M, Binder K, Hartmann S, Kespohl M, Bazant J, Romero R, Schütz B, Steinhoff U, Visekruna A. Transcription factor c-Rel mediates communication between commensal bacteria and mucosal lymphocytes. J Leukoc Biol 2021; 111:1001-1007. [PMID: 34622991 DOI: 10.1002/jlb.3ab0621-350r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The NF-κB transcription factor c-Rel plays a crucial role in promoting and regulating immune responses and inflammation. However, the function of c-Rel in modulating the mucosal immune system is poorly understood. T follicular helper (Tfh) cells and IgA production in gut-associated lymphoid tissues (GALT) such as Peyer's patches (PPs) are important for maintaining the intestinal homeostasis. Here, c-Rel was identified as an essential factor regulating intestinal IgA generation and function of Tfh cells. Genetic deletion of c-Rel resulted in the aberrant formation of germinal centers (GCs) in PPs, significantly reduced IgA generation and defective Tfh cell differentiation. Supporting these findings, the Ag-specific IgA response to Citrobacter rodentium was strongly impaired in c-Rel-deficient mice. Interestingly, an excessive expansion of segmented filamentous bacteria (SFB) was observed in the small intestine of animals lacking c-Rel. Yet, the production of IL-17A, IgA, and IL-21, which are induced by SFB, was impaired due to the lack of transcriptional control by c-Rel. Collectively, the transcriptional activity of c-Rel regulates Tfh cell function and IgA production in the gut, thus preserving the intestinal homeostasis.
Collapse
Affiliation(s)
- Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany.,Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Binder
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Sabrina Hartmann
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany.,Institute for Pathology, Universitätsklinikum Giessen, Giessen, Germany
| | - Meike Kespohl
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany.,Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jasmin Bazant
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany.,Institute for Medical Microbiology, Justus Liebig University, Giessen, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Burkhard Schütz
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| |
Collapse
|
18
|
Xiao Y, Li F, Zheng A, Chen Q, Chen F, Cheng X, Tao Z. Ginkgolic Acid Suppresses Nasopharyngeal Carcinoma Growth by Inducing Apoptosis and Inhibiting AKT/NF-κB Signaling. J Med Food 2021; 24:806-816. [PMID: 34382859 DOI: 10.1089/jmf.2021.k.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Even though nasopharyngeal carcinoma (NPC) is not common worldwide, it is a major public health burden in endemic areas. Distant metastasis often leads to a poor prognosis for NPC; therefore, new and effective anticancer strategies are needed. Ginkgolic acid (GA) is small-molecule compound existing in Ginkgo biloba that has various biologically relevant activities, including antitumor properties; however, its effects and mechanism of action in NPC are unknown. The effects of GA on NPC and such underlying mechanisms were investigated using 5-8F and CNE2 cells and NP69 human immortalized nasopharyngeal epithelial cells in this study. Moreover, the xenograft models were built to examine GA's effection in vivo. GA treatment decreased the survival and invasive capacity of 5-8F and CNE2 and induced their apoptosis, which varied with dose; this was accompanied by downregulation of B cell lymphoma (Bcl)2, upregulation of Bcl2-associated X protein, and activation of poly-ADP ribose polymerase, and caspase-9/-3. G0/G1 phase arrest was induced by GA in NPCs. It also reduced the expression of cyclin-dependent kinase 6 and its regulators cyclin D2 and cyclin D3. GA inhibited the activation of protein kinase B/nuclear factor signaling; this effect was potentiated with GA and 5-fluorouracil (5-FU), which also enhanced 5-FU-induced apoptosis. In summary, GA may be effective as an adjuvant to conventional chemotherapy drugs in preventing the progression of NPC.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fen Li
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyuan Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuhai Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Vicioso Y, Wong DP, Roy NK, Das N, Zhang K, Ramakrishnan P, Parameswaran R. NF-κB c-Rel Is Dispensable for the Development but Is Required for the Cytotoxic Function of NK Cells. Front Immunol 2021; 12:652786. [PMID: 33995369 PMCID: PMC8116710 DOI: 10.3389/fimmu.2021.652786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 11/14/2022] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes critical to the innate immune system. We found that germline deficiency of NF-κB c-Rel results in a marked decrease in cytotoxic function of NK cells, both in vitro and in vivo, with no significant differences in the stages of NK cell development. We found that c-Rel binds to the promoters of perforin and granzyme B, two key proteins required for NK cytotoxicity, and controls their expression. We generated a NK cell specific c-Rel conditional knockout to study NK cell intrinsic role of c- Rel and found that both global and conditional c-Rel deficiency leads to decreased perforin and granzyme B expression and thereby cytotoxic function. We also confirmed the role of c-Rel in perforin and granzyme B expression in human NK cells. c-Rel reconstitution rescued perforin and granzyme B expressions in c-Rel deficient NK cells and restored their cytotoxic function. Our results show a previously unknown role of c-Rel in transcriptional regulation of perforin and granzyme B expressions and control of NK cell cytotoxic function.
Collapse
Affiliation(s)
- Yorleny Vicioso
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Derek P. Wong
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Nand K. Roy
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Nayanika Das
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Keman Zhang
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Reshmi Parameswaran
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
20
|
Transcription Repressor Protein ZBTB25 Associates with HDAC1-Sin3a Complex in Mycobacterium tuberculosis-Infected Macrophages, and Its Inhibition Clears Pathogen by Autophagy. mSphere 2021; 6:6/1/e00036-21. [PMID: 33627504 PMCID: PMC8544881 DOI: 10.1128/msphere.00036-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Downregulation of host gene expression is a key strategy employed by intracellular pathogens for their survival in macrophages and subsequent pathogenesis. In a previous study, we have shown that histone deacetylase 1 (HDAC1) levels go up in macrophages infected with Mycobacterium tuberculosis, and it hypoacetylates histone H3 at the promoter of IL-12B gene, leading to its downregulation. We now show that after infection with M. tuberculosis, HDAC1 is phosphorylated, and the levels of phosphorylated HDAC1 (pHDAC1) increase significantly in macrophages. We found that transcriptional repressor protein zinc finger and BTB domain 25 (ZBTB25) and transcriptional corepressor Sin3a associate with the HDAC1 silencing complex, which is recruited to the promoter of IL-12B to downregulate its expression in infected macrophages. Knocking down of ZBTB25 enhanced release of IL-12p40 from infected macrophages. Inhibition of HDAC1 and ZBTB25 promoted colocalization of M. tuberculosis and LC3 (microtubule-associated protein 1A/1B-light chain 3) in autophagosomes. Induction of autophagy resulted in the killing of intracellular M. tuberculosis. Enhanced phosphorylation of JAK2 and STAT4 was observed in macrophages upon treatment with HDAC1 and ZBTB inhibitors, and inhibition of JAK2/STAT4 negated the killing of the intracellular pathogen, suggesting their role in the autophagy-mediated killing of intracellular M. tuberculosis. In view of the emergence of drug resistance in M. tuberculosis, host-directed therapy is an attractive alternative strategy to combat tuberculosis (TB). HDACs have been proposed to be host targets for TB treatment. Our study indicates that ZBTB25, a functional subunit of the HDAC1/Sin3a repressor complex involved in IL-12B suppression, could be an alternative target for host-directed anti-TB therapy. IMPORTANCE Following infection with M. tuberculosis, levels of HDAC1 go up in macrophages, and it is recruited to the promoter of IL-12B where it hypoacetylates histone H3, leading to the downregulation of the gene. Here, we show that host transcriptional repressor protein ZBTB25 and transcriptional corepressor Sin3a associate with HDAC1 in the silencing complex. Knocking down of ZBTB25 prevented the recruitment of the complex to the promoter and consequently enhanced the gene expression and the release of IL-12p40 from infected macrophages. Pharmacological inhibition of ZBTB25 in infected macrophages resulted in the induction of autophagy and killing of intracellular M. tuberculosis. Drug-resistant TB is a serious challenge to TB control programs all over the world which calls for finding alternative therapeutic methods. Host-directed therapy is gaining significant momentum in treating infectious diseases. We propose that ZBTB25 is a potential target for host-directed treatment of TB.
Collapse
|
21
|
de Jesus TJ, Tomalka JA, Centore JT, Staback Rodriguez FD, Agarwal RA, Liu AR, Kern TS, Ramakrishnan P. Negative regulation of FOXP3 expression by c-Rel O-GlcNAcylation. Glycobiology 2021; 31:812-826. [PMID: 33442719 PMCID: PMC8351495 DOI: 10.1093/glycob/cwab001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
O-GlcNAcylation is a reversible post-translational protein modification that regulates fundamental cellular processes including immune responses and autoimmunity. Previously, we showed that hyperglycemia increases O-GlcNAcylation of the transcription factor, nuclear factor kappaB c-Rel at serine residue 350 and enhances the transcription of the c-Rel-dependent proautoimmune cytokines interleukin-2, interferon gamma and granulocyte macrophage colony stimulating factor in T cells. c-Rel also plays a critical role in the transcriptional regulation of forkhead box P3 (FOXP3)-the master transcription factor that governs development and function of Treg cells. Here we show that the regulatory effect of c-Rel O-GlcNAcylation is gene-dependent, and in contrast to its role in enhancing the expression of proautoimmune cytokines, it suppresses the expression of FOXP3. Hyperglycemia-induced O-GlcNAcylation-dependent suppression of FOXP3 expression was found in vivo in two mouse models of autoimmune diabetes; streptozotocin-induced diabetes and spontaneous diabetes in nonobese diabetic mice. Mechanistically, we show that both hyperglycemia-induced and chemically enhanced cellular O-GlcNAcylation decreases c-Rel binding at the FOXP3 promoter and negatively regulates FOXP3 expression. Mutation of the O-GlcNAcylation site in c-Rel, (serine 350 to alanine), augments T cell receptor-induced FOXP3 expression and resists the O-GlcNAcylation-dependent repression of FOXP3 expression. This study reveals c-Rel S350 O-GlcNAcylation as a novel molecular mechanism inversely regulating immunosuppressive FOXP3 expression and proautoimmune gene expression in autoimmune diabetes with potential therapeutic implications.
Collapse
Affiliation(s)
- Tristan J de Jesus
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Jeffrey A Tomalka
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Joshua T Centore
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Franklin D Staback Rodriguez
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Ruchira A Agarwal
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Angela R Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Timothy S Kern
- Department of Ophthalmology, School of Medicine, University of California Irvine, 850 Health Sciences Road Irvine, CA 92697, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.,Department of Biochemistry, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.,The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Liaño-Pons J, Lafita-Navarro MC, García-Gaipo L, Colomer C, Rodríguez J, von Kriegsheim A, Hurlin PJ, Ourique F, Delgado MD, Bigas A, Espinosa L, León J. A novel role of MNT as a negative regulator of REL and the NF-κB pathway. Oncogenesis 2021; 10:5. [PMID: 33419981 PMCID: PMC7794610 DOI: 10.1038/s41389-020-00298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
MNT, a transcription factor of the MXD family, is an important modulator of the oncoprotein MYC. Both MNT and MYC are basic-helix-loop-helix proteins that heterodimerize with MAX in a mutually exclusive manner, and bind to E-boxes within regulatory regions of their target genes. While MYC generally activates transcription, MNT represses it. However, the molecular interactions involving MNT as a transcriptional regulator beyond the binding to MAX remain unexplored. Here we demonstrate a novel MAX-independent protein interaction between MNT and REL, the oncogenic member of the NF-κB family. REL participates in important biological processes and it is altered in a variety of tumors. REL is a transcription factor that remains inactive in the cytoplasm in an inhibitory complex with IκB and translocates to the nucleus when the NF-κB pathway is activated. In the present manuscript, we show that MNT knockdown triggers REL translocation into the nucleus and thus the activation of the NF-κB pathway. Meanwhile, MNT overexpression results in the repression of IκBα, a bona fide REL target. Both MNT and REL bind to the IκBα gene on the first exon, suggesting its regulation as an MNT-REL complex. Altogether our data indicate that MNT acts as a repressor of the NF-κB pathway by two mechanisms: (1) retention of REL in the cytoplasm by MNT interaction, and (2) MNT-driven repression of REL-target genes through an MNT-REL complex. These results widen our knowledge about MNT biological roles and reveal a novel connection between the MYC/MXD and NF-κB pathways, two of the most prominent pathways in cancer.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm, Sweden
| | - M Carmen Lafita-Navarro
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Department of Cell Biology UT Southwestern Medical Center, Dallas, TX, USA
| | - Lorena García-Gaipo
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Carlota Colomer
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Javier Rodríguez
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Edinburgh Cancer Research Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter J Hurlin
- Shriners Hospitals for Children Research Center, Department of Cell, Developmental and Cancer Biology and Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, USA
| | - Fabiana Ourique
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Dept. of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - M Dolores Delgado
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Anna Bigas
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Lluis Espinosa
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Javier León
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
23
|
Role of Nurr1 in Carcinogenesis and Tumor Immunology: A State of the Art Review. Cancers (Basel) 2020; 12:cancers12103044. [PMID: 33086676 PMCID: PMC7590204 DOI: 10.3390/cancers12103044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nuclear receptor related-1 protein (Nurr1) emerges as a therapeutic target in multiple malignancies and immunotherapies. Previous studies have highlighted its association with clinicopathological parameters, tumorigenesis and therapeutic resistance in cancers. In addition, recent studies unraveled its contribution to the suppression of antitumor immunity, suggesting that inhibition of Nurr1 is a potential method to repress cancer aggressiveness and disrupt tumor immune tolerance. In line with this evidence, the present review provides the roles of Nurr1 in tumor progression and the associated underlying molecular mechanisms. Moreover, the significance of Nurr1 in promoting immune tolerance and potential strategies for Nurr1 inhibition are highlighted. Abstract Nuclear receptor related-1 protein (Nurr1), coded by an early response gene, is involved in multiple cellular and physiological functions, including proliferation, survival, and self-renewal. Dysregulation of Nurr1 has been frequently observed in many cancers and is attributed to multiple transcriptional and post-transcriptional mechanisms. Besides, Nurr1 exhibits extensive crosstalk with many oncogenic and tumor suppressor molecules, which contribute to its potential pro-malignant behaviors. Furthermore, Nurr1 is a key player in attenuating antitumor immune responses. It not only potentiates immunosuppressive functions of regulatory T cells but also dampens the activity of cytotoxic T cells. The selective accessibility of chromatin by Nurr1 in T cells is closely associated with cell exhaustion and poor efficacy of cancer immunotherapy. In this review, we summarize the reported findings of Nurr1 in different malignancies, the mechanisms that regulate Nurr1 expression, and the downstream signaling pathways that Nurr1 employs to promote a wide range of malignant phenotypes. We also give an overview of the association between Nurr1 and antitumor immunity and discuss the inhibition of Nurr1 as a potential immunotherapeutic strategy.
Collapse
|
24
|
Zhou Y, Cui C, Ma X, Luo W, Zheng SG, Qiu W. Nuclear Factor κB (NF-κB)-Mediated Inflammation in Multiple Sclerosis. Front Immunol 2020; 11:391. [PMID: 32265906 PMCID: PMC7105607 DOI: 10.3389/fimmu.2020.00391] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling cascade has been implicating in a broad range of biological processes, including inflammation, cell proliferation, differentiation, and apoptosis. The past three decades have witnessed a great progress in understanding the impact of aberrant NF-κB regulation on human autoimmune and inflammatory disorders. In this review, we discuss how aberrant NF-κB activation contributes to multiple sclerosis, a typical inflammatory demyelinating disease of the central nervous system, and its involvement in developing potential therapeutic targets.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunping Cui
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Bellucci A, Bubacco L, Longhena F, Parrella E, Faustini G, Porrini V, Bono F, Missale C, Pizzi M. Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Front Aging Neurosci 2020; 12:68. [PMID: 32265684 PMCID: PMC7105602 DOI: 10.3389/fnagi.2020.00068] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
The loss of dopaminergic neurons of the nigrostriatal system underlies the onset of the typical motor symptoms of Parkinson's disease (PD). Lewy bodies (LB) and Lewy neurites (LN), proteinaceous inclusions mainly composed of insoluble α-synuclein (α-syn) fibrils are key neuropathological hallmarks of the brain of affected patients. Compelling evidence supports that in the early prodromal phases of PD, synaptic terminal and axonal alterations initiate and drive a retrograde degeneration process culminating with the loss of nigral dopaminergic neurons. This notwithstanding, the molecular triggers remain to be fully elucidated. Although it has been shown that α-syn fibrillary aggregation can induce early synaptic and axonal impairment and cause nigrostriatal degeneration, we still ignore how and why α-syn fibrillation begins. Nuclear factor-κB (NF-κB) transcription factors, key regulators of inflammation and apoptosis, are involved in the brain programming of systemic aging as well as in the pathogenesis of several neurodegenerative diseases. The NF-κB family of factors consists of five different subunits (c-Rel, p65/RelA, p50, RelB, and p52), which combine to form transcriptionally active dimers. Different findings point out a role of RelA in PD. Interestingly, the nuclear content of RelA is abnormally increased in nigral dopamine (DA) neurons and glial cells of PD patients. Inhibition of RelA exert neuroprotection against (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP and 1-methyl-4-phenylpyridinium (MPP+) toxicity, suggesting that this factor decreases neuronal resilience. Conversely, the c-Rel subunit can exert neuroprotective actions. We recently described that mice deficient for c-Rel develop a PD-like motor and non-motor phenotype characterized by progressive brain α-syn accumulation and early synaptic changes preceding the frank loss of nigrostriatal neurons. This evidence supports that dysregulations in this transcription factors may be involved in the onset of PD. This review highlights observations supporting a possible interplay between NF-κB dysregulation and α-syn pathology in PD, with the aim to disclose novel potential mechanisms involved in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Italy
| | - Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Yang C, Mai H, Peng J, Zhou B, Hou J, Jiang D. STAT4: an immunoregulator contributing to diverse human diseases. Int J Biol Sci 2020; 16:1575-1585. [PMID: 32226303 PMCID: PMC7097918 DOI: 10.7150/ijbs.41852] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family and localizes to the cytoplasm. STAT4 is phosphorylated after a variety of cytokines bind to the membrane, and then dimerized STAT4 translocates to the nucleus to regulate gene expression. We reviewed the essential role played by STAT4 in a wide variety of cells and the pathogenesis of diverse human diseases, especially many kinds of autoimmune and inflammatory diseases, via activation by different cytokines through the Janus kinase (JAK)-STAT signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
27
|
Długosz-Pokorska A, Pięta M, Kędzia J, Janecki T, Janecka A. New uracil analog U-332 is an inhibitor of NF-κB in 5-fluorouracil-resistant human leukemia HL-60 cell line. BMC Pharmacol Toxicol 2020; 21:18. [PMID: 32122395 PMCID: PMC7053076 DOI: 10.1186/s40360-020-0397-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is an antimetabolite that interferes with DNA synthesis and has been widely used as a chemotherapeutic drug in various types of cancers. However, the development of drug resistance greatly limits its application. Overexpression of ATP-binding cassette (ABC) transporters in many types of cancer is responsible for the reduction of the cellular uptake of various anticancer drugs causing multidrug resistance (MDR), the major obstacle in cancer chemotherapy. Recently, we have obtained a novel synthetic 5-FU analog, U-332 [(R)-3-(4-bromophenyl)-1-ethyl-5-methylidene-6-phenyldihydrouracil], combining a uracil skeleton with an exo-cyclic methylidene group. U-332 was highly cytotoxic for HL-60 cells and showed similar cytotoxicity in the 5-FU resistant subclone (HL-60/5FU), in which this analog almost completely abolished expression of the ATP-binding cassette (ABC) transporter, multidrug resistance associate protein 1 (ABCC1). The expression of ABC transporters is usually correlated with NF-κB activation. The aim of this study was to determine the level of NF-κB subunits in the resistant HL-60/5-FU cells and to evaluate the potential of U-332 to inhibit activation of NF-κB family members in this cell line. METHODS Anti-proliferative activity of compound U-332 was assessed by the MTT assay. In order to disclose the mechanism of U-332 cytotoxicity, quantitative real-time PCR analysis of the NF-κB family genes, c-Rel, RelA, RelB, NF-κB1, and NF-κB2, was investigated. The ability of U-332 to reduce the activity of NF-κB members was studied by ELISA test. RESULTS In this report it was demonstrated, using RT-PCR and ELISA assay, that members of the NF-κB family c-Rel, RelA, RelB, NF-κB1, and NF-κB2 were all overexpressed in the 5-FU-resistant HL-60/5FU cells and that U-332 potently reduced the activity of c-Rel, RelA and NF-κB1 subunits in this cell line. CONCLUSIONS This finding indicates that c-Rel, RelA and NF-κB1 subunits are responsible for the resistance of HL-60/5FU cells to 5-FU and that U-332 is able to reverse this resistance. U-332 can be viewed as an important lead compound in the search for novel drug candidates that would not cause multidrug resistance in cancer cells.
Collapse
Affiliation(s)
- Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Marlena Pięta
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Kędzia
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Tomasz Janecki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| |
Collapse
|
28
|
Kulatunga DCM, Dananjaya SHS, Nikapitiya C, Kim CH, Lee J, De Zoysa M. Candida albicans Infection Model in Zebrafish (Danio rerio) for Screening Anticandidal Drugs. Mycopathologia 2019; 184:559-572. [PMID: 31473909 DOI: 10.1007/s11046-019-00378-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Candida albicans is an opportunistic fungal pathogen which causes systemic infections in human. In this study, C. albicans infection model was developed in zebrafish to understand the host-pathogen interactions for straightforward anticandidal drug screening. METHODS To develop the infection, 1 × 106 cells of C. albicans suspended in phosphate-buffered saline were deposited in zebrafish dorsal muscle by manually operated syringe. The infection progression was externally assessed by a scale of wound-healing events, based on visible changes of yeast deposited in the muscle tissues. Chemotherapy was carried out with known antifungal drugs (fluconazole, nystatin, and amphotericin B) and a potential antifungal agent, chitosan silver nanocomposites (CAgNC), after the infection as direct exposure in the water. Histopathological analysis was performed to identify the pathogen virulence and the host-pathogen interaction during the infection. RESULTS The light microscopic observations and histopathological analysis revealed the yeast-hyphae transition at the site of infection (at 72 hpi) and progression of the infection in the host tissues. The larval survival rate under fluconazole (up to 80 μg mL-1) and nystatin (up to 20 μg mL-1) was > 90% and for CAgNC it was 40% at 36 h post-exposure (hpe). The infection progression was suppressed with the fungicidal treatments. Among inflammatory genes, il-1β has been highly upregulated (14.68-fold) at 24 h post infection (hpi). Both il-1β and tnf-α were moderately upregulated in infected fish gills at 72 hpi. Among the C. albicans antioxidant genes, cat1 and sod2 have been upregulated during the infection, and relative expression folds were increased from low to moderate levels with the time. DISCUSSION We demonstrate the approach for the development of artificial infection model of zebrafish with C. albicans. By this mini vertebrate zebrafish model, researchers will be able to study novel anticandidal compounds in vivo with respect to the host, pathogen, and their interactions.
Collapse
Affiliation(s)
- D C M Kulatunga
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
29
|
Ma X. Sensing danger through a "finger". J Exp Med 2018; 215:2969-2971. [PMID: 30459157 PMCID: PMC6279409 DOI: 10.1084/jem.20182034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this issue of JEM, the study by Chen et al. (https://doi.org/10.1084/jem.20181031) reveals a previously unrecognized role of cellular nucleic acid-binding protein (Cnbp) as a novel transcriptional regulator of interleukin-12β (IL-12β) transcription and IL-12-driven, Th1-mediated immune responses, which has important implications for both host defense and inflammatory disease.
Collapse
Affiliation(s)
- Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
30
|
Li X, Zhao L, Han JJ, Zhang F, Liu S, Zhu L, Wang ZZ, Zhang GX, Zhang Y. Carnosol Modulates Th17 Cell Differentiation and Microglial Switch in Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:1807. [PMID: 30150982 PMCID: PMC6100297 DOI: 10.3389/fimmu.2018.01807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine have been used for thousands of years. Carnosol as a bioactive diterpene compound originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In this study, we investigated the therapeutic effects and molecule mechanism of carnosol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the myelin oligodendrocyte glycoprotein (MOG35-55) peptide-induced EAE model, markedly decreased inflammatory cell infiltration into the central nervous system and reduced demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB nuclear translocation. In the passive-EAE model, carnosol treatment also significantly prevented Th17 cell pathogenicity. Moreover, carnosol exerted its therapeutic effects in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated macrophage/microglia. Taken together, our results show that carnosol has enormous potential for development as a therapeutic agent for autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Li Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juan-Juan Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shuai Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lin Zhu
- Department of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Unger A, Finkernagel F, Hoffmann N, Neuhaus F, Joos B, Nist A, Stiewe T, Visekruna A, Wagner U, Reinartz S, Müller-Brüsselbach S, Müller R, Adhikary T. Chromatin Binding of c-REL and p65 Is Not Limiting for Macrophage IL12B Transcription During Immediate Suppression by Ovarian Carcinoma Ascites. Front Immunol 2018; 9:1425. [PMID: 29997615 PMCID: PMC6030372 DOI: 10.3389/fimmu.2018.01425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
Tumors frequently exploit homeostatic mechanisms that suppress expression of IL-12, a central mediator of inflammatory and anti-tumor responses. The p40 subunit of the IL-12 heterodimer, encoded by IL12B, is limiting for these functions. Ovarian carcinoma patients frequently produce ascites which exerts immunosuppression by means of soluble factors. The NFκB pathway is necessary for transcription of IL12B, which is not expressed in macrophages freshly isolated from ascites. This raises the possibility that ascites prevents IL12B expression by perturbing NFκB binding to chromatin. Here, we show that ascites-mediated suppression of IL12B induction by LPS plus IFNγ in primary human macrophages is rapid, and that suppression can be reversible after ascites withdrawal. Nuclear translocation of the NFκB transcription factors c-REL and p65 was strongly reduced by ascites. Surprisingly, however, their binding to the IL12B locus and to CXCL10, a second NFκB target gene, was unaltered, and the induction of CXCL10 transcription was not suppressed by ascites. These findings indicate that, despite its reduced nuclear translocation, NFκB function is not generally impaired by ascites, suggesting that ascites-borne signals target additional pathways to suppress IL12B induction. Consistent with these data, IL-10, a clinically relevant constituent of ascites and negative regulator of NFκB translocation, only partially recapitulated IL12B suppression by ascites. Finally, restoration of a defective IL-12 response by appropriate culture conditions was observed only in macrophages from a subset of donors, which may have important implications for the understanding of patient-specific immune responses.
Collapse
Affiliation(s)
- Annika Unger
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Nathalie Hoffmann
- Experimental Tumor Research Group, Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Felix Neuhaus
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Barbara Joos
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, ZTI, Philipps University of Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, ZTI, Philipps University of Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Biomedical Research Center (BMFZ), Philipps University of Marburg, Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Philipps University of Marburg, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, ZTI, Philipps University of Marburg, Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Rolf Müller
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
32
|
Zhang W, Lu Y, Li X, Zhang J, Zheng L, Zhang W, Lin C, Lin W, Li X. CDCA3 promotes cell proliferation by activating the NF-κB/cyclin D1 signaling pathway in colorectal cancer. Biochem Biophys Res Commun 2018; 500:196-203. [PMID: 29627567 DOI: 10.1016/j.bbrc.2018.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Cell division cycle associated 3 (CDCA3) is required for mitotic entry, and mediates the degradation of the inhibitory kinase Wee1. New evidence suggests CDCA3 plays a role in tumor promotion. However, little is known about the relevance of CDCA3 in colorectal cancer(CRC), especially in the regulation of NF-κB activity. In this study, we found that colorectal tumors significantly expressed more CDCA3 than non-cancer tissues. In addition, CDCA3 promoted CRC cell proliferation in vitro. Furthermore, downregulation of CDCA3 not only induced cell cycle arrest but also facilitated apoptosis. Mechanistically, CDCA3 activates the NF-κB signaling pathway by interacting with TRAF2 in CRC. Together, these results define a tumor-supportive role for CDCA3, which may also provide a new promising strategy for treating CRC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weihao Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Hu M, Yuan X, Liu Y, Tang S, Miao J, Zhou Q, Chen S. IL-1β-induced NF-κB activation down-regulates miR-506 expression to promotes osteosarcoma cell growth through JAG1. Biomed Pharmacother 2017; 95:1147-1155. [PMID: 28926924 DOI: 10.1016/j.biopha.2017.08.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023] Open
Abstract
Nowadays, the role of miRNA in tumorigenesis has been largely reported. It was found that miR-506 might be associated with tumorigenesis of various cancers. The present study was aimed to investigate the character of miR-506 and some related factors in human osteosarcoma (OS) carcinogenesis. The expression level of miR-506 was downregulated in OS compared with the normal control group by RT-PCR, both in vivo and in vitro. In addition, IL-1β stimulation decreased the expression of miR-506. MiR-506 interfered with JAG1 gene transcription throughmiR-506 binding to the 3'-UTR region of JAG1 gene. Further siRNA strategy suggested that IL-1β may regulate miR-506 level via NF-κB, and then alter the JAG1 expression. Besides, the suppression of JAG1 by miR-506 inhibited OS cell proliferation. Taken together, our data indicate a process of NF-κB-induced miR-506 suppression and JAG1 upregulation upon IL-1β induction, which can be regarded as a new pathway for modulating cell proliferation via miR-506. It may be of clinical value in treating OS in the future.
Collapse
Affiliation(s)
- Minghua Hu
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha 410219,China
| | - Xianyu Yuan
- Changsha Medical University, Changsha, 410219,China
| | - Yangming Liu
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha 410219,China
| | - Shunsheng Tang
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha 410219,China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China.
| | - Qiliang Zhou
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha 410219,China.
| | - Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
34
|
Silencing c‐Rel in macrophages dampens Th1 and Th17 immune responses and alleviates experimental autoimmune encephalomyelitis in mice. Immunol Cell Biol 2017; 95:593-600. [DOI: 10.1038/icb.2017.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/25/2022]
|
35
|
Fallahi S, Mohammadi SM, Tayefi Nasrabadi H, Alihemmati A, Samadi N, Gholami S, Shanehbandi D, Nozad Charoudeh H. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells. J Immunotoxicol 2017; 14:15-22. [DOI: 10.1080/1547691x.2016.1250849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shirin Fallahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Momeneh Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Gholami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
36
|
Liu J, Hua R, Gong Z, Shang B, Huang Y, Guo L, Liu T, Xue J. Human amniotic epithelial cells inhibit CD4+ T cell activation in acute kidney injury patients by influencing the miR-101-c-Rel-IL-2 pathway. Mol Immunol 2016; 81:76-84. [PMID: 27898347 DOI: 10.1016/j.molimm.2016.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/15/2016] [Accepted: 11/19/2016] [Indexed: 01/20/2023]
Abstract
In the pathogenesis of acute kidney injury (AKI), the release of multiple interleukins can lead to increased kidney damage. Human amniotic epithelial cells (HuAECs) can inhibit immune cell activation in vivo and in vitro. We hypothesized that HuAECs could weaken patient-derived peripheral blood CD4+ T-cell activation and decreasing the ability of these cells to express and release IL-2. -Cell proliferation assay revealed that under the same culture conditions, activated AKI patient-derived CD4+ T cells had a significantly reduced proliferation rate when were co-cultured with HuAECs. And the level of IL-2 released was also significantly reduced. Western blot and qRT-PCR assays showed that the expression of c-Rel in the CD4+ T cells was also significantly reduced. However, the expression level of endogenous miR-101 in the CD4+ T cells co-cultured with HuAECs was significantly increased. Luciferase reporter assay results suggested that miR-101 could bind to a specific site in the c-Rel 3' UTR and induce the post-transcriptional silencing of c-Rel. Subsequently, we over-expressed miR-101 in AKI patient-derived CD4+ T cells. The qRT-PCR and western blot assay results revealed that the expression of endogenous c-Rel was significantly reduced, while the ELISA results indicated that the level of IL-2 released was also significantly decreased. Finally, ChIP-PCR assay results showed that the miR-101-overexpressing CD4+ T-cell group and the HuAEC co-culture CD4+ T-cell group exhibited significantly decreased binding capacities between the 'c-Rel-NFκB' complex and the IL-2 gene promoter, and the transcriptional activity of IL-2 was also significantly decreased. Therefore, we confirmed that HuAECs can stimulate miR-101 expression in AKI patient-derived peripheral blood CD4+ T cells, thus inhibiting the expression of the miR-101 target gene c-Rel and leading to a reduction in IL-2 expression and release.
Collapse
Affiliation(s)
- Junfeng Liu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhangbin Gong
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Shang
- Division of Nephrology, Dezhou People's Hospital, Shandong 253014, China
| | - Yongyi Huang
- Laboratoire PROTEE, Bâtiment R, Université du Sud Toulon-Var, 83957 LA GARDE Cedex, France
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Te Liu
- Department of Pathology, Yale University School of Medicine, New Haven 06520, USA; Shanghai Tenth People's Hospital, Medical School, Tongji University, Shanghai 200072, China.
| | - Jun Xue
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
37
|
Skov V, Burton M, Thomassen M, Stauffer Larsen T, Riley CH, Brinch Madelung A, Kjær L, Bondo H, Stamp I, Ehinger M, Dahl-Sørensen R, Brochmann N, Nielsen K, Thiele J, Jensen MK, Weis Bjerrum O, Kruse TA, Hasselbalch HC. A 7-Gene Signature Depicts the Biochemical Profile of Early Prefibrotic Myelofibrosis. PLoS One 2016; 11:e0161570. [PMID: 27579896 PMCID: PMC5007012 DOI: 10.1371/journal.pone.0161570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023] Open
Abstract
Recent studies have shown that a large proportion of patients classified as essential thrombocythemia (ET) actually have early primary prefibrotic myelofibrosis (prePMF), which implies an inferior prognosis as compared to patients being diagnosed with so-called genuine or true ET. According to the World Health Organization (WHO) 2008 classification, bone marrow histology is a major component in the distinction between these disease entities. However, the differential diagnosis between them may be challenging and several studies have not been able to distinguish between them. Most lately, it has been argued that simple blood tests, including the leukocyte count and plasma lactate dehydrogenase (LDH) may be useful tools to separate genuine ET from prePMF, the latter disease entity more often being featured by anemia, leukocytosis and elevated LDH. Whole blood gene expression profiling was performed in 17 and 9 patients diagnosed with ET and PMF, respectively. Using elevated LDH obtained at the time of diagnosis as a marker of prePMF, a 7-gene signature was identified which correctly predicted the prePMF group with a sensitivity of 100% and a specificity of 89%. The 7 genes included MPO, CEACAM8, CRISP3, MS4A3, CEACAM6, HEMGN, and MMP8, which are genes known to be involved in inflammation, cell adhesion, differentiation and proliferation. Evaluation of bone marrow biopsies and the 7-gene signature showed a concordance rate of 71%, 79%, 62%, and 38%. Our 7-gene signature may be a useful tool to differentiate between genuine ET and prePMF but needs to be validated in a larger cohort of "ET" patients.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Mark Burton
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Caroline H. Riley
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Henrik Bondo
- Department of Pathology, Naestved Hospital, Naestved, Denmark
| | - Inger Stamp
- Department of Pathology, Naestved Hospital, Naestved, Denmark
| | - Mats Ehinger
- Department of Pathology, Lund University Hospital, Lund, Sweden
| | | | - Nana Brochmann
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Karsten Nielsen
- Department of Pathology, University of Aarhus, Aarhus, Denmark
| | - Jürgen Thiele
- Institute of Pathology, University of Cologne, Köln, Germany
| | - Morten K. Jensen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Ole Weis Bjerrum
- Department of Hematology L, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
38
|
The proteasome - victim or culprit in autoimmunity. Clin Immunol 2016; 172:83-89. [PMID: 27475228 DOI: 10.1016/j.clim.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
Abstract
The ubiquitin proteasome system is closely connected to apoptosis, autophagy, signaling of inflammatory cytokines and generation of ligands for MHC class I antigen presentation. Proteasome function in the innate immune response becomes particularly evident in patients with proteasome-associated autoinflammatory syndromes (PRAAS), where disease causing mutations result in reduced proteasome activity. PRAAS can be classified as a novel type of interferonopathy, however the molecular mechanism and signaling pathways leading from impaired proteasome capacity, the accumulation of damaged proteins, and the induction of type I IFN-genes remain to be determined. In contrast, several studies have confirmed an up-regulation of inducible subunits of the proteasome in systemic autoimmune diseases. Since proteasome inhibition was shown to be efficacious in several in-vitro studies and animal models of autoimmune diseases, it is justified to investigate the application of proteasome inhibitors in human disease. In this context, a number of available proteasome inhibitors has been characterized as potent immune-suppressants. The mode of action of proteasome inhibition interferes with the quality control of the huge amounts of synthetized antibodies causing an unfolded protein response. Further effects of proteasome inhibition includes inhibition of NFκB activation as well as direct activation of intrinsic and extrinsic pathways of apoptosis. The preliminary clinical work on proteasome inhibition in autoimmune diseases comprises only few studies in small cohorts with promising effects, which needs to be confirmed in controlled clinical trials.
Collapse
|
39
|
Liu YZ, Maney P, Puri J, Zhou Y, Baddoo M, Strong M, Wang YP, Flemington E, Deng HW. RNA-sequencing study of peripheral blood monocytes in chronic periodontitis. Gene 2016; 581:152-60. [PMID: 26812355 DOI: 10.1016/j.gene.2016.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Monocytes are an important cell type in chronic periodontitis (CP) by interacting with oral bacteria and mediating host immune response. The aim of this study was to reveal new functional genes and pathways for CP at monocyte transcriptomic level. METHODS We performed an RNA-sequencing (RNA-seq) study of peripheral blood monocytes (PBMs) in 5 non-smoking moderate to severe CP (case) individuals vs. 5 controls. We took advantage of a microarray study of periodontitis to support our findings. We also performed pathway-based analysis on the identified differentially expressed (DEx) transcripts/isoforms using DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS Through differential expression analyses at both whole gene (or whole non-coding RNA) and isoform levels, we identified 380 DEx transcripts and 5955 DEx isoforms with a PPEE (posterior probability of equal expression) of <0.05. Pervasive up-regulation of transcripts at isoform level in CP vs. control individuals was observed, suggesting a more functionally active monocyte transcriptome for CP. By comparing with the microarray dataset, we identified several CP-associated novel genes (e.g., FACR and CUX1) that have functions to interact with invading microorganisms or enhance TNF production on lipopolysaccharide stimulation. DAVID analysis of both the RNA-seq and the microarray datasets leads to converging evidence supporting "endocytosis", "cytokine production" and "apoptosis" as significant biological processes in CP. CONCLUSIONS As the first RNA-seq study of PBMs for CP, this study provided novel findings at both gene (e.g., FCAR and CUX1) and biological process level. The findings will contribute to better understanding of CP disease mechanisms.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States.
| | - Pooja Maney
- Dept. of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.
| | - Jyoti Puri
- Dept. of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Yu Zhou
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Melody Baddoo
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Michael Strong
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yu-Ping Wang
- Dept. of Biomedical Engineering, Tulane University School of Science and Engineering, United States
| | - Erik Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| |
Collapse
|
40
|
Shono Y, Tuckett AZ, Liou HC, Doubrovina E, Derenzini E, Ouk S, Tsai JJ, Smith OM, Levy ER, Kreines FM, Ziegler CGK, Scallion MI, Doubrovin M, Heller G, Younes A, O'Reilly RJ, van den Brink MRM, Zakrzewski JL. Characterization of a c-Rel Inhibitor That Mediates Anticancer Properties in Hematologic Malignancies by Blocking NF-κB-Controlled Oxidative Stress Responses. Cancer Res 2016; 76:377-89. [PMID: 26744524 DOI: 10.1158/0008-5472.can-14-2814] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
NF-κB plays a variety of roles in oncogenesis and immunity that may be beneficial for therapeutic targeting, but strategies to selectively inhibit NF-κB to exert antitumor activity have been elusive. Here, we describe IT-901, a bioactive naphthalenethiobarbiturate derivative that potently inhibits the NF-κB subunit c-Rel. IT-901 suppressed graft-versus-host disease while preserving graft-versus-lymphoma activity during allogeneic transplantation. Further preclinical assessment of IT-901 for the treatment of human B-cell lymphoma revealed antitumor properties in vitro and in vivo without restriction to NF-κB-dependent lymphoma. This nondiscriminatory, antilymphoma effect was attributed to modulation of the redox homeostasis in lymphoma cells resulting in oxidative stress. Moreover, NF-κB inhibition by IT-901 resulted in reduced stimulation of the oxidative stress response gene heme oxygenase-1, and we demonstrated that NF-κB inhibition exacerbated oxidative stress induction to inhibit growth of lymphoma cells. Notably, IT-901 did not elicit increased levels of reactive oxygen species in normal leukocytes, illustrating its cancer selective properties. Taken together, our results provide mechanistic insight and preclinical proof of concept for IT-901 as a novel therapeutic agent to treat human lymphoid tumors and ameliorate graft-versus-host disease.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Z Tuckett
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Ekaterina Doubrovina
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Enrico Derenzini
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samedy Ouk
- ImmuneTarget Inc., San Diego, California
| | - Jennifer J Tsai
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Odette M Smith
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily R Levy
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fabiana M Kreines
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carly G K Ziegler
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Computational Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mary I Scallion
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mikhail Doubrovin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Glenn Heller
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anas Younes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marcel R M van den Brink
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Johannes L Zakrzewski
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
41
|
Ottolini KM, Turner CE, Gada SM. Hypogammaglobulinemia and impaired antibody response in a child with chromosome 2p15-16.1 microdeletion syndrome. Ann Allergy Asthma Immunol 2015; 115:153-5. [PMID: 26100565 DOI: 10.1016/j.anai.2015.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/01/2015] [Accepted: 05/23/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Katherine M Ottolini
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD.
| | - Clesson E Turner
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD
| | - Satyen M Gada
- Department of Allergy and Immunology, Walter Reed National Military Medical Center, Bethesda, MD
| |
Collapse
|
42
|
Laguna T, Notario L, Pippa R, Fontela MG, Vázquez BN, Maicas M, Aguilera-Montilla N, Corbí ÁL, Odero MD, Lauzurica P. New insights on the transcriptional regulation of CD69 gene through a potent enhancer located in the conserved non-coding sequence 2. Mol Immunol 2015; 66:171-9. [PMID: 25801305 DOI: 10.1016/j.molimm.2015.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/03/2023]
Abstract
The CD69 type II C-type lectin is one of the earliest indicators of leukocyte activation acting in lymphocyte migration and cytokine secretion. CD69 expression in hematopoietic lineage undergoes rapid changes depending on the cell-lineage, the activation state or the localization of the cell where it is expressed, suggesting a complex and tightly controlled regulation. Here we provide new insights on the transcriptional regulation of CD69 gene in mammal species. Through in silico studies, we analyzed several regulatory features of the 4 upstream conserved non-coding sequences (CNS 1-4) previously described, confirming a major function of CNS2 in the transcriptional regulation of CD69. In addition, multiple transcription binding sites are identified in the CNS2 region by DNA cross-species conservation analysis. By functional approaches we defined a core region of 226bp located within CNS2 as the main enhancer element of CD69 transcription in the hematopoietic cells analyzed. By chromatin immunoprecipitation, binding of RUNX1 to the core-CNS2 was shown in a T cell line. In addition, we found an activating but not essential role of RUNX1 in CD69 gene transcription by site-directed mutagenesis and RNA silencing, probably through the interaction with this potent enhancer specifically in the hematopoietic lineage. In summary, in this study we contribute with new evidences to the landscape of the transcriptional regulation of the CD69 gene.
Collapse
Affiliation(s)
- Teresa Laguna
- Activación Immunológica Group, Carlos III National Health Institute (ISCIII), Majadahonda, Spain
| | - Laura Notario
- Activación Immunológica Group, Carlos III National Health Institute (ISCIII), Majadahonda, Spain
| | - Raffaella Pippa
- Laboratory of Genetics, Division of Oncology, CIMA, University of Navarra, Pamplona, Spain
| | - Miguel G Fontela
- Activación Immunológica Group, Carlos III National Health Institute (ISCIII), Majadahonda, Spain
| | - Berta N Vázquez
- Activación Immunológica Group, Carlos III National Health Institute (ISCIII), Majadahonda, Spain
| | - Miren Maicas
- Laboratory of Genetics, Division of Oncology, CIMA, University of Navarra, Pamplona, Spain
| | - Noemí Aguilera-Montilla
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ángel L Corbí
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María D Odero
- Laboratory of Genetics, Division of Oncology, CIMA, University of Navarra, Pamplona, Spain
| | - Pilar Lauzurica
- Activación Immunológica Group, Carlos III National Health Institute (ISCIII), Majadahonda, Spain.
| |
Collapse
|
43
|
Visekruna A, Linnerz T, Martinic V, Vachharajani N, Hartmann S, Harb H, Joeris T, Pfefferle PI, Hofer MJ, Steinhoff U. Transcription factor c-Rel plays a crucial role in driving anti-CD40-mediated innate colitis. Mucosal Immunol 2015; 8:307-15. [PMID: 25100292 DOI: 10.1038/mi.2014.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/28/2014] [Indexed: 02/04/2023]
Abstract
Genetic and environmental factors, including the commensal microbiota, have a crucial role in the development of inflammatory bowel disease. Aberrant activation of the transcription factor NF-κB is associated with chronic intestinal inflammation in mice and humans. Recently, an emerging family of innate lymphoid cells (ILCs) has been identified at mucosal sites contributing to the maintenance of gut homeostasis and intestinal immunopathology. Here, we show that the NF-κB protein c-Rel regulates the inflammatory potential of colonic IFN-γ(+)Thy1(+) ILCs to induce anti-CD40-mediated colitis in rag1(-/-) mice. Stimulation of dendritic cells (DCs) with anti-CD40 or CD40L led to translocation of c-Rel into the nucleus resulting in induction of expression of interleukin-12 (IL-12) and IL-23, key regulators of innate cell-induced colitis. While c-Rel deficiency completely abrogated anti-CD40-induced colitis, adoptively transferred wild-type DCs were able to induce pronounced colonic inflammation in rag1(-/-)rel(-/-) mice. In summary, these results suggest that the expression of c-Rel in DCs is essential for initiating anti-CD40-mediated intestinal pathogenesis.
Collapse
Affiliation(s)
- A Visekruna
- 1] Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany [2] Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - T Linnerz
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - V Martinic
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - N Vachharajani
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - S Hartmann
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - H Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany
| | - T Joeris
- 1] Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany [2] Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - P I Pfefferle
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - M J Hofer
- 1] Department of Neuropathology, Philipps University of Marburg, Marburg, Germany [2] School of Molecular Bioscience, The University of Sydney, Darlington, New South Wales, Australia
| | - U Steinhoff
- 1] Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany [2] Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| |
Collapse
|
44
|
Wang Y, Qu A, Wang H. Signal transducer and activator of transcription 4 in liver diseases. Int J Biol Sci 2015; 11:448-55. [PMID: 25798064 PMCID: PMC4366643 DOI: 10.7150/ijbs.11164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/24/2015] [Indexed: 12/14/2022] Open
Abstract
STAT4 is a member of the signal transducer and activator of transcription (STAT) family of molecules that localizes to the cytoplasm. STAT4 regulates various genes expression as a transcription factor after it is phosphorylated, dimerizes and translocates to the nucleus. STAT4 activation is detected virtually in the liver of several mouse models of liver injury, as well as the human liver of chronic liver diseases. STAT4 gene polymorphism has been shown to be associated with the antiviral response in chronic hepatitis C and drug-induced liver injury (DILI), primary biliary cirrhosis (PBC), HCV-associated liver fibrosis and in hepatocellular carcinoma (HCC). However, the roles of STAT4 in the pathogeneses of liver diseases are still not understood entirely. This review summarizes the recent advances on the functional roles of STAT4 and its related cytokines in liver diseases, especially in regulating hepatic anti-viral responses, inflammation, proliferation, apoptosis and tumorigenesis. Targeting STAT4 signaling pathway might be a promising strategy in developing therapeutic approaches for treating hepatitis in order to prevent further injury like cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Yan Wang
- 1. Department of Infectious Diseases, Peking University First Hospital, Beijing 100034
| | - Aijuan Qu
- 3. Institute of Hypoxic Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 ; 4. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hua Wang
- 2. Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032
| |
Collapse
|
45
|
Shono Y, Tuckett AZ, Ouk S, Liou HC, Altan-Bonnet G, Tsai JJ, Oyler JE, Smith OM, West ML, Singer NV, Doubrovina E, Pankov D, Undhad CV, Murphy GF, Lezcano C, Liu C, O'Reilly RJ, van den Brink MRM, Zakrzewski JL. A small-molecule c-Rel inhibitor reduces alloactivation of T cells without compromising antitumor activity. Cancer Discov 2014; 4:578-91. [PMID: 24550032 DOI: 10.1158/2159-8290.cd-13-0585] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preventing unfavorable GVHD without inducing broad suppression of the immune system presents a major challenge of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We developed a novel strategy to ameliorate GVHD while preserving graft-versus-tumor (GVT) activity by small molecule-based inhibition of the NF-κB family member c-Rel. Underlying mechanisms included reduced alloactivation, defective gut homing, and impaired negative feedback on interleukin (IL)-2 production, resulting in optimal IL-2 levels, which, in the absence of competition by effector T cells, translated into expansion of regulatory T cells. c-Rel activity was dispensable for antigen-specific T-cell receptor (TCR) activation, allowing c-Rel-deficient T cells to display normal GVT activity. In addition, inhibition of c-Rel activity reduced alloactivation without compromising antigen-specific cytotoxicity of human T cells. Finally, we were able to demonstrate the feasibility and efficacy of systemic c-Rel inhibitor administration. Our findings validate c-Rel as a promising target for immunomodulatory therapy and demonstrate the feasibility and efficacy of pharmaceutical inhibition of c-Rel activity.
Collapse
Affiliation(s)
- Yusuke Shono
- Departments of 1Immunology, 2Computational Biology and Immunology, 3Pediatrics, and 4Medicine and Immunology, Memorial Sloan-Kettering Cancer Center; 5Department of Immunology, Weill-Cornell Medical Center, New York, New York; 6Program in Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and 7Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zanello G, Goethel A, Forster K, Geddes K, Philpott DJ, Croitoru K. Nod2 activates NF-kB in CD4+ T cells but its expression is dispensable for T cell-induced colitis. PLoS One 2013; 8:e82623. [PMID: 24324812 PMCID: PMC3855837 DOI: 10.1371/journal.pone.0082623] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022] Open
Abstract
Although the etiology of Crohn's disease (CD) remains elusive this disease is characterized by T cell activation that leads to chronic inflammation and mucosal damage. A potential role for maladaptation between the intestinal microbiota and the mucosal immune response is suggested by the fact that mutations in the pattern recognition receptor Nod2 are associated with higher risks for developing CD. Although Nod2 deletion in CD4+ T cells has been shown to impair the induction of colitis in the murine T cell transfer model, the analysis of T cell intrinsic Nod2 function in T cell differentiation and T cell-mediated immunity is inconsistent between several studies. In addition, the role of T cell intrinsic Nod2 in regulatory T cell (Treg) development and function during colitis remain to be analyzed. In this study, we show that Nod2 expression is higher in activated/memory CD4+ T cells and its expression was inducible after T cell receptor (TCR) ligation. Nod2 stimulation with muramyl dipeptide (MDP) led to a nuclear accumulation of c-Rel NF-kB subunit. Although functionally active in CD4+ T cells, the deletion of Nod2 did not impair the induction and the prevention of colitis in the T cell transfer model. Moreover, Nod2 deletion did not affect the development of Foxp3+ Treg cells in the spleen of recipient mice and Nod2 deficient CD4 T cells expressing the OVA specific transgenic TCR were able to differentiate in Foxp3+ Treg cells after OVA feeding. In vitro, CD25+ Nod2 deficient T cells suppressed T cell proliferation as well as wild type counter parts and T cell stimulation with MDP did not affect the proliferation and the cytokine secretion of T cells. In conclusion, our data indicate that Nod2 is functional in murine CD4+ T cells but its expression is dispensable for the T cell regulation of colitis.
Collapse
Affiliation(s)
| | | | | | - Kaoru Geddes
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Kenneth Croitoru
- Department of Medicine, University of Toronto, Toronto, Canada
- Zane Cohen Center for Digestive Diseases, Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
- * E-mail:
| |
Collapse
|
47
|
Liou JT, Lee CM, Lin YC, Chen CY, Liao CC, Lee HC, Day YJ. P-selectin is required for neutrophils and macrophage infiltration into injured site and contributes to generation of behavioral hypersensitivity following peripheral nerve injury in mice. Pain 2013; 154:2150-2159. [PMID: 23831400 DOI: 10.1016/j.pain.2013.06.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Growing evidence suggests that leukocyte extravasation is initiated by the interaction of selectins with their ligands; as well as an essential role for P-selectin in the initial recruitment of inflammatory cells to sites of inflammation. In this study, P-selectin-deficient (P-sel-/-) mice were used to test the hypothesis that lack of P-selectin would attenuate the recruitment of inflammatory cells to the site of inflammation, thereby modulating pain in a murine chronic neuropathic pain model. Nociceptive sensitization and the microenvironment of the peripheral injury site were studied in wild-type (P-sel+/+) and P-selectin-deficient (P-sel-/-) mice after partial sciatic nerve ligation (PSNL). Variables measured included myeloperoxidase (MPO) activity, several inflammatory cell infiltration profiles, cytokines, and endogenous opioid peptide expression in damaged nerves. Results indicate that behavioral hypersensitivity, MPO activity, and infiltration of neutrophils and macrophages were attenuated in P-sel-/- mice after PSNL. Proinflammatory cytokines, tumor necrosis factor α, and interleukin (IL)-6, were reduced in damaged nerves following PSNL; however, several antiinflammatory cytokines - IL-1Ra, IL-4, and IL-10 - were significantly increased in P-sel-/- mice. In addition, endogenous opioid peptides mRNA was significantly lower in P-sel-/- mice compared with P-sel +/+ mice. The current results demonstrated that the absence of P-selectin in mice leads to an altered microenvironment that attenuated behavioral hypersensitivity. The specific role of P-selectin could have been a result of decreased neutrophils, as well as the accumulation of macrophages at the site of injury, which may subsequently modulate the inflammatory cytokine expression and impact behavioral hypersensitivity within the injured nerve.
Collapse
Affiliation(s)
- Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Transgenic & Molecular Immunogenetics Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Department of Medicine, Chang Gung University, Linkou, Taiwan, ROC Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Graduate Institutes of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan, ROC Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
48
|
Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Res 2013; 98:457-68. [DOI: 10.1016/j.antiviral.2013.04.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/23/2013] [Accepted: 04/08/2013] [Indexed: 01/04/2023]
|