1
|
Paschalaki K, Pericleous C. Isolation and Characterization of Endothelial-Colony Forming Cells (ECFC): Studying Endothelial Senescence for Translational Studies and for Personalized Medicine. Methods Mol Biol 2025; 2906:255-270. [PMID: 40082361 DOI: 10.1007/978-1-0716-4426-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Endothelium regulates vascular homeostasis maintaining a healthy cardiovascular system but also plays a key role in tumor development, progression, and metastasis. Endothelial senescence can be driven by aging, DNA damage, oxidative stress, oncogenes and chemotherapy, and contributes to vascular dysfunction. Endothelial colony-forming cells (ECFC) are endothelial-committed progenitors with clonogenic potential, de novo angiogenic capacity and endothelial regenerative abilities. Studying ECFC senescence provides a novel approach to investigate the molecular mechanisms of endothelial dysfunction and response to treatment, in a noninvasive and personalized manner.
Collapse
Affiliation(s)
| | - Charis Pericleous
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Laan SNJ, de Boer S, Dirven RJ, van Moort I, Kuipers TB, Mei H, Bierings R, Eikenboom J. Transcriptional and functional profiling identifies inflammation and endothelial-to-mesenchymal transition as potential drivers for phenotypic heterogeneity within a cohort of endothelial colony forming cells. J Thromb Haemost 2024; 22:2027-2038. [PMID: 38574861 DOI: 10.1016/j.jtha.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) derived from patients can be used to investigate pathogenic mechanisms of vascular diseases like von Willebrand disease. Considerable phenotypic heterogeneity has been observed between ECFC clones derived from healthy donors. This heterogeneity needs to be well understood in order to use ECFCs as endothelial models for disease. OBJECTIVES Therefore, we aimed to determine phenotypic and gene expression differences between control ECFCs. METHODS A total of 34 ECFC clones derived from 16 healthy controls were analyzed. The transcriptome of a selection of ECFC clones (n = 15) was analyzed by bulk RNA sequencing and gene set enrichment analysis. Gene expression was measured in all ECFC clones by quantitative polymerase chain reaction. Phenotypic profiling was performed and migration speed of the ECFCs was measured using confocal microscopy, followed by automated quantification of cell morphometrics and migration speed. RESULTS Through hierarchical clustering of RNA expression profiles, we could distinguish 2 major clusters within the ECFC cohort. Major differences were associated with proliferation and migration in cluster 1 and inflammation and endothelial-to-mesenchymal transition in cluster 2. Phenotypic profiling showed significantly more and smaller ECFCs in cluster 1, which contained more and longer Weibel-Palade bodies. Migration speed in cluster 1 was also significantly higher. CONCLUSION We observed a range of different RNA expression patterns between ECFC clones, mostly associated with inflammation and clear differences in Weibel-Palade body count and structure. We developed a quantitative polymerase chain reaction panel that can be used for the characterization of ECFC clones, which is essential for the correct analysis of pathogenic mechanisms in vascular disorders.
Collapse
Affiliation(s)
- Sebastiaan N J Laan
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands; Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands. https://twitter.com/laan_bas
| | - Suzan de Boer
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Richard J Dirven
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Iris van Moort
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Thomas B Kuipers
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ruben Bierings
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jeroen Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
4
|
Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med 2023; 55:1-12. [PMID: 36599934 PMCID: PMC9898542 DOI: 10.1038/s12276-022-00906-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Senescence compromises the essential role that the endothelium plays in maintaining vascular homeostasis, so promoting endothelial dysfunction and the development of age-related vascular diseases. Their biological and clinical significance calls for strategies for identifying and therapeutically targeting senescent endothelial cells. While senescence and endothelial dysfunction have been studied extensively, distinguishing what is distinctly endothelial senescence remains a barrier to overcome for an effective approach to addressing it. Here, we review the mechanisms underlying endothelial senescence and the evidence for its clinical importance. Furthermore, we discuss the current state and the limitations in the approaches for the detection and therapeutic intervention of target cells, suggesting potential directions for future research.
Collapse
|
5
|
Jang HH, Son Y, Park G, Park KS. Bone Marrow-Derived Vasculogenic Mesenchymal Stem Cells Enhance In Vitro Angiogenic Sprouting of Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2022; 24:ijms24010413. [PMID: 36613857 PMCID: PMC9820660 DOI: 10.3390/ijms24010413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Vasculogenic properties of bone marrow-derived mesenchymal stem cells (MSCs) have been reported, but it is still unclear whether the vasculogenic properties are restricted to some populations of MSCs or whether the entire population of MSCs has these properties. We cultured two different populations of MSCs in different culture media and their vasculogenic properties were evaluated using In vitro spheroid sprouting assay. Neither population of MSCs expressed markers of endothelial progenitor cells (EPCs), but they were different in the profiling of angiogenic factor expression as well as vasculogenic properties. One population of MSCs expressed basic fibroblast growth factor (bFGF) and another expressed hepatocyte growth factor (HGF). MSCs expressing HGF exhibited In vitro angiogenic sprouting capacity in response to bFGF derived from other MSCs as well as to their autocrine HGF. The vasculogenic mesenchymal stem cells (vMSCs) derived from the bone marrow also enhanced In vitro angiogenic sprouting capacity of human umbilical vein endothelial cells (HUVECs) in an HGF-dependent manner. These results suggest that MSCs exhibit different vasculogenic properties, and vMSCs that are different from EPCs may contribute to neovascularization and could be a promising cellular therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Hyun Hee Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Youngsook Son
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Gabee Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: ; Tel.: +82-2-958-9368
| |
Collapse
|
6
|
Abstract
Endothelial colony-forming cells (ECFCs) are progenitor cells that can give rise to colonies of highly proliferative vascular endothelial cells (ECs) with clonal expansion and in vivo blood vessel-forming potential. More than two decades ago, the identification of ECFCs in human peripheral blood created tremendous opportunities as having a clinically accessible source of autologous ECs could facilitate meaningful therapies with the potential to impact multiple vascular diseases. Nevertheless, until recently, the field of endothelial progenitor cells has been plagued with ambiguities and controversies, and reaching a consensus on the definition of ECFCs has not been straightforward. Moreover, although the basic phenotypical and functional characteristics of cultured ECFCs are now well established, some fundamental questions such as the origin of ECFCs and their physiological roles in health and disease remain incompletely understood. Here, I highlight some critical studies that have shaped our current understanding of ECFCs in humans. Insights into the biological attributes of ECFCs are essential for facilitating the clinical translation of their therapeutic potential.
Collapse
Affiliation(s)
- Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022. [PMID: 35022875 DOI: 10.1007/s00421-021-04876-1.pmid:35022875;pmcid:pmc8927049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
UNLABELLED Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022; 122:815-860. [PMID: 35022875 PMCID: PMC8927049 DOI: 10.1007/s00421-021-04876-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Qin K, Lei J, Yang J. The Differentiation of Pluripotent Stem Cells towards Endothelial Progenitor Cells - Potential Application in Pulmonary Arterial Hypertension. Int J Stem Cells 2021; 15:122-135. [PMID: 34711697 PMCID: PMC9148829 DOI: 10.15283/ijsc21044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives Endothelial progenitor cells (EPCs) and endothelial cells (ECs) have been applied in the clinic to treat pulmonary arterial hypertension (PAH), a disease characterized by disordered pulmonary vasculature. However, the lack of sufficient transplantable cells before the deterioration of disease condition is a current limitation to apply cell therapy in patients. It is necessary to differentiate pluripotent stem cells (PSCs) into EPCs and identify their characteristics. Methods and Results Comparing previously reported methods of human PSCs-derived ECs, we optimized a highly efficient differentiation protocol to obtain cells that match the phenotype of isolated EPCs from healthy donors. The protocol is compatible with chemically defined medium (CDM), it could produce a large number of clinically applicable cells with low cost. Moreover, we also found PSCs-derived EPCs express CD133, have some characteristics of mesenchymal stem cells and are capable of homing to repair blood vessels in zebrafish xenograft assays. In addition, we further revealed that IPAH PSCs-derived EPCs have higher expression of proliferation-related genes and lower expression of immune-related genes than normal EPCs and PSCs-derived EPCs through microarray analysis. Conclusions In conclusion, we optimized a highly efficient differentiation protocol to obtain PSCs-derived EPCs with the phenotypic and molecular characteristics of EPCs from healthy donors which distinguished them from EPCs from PAH.
Collapse
Affiliation(s)
- Kezhou Qin
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Lei
- Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Yang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
de Boer S, Bowman M, Notley C, Mo A, Lima P, de Jong A, Dirven R, Weijers E, Lillicrap D, James P, Eikenboom J. Endothelial characteristics in healthy endothelial colony forming cells; generating a robust and valid ex vivo model for vascular disease. J Thromb Haemost 2020; 18:2721-2731. [PMID: 32654420 PMCID: PMC7590112 DOI: 10.1111/jth.14998] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/14/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Endothelial colony forming cells (ECFCs) derived from peripheral blood can be used to analyze the pathophysiology of vascular diseases ex vivo. However, heterogeneity is observed between ECFC clones and this variability needs to be understood and standardized for ECFCs to be used as a cell model for applications in vascular studies. OBJECTIVE Determine reference characteristics of healthy control ECFCs to generate a valid ex vivo model for vascular disease. METHODS Putative ECFCs (n = 47) derived from 21 individual healthy subjects were studied for cell morphology and specific cell characteristics. Clones were analyzed for the production and secretion of von Willebrand factor (VWF), cell proliferation, and the expression of endothelial cell markers. RESULTS Based on morphology, clones were categorized into three groups. Group 1 consisted of clones with classic endothelial cell morphology, whereas groups 2 and 3 contained less condensed cells with increasing cell sizes. All clones had comparable endothelial cell surface expression profiles, with low levels of non-endothelial markers. However, a decrease in CD31 and a group-related increase in CD309 and CD45 expression, combined with a decrease in cell proliferation and VWF production and secretion, was observed in clones in group 3 and to a lesser extent in group 2. CONCLUSIONS We observed group-related variations in endothelial cell characteristics when clones lacked the classic endothelial cell morphology. Despite this variation, clones in all groups expressed endothelial cell surface markers. Provided that clones with similar characteristics are compared, we believe ECFCs are a valid ex vivo model to study vascular disease.
Collapse
Affiliation(s)
- Suzan de Boer
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| | | | - Colleen Notley
- Department of Pathology and Molecular MedicineQueen’s UniversityKingstonONCanada
| | - Aomei Mo
- Department of Pathology and Molecular MedicineQueen’s UniversityKingstonONCanada
| | - Patricia Lima
- Department of MedicineQueen’s UniversityKingstonONCanada
| | - Annika de Jong
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Richard Dirven
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Ester Weijers
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular MedicineQueen’s UniversityKingstonONCanada
| | - Paula James
- Department of MedicineQueen’s UniversityKingstonONCanada
| | - Jeroen Eikenboom
- Division of Thrombosis and HemostasisDepartment of Internal MedicineEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
11
|
Perrotta F, Perna A, Komici K, Nigro E, Mollica M, D’Agnano V, De Luca A, Guerra G. The State of Art of Regenerative Therapy in Cardiovascular Ischemic Disease: Biology, Signaling Pathways, and Epigenetics of Endothelial Progenitor Cells. Cells 2020; 9:E1886. [PMID: 32796767 PMCID: PMC7465688 DOI: 10.3390/cells9081886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ischemic heart disease is currently a major cause of mortality and morbidity worldwide. Nevertheless, the actual therapeutic scenario does not target myocardial cell regeneration and consequently, the progression toward the late stage of chronic heart failure is common. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that contribute to the homeostasis of the endothelial wall in acute and chronic ischemic disease. Calcium modulation and other molecular pathways (NOTCH, VEGFR, and CXCR4) contribute to EPC proliferation and differentiation. The present review provides a summary of EPC biology with a particular focus on the regulatory pathways of EPCs and describes promising applications for cardiovascular cell therapy.
Collapse
Affiliation(s)
- Fabio Perrotta
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Angelica Perna
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Klara Komici
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- CEINGE-Biotecnologie avanzate, 80145 Naples, Italy
| | - Mariano Mollica
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Vito D’Agnano
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Germano Guerra
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| |
Collapse
|
12
|
Ahmetaj-Shala B, Kawai R, Marei I, Nikolakopoulou Z, Shih CC, Konain B, Reed DM, Mongey R, Kirkby NS, Mitchell JA. A bioassay system of autologous human endothelial, smooth muscle cells, and leukocytes for use in drug discovery, phenotyping, and tissue engineering. FASEB J 2019; 34:1745-1754. [PMID: 31914612 PMCID: PMC6972557 DOI: 10.1096/fj.201901379rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
Blood vessels are comprised of endothelial and smooth muscle cells. Obtaining both types of cells from vessels of living donors is not possible without invasive surgery. To address this, we have devised a strategy whereby human endothelial and smooth muscle cells derived from blood progenitors from the same donor could be cultured with autologous leukocytes to generate a same donor “vessel in a dish” bioassay. Autologous sets of blood outgrowth endothelial cells (BOECs), smooth muscle cells (BO‐SMCs), and leukocytes were obtained from four donors. Cells were treated in monoculture and cumulative coculture conditions. The endothelial specific mediator endothelin‐1 along with interleukin (IL)‐6, IL‐8, tumor necrosis factor α, and interferon gamma‐induced protein 10 were measured under control culture conditions and after stimulation with cytokines. Cocultures remained viable throughout. The profile of individual mediators released from cells was consistent with what we know of endothelial and smooth muscle cells cultured from blood vessels. For the first time, we report a proof of concept study where autologous blood outgrowth “vascular” cells and leukocytes were studied alone and in coculture. This novel bioassay has usefulness in vascular biology research, patient phenotyping, drug testing, and tissue engineering.
Collapse
Affiliation(s)
- Blerina Ahmetaj-Shala
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryota Kawai
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Medicinal Safety Research Laboratories, Daiichi-Sankyo Co. Ltd., Tokyo, Japan
| | - Isra Marei
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Qatar Foundation Research and Development Division, Doha, Qatar
| | - Zacharoula Nikolakopoulou
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Bhatti Konain
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel M Reed
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jane A Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
13
|
|
14
|
Alexandru N, Safciuc F, Constantin A, Nemecz M, Tanko G, Filippi A, Dragan E, Bãdilã E, Georgescu A. Platelets of Healthy Origins Promote Functional Improvement of Atherosclerotic Endothelial Progenitor Cells. Front Pharmacol 2019; 10:424. [PMID: 31068820 PMCID: PMC6491786 DOI: 10.3389/fphar.2019.00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
The purpose was to evaluate the effect of platelets on functional properties of late endothelial progenitor cells (EPCs), in the direct co-culture conditions, and to investigate the involved mediators, in experimental induced atherosclerosis. The late EPCs obtained from two animal groups, hypertensive-hyperlipidemic (HH) and control (C) hamsters, named late EPCs-HH and late EPCs-C, were co-incubated with or without platelets isolated from both groups. Our results have showed that exposure to platelets from control animals: (i) promoted the late EPCs-C capacity to form colonies and capillary-like structures, and also to proliferate and migrate; (ii) improved the functional properties of late EPCs-HH; (iii) strengthened the direct binding EPCs-platelets; (iv) increased SDF-1α,VEGF, PDGF, and reduced CD40L, IL-1β,-6,-8 levels; and (v) enhanced miR-223 and IGF-1R expressions. Platelets from HH group diminished functional abilities for both EPC types and had opposite effects on these pro-angiogenic and pro-inflammatory molecules. Furthermore, testing the direct effect of miR-223 and IGF-1R on late EPCs disclosed that these molecular factors improve late EPC functional properties in atherosclerosis in terms of stimulation of the proliferation and migration abilities. In conclusion, in vitro exposure to platelets of healthy origins had a positive effect on functional properties of atherosclerotic late EPCs. The most likely candidates mediating EPC-platelet interaction can be SDF-1α, VEGF, CD40L, PDGF, IL-1β,-6,-8, miR-223, and IGF-1R. The current study brings evidences that the presence of healthy origin platelets is of utmost importance on functional improvement of EPCs in atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Florentina Safciuc
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Emanuel Dragan
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Elisabeta Bãdilã
- Internal Medicine Clinic, Emergency Clinical Hospital, Bucharest, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
15
|
Paschalaki KE, Randi AM. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front Med (Lausanne) 2018; 5:295. [PMID: 30406106 PMCID: PMC6205967 DOI: 10.3389/fmed.2018.00295] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
The term “Endothelial progenitor cell” (EPC) has been used to describe multiple cell populations that express endothelial surface makers and promote vascularisation. However, the only population that has all the characteristics of a real “EPC” is the Endothelial Colony Forming Cells (ECFC). ECFC possess clonal proliferative potential, display endothelial and not myeloid cell surface markers, and exhibit pronounced postnatal vascularisation ability in vivo. ECFC have been used to investigate endothelial molecular dysfunction in several diseases, as they give access to endothelial cells from patients in a non-invasive way. ECFC also represent a promising tool for revascularization of damaged tissue. Here we review the translational applications of ECFC research. We discuss studies which have used ECFC to investigate molecular endothelial abnormalities in several diseases and review the evidence supporting the use of ECFC for autologous cell therapy, gene therapy and tissue regeneration. Finally, we discuss ways to improve the therapeutic efficacy of ECFC in clinical applications, as well as the challenges that must be overcome to use ECFC in clinical trials for regenerative approaches.
Collapse
Affiliation(s)
- Koralia E Paschalaki
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E. Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Rev Rep 2018; 14:642-667. [DOI: 10.1007/s12015-018-9825-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Alexandru N, Andrei E, Niculescu L, Dragan E, Ristoiu V, Georgescu A. Microparticles of healthy origins improve endothelial progenitor cell dysfunction via microRNA transfer in an atherosclerotic hamster model. Acta Physiol (Oxf) 2017; 221:230-249. [PMID: 28513999 DOI: 10.1111/apha.12896] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/14/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
Abstract
AIM In this study, we aimed: (i) to obtain and functionally characterize the cultures of late endothelial progenitor cells (EPCs) from the animal blood; (ii) to investigate the potential beneficial effects of circulating microparticles (MPs) of healthy origins on EPC dysfunctionality in atherosclerosis as well as involved mechanisms. METHODS Late EPCs were obtained and expanded in culture from peripheral blood isolated from two animal groups: hypertensive-hyperlipidaemic (HH) and control (C) hamsters. In parallel experiments, late EPC cultures from HH were incubated with MPs from C group. RESULTS The results showed that late EPCs display endothelial cell phenotype: (i) have ability to uptake 1,1-dioctadecyl-3,3,3,3 tetramethylindocarbocyanine-labelled acetylated low-density lipoprotein and Ulex europaeus agglutinin lectin-1; (ii) express CD34, CD133, KDR, CD144, vWF, Tie-2. Late EPCs from HH exhibited different morphological and functional characteristics compared to control: (i) are smaller and irregular in shape; (ii) present decreased endothelial surface marker expression; (iii) display reduced proliferation, migration and adhesion; (iv) lose ability to organize themselves into tubular structures and integrate into vascular network; (v) have diminished function of inward rectifier potassium channels. The incubation of late EPCs with MPs improved EPC functionality by miR-10a, miR-21, miR-126, miR-146a, miR-223 transfer and IGF-1 expression activation; the kinetic study of MP incorporation into EPCs demonstrated MP uptake by EPCs followed by the miRNA transfer. CONCLUSION The data reveal that late EPCs from atherosclerotic model exhibit distinctive features and are dysfunctional, and their function recovery can be supported by MP ability to transfer miRNAs. These findings bring a new light on the vascular repair in atherosclerosis.
Collapse
Affiliation(s)
- N. Alexandru
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - E. Andrei
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - L. Niculescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - E. Dragan
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - V. Ristoiu
- Faculty of Biology; University of Bucharest; Bucharest Romania
| | - A. Georgescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| |
Collapse
|
18
|
Wang Y, Liu HN, Zhen Z, Yiu KH, Tse HF, Pelekos G, Tonetti M, Jin L. Periodontal treatment modulates gene expression of endothelial progenitor cells in diabetic patients. J Clin Periodontol 2017; 44:1253-1263. [DOI: 10.1111/jcpe.12806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Wang
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Hin Nam Liu
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Zhe Zhen
- Division of Cardiology; Department of Medicine; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Kai Hang Yiu
- Division of Cardiology; Department of Medicine; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Hung Fat Tse
- Division of Cardiology; Department of Medicine; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - George Pelekos
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Maurizio Tonetti
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Lijian Jin
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
19
|
Medina RJ, Barber CL, Sabatier F, Dignat‐George F, Melero‐Martin JM, Khosrotehrani K, Ohneda O, Randi AM, Chan JK, Yamaguchi T, Van Hinsbergh VW, Yoder MC, Stitt AW. Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Transl Med 2017; 6:1316-1320. [PMID: 28296182 PMCID: PMC5442722 DOI: 10.1002/sctm.16-0360] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/17/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022] Open
Abstract
Endothelial progenitor cell (EPC) nomenclature remains ambiguous and there is a general lack of concordance in the stem cell field with many distinct cell subtypes continually grouped under the term "EPC." It would be highly advantageous to agree on standards to confirm an endothelial progenitor phenotype and this should include detailed immunophenotyping, potency assays, and clear separation from hematopoietic angiogenic cells which are not endothelial progenitors. In this review, we seek to discourage the indiscriminate use of "EPCs," and instead propose precise terminology based on defining cellular phenotype and function. Endothelial colony forming cells and myeloid angiogenic cells are examples of two distinct and well-defined cell types that have been considered EPCs because they both promote vascular repair, albeit by completely different mechanisms of action. It is acknowledged that scientific nomenclature should be a dynamic process driven by technological and conceptual advances; ergo the ongoing "EPC" nomenclature ought not to be permanent and should become more precise in the light of strong scientific evidence. This is especially important as these cells become recognized for their role in vascular repair in health and disease and, in some cases, progress toward use in cell therapy. Stem Cells Translational Medicine 2017;6:1316-1320.
Collapse
Affiliation(s)
- Reinhold J. Medina
- Centre for Experimental Medicine, Queen's University BelfastBelfastUnited Kingdom
| | - Chad L. Barber
- Department of Biology, California Lutheran UniversityThousand OaksCaliforniaUSA
| | - Florence Sabatier
- Vascular Research Centre Marseille, INSERM, Aix Marseille UniversitéMarseilleFrance
| | | | - Juan M. Melero‐Martin
- Department of Cardiac SurgeryBoston Children's HospitalMassachusettsUSA
- Department of SurgeryHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell InstituteCambridgeMassachusettsUSA
| | - Kiarash Khosrotehrani
- University of Queensland Centre for Clinical ResearchHerstonQueenslandAustralia
- University of Queensland Diamantina Institute, Translational Research InstituteWoolloongabbaQueenslandAustralia
| | - Osamu Ohneda
- Lab of Regenerative Medicine and Stem Cell BiologyUniversity of TsukubaTsukubaJapan
| | - Anna M. Randi
- National Heart and Lung Institute (NHLI) Vascular Sciences, Imperial College LondonLondonUnited Kingdom
| | - Jerry K.Y. Chan
- Department of Reproductive MedicineKK Women's and Children's HospitalSingapore
| | | | - Victor W.M. Van Hinsbergh
- Department of PhysiologyInstitute for Cardiovascular Research, VU University Medical CenterAmsterdamThe Netherlands
| | - Mervin C. Yoder
- Department of PediatricsIndiana University School of Medicine, IndianapolisIndianaUSA
| | - Alan W. Stitt
- Centre for Experimental Medicine, Queen's University BelfastBelfastUnited Kingdom
| |
Collapse
|
20
|
Hookham MB, Ali IHA, O'Neill CL, Hackett E, Lambe MH, Schmidt T, Medina RJ, Chamney S, Rao B, McLoone E, Sweet D, Stitt AW, Brazil DP. Hypoxia-induced responses by endothelial colony-forming cells are modulated by placental growth factor. Stem Cell Res Ther 2016; 7:173. [PMID: 27899144 PMCID: PMC5129608 DOI: 10.1186/s13287-016-0430-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 01/13/2023] Open
Abstract
Background Endothelial colony-forming cells (ECFCs), also termed late outgrowth endothelial cells, are a well-defined circulating endothelial progenitor cell type with an established role in vascular repair. ECFCs have clear potential for cell therapy to treat ischaemic disease, although the precise mechanism(s) underlying their response to hypoxia remains ill-defined. Methods In this study, we isolated ECFCs from umbilical cord blood and cultured them on collagen. We defined the response of ECFCs to 1% O2 exposure at acute and chronic time points. Results In response to low oxygen, changes in ECFC cell shape, proliferation, size and cytoskeleton phenotype were detected. An increase in the number of senescent ECFCs also occurred as a result of long-term culture in 1% O2. Low oxygen exposure altered ECFC migration and tube formation in Matrigel®. Increases in angiogenic factors secreted from ECFCs exposed to hypoxia were also detected, in particular, after treatment with placental growth factor (PlGF). Exposure of cells to agents that stabilise hypoxia-inducible factors such as dimethyloxalylglycine (DMOG) also increased PlGF levels. Conditioned medium from both hypoxia-treated and DMOG-treated cells inhibited ECFC tube formation. This effect was reversed by the addition of PlGF neutralising antibody to the conditioned medium, confirming the direct role of PlGF in this effect. Conclusions This study deepens our understanding of the response of ECFCs to hypoxia and also identifies a novel and important role for PlGF in regulating the vasculogenic potential of ECFCs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0430-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle B Hookham
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Imran H A Ali
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Emer Hackett
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Melanie H Lambe
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Tina Schmidt
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Sara Chamney
- Eye & Ear Clinic, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, UK
| | - Bharathi Rao
- Regional Neonatal Unit, Royal Maternity Hospital, Grosvenor Road, Belfast, BT12 6BA, UK
| | - Eibhlin McLoone
- Eye & Ear Clinic, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, UK
| | - David Sweet
- Regional Neonatal Unit, Royal Maternity Hospital, Grosvenor Road, Belfast, BT12 6BA, UK
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Derek P Brazil
- Centre for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
21
|
Appleby SL, Mitrofan CG, Crosby A, Hoenderdos K, Lodge K, Upton PD, Yates CM, Nash GB, Chilvers ER, Morrell NW. Bone Morphogenetic Protein 9 Enhances Lipopolysaccharide-Induced Leukocyte Recruitment to the Vascular Endothelium. THE JOURNAL OF IMMUNOLOGY 2016; 197:3302-3314. [PMID: 27647829 DOI: 10.4049/jimmunol.1601219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic protein (BMP)9 is a circulating growth factor that is part of the TGF-β superfamily and is an essential regulator of vascular endothelial homeostasis. Previous studies have suggested a role for BMP9 signaling in leukocyte recruitment to the endothelium, but the directionality of this effect and underlying mechanisms have not been elucidated. In this study, we report that BMP9 upregulates TLR4 expression in human endothelial cells and that BMP9 pretreatment synergistically increases human neutrophil recruitment to LPS-stimulated human endothelial monolayers in an in vitro flow adhesion assay. BMP9 alone did not induce neutrophil recruitment to the endothelium. We also show that E-selectin and VCAM-1, but not ICAM-1, are upregulated in response to BMP9 in LPS-stimulated human endothelial cells. Small interfering RNA knockdown of activin receptor-like kinase 1 inhibited the BMP9-induced expression of TLR4 and VCAM-1 and inhibited BMP9-induced human neutrophil recruitment to LPS-stimulated human endothelial cells. BMP9 treatment also increased leukocyte recruitment within the pulmonary circulation in a mouse acute endotoxemia model. These results demonstrate that although BMP9 alone does not influence leukocyte recruitment, it primes the vascular endothelium to mount a more intense response when challenged with LPS through an increase in TLR4, E-selectin, and VCAM-1 and ultimately through enhanced leukocyte recruitment.
Collapse
Affiliation(s)
- Sarah L Appleby
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Alexi Crosby
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Kim Hoenderdos
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Katharine Lodge
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Clara M Yates
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gerard B Nash
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
22
|
Voskresenskaya ON, Zaharova NB, Tarasova JS, Tereshkina NE. Markers of an inflammation and angiogenesis in chronic cerebrovascular diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:3-6. [DOI: 10.17116/jnevro20161161223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Goodwin AJ, Guo C, Cook JA, Wolf B, Halushka PV, Fan H. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:440. [PMID: 26683209 PMCID: PMC4699334 DOI: 10.1186/s13054-015-1162-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/06/2015] [Indexed: 11/10/2022]
Abstract
Background Endothelial dysfunction plays a critical role in the development of sepsis-related organ failure; however, the mechanisms that govern its development are not fully understood. Endothelial progenitor cells (EPCs) reduce vascular leak and organ failure in experimental sepsis while modulating plasma expression of microRNA (miRNA). MicroRNAs are small, noncoding segments of RNA that regulate gene expression and are known to modulate endothelial cell function and inflammatory signaling pathways. We hypothesized that miRNA may play an etiologic role in the endothelial dysfunction of sepsis and that their extracellular expression levels would be altered in those with shock. Methods Thirteen miRNAs were identified by literature search and analysis of the contents of human EPC-derived exosomes using real-time PCR. Plasma samples were obtained from patients within 24 hours of their admission to ICUs with severe sepsis (n = 62) and from healthy controls (n = 32) and real-time PCR was used to measure the expression of the candidate miRNAs. The Wilcoxon rank sum test was used to compare expression levels of the 13 candidate miRNAs in septic patients with (n = 29) and without (n = 33) shock while logistic regression was used to determine the area under the curve for associations between miRNA expression and shock. Bioinformatic analyses using miRNA databases were performed to identify pathways and gene targets of differentially expressed miRNA with potential relevance to sepsis-related shock. Results MiRNA-34a expression was significantly increased in the group who developed shock (p = 0.03) while miR-15a and miR-27a expressions were significantly decreased in this group (p = 0.006 and 0.03, respectively). The combined expression of these three miRNAs predicted shock with an area under the curve of 0.78 (95 % CI 0.66–0.90). In silico analyses predict that these three miRNAs regulate genes involved in endothelial cell cycle, apoptosis, VEGF signaling, LPS-stimulated MAPK signaling, and nuclear factor kappa B signaling. Conclusions The plasma levels of miRNA are altered in patients with severe sepsis complicated by shock and may offer prognostic value as well as insights into the mechanisms of endothelial dysfunction in sepsis.
Collapse
Affiliation(s)
- Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
| | - Changrun Guo
- Department of Neurosciences, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA.
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Charleston, SC, 29425, USA.
| | - Perry V Halushka
- Departments of Pharmacology and Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA.
| | - Hongkuan Fan
- Department of Neurosciences, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA.
| |
Collapse
|
24
|
Sek AC, Xie Z, Terai K, Long LM, Nelson C, Dudek AZ, Druey KM. Endothelial Expression of Endothelin Receptor A in the Systemic Capillary Leak Syndrome. PLoS One 2015; 10:e0133266. [PMID: 26176954 PMCID: PMC4503617 DOI: 10.1371/journal.pone.0133266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023] Open
Abstract
Idiopathic systemic capillary leak syndrome (SCLS) is a rare and potentially fatal vascular disorder characterized by reversible bouts of hypotension and edema resulting from fluid and solute escape into soft tissues. Although spikes in permeability-inducing factors have been linked to acute SCLS flares, whether or not they act on an inherently dysfunctional endothelium is unknown. To assess the contribution of endothelial-intrinsic mechanisms in SCLS, we derived blood-outgrowth endothelial cells (BOEC) from patients and healthy controls and examined gene expression patterns. Ednra, encoding Endothelin receptor A (ETA)-the target of Endothelin 1 (ET-1)-was significantly increased in SCLS BOEC compared to healthy controls. Although vasoconstriction mediated by ET-1 through ETA activation on vascular smooth muscle cells has been well characterized, the expression and function of ETA receptors in endothelial cells (ECs) has not been described. To determine the role of ETA and its ligand ET-1 in SCLS, if any, we examined ET-1 levels in SCLS sera and functional effects of endothelial ETA expression. ETA overexpression in EAhy926 endothelioma cells led to ET-1-induced hyper-permeability through canonical mechanisms. Serum ET-1 levels were elevated in acute SCLS sera compared to remission and healthy control sera, suggesting a possible role for ET-1 and ETA in SCLS pathogenesis. However, although ET-1 alone did not induce hyper-permeability of patient-derived BOEC, an SCLS-related mediator (CXCL10) increased Edrna quantities in BOEC, suggesting a link between SCLS and endothelial ETA expression. These results demonstrate that ET-1 triggers classical mechanisms of vascular barrier dysfunction in ECs through ETA. Further studies of the ET-1-ETA axis in SCLS and in more common plasma leakage syndromes including sepsis and filovirus infection would advance our understanding of vascular integrity mechanisms and potentially uncover new treatment strategies.
Collapse
Affiliation(s)
- Albert C. Sek
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Zhihui Xie
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Kaoru Terai
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Lauren M. Long
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Celeste Nelson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Arkadiusz Z. Dudek
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kirk M. Druey
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
25
|
Paschalaki KE, Starke RD, Hu Y, Mercado N, Margariti A, Gorgoulis VG, Randi AM, Barnes PJ. Dysfunction of endothelial progenitor cells from smokers and chronic obstructive pulmonary disease patients due to increased DNA damage and senescence. Stem Cells 2015; 31:2813-26. [PMID: 23897750 PMCID: PMC4377082 DOI: 10.1002/stem.1488] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/03/2013] [Accepted: 05/15/2013] [Indexed: 01/04/2023]
Abstract
Cardiovascular disease (CVD) is a major cause of death in smokers, particularly in those with chronic obstructive pulmonary disease (COPD). Circulating endothelial progenitor cells (EPC) are required for endothelial homeostasis, and their dysfunction contributes to CVD. To investigate EPC dysfunction in smokers, we isolated and expanded blood outgrowth endothelial cells (BOEC) from peripheral blood samples from healthy nonsmokers, healthy smokers, and COPD patients. BOEC from smokers and COPD patients showed increased DNA double-strand breaks and senescence compared to nonsmokers. Senescence negatively correlated with the expression and activity of sirtuin-1 (SIRT1), a protein deacetylase that protects against DNA damage and cellular senescence. Inhibition of DNA damage response by silencing of ataxia telangiectasia mutated (ATM) kinase resulted in upregulation of SIRT1 expression and decreased senescence. Treatment of BOEC from COPD patients with the SIRT1 activator resveratrol or an ATM inhibitor (KU-55933) also rescued the senescent phenotype. Using an in vivo mouse model of angiogenesis, we demonstrated that senescent BOEC from COPD patients are dysfunctional, displaying impaired angiogenic ability and increased apoptosis compared to cells from healthy nonsmokers. Therefore, this study identifies epigenetic regulation of DNA damage and senescence as pathogenetic mechanisms linked to endothelial progenitors' dysfunction in smokers and COPD patients. These defects may contribute to vascular disease and cardiovascular events in smokers and could therefore constitute therapeutic targets for intervention.
Collapse
Affiliation(s)
- Koralia E Paschalaki
- Airway Disease Section and National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Histology-Embryology Department, Faculty of Medicine, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rajasekar P, O'Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic Changes in Endothelial Progenitors as a Possible Cellular Basis for Glycemic Memory in Diabetic Vascular Complications. J Diabetes Res 2015; 2015:436879. [PMID: 26106624 PMCID: PMC4464584 DOI: 10.1155/2015/436879] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.
Collapse
Affiliation(s)
- Poojitha Rajasekar
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Christina L. O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Lydia Eeles
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Alan W. Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Reinhold J. Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
- *Reinhold J. Medina:
| |
Collapse
|
27
|
O'Neill CL, O'Doherty MT, Wilson SE, Rana AA, Hirst CE, Stitt AW, Medina RJ. Therapeutic revascularisation of ischaemic tissue: the opportunities and challenges for therapy using vascular stem/progenitor cells. Stem Cell Res Ther 2012; 3:31. [PMID: 22897941 PMCID: PMC3580469 DOI: 10.1186/scrt122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ischaemia-related diseases such as peripheral artery disease and coronary heart disease constitute a major issue in medicine as they affect millions of individuals each year and represent a considerable economic burden to healthcare systems. If the underlying ischaemia is not sufficiently resolved it can lead to tissue damage, with subsequent cell death. Treating such diseases remains difficult and several strategies have been used to stimulate the growth of blood vessels and promote regeneration of ischaemic tissues, such as the use of recombinant proteins and gene therapy. Although these approaches remain promising, they have limitations and results from clinical trials using these methods have had limited success. Recently, there has been growing interest in the therapeutic potential of using a cell-based approach to treat vasodegenerative disorders. In vascular medicine, various stem cells and adult progenitors have been highlighted as having a vasoreparative role in ischaemic tissues. This review will examine the clinical potential of several stem and progenitor cells that may be utilised to regenerate defunct or damaged vasculature and restore blood flow to the ischaemic tissue. In particular, we focus on the therapeutic potential of endothelial progenitor cells as an exciting new option for the treatment of ischaemic diseases.
Collapse
|
28
|
Ankeny RF, Ankeny CJ, Nerem RM, Jo H. Maturing EPCs into endothelial cells: may the force be with the EPCs: focus on "Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells". Am J Physiol Cell Physiol 2012; 303:C589-91. [PMID: 22763124 DOI: 10.1152/ajpcell.00224.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|