1
|
Rabbani SA, El-Tanani M, Sharma S, El-Tanani Y, Kumar R, Saini M, Yadav M, Khan MA, Parvez S. RNA-Based Therapies for Neurodegenerative Diseases Targeting Pathogenic Proteins. Eur J Neurosci 2025; 61:e70110. [PMID: 40237615 DOI: 10.1111/ejn.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
Neurodegeneration is featured by the gradual stagnation of neuronal function and structure, leading to significant motor and cognitive impairments. The primary histopathological features underlying these conditions include the cumulation of pathological protein aggregates, chronic inflammation, and neuronal cell death. Alzheimer's disease (AD) and Parkinson's disease (PD) are prominent examples of neurodegenerative diseases (NDDs). As of 2023, over 65 million people worldwide are affected by AD and PD, with the prevalence of these conditions steadily increasing over time. Interestingly, there are no effective therapies available to halt or slow NDD progression. Most approved treatments are focused on symptom management and are often associated with substantial side effects. Given these limitations, the development of novel therapeutic approaches targeting the molecular mechanisms underlying these disorders is essential. Notably, RNA-based therapeutics have recently emerged as a potential therapeutic approach for managing various neurological diseases, offering the potential for innovative molecular interventions in NDD. In this review, we have discussed the pathogenic role of various protein aggregates in NDD and highlighted emerging RNA-based strategies aimed at targeting these pathological proteins.
Collapse
Affiliation(s)
- Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | | | - Rakesh Kumar
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Department of Pharmacy, Jagannath University, Bahadurgarh, Haryana, India
| | - Manita Saini
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Monu Yadav
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Alberro A, Bravo-Miana RDC, Gs Iñiguez S, Iribarren-López A, Arroyo-Izaga M, Matheu A, Muñoz-Culla M, Otaegui D. Age-Related sncRNAs in Human Hippocampal Tissue Samples: Focusing on Deregulated miRNAs. Int J Mol Sci 2024; 25:12872. [PMID: 39684581 DOI: 10.3390/ijms252312872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), play an important role in transcriptome regulation by binding to mRNAs and post-transcriptionally inhibiting protein production. This regulation occurs in both physiological and pathological conditions, where the expression of many miRNAs is altered. Previous reports by our group and others have demonstrated that miRNA expression is also altered during aging. However, most studies have analyzed human peripheral blood samples or brain samples from animal models, leaving a gap in knowledge regarding miRNA expression in the human brain. In this work, we analyzed the expression of sncRNAs from coronal sections of human hippocampal samples, a tissue with a high vulnerability to deleterious conditions such as aging. Samples from young (n = 5, 27-49 years old), old (n = 8, 58-88 years old), and centenarian (n = 3, 97, 99, and 100 years old) individuals were included. Our results reveal that sncRNAs, particularly miRNAs, are differentially expressed (DE) in the human hippocampus with aging. Besides, miRNA-mediated regulatory networks revealed significant interactions with mRNAs deregulated in the same hippocampal samples. Surprisingly, 80% of DE mRNA in the centenarian vs. old comparison are regulated by hsa-miR-192-5p and hsa-miR-3135b. Additionally, validated hsa-miR-6826-5p, hsa-let-7b-3p, hsa-miR-7846, and hsa-miR-451a emerged as promising miRNAs that are deregulated with aging and should be further investigated.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Rocío Del Carmen Bravo-Miana
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Saioa Gs Iñiguez
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Andrea Iribarren-López
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Marta Arroyo-Izaga
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Bioaraba, 01006 Vitoria-Gasteiz, Spain
| | - Ander Matheu
- Cellular Oncology Group, Oncology Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Frailty and Healthy Ageing Research Area of CIBER (CIBERfes), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Maider Muñoz-Culla
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Department of Basic Psychological Processes and Their Development, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain
| | - David Otaegui
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
3
|
Panda SP, Kesharwani A, Singh M, Kumar S, Mayank, Mallick SP, Guru A. Limonin (LM) and its derivatives: Unveiling the neuroprotective and anti-inflammatory potential of LM and V-A-4 in the management of Alzheimer's disease and Parkinson's disease. Fitoterapia 2024; 178:106173. [PMID: 39117089 DOI: 10.1016/j.fitote.2024.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Neuroinflammation and neuronal apoptosis are central pathogenic consequences associated with Alzheimer's Disease (AD) and Parkinson's Disease (PD). Limonin (LM), a tetracyclic triterpenoid available in citrus fruits, has anti-tumor, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective actions. LM derivative, V-A-4 emerged as a potential neuroprotective drug due to their ability to target multiple molecular pathways intertwined with neuroinflammation and neuronal apoptosis. To date, the treatment of AD and PD is not successful even though the understanding of the mechanism of neuroinflammation and neuronal apoptosis is vast in the literature. Thus, there is an urgent need to identify novel neuroprotective drugs that could target the multiple molecular pathways associated with neuroinflammation and neuronal apoptosis. The various online databases (Google scholar, Pubmed, Scopus) were searched via keywords: limonin, limonin derivatives and neuroprotection. This review highlights the multifunctional nature of LM and derivatives in combating neuroinflammation and neuronal apoptosis by stimulating PI3K/AKT and downregulating TLR4/NF-κB critical pathways. By intervening in the secretion of NO and TNF-α from glial cells, V-A-4 attenuates the damaging cascade of neuroinflammation by suppressing IKK-α and IKK-β. Furthermore, V-A-4 demonstrates its versatility by suppressing the manifestation of miR-146a and miR-155, both intimately linked to neuroinflammation, this review summarized the activities of LM and its derivatives against AD and PD, with a special focus on V-A-4 as an effective neuroprotective drug. V-A-4's ability to stimulate PI3K/AKT signaling further underscores its neuroprotective effect in combating AD and PD. More in-vitro cell line studies are needed to develop V-A-4 as an upcoming neuroprotective compound.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Mansi Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India; Rakshpal bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Sanjesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India; Rakshpal bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Mayank
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
5
|
McElroy CL, Wang B, Zhang H, Jin K. Cerebellum and Aging: Update and Challenges. Aging Dis 2024; 15:2345-2360. [PMID: 38502583 PMCID: PMC11567260 DOI: 10.14336/ad.2024.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The cerebellum plays a vital role in the aging process. With the aging of the cerebellum, there is a decline in balance and motor function, particularly fine motor skills, and an increased risk of falling. However, in recent years, numerous studies have revealed that the cerebellum has several roles besides balance and fine motor skills, such as cognitive function and memory. It also plays a role in many neurodegenerative diseases. Interestingly, the cerebellum ages more rapidly than other brain regions, including the hippocampus. With increasing studies reporting that the cerebellum has a more prominent and interconnected role in the brain, it is essential to understand why aging affects it more, leading to solutions to help curb the accelerated decline. Here, we summarize the cerebellum's function and look at how it ages at the cellular, molecular, and functional levels. Additionally, we explore the the effects of alcoholism on the aging cerebellum as well as the role of the cerebellum in diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis.
Collapse
Affiliation(s)
| | | | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
6
|
Margiana R, Kzar HH, Hussam F, Hameed NM, Al-Qaim ZH, Al-Gazally ME, Kandee M, Saleh MM, Toshbekov BBU, Tursunbaev F, Karampoor S, Mirzaei R. Exploring the impact of miR-128 in inflammatory diseases: A comprehensive study on autoimmune diseases. Pathol Res Pract 2023; 248:154705. [PMID: 37499519 DOI: 10.1016/j.prp.2023.154705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Iraq
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | | | - Mahmoud Kandee
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | | | - Farkhod Tursunbaev
- MD, Independent Researcher, "Medcloud" educational centre, Tashkent, Uzbekistan
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Budi HS, Younus LA, Lafta MH, Parveen S, Mohammad HJ, Al-qaim ZH, Jawad MA, Parra RMR, Mustafa YF, Alhachami FR, Karampoor S, Mirzaei R. The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy. Front Oncol 2023; 12:1067974. [PMID: 36793341 PMCID: PMC9923359 DOI: 10.3389/fonc.2022.1067974] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laith A. Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn, Hayyan Medical University, Al Najaf Al Ashraf, Iraq
| | | | - Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Ageing at Molecular Level: Role of MicroRNAs. Subcell Biochem 2023; 102:195-248. [PMID: 36600135 DOI: 10.1007/978-3-031-21410-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The progression of age triggers a vast number of diseases including cardiovascular, cancer, and neurodegenerative disorders. Regardless of our plentiful knowledge about age-related diseases, little is understood about molecular pathways that associate the ageing process with various diseases. Several cellular events like senescence, telomere dysfunction, alterations in protein processing, and regulation of gene expression are common between ageing and associated diseases. Accumulating information on the role of microRNAs (miRNAs) suggests targeting miRNAs can aid our understanding of the interplay between ageing and associated diseases. In the present chapter, we have attempted to explore the information available on the role of miRNAs in ageing of various tissues/organs and diseases and understand the molecular mechanism of ageing.
Collapse
|
9
|
Shafiei B, Shabani M, Afgar A, Rajizadeh MA, Nazari-Robati M. Trehalose Attenuates Learning and Memory Impairments in Aged Rats via Overexpression of miR-181c. Neurochem Res 2022; 47:3309-3317. [PMID: 35906351 DOI: 10.1007/s11064-022-03687-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022]
Abstract
MicroRNAs have been recognized as important regulators of the aging process. Trehalose, a natural disaccharide, displays protective effects against neuronal impairment through several mechanisms. However, little is known about the interactive effects of aging and trehalose on behavioral function and underlying miRNA expression patterns in the hippocampus of young and old rats. Male Wistar rats were divided into four groups. Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution for 30 days. Two other groups of aged and young rats received regular tap water. At the end of treatment, rats were assessed for cognitive behavior using the Morris water maze test. The expression level of miR-181c and mir-34c was also measured by qRT-PCR. We found that trehalose treatment reduced learning and memory impairment in old rats compared to control old animals (p < 0.05). In contrast, cognitive performance was not significantly improved in trehalose-treated young rats in comparison with young controls (p > 0.05). We also showed that the expression level of miR-181c was significantly increased in trehalose-treated rats (p < 0.01). However, analysis of miR-34c expression level indicated no significant difference between trehalose-treated old rats and non-treated old animals (p > 0.05). Our results indicated that trehalose treatment improved learning and memory function in aged rats by targeting miR-181c. Therefore, trehalose administration may provide a therapeutic strategy to ameliorate age-associated cognitive impairment.
Collapse
Affiliation(s)
- Bentolhoda Shafiei
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Chia SY, Vipin A, Ng KP, Tu H, Bommakanti A, Wang BZ, Tan YJ, Zailan FZ, Ng ASL, Ling SC, Okamura K, Tan EK, Kandiah N, Zeng L. Upregulated Blood miR-150-5p in Alzheimer’s Disease Dementia Is Associated with Cognition, Cerebrospinal Fluid Amyloid-β, and Cerebral Atrophy. J Alzheimers Dis 2022; 88:1567-1584. [DOI: 10.3233/jad-220116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: There is an urgent need for noninvasive, cost-effective biomarkers for Alzheimer’s disease (AD), such as blood-based biomarkers. They will not only support the clinical diagnosis of dementia but also allow for timely pharmacological and nonpharmacological interventions and evaluations. Objective: To identify and validate a novel blood-based microRNA biomarker for dementia of the Alzheimer’s type (DAT). Methods: We conducted microRNA sequencing using peripheral blood mononuclear cells isolated from a discovery cohort and validated the identified miRNAs in an independent cohort and AD postmortem tissues. miRNA correlations with AD pathology and AD clinical-radiological imaging were conducted. We also performed bioinformatics and cell-based assay to identify miRNA target genes. Results: We found that miR-150-5p expression was significantly upregulated in DAT compared to mild cognitive impairment and healthy subjects. Upregulation of miR-150-5p was observed in AD hippocampus. We further found that higher miR-150-5p levels were correlated with the clinical measures of DAT, including lower global cognitive scores, lower CSF Aβ 42, and higher CSF total tau. Interestingly, we observed that higher miR-150-5p levels were associated with MRI brain volumes within the default mode and executive control networks, two key networks implicated in AD. Furthermore, pathway analysis identified the targets of miR-150-5p to be enriched in the Wnt signaling pathway, including programmed cell death 4 (PDCD4). We found that PDCD4 was downregulated in DAT blood and was downregulated by miR-150-5p at both the transcriptional and protein levels Conclusion: Our findings demonstrated that miR-150-5p is a promising clinical blood-based biomarker for DAT
Collapse
Affiliation(s)
- Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Ashwati Vipin
- Department of Neurology, National Neuroscience Institute, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Ananth Bommakanti
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore
| | | | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Fatin Zahra Zailan
- Department of Neurology, National Neuroscience Institute, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Adeline Su-Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | - Shuo-Chian Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
- Research Department, National Neuroscience Institute, Singapore General Hospital Campus, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| |
Collapse
|
11
|
Shang D, Liu Y, Chen Z. Exosome-Transmitted miR-128 Targets CCL18 to Inhibit the Proliferation and Metastasis of Urothelial Carcinoma. Front Mol Biosci 2022; 8:760748. [PMID: 35059433 PMCID: PMC8764124 DOI: 10.3389/fmolb.2021.760748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: To investigate the regulatory function of exosome-transmitted miR-128 and chemokine (C-C motif) ligand 18 (CCL18) on urothelial carcinomas (UCs). Methods: Tumor tissues, paracancerous tissues, and serum were collected from 20 patients with UCs (diagnosed at Beijing Friendship Hospital, Capital Medical University). CCL18 was detected by immunohistochemistry and ELISA. PCR was used to measure the expression levels of CCL18 and mir-183, miR-128, mir-33a in UCs. We acquired exosomes from mesenchymal stem cells and synthesized exosomes overexpressing miR-128 (HMSC-128-EV). The effects of miR-128 on the migration and invasion abilities, apoptosis and epithelial-mesenchymal transition of BUC T24 cells were investigated by co-culturing HMSC-128-EV. The therapeutic potential of miR-128 on disease models was explored by injecting HMSC-128-EV into nude mice. Results: The expression of CCL18 in UCs was significantly higher than that in normal tissues (p < 0.05), and the serum level of CCL18 in patients with UC was significantly increased compared with those in healthy controls (p < 0.05). CCL18 overexpression or downregulation enhanced or suppressed the proliferation, migration and invasion of BUC T24 cells, resectively (p < 0.05). The exosome-transmitted miR-128 can inhibit cell proliferation (p < 0.05), invasion (p < 0.05), and migration (p < 0.05) in UCs, and these effects can be reversed by CCL18. In terms of apoptosis, miR-128 was able to promote the occurrence of BUC T24 apoptosis (p < 0.05), which can also be reversed by CCL18. In addition, miR-128 can inhibit the proliferation (p < 0.05) and metastasis (p < 0.05) of UCs in nude mice. Conclusion: The miR-128 inhibits the proliferation, invasion, migration of UCs, and promotes its apoptosis by regulating CCL18 secretion.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuting Liu
- Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenghao Chen
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Kaddour H, Kopcho S, Lyu Y, Shouman N, Paromov V, Pratap S, Dash C, Kim EY, Martinson J, McKay H, Epeldegui M, Margolick JB, Stapleton JT, Okeoma CM. HIV-infection and cocaine use regulate semen extracellular vesicles proteome and miRNAome in a manner that mediates strategic monocyte haptotaxis governed by miR-128 network. Cell Mol Life Sci 2021; 79:5. [PMID: 34936021 PMCID: PMC9134786 DOI: 10.1007/s00018-021-04068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Nadia Shouman
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Victor Paromov
- CRISALIS, School of Graduate Studies and Research, Proteomics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Siddharth Pratap
- CRISALIS, School of Graduate Studies and Research, Bioinformatics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Chandravanu Dash
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather McKay
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Marta Epeldegui
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, UCLA AIDS Institute and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, USA
- David Geffen School of Medicine at UCLA, UCLA AIDS Institute, Los Angeles, USA
- UCLA Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21207, USA
| | - Jack T Stapleton
- Departments of Internal Medicine, Microbiology and Immunology, University of Iowa and Iowa City Veterans Administration Healthcare, Iowa City, IA, 52242-1081, USA
| | - Chioma M Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA.
| |
Collapse
|
13
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
14
|
Wang C, Yu G, Xu Y, Liu C, Sun Q, Li W, Sun J, Jiang Y, Ye L. Knockdown of Long Non-Coding RNA HCP5 Increases Radiosensitivity Through Cellular Senescence by Regulating microRNA-128 in Gliomas. Cancer Manag Res 2021; 13:3723-3737. [PMID: 33994812 PMCID: PMC8113609 DOI: 10.2147/cmar.s301333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Glioma is the most common malignant brain tumor in adults. Radiation is a key therapy in glioma. However, the radioresistance of glioma was a big challenge. HLA complex P5 (HCP5) has been reported dysregulated in several types of malignant tumor, including glioma. The role of HCP5 in the radiosensitivity of glioma is so far unknown. The present study aimed to investigate the effect of HCP5 on radiosensitivity in gliomas. Methods The levels of HCP5 and microRNA (miR)-128 were detected using qRT-PCR. The cell growth curve was used to show the cell proliferation and evaluate the radiosensitivity of glioma cells following exposure to X-ray. Senescence-associated β-galactosidase (SA-β-Gal) staining was used to test the cellular senescence. Luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to determine the correlation between HCP5 and miR-128. Results HCP5 level of glioma cells was significantly higher than human astrocytes, whereas miR-128 level was lower in glioma cells. Besides, the HCP5 expression was increased in glioma tissues compared to normal brain tissues (NBTs). Knockdown of HCP5 inhibited cell proliferation and increased radiosensitivity in glioma cells. MiR-128 was predicted to be a target of HCP5. It was demonstrated that HCP5 directly bound to miR-128 and regulated its expression in glioma cells. Furthermore, the effects of HCP5 knockdown on radiosensitivity of glioma cells were attenuated by the inhibitor of miR-128. Conclusion These findings suggested that interaction between lncRNA HCP5 and microRNA-128 could regulate the radiosensitivity of glioma cells by intervening in cellular senescence. This might be used as the potential radio-sensitization targets for glioma therapy.
Collapse
Affiliation(s)
- Cuihong Wang
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Guanying Yu
- Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, People's Republic of China
| | - Ying Xu
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Chengfei Liu
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Qian Sun
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Wenqing Li
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Junhua Sun
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Yuhua Jiang
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Lan Ye
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| |
Collapse
|
15
|
MicroRNA-128 Confers Anti-Endothelial Adhesion and Anti-Migration Properties to Counteract Highly Metastatic Cervical Cancer Cells' Migration in a Parallel-Plate Flow Chamber. Int J Mol Sci 2020; 22:ijms22010215. [PMID: 33379338 PMCID: PMC7796002 DOI: 10.3390/ijms22010215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the distant metastasis of cervical cancer cells being a prominent cause of mortality, neither the metastasis capacity nor the in vitro conditions mimicking adhesion of cervical cancer cells to endothelial cells have been fully elucidated. Circulating metastatic cancer cells undergo transendothelial migration and invade normal organs in distant metastasis; however, the putative molecular mechanism remains largely uncertain. In this study, we describe the use of an in vitro parallel-plate flow chamber to simulate the dynamic circulation stress on cervical cancer cells and elucidate their vascular adhesion and metastasis. We isolate the viable and shear stress-resistant (SSR) cervical cancer cells for mechanistic studies. Remarkably, the identified SSR-HeLa and SSR-CaSki exhibited high in vitro adhesive and metastatic activities. Hence, a consistently suppressed miR-128 level was revealed in SSR cell clones compared to those of parental wild-type (WT) cells. Overexpressed miR-128 attenuated SSR-HeLa cells’ adherence to human umbilical cord vein endothelial cells (HUVECs); in contrast, suppressed miR-128 efficiently augmented the static adhesion capacity in WT-HeLa and WT-CaSki cells. Hence, amplified miR-128 modestly abolished in vitro SSR-augmented HeLa and CaSki cell movement, whereas reduced miR-128 aggravated the migration speed in a time-lapse recording assay in WT groups. Consistently, the force expression of miR-128 alleviated the SSR-enhanced HeLa and CaSki cell mobility in a wound healing assay. Notably, miR-128 mediated SSR-enhanced HeLa and CaSki cells’ adhesion and metastasis through suppressed ITGA5, ITGB5, sLex, CEACAM-6, MMP9, and MMP23 transcript levels. Our data provide evidence suggesting that miR-128 is a promising microRNA that prevented endothelial cells’ adhesion and transendothelial migration to contribute to the SSR-enhanced adhesion and metastasis progression under a parallel-plate flow chamber system. This indicates that the nucleoid-based miR-128 strategy may be an attractive therapeutic strategy to eliminate tumor cells resistant to circulation shear flow, prevent vascular adhesion, and preclude subsequent transendothelial metastasis.
Collapse
|
16
|
Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, Pillai P, Periyasamy P, Buch S. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol 2020; 40:101843. [PMID: 33385630 PMCID: PMC7779826 DOI: 10.1016/j.redox.2020.101843] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of combined antiretroviral treatment (cART) as a treatment for HIV-1 infection has not only resulted in a dramatic decrease in the peripheral viral load but has also led to increased life expectancy of the infected individuals. Paradoxically, increased lifespan is accompanied with higher prevalence of age-related comorbidities, including HIV-associated neurocognitive disorders (HAND). Present study was aimed at exploring the role of HIV TAT protein in mediating microglial mitochondrial oxidative stress, ultimately resulting in neuroinflammation and microglial senescence. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to HIV TAT protein resulted in a senescence-like phenotype, that was characterized by elevated expression of both p16 and p21 proteins, increased numbers of senescence-associated-β-galactosidase positive cells, augmented cell-cycle arrest, increased release of proinflammatory cytokines and decreased telomerase activity. Additionally, exposure of mPMs to HIV TAT also resulted downregulation of SIRT3 with a concomitant increase in mitochondrial oxidative stress. Dual luciferase reporter assay identified miR-505 as a novel target of SIRT3, which was upregulated in mPMs exposed to HIV TAT. Furthermore, transient transfection of mPMs with either the SIRT3 plasmid or miRNA-505 inhibitor upregulated the expression of SIRT3 and mitochondrial antioxidant enzymes, with a concomitant decrease in microglial senescence. These in vitro findings were also validated in the prefrontal cortices and striatum of HIV transgenic rats as well as cART-treated HIV-infected individuals. In summary, this study underscores a yet undiscovered novel mechanism(s) underlying HIV TAT-mediated induction of senescence phenotype in microglia, involving the miR-505-SIRT3 axis-mediated induction of mitochondrial oxidative stress. HIV TAT induces senescence-like phenotype in microglia. HIV TAT decreases SIRT3 with concomitant increase of mitochondrial ROS. Overexpression of SIRT3 attenuated HIV TAT-mediated microglial senescence. miR-505 negatively regulate SIRT3 expression. miR-505 inhibition prevents SIRT3-mediated mitochondria stress and glial senescence.
Collapse
Affiliation(s)
- Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ashutosh Tripathi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
17
|
Cao D, Zhu H, Zhao Q, Huang J, Zhou C, He J, Liang Y. MiR-128 suppresses metastatic capacity by targeting metadherin in breast cancer cells. Biol Res 2020; 53:43. [PMID: 32993809 PMCID: PMC7526227 DOI: 10.1186/s40659-020-00311-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023] Open
Abstract
Background Breast cancer, the most common cancer in women worldwide, causes the vast majority of cancer-related deaths. Undoubtedly, tumor metastasis and recurrence are responsible for more than 90 percent of these deaths. MicroRNAs are endogenous noncoding RNAs that have been integrated into almost all the physiological and pathological processes, including metastasis. In the present study, the role of miR-128 in breast cancer was investigated. Results Compared to the corresponding adjacent normal tissue, the expression of miR-128 was significantly suppressed in human breast cancer specimens. More importantly, its expression level was reversely correlated to histological grade of the cancer. Ectopic expression of miR-128 in the aggressive breast cancer cell line MDA-MB-231 could inhibit cell motility and invasive capacity remarkably. Afterwards, Metadherin (MTDH), also known as AEG-1 (Astrocyte Elevated Gene 1) and Lyric that implicated in various aspects of cancer progression and metastasis, was further identified as a direct target gene of miR-128 and its expression level was up-regulated in clinical samples as expected. Moreover, knockdown of MTDH in MDA-MB-231 cells obviously impaired the migration and invasion capabilities, whereas re-expression of MTDH abrogated the suppressive effect caused by miR-128. Conclusions Overall, these findings demonstrate that miR-128 could serve as a novel biomarker for breast cancer metastasis and a potent target for treatment in the future.
Collapse
Affiliation(s)
- Danxia Cao
- Comprehensive Breast Health Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui-Jin Er Road, Shanghai, 200025, China
| | - Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, No. 280, Chong-Qing South Road, Shanghai, 200025, China
| | - Jianming Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China
| | - Cixiang Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, No. 280, Chong-Qing South Road, Shanghai, 200025, China
| | - Jianrong He
- Comprehensive Breast Health Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui-Jin Er Road, Shanghai, 200025, China.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China.
| |
Collapse
|
18
|
Dahan L, Rampon C, Florian C. Age-related memory decline, dysfunction of the hippocampus and therapeutic opportunities. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109943. [PMID: 32298784 DOI: 10.1016/j.pnpbp.2020.109943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
While the aging of the population is a sign of progress for societies, it also carries its load of negative aspects. Among them, cognitive decline and in particular memory loss is a common feature of non-pathological aging. Autobiographical memories, which rely on the hippocampus, are a primary target of age-related cognitive decline. Here, focusing on the neurobiological mechanisms of memory formation and storage, we describe how hippocampal functions are altered across time in non-pathological mammalian brains. Several hallmarks of aging have been well described over the last decades; among them, we consider altered synaptic communication and plasticity, reduction of adult neurogenesis and epigenetic alterations. Building on the neurobiological processes of cognitive aging that have been identified to date, we review some of the strategies based on lifestyle manupulation allowing to address age-related cognitive deficits.
Collapse
Affiliation(s)
- Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Cédrick Florian
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France.
| |
Collapse
|
19
|
Sessa F, Salerno M, Cipolloni L, Bertozzi G, Messina G, Mizio GD, Asmundo A, Pomara C. Anabolic-androgenic steroids and brain injury: miRNA evaluation in users compared to cocaine abusers and elderly people. Aging (Albany NY) 2020; 12:15314-15327. [PMID: 32756006 PMCID: PMC7467388 DOI: 10.18632/aging.103512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Anabolic-androgenic steroids (AASs) can be used to treat both hormonal diseases and other pathologies characterized by muscle loss (aging, cancer, and AIDS). Even if the adverse effects related to the misuse of AASs have been well studied in different systems and apparatuses, knowledge about brain damage is poor.In this scenario, this experimental study aimed to analyze the role of several microRNAs (miRNAs) in brain damage after AAS misuse, to better comprehend the underlying mechanisms. The research hypothesis at the base of this experimental study is that the chronic use of AASs may be associated to brain damage with a dysregulation of these miRNAs. Moreover, miRNA expression values were compared among three different groups, "AAS" group, "Cocaine" group and "Aging" group, in order to define if AAS brain damage can be compared with the brain impairment linked to aging and/or cocaine assumption.This experimental study revealed that the tested miRNAs (hsa-miR-21-5p, hsa-miR-34a-5p, hsa-miR-124-5p, hsa-miR-132-3p, and hsa-miR-144-3p) were overexpressed in all enrolled groups. In the light of the presented results, the identification of specific circulating and/or tissue biomarkers is challenging for the scientific community. Further studies with larger samples are needed to confirm these interesting findings.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania 95121, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Giulio Di Mizio
- Department of Legal, Historical, Economic and Social Sciences, University of Catanzaro, Catanzaro 88100, Italy
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences, and of Morphological and Functional Images, Section of Legal Medicine, University of Messina, Messina 98121, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania 95121, Italy
| |
Collapse
|
20
|
Rahman MH, Peng S, Hu X, Chen C, Rahman MR, Uddin S, Quinn JM, Moni MA. A Network-Based Bioinformatics Approach to Identify Molecular Biomarkers for Type 2 Diabetes that Are Linked to the Progression of Neurological Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031035. [PMID: 32041280 PMCID: PMC7037290 DOI: 10.3390/ijerph17031035] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022]
Abstract
Neurological diseases (NDs) are progressive disorders, the progression of which can be significantly affected by a range of common diseases that present as comorbidities. Clinical studies, including epidemiological and neuropathological analyses, indicate that patients with type 2 diabetes (T2D) have worse progression of NDs, suggesting pathogenic links between NDs and T2D. However, finding causal or predisposing factors that link T2D and NDs remains challenging. To address these problems, we developed a high-throughput network-based quantitative pipeline using agnostic approaches to identify genes expressed abnormally in both T2D and NDs, to identify some of the shared molecular pathways that may underpin T2D and ND interaction. We employed gene expression transcriptomic datasets from control and disease-affected individuals and identified differentially expressed genes (DEGs) in tissues of patients with T2D and ND when compared to unaffected control individuals. One hundred and ninety seven DEGs (99 up-regulated and 98 down-regulated in affected individuals) that were common to both the T2D and the ND datasets were identified. Functional annotation of these identified DEGs revealed the involvement of significant cell signaling associated molecular pathways. The overlapping DEGs (i.e., seen in both T2D and ND datasets) were then used to extract the most significant GO terms. We performed validation of these results with gold benchmark databases and literature searching, which identified which genes and pathways had been previously linked to NDs or T2D and which are novel. Hub proteins in the pathways were identified (including DNM2, DNM1, MYH14, PACSIN2, TFRC, PDE4D, ENTPD1, PLK4, CDC20B, and CDC14A) using protein-protein interaction analysis which have not previously been described as playing a role in these diseases. To reveal the transcriptional and post-transcriptional regulators of the DEGs we used transcription factor (TF) interactions analysis and DEG-microRNAs (miRNAs) interaction analysis, respectively. We thus identified the following TFs as important in driving expression of our T2D/ND common genes: FOXC1, GATA2, FOXL1, YY1, E2F1, NFIC, NFYA, USF2, HINFP, MEF2A, SRF, NFKB1, USF2, HINFP, MEF2A, SRF, NFKB1, PDE4D, CREB1, SP1, HOXA5, SREBF1, TFAP2A, STAT3, POU2F2, TP53, PPARG, and JUN. MicroRNAs that affect expression of these genes include mir-335-5p, mir-16-5p, mir-93-5p, mir-17-5p, mir-124-3p. Thus, our transcriptomic data analysis identifies novel potential links between NDs and T2D pathologies that may underlie comorbidity interactions, links that may include potential targets for therapeutic intervention. In sum, our neighborhood-based benchmarking and multilayer network topology methods identified novel putative biomarkers that indicate how type 2 diabetes (T2D) and these neurological diseases interact and pathways that, in the future, may be targeted for treatment.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (M.H.R.); (S.P.); (X.H.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Silong Peng
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (M.H.R.); (S.P.); (X.H.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiyuan Hu
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (M.H.R.); (S.P.); (X.H.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Chen
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; (M.H.R.); (S.P.); (X.H.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Md Rezanur Rahman
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Enayetpur, Sirajgonj 6751, Bangladesh;
| | - Shahadat Uddin
- Complex Systems Research Group & Project Management Program, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Julian M.W. Quinn
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
| | - Mohammad Ali Moni
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
21
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
22
|
Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in RPE and protects against oxidative stress-induced outer retinal degeneration. Redox Biol 2019; 28:101336. [PMID: 31590045 PMCID: PMC6812120 DOI: 10.1016/j.redox.2019.101336] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
The retinal pigment epithelium (RPE) is consistently exposed to high levels of pro-oxidant and inflammatory stimuli. As such, under normal conditions the antioxidant machinery in the RPE cell is one of the most efficient in the entire body. However, antioxidant defense mechanisms are often impacted negatively by the process of aging and/or degenerative disease leaving RPE susceptible to damage which contributes to retinal dysfunction. Thus, understanding better the mechanisms governing antioxidant responses in RPE is critically important. Here, we evaluated the role of the redox sensitive microRNA miR-144 in regulation of antioxidant signaling in human and mouse RPE. In cultured human RPE, miR-144-3p and miR-144-5p expression was upregulated in response to pro-oxidant stimuli. Likewise, overexpression of miR-144-3p and -5p using targeted miR mimics was associated with reduced expression of Nrf2 and downstream antioxidant target genes (NQO1 and GCLC), reduced levels of glutathione and increased RPE cell death. Alternately, some protection was conferred against the above when miR-144-3p and miR-144-5p expression was suppressed using antagomirs. Expression analyses revealed a higher conservation of miR-144-3p expression across species and additionally, the presence of two potential Nrf2 binding sites in the 3p sequence compared to only one in the 5p sequence. Thus, we evaluated the impact of miR-144-3p expression in the retinas of mice in which a robust pro-oxidant environment was generated using sodium iodate (SI). Subretinal injection of miR-144-3p antagomir in SI mice preserved retinal integrity and function, decreased oxidative stress, limited apoptosis and enhanced antioxidant gene expression. Collectively, the present work establishes miR-144 as a potential target for preventing and treating degenerative retinal diseases in which oxidative stress is paramount and RPE is prominently affected (e.g., age-related macular degeneration and diabetic retinopathy).
Collapse
|
23
|
Kinser HE, Pincus Z. MicroRNAs as modulators of longevity and the aging process. Hum Genet 2019; 139:291-308. [PMID: 31297598 DOI: 10.1007/s00439-019-02046-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally repress translation or induce mRNA degradation of target transcripts through sequence-specific binding. miRNAs target hundreds of transcripts to regulate diverse biological pathways and processes, including aging. Many microRNAs are differentially expressed during aging, generating interest in their use as aging biomarkers and roles as regulators of the aging process. In the invertebrates Caenorhabditis elegans and Drosophila, a number of miRNAs have been found to both positive and negatively modulate longevity through canonical aging pathways. Recent studies have also shown that miRNAs regulate age-associated processes and pathologies in a diverse array of mammalian tissues, including brain, heart, bone, and muscle. The review will present an overview of these studies, highlighting the role of individual miRNAs as biomarkers of aging and regulators of longevity and tissue-specific aging processes.
Collapse
Affiliation(s)
- Holly E Kinser
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, USA.
| |
Collapse
|
24
|
Griñán-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Ávalos V, Sanfeliu C, Pallàs M. Understanding Epigenetics in the Neurodegeneration of Alzheimer's Disease: SAMP8 Mouse Model. J Alzheimers Dis 2019; 62:943-963. [PMID: 29562529 PMCID: PMC5870033 DOI: 10.3233/jad-170664] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is emerging as the missing link among genetic inheritance, environmental influences, and body and brain health status. In the brain, specific changes in nucleic acids or their associated proteins in neurons and glial cells might imprint differential patterns of gene activation that will favor either cognitive enhancement or cognitive loss for more than one generation. Furthermore, derangement of age-related epigenetic signaling is appearing as a significant risk factor for illnesses of aging, including neurodegeneration and Alzheimer’s disease (AD). In addition, better knowledge of epigenetic mechanisms might provide hints and clues in the triggering and progression of AD. Intense research in experimental models suggests that molecular interventions for modulating epigenetic mechanisms might have therapeutic applications to promote cognitive maintenance through an advanced age. The SAMP8 mouse is a senescence model with AD traits in which the study of epigenetic alterations may unveil epigenetic therapies against the AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| |
Collapse
|
25
|
Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma. Aging Dis 2019; 10:329-352. [PMID: 31011481 PMCID: PMC6457055 DOI: 10.14336/ad.2018.0409] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Keyana N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
26
|
The Vast Complexity of the Epigenetic Landscape during Neurodevelopment: An Open Frame to Understanding Brain Function. Int J Mol Sci 2018; 19:ijms19051333. [PMID: 29723958 PMCID: PMC5983638 DOI: 10.3390/ijms19051333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Development is a well-defined stage-to-stage process that allows the coordination and maintenance of the structure and function of cells and their progenitors, in a complete organism embedded in an environment that, in turn, will shape cellular responses to external stimuli. Epigenetic mechanisms comprise a group of process that regulate genetic expression without changing the DNA sequence, and they contribute to the necessary plasticity of individuals to face a constantly changing medium. These mechanisms act in conjunction with genetic pools and their correct interactions will be crucial to zygote formation, embryo development, and brain tissue organization. In this work, we will summarize the main findings related to DNA methylation and histone modifications in embryonic stem cells and throughout early development phases. Furthermore, we will critically outline some key observations on how epigenetic mechanisms influence the rest of the developmental process and how long its footprint is extended from fecundation to adulthood.
Collapse
|
27
|
Pardo J, Abba MC, Lacunza E, Ogundele OM, Paiva I, Morel GR, Outeiro TF, Goya RG. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function. J Gerontol A Biol Sci Med Sci 2017. [DOI: 10.1093/gerona/glx125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Joaquín Pardo
- INIBIOLP-Histology B-Pathology B, University of La Plata, La Plata, Argentina
| | - Martin C Abba
- CINIBA, School of Medicine, University of La Plata, La Plata, Argentina
| | - Ezequiel Lacunza
- CINIBA, School of Medicine, University of La Plata, La Plata, Argentina
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge
| | - Isabel Paiva
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany
| | - Gustavo R Morel
- INIBIOLP-Histology B-Pathology B, University of La Plata, La Plata, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rodolfo G Goya
- INIBIOLP-Histology B-Pathology B, University of La Plata, La Plata, Argentina
| |
Collapse
|
28
|
Abstract
The importance of noncoding genome has become more evident in recent years. Before genome sequencing, the most well studied portion of our genome was protein coding genes. Interestingly, this coding portion accounted only for 1.5% of the genome, the rest being the noncoding sequences. Noncoding RNAs (ncRNAs) are involved in normal cell physiology, stress, and disease states. A class of small ncRNAs and miRNAs has gained much importance because of its involvement in human diseases such as cancer. Involvement of long ncRNAs have also been acknowledged in other human diseases, especially in neurodegenerative diseases. Neurodegenerative diseases are characterized by the presence of abnormally folded proteins that are toxic to the cell. Several studies from model organisms suggest upregulation of pathways that clear this toxic protein may provide protection against neurodegeneration. In this review, I summarize the importance of ncRNAs in protein quality control system of cell that is implicated in this fatal group of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sonali Sengupta
- Division of Biomolecules and Genetics, School of Biosciences and Technology, VIT University, Vellore 632 014, India.
| |
Collapse
|
29
|
Chen PH, Cheng CH, Shih CM, Ho KH, Lin CW, Lee CC, Liu AJ, Chang CK, Chen KC. The Inhibition of microRNA-128 on IGF-1-Activating mTOR Signaling Involves in Temozolomide-Induced Glioma Cell Apoptotic Death. PLoS One 2016; 11:e0167096. [PMID: 27893811 PMCID: PMC5125683 DOI: 10.1371/journal.pone.0167096] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Temozolomide (TMZ), an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug used in the clinical therapy of glioblastoma multiforme, the most common and high-grade primary glioma in adults. Micro (mi)RNAs, which are small noncoding RNAs, post-transcriptionally regulate gene expressions and are involved in gliomagenesis. However, no studies have reported relationships between TMZ and miRNA gene regulation. We investigated TMZ-mediated miRNA profiles and its molecular mechanisms underlying the induction of glioma cell death. By performing miRNA microarray and bioinformatics analyses, we observed that expression of 248 miRNAs was altered, including five significantly upregulated and 17 significantly downregulated miRNAs, in TMZ-treated U87MG cells. miR-128 expression levels were lower in different glioma cells and strongly associated with poor survival. TMZ treatment significantly upregulated miR-128 expression. TMZ significantly enhanced miR-128-1 promoter activity and transcriptionally regulated miR-128 levels through c-Jun N-terminal kinase 2/c-Jun pathways. The overexpression and knockdown of miR-128 expression significantly affected TMZ-mediated cell viability and apoptosis-related protein expression. Furthermore, the overexpression of miR-128 alone enhanced apoptotic death of glioma cells through caspase-3/9 activation, poly(ADP ribose) polymerase degradation, reactive oxygen species generation, mitochondrial membrane potential loss, and non-protective autophagy formation. Finally, we identified that key members in mammalian target of rapamycin (mTOR) signaling including mTOR, rapamycin-insensitive companion of mTOR, insulin-like growth factor 1, and PIK3R1, but not PDK1, were direct target genes of miR-128. TMZ inhibited mTOR signaling through miR-128 regulation. These results indicate that miR-128-inhibited mTOR signaling is involved in TMZ-mediated cytotoxicity. Our findings may provide a better understanding of cytotoxic mechanisms of TMZ involved in glioblastoma development.
Collapse
Affiliation(s)
- Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Kim J, Yoon H, Chung DE, Brown JL, Belmonte KC, Kim J. miR-186 is decreased in aged brain and suppresses BACE1 expression. J Neurochem 2016; 137:436-45. [PMID: 26710318 DOI: 10.1111/jnc.13507] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 01/17/2023]
Abstract
Accumulation of amyloid β (Aβ) in the brain is a key pathological hallmark of Alzheimer's disease (AD). Because aging is the most prominent risk factor for AD, understanding the molecular changes during aging is likely to provide critical insights into AD pathogenesis. However, studies on the role of miRNAs in aging and AD pathogenesis have only recently been initiated. Identifying miRNAs dysregulated by the aging process in the brain may lead to novel understanding of molecular mechanisms of AD pathogenesis. Here, we identified that miR-186 levels are gradually decreased in cortices of mouse brains during aging. In addition, we demonstrated that miR-186 suppresses β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression by directly targeting the 3'UTR of Bace1 mRNA in neuronal cells. In contrast, inhibition of endogenous miR-186 significantly increased BACE1 levels in neuronal cells. Importantly, miR-186 over-expression significantly decreased Aβ level by suppressing BACE1 expression in cells expressing human pathogenic mutant amyloid precursor protein. Taken together, our data demonstrate that miR-186 is a potent negative regulator of BACE1 in neuronal cells and it may be one of the molecular links between brain aging and the increased risk for AD during aging. We identified that miR-186 levels are gradually decreased in mouse cortices during aging. Furthermore, we demonstrated that miR-186 is a novel negative regulator of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression in neuronal cells. Therefore, we proposed that reduction in miR-186 levels during aging may lead to the up-regulation of BACE1 in the brain, thereby increasing a risk for Alzheimer's disease in aged individuals. Read the Editorial Highlight for this article on page 308.
Collapse
Affiliation(s)
- Jaekwang Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.,Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hyejin Yoon
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.,Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, Florida, USA
| | - Dah-Eun Chung
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.,Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, Florida, USA
| | - Jennifer L Brown
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krystal C Belmonte
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.,Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, Florida, USA
| |
Collapse
|
31
|
Takeda T, Tanabe H. Lifespan and reproduction in brain-specific miR-29-knockdown mouse. Biochem Biophys Res Commun 2016; 471:454-8. [PMID: 26902119 DOI: 10.1016/j.bbrc.2016.02.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
Abstract
The microRNA miR-29 is widely distributed and highly expressed in adult mouse brain during the mouse's lifetime. We recently created conditional mutant mice whose miR-29 was brain-specifically knocked down through overexpression of an antisense RNA transgene against miR-29. To explore a role for brain miR-29 in maximizing organismal fitness, we assessed somatic growth, reproduction, and lifespan in the miR-29-knockdown (KD) mice and their wild-type (WT) littermates. The KD mice were developmentally indistinguishable from WT mice with respect to gross morphology and physical activity. Fertility testing revealed that KD males were subfertile, whereas KD females were hyperfertile, only in terms of reproductive success, when compared to their gender-matched WT correspondents. Another phenotypic difference between KD and WT animals appeared in their lifespan data; KD males displayed an overall increasing tendency in post-reproductive survival relative to WT males. In contrast, KD females were prone to shorter lifespans than WT females. These results clarify that brain-targeted miR-29 knockdown affects both lifespan and reproduction in a gender-dependent manner, and moreover that the reciprocal responsiveness to the miR-29 knockdown between these two phenotypes in both genders closely follow life-course models based on the classical trade-off prediction wherein elaborate early-life energetic investment in reproduction entails accelerated late-life declines in survival, and vice versa. Thus, this study identified miR-29 as the first mammalian miRNA that is directly implicated in the lifetime trade-off between the two major fitness components, lifespan and reproduction.
Collapse
Affiliation(s)
- Toru Takeda
- Department of Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hiroyuki Tanabe
- Department of Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
32
|
Kim W, Noh H, Lee Y, Jeon J, Shanmugavadivu A, McPhie DL, Kim KS, Cohen BM, Seo H, Sonntag KC. MiR-126 Regulates Growth Factor Activities and Vulnerability to Toxic Insult in Neurons. Mol Neurobiol 2016; 53:95-108. [PMID: 25407931 PMCID: PMC4437970 DOI: 10.1007/s12035-014-8989-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/04/2014] [Indexed: 01/19/2023]
Abstract
Dysfunction of growth factor (GF) activities contributes to the decline and death of neurons during aging and in neurodegenerative diseases. In addition, neurons become more resistant to GF signaling with age. Micro (mi)RNAs are posttranscriptional regulators of gene expression that may be crucial to age- and disease-related changes in GF functions. MiR-126 is involved in regulating insulin/IGF-1/phosphatidylinositol-3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) signaling, and we recently demonstrated a functional role of miR-126 in dopamine neuronal cell survival in models of Parkinson's disease (PD)-associated toxicity. Here, we show that elevated levels of miR-126 increase neuronal vulnerability to ubiquitous toxicity mediated by staurosporine (STS) or Alzheimer's disease (AD)-associated amyloid beta 1-42 peptides (Aβ1-42). The neuroprotective factors IGF-1, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and soluble amyloid precursor protein α (sAPPα) could diminish but not abrogate the toxic effects of miR-126. In miR-126 overexpressing neurons derived from Tg6799 familial AD model mice, we observed an increase in Aβ1-42 toxicity, but surprisingly, both Aβ1-42 and miR-126 promoted neurite sprouting. Pathway analysis revealed that miR-126 overexpression downregulated elements in the GF/PI3K/AKT and ERK signaling cascades, including AKT, GSK-3β, ERK, their phosphorylation, and the miR-126 targets IRS-1 and PIK3R2. Finally, inhibition of miR-126 was neuroprotective against both STS and Aβ1-42 toxicity. Our data provide evidence for a novel mechanism of regulating GF/PI3K signaling in neurons by miR-126 and suggest that miR-126 may be an important mechanistic link between metabolic dysfunction and neurotoxicity in general, during aging, and in the pathogenesis of specific neurological disorders, including PD and AD.
Collapse
Affiliation(s)
- Woori Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, MRC 223, 115 Mill Street, Belmont, MA, 02478, USA
| | - Haneul Noh
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea
| | - Yenarae Lee
- Department of Psychiatry, McLean Hospital, Harvard Medical School, MRC 223, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jeha Jeon
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea
| | - Arthi Shanmugavadivu
- Department of Psychiatry, McLean Hospital, Harvard Medical School, MRC 223, 115 Mill Street, Belmont, MA, 02478, USA
| | - Donna L McPhie
- Department of Psychiatry, McLean Hospital, Harvard Medical School, MRC 223, 115 Mill Street, Belmont, MA, 02478, USA
| | - Kwang-Soo Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, MRC 223, 115 Mill Street, Belmont, MA, 02478, USA
| | - Bruce M Cohen
- Department of Psychiatry, McLean Hospital, Harvard Medical School, MRC 223, 115 Mill Street, Belmont, MA, 02478, USA
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea
| | - Kai C Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, MRC 223, 115 Mill Street, Belmont, MA, 02478, USA.
| |
Collapse
|
33
|
Xu J, Liu Y, Guo S, Ma S, Xiao L, Wei N, Xue R. Expression Profile of MiR-128 in the Astrocytoma Patients and Cell Lines. Mol Neurobiol 2015; 53:4631-7. [PMID: 26307612 DOI: 10.1007/s12035-015-9401-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Malignant astrocytomas are the most common primary brain tumors. The critical characterizes of astrocyomas are their aggressive and infiltrative in the brain, which leads to uncontrollable by conventional forms of therapy. MicroRNAs are small RNAs that had been found to regulate their targets by specific binding to the 3'-untranslated region (3'UTR) of mRNA. Recent advances in understanding the molecular biology of these tumors have revealed that microRNA (miRNA) disruption may play important roles in the pathogenesis of astrocytomas. And some of the miRNA alterations were found in the serum of astrocytoma patients. In this study, we studied the expression profile of miR-128, in the different stages of astrocytoma tissues and two human astrocytoma cell lines, A172 and T98G cells. We found that the levels of miR-128 are decreased in the A172 and T98G cells when compared to normal human astrocyte (NHA). Furthermore, the levels of miR-128 decreased gradually to the pathological stages of astrocytomas. We also identified that TROVE2 is a novel target of miR-128 by the luciferase reporter system. Furthermore, the expression levels of TROVE2 are dramatically increased with the pathological stages increasing. Finally, the levels of TROVE2 are negatively correlated with miR-128 in astrocytoma tissues. Our data provided novel evidence for the miR-128 and TROVE2 in the development of human astrocytomas.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Guo
- Clinical Laboratory, Henan Provincial People's Hospital, 7 Wei Wu Road, Zhengzhou, 450000, China
| | - Shengli Ma
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Xiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Xue
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
34
|
|
35
|
Yin L, Sun Y, Wu J, Yan S, Deng Z, Wang J, Liao S, Yin D, Li G. Discovering novel microRNAs and age-related nonlinear changes in rat brains using deep sequencing. Neurobiol Aging 2014; 36:1037-44. [PMID: 25475536 DOI: 10.1016/j.neurobiolaging.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022]
Abstract
Elucidating the molecular mechanisms of brain aging remains a significant challenge for biogerontologists. The discovery of gene regulation by microRNAs (miRNAs) has added a new dimension for examining this process; however, the full complement of miRNAs involved in brain aging is still not known. In this study, miRNA profiles of young, adult, and old rats were obtained to evaluate molecular changes during aging. High-throughput deep sequencing revealed 547 known and 171 candidate novel miRNAs that were differentially expressed among groups. Unexpectedly, miRNA expression did not decline progressively with advancing age; moreover, genes targeted by age-associated miRNAs were predicted to be involved in biological processes linked to aging and neurodegenerative diseases. These findings provide novel insight into the molecular mechanisms underlying brain aging and a resource for future studies on age-related brain disorders.
Collapse
Affiliation(s)
- Lanxuan Yin
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Yubai Sun
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Jinfeng Wu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Siyu Yan
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Zhenglu Deng
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Jun Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Shenke Liao
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Dazhong Yin
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China; Qingyuan City People's Hospital of Jinan University, Qingyuan, Guangdong, P. R. China
| | - Guolin Li
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China.
| |
Collapse
|
36
|
Mather KA, Kwok JB, Armstrong N, Sachdev PS. The role of epigenetics in cognitive ageing. Int J Geriatr Psychiatry 2014; 29:1162-71. [PMID: 25098266 DOI: 10.1002/gps.4183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVE As the population is ageing, a better understanding of the underlying causes of age-related cognitive decline (cognitive ageing) is required. Epigenetic dysregulation is proposed as one of the underlying mechanisms for cognitive ageing. We review the current knowledge on epigenetics and cognitive ageing and appraise the potential of epigenetic preventative and therapeutic interventions. DESIGN Articles on cognitive ageing and epigenetics in English were identified. RESULTS Epigenetic dysregulation occurs with cognitive ageing, with changes in histone post-translational modifications, DNA methylation and non-coding RNA reported. However, human studies are lacking, with most being cross-sectional using peripheral blood samples. Pharmacological and lifestyle factors have the potential to change aberrant epigenetic profiles; but few studies have examined this in relation to cognitive ageing. CONCLUSIONS The relationship between epigenetic modifications and cognitive ageing is only beginning to be investigated. Epigenetic dysregulation appears to be an important feature in cognitive ageing, but whether it is an epiphenomenon or a causal factor remains to be elucidated. Clarification of the relationship between epigenetic profiles of different cell types is essential and would determine whether epigenetic marks of peripheral tissues can be used as a proxy for changes occurring in the brain. The use of lifestyle and pharmacological interventions to improve cognitive performance and quality of life of older adults needs more investigation.
Collapse
Affiliation(s)
- Karen A Mather
- Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
37
|
Sharma S, Eghbali M. Influence of sex differences on microRNA gene regulation in disease. Biol Sex Differ 2014; 5:3. [PMID: 24484532 PMCID: PMC3912347 DOI: 10.1186/2042-6410-5-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022] Open
Abstract
Sexual dimorphism is observed in most human diseases. The difference in the physiology and genetics between sexes can contribute tremendously to the disease prevalence, severity, and outcome. Both hormonal and genetic differences between males and females can lead to differences in gene expression patterns that can influence disease risk and course. MicroRNAs have emerged as potential regulatory molecules in all organisms. They can have a broad effect on every aspect of physiology, including embryogenesis, metabolism, and growth and development. Numerous microRNAs have been identified and elucidated to play a key role in cardiovascular diseases, as well as in neurological and autoimmune disorders. This is especially important as microRNA-based tools can be exploited as beneficial therapies for disease treatment and prevention. Sex steroid hormones as well as X-linked genes can have a considerable influence on the regulation of microRNAs. However, there are very few studies highlighting the role of microRNAs in sex biased diseases. This review attempts to summarize differentially regulated microRNAs in males versus females in different diseases and calls for more attention in this underexplored area that should set the basis for more effective therapeutic strategies for sexually dimorphic diseases.
Collapse
Affiliation(s)
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, and Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, BH-160CHS, Los Angeles, CA 90095-7115, USA.
| |
Collapse
|
38
|
Li W, Chen L, Li W, Qu X, He W, He Y, Feng C, Jia X, Zhou Y, Lv J, Liang B, Chen B, Jiang J. Unraveling the characteristics of microRNA regulation in the developmental and aging process of the human brain. BMC Med Genomics 2013; 6:55. [PMID: 24321625 PMCID: PMC3878884 DOI: 10.1186/1755-8794-6-55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Structure and function of the human brain are subjected to dramatic changes during its development and aging. Studies have demonstrated that microRNAs (miRNAs) play an important role in the regulation of brain development and have a significant impact on brain aging and neurodegeneration. However, the underlining molecular mechanisms are not well understood. In general, development and aging are conventionally studied separately, which may not completely address the physiological mechanism over the entire lifespan. Thus, we study the regulatory effect between miRNAs and mRNAs in the developmental and aging process of the human brain by integrating miRNA and mRNA expression profiles throughout the lifetime. METHODS In this study, we integrated miRNA and mRNA expression profiles in the human brain across lifespan from the network perspective. First, we chose the age-related miRNAs by polynomial regression models. Second, we constructed the bipartite miRNA-mRNA regulatory network by pair-wise correlation coefficient analysis between miRNA and mRNA expression profiles. At last, we constructed the miRNA-miRNA synergistic network from the miRNA-mRNA network, considering not only the enrichment of target genes but also GO function enrichment of co-regulated target genes. RESULTS We found that the average degree of age-related miRNAs was significantly higher than that of non age-related miRNAs in the miRNA-mRNA regulatory network. The topological features between age-related and non age-related miRNAs were significantly different, and 34 reliable age-related miRNA synergistic modules were identified using Cfinder in the miRNA-miRNA synergistic network. The synergistic regulations of module genes were verified by reviewing miRNA target databases and previous studies. CONCLUSIONS Age-related miRNAs play a more important role than non age-related mrRNAs in the developmental and aging process of the human brain. The age-related miRNAs have synergism, which tend to work together as small modules. These results may provide a new insight into the regulation of miRNAs in the developmental and aging process of the human brain.
Collapse
Affiliation(s)
- Weiguo Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaoli Qu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Weiming He
- Institute of Opto-electronics, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chenchen Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanyan Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Binhua Liang
- National Microbology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Binbin Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
39
|
Persengiev S, Kondova I, Bontrop R. Insights on the functional interactions between miRNAs and copy number variations in the aging brain. Front Mol Neurosci 2013; 6:32. [PMID: 24106459 PMCID: PMC3788589 DOI: 10.3389/fnmol.2013.00032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/11/2013] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are regulatory genetic elements that coordinate the expression of thousands of genes and play important roles in brain aging and neurodegeneration. DNA polymorphisms affecting miRNA biogenesis, dosage, and gene targeting may represent potentially functional variants. The consequences of single nucleotide polymorphisms affecting miRNA function were previously demonstrated by both experimental and computational methods. However, little is known about how copy number variations (CNVs) influence miRNA metabolism and regulatory networks. We discuss potential mechanisms of CNVs-mediated effects on miRNA function and regulation that might have consequences for brain aging. We argue that CNVs, which potentially can alter miRNA expression, regulation or target gene recognition, are possible functional variants and should be considered high priority candidates in genotype–phenotype mapping studies of brain-related disorders.
Collapse
|
40
|
miR-128 and its target genes in tumorigenesis and metastasis. Exp Cell Res 2013; 319:3059-64. [PMID: 23958464 DOI: 10.1016/j.yexcr.2013.07.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding, 18-24 nucleotide length single-strand RNAs that could modulate gene expression at post-transcriptional level. Previous studies have shown that miR-128 enriched in the brain plays an important role in the development of nervous system and the maintenance of normal physical functions. Aberrant expression of miR-128 has been detected in many types of human tumors and its validated target genes are involved in cancer-related biological processes such as cell proliferation, differentiation and apoptosis. In this review, we will summarize the roles of miR-128 and its target genes in tumorigenesis and metastasis.
Collapse
|
41
|
Park S, Kang S, Min KH, Woo Hwang K, Min H. Age-Associated Changes in MicroRNA Expression in Bone Marrow Derived Dendritic Cells. Immunol Invest 2012; 42:179-90. [DOI: 10.3109/08820139.2012.717328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Non-coding RNA in Neurodegeneration. CURRENT GERIATRICS REPORTS 2012. [DOI: 10.1007/s13670-012-0023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Chan AWS, Kocerha J. The Path to microRNA Therapeutics in Psychiatric and Neurodegenerative Disorders. Front Genet 2012; 3:82. [PMID: 22629284 PMCID: PMC3354561 DOI: 10.3389/fgene.2012.00082] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/26/2012] [Indexed: 01/08/2023] Open
Abstract
The microRNA (miRNA) class of non-coding RNAs exhibit a diverse range of regulatory roles in neuronal functions that are conserved from lower vertebrates to primates. Disruption of miRNA expression has compellingly been linked to pathogenesis in neuropsychiatric and neurodegenerative disorders, such as schizophrenia, Alzheimer’s disease, and autism. The list of transcript targets governed by a single miRNA provide a molecular paradigm applicable for therapeutic intervention. Indeed, reports have shown that specific manipulation of a miRNA in cell or animal models can significantly alter phenotypes linked with neurological disease. Here, we review how a diverse range of biological systems, including Drosophila, rodents, and primates such as monkeys and humans, can be integrated into the translation of miRNAs as novel clinical targets.
Collapse
|
44
|
Pasinetti GM. Role of Personalized Medicine in the Identification and Characterization of Parkinson's Disease in Asymptomatic Subjects. ACTA ACUST UNITED AC 2012; 2. [PMID: 23024925 DOI: 10.4172/2161-0460.1000e118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|