1
|
Bellon A. Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Transl Psychiatry 2024; 14:127. [PMID: 38418498 PMCID: PMC10901833 DOI: 10.1038/s41398-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 03/01/2024] Open
Abstract
The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry and Behavioral Health, Hershey, PA, USA.
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, USA.
| |
Collapse
|
2
|
Lee YJ, Wang JK, Pai YM, Frost A, Viprakasit V, Ekwattanakit S, Chin HC, Liu JY. Culture of leukocyte-derived cells from human peripheral blood: Increased expression of pluripotent genes OCT4, NANOG, SOX2, self-renewal gene TERT and plasticity. Medicine (Baltimore) 2023; 102:e32746. [PMID: 36701726 PMCID: PMC9857475 DOI: 10.1097/md.0000000000032746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There are few stem cells in human peripheral blood (PB). Increasing the population and plasticity of stem cells in PB and applying it to regenerative medicine require suitable culture methods. In this study, leukocyte populations 250 mL of PB were collected using a blood separator before that were cultured in optimal cell culture medium for 4 to 7 days. After culturing, stemness characteristics were analyzed, and red blood cells were removed from the cultured cells. In our results, stemness markers of the leukocyte populations Sca-1+ CD45+, CD117+ CD45+, and very small embryonic-like stem cells CD34+ Lin- CD45- and CXCR4+ Lin- CD45- were significantly increased. Furthermore, the expression of stem cell genes OCT4 (POU5F1), NANOG, SOX2, and the self-renewal gene TERT was analyzed by quantitative real-time polymerase chain reaction in these cells, and it showed a significant increase. These cells could be candidates for multi-potential cells and were further induced using trans-differentiation culture methods. These cells showed multiple differentiation potentials for osteocytes, nerve cells, cardiomyocytes, and hepatocytes. These results indicate that appropriate culture methods can be applied to increase expression of pluripotent genes and plasticity. Leukocytes of human PB can be induced to trans-differentiate into pluripotent potential cells, which will be an important breakthrough in regenerative medicine.
Collapse
Affiliation(s)
- Yi-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ming Pai
- Autologous Stem Cell Technology Pty Ltd, Brisbane, Australia
| | - Alan Frost
- School of Veterinary Science, University of Queensland, Australia
| | - Vip Viprakasit
- Department of Pediatrics and Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supachai Ekwattanakit
- Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Hui-Chieh Chin
- Autologous Stem Cell Technology Pty Ltd, Brisbane, Australia
| | - Jah-Yao Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * Correspondence: Jah-Yao Liu, Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, 325, Section 2, Cheng-Kong Road, Taipei 11490, Taiwan (ROC) (e-mail: )
| |
Collapse
|
3
|
Karakota M, Gounari E, Koliakou I, Papaioannou M, Papanikolaou NA, Koliakos G. Induced differentiation and molecular characterization of monocytes-derived multipotential cells generated from commonly discarded leukapheresis filters. Tissue Cell 2022; 77:101825. [DOI: 10.1016/j.tice.2022.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
4
|
Koliakou I, Gounari E, Nerantzaki M, Pavlidou E, Bikiaris D, Kaloyianni M, Koliakos G. Differentiation Capacity of Monocyte-Derived Multipotential Cells on Nanocomposite Poly(e-caprolactone)-Based Thin Films. Tissue Eng Regen Med 2019; 16:161-175. [PMID: 30989043 PMCID: PMC6439045 DOI: 10.1007/s13770-019-00185-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 11/28/2022] Open
Abstract
Background Μonocyte-derived multipotential cells (MOMCs) include progenitors capable of differentiation into multiple cell lineages and thus represent an ideal autologous transplantable cell source for regenerative medicine. In this study, we cultured MOMCs, generated from mononuclear cells of peripheral blood, on the surface of nanocomposite thin films. Methods For this purpose, nanocomposite Poly(e-caprolactone) (PCL)-based thin films containing either 2.5 wt% silica nanotubes (SiO2ntbs) or strontium hydroxyapatite nanorods (SrHAnrds), were prepared using the spin-coating method. The induced differentiation capacity of MOMCs, towards bone and endothelium, was estimated using flow cytometry, real-time polymerase chain reaction, scanning electron microscopy and fluorescence microscopy after cells' genetic modification using the Sleeping Beauty Transposon System aiming their observation onto the scaffolds. Moreover, Wharton's Jelly Mesenchymal Stromal Cells were cultivated as a control cell line, while Human Umbilical Vein Endothelial Cells were used to strengthen and accelerate the differentiation procedure in semi-permeable culture systems. Finally, the cytotoxicity of the studied materials was checked with MTT assay. Results The highest differentiation capacity of MOMCs was observed on PCL/SiO2ntbs 2.5 wt% nanocomposite film, as they progressively lost their native markers and gained endothelial lineage, in both protein and transcriptional level. In addition, the presence of SrHAnrds in the PCL matrix triggered processes related to osteoblast bone formation. Conclusion To conclude, the differentiation of MOMCs was selectively guided by incorporating SiO2ntbs or SrHAnrds into a polymeric matrix, for the first time.
Collapse
Affiliation(s)
- Iro Koliakou
- Department of Biology, Laboratory of Animal Physiology, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
- Biohellenika Biotechnology Company, 65 Leoforos Georgikis Scholis, 57001 Thessaloníki, Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company, 65 Leoforos Georgikis Scholis, 57001 Thessaloníki, Greece
- Department of Biochemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Maria Nerantzaki
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
- PHysico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, 75005 Paris, France
| | - Eleni Pavlidou
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Dimitrios Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Martha Kaloyianni
- Department of Biology, Laboratory of Animal Physiology, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - George Koliakos
- Biohellenika Biotechnology Company, 65 Leoforos Georgikis Scholis, 57001 Thessaloníki, Greece
- Department of Biochemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| |
Collapse
|
5
|
Abstract
This chapter focuses on the culture of primary human cells from the salivary glands, typically parotid but also submandibular, where specialized acinar cells produce most of the components found in saliva and the intercalated ducts followed by striated ducts transport saliva to the oral cavity. Compared to many other epithelial cells, the zymogen-filled salivary acinar cells are very fragile, hence specialized techniques are needed to isolate and culture them. To reestablish the function of implantable 3D reassembled glands using tissue engineering approaches, it is critical to culture these cells in human-based matrices that permit them to move, reassemble, interconnect, and establish proper polarity by producing a basement membrane. Our team is working to develop a biologically based, implantable salivary gland replacement tissue for head and neck cancer patients suffering from post-radiation xerostomia using a "bottom up" reassembly paradigm. We use specialized extracellular matrix and growth factor supplemented hyaluronate hydrogels to promote reassembly of human salivary stem/progenitor cells (hS/PCs) isolated after surgical resection, a method we describe in this chapter. Cell-specific biomarkers are used to track the formation of the three major epithelial cell types comprising the salivary gland: acinar, ductal, and myoepithelial.
Collapse
|
6
|
Espitia Pinzon N, Stroo E, ‘t Hart BA, Bol JGJM, Drukarch B, Bauer J, van Dam AM. Tissue transglutaminase in marmoset experimental multiple sclerosis: discrepancy between white and grey matter. PLoS One 2014; 9:e100574. [PMID: 24959868 PMCID: PMC4069090 DOI: 10.1371/journal.pone.0100574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Infiltration of leukocytes is a major pathological event in white matter lesion formation in the brain of multiple sclerosis (MS) patients. In grey matter lesions, less infiltration of these cells occur, but microglial activation is present. Thus far, the interaction of β-integrins with extracellular matrix proteins, e.g. fibronectin, is considered to be of importance for the influx of immune cells. Recent in vitro studies indicate a possible role for the enzyme tissue Transglutaminase (TG2) in mediating cell adhesion and migration. In the present study we questioned whether TG2 is present in white and grey matter lesions observed in the marmoset model for MS. To this end, immunohistochemical studies were performed. We observed that TG2, expressed by infiltrating monocytes in white matter lesions co-expressed β1-integrin and is located in close apposition to deposited fibronectin. These data suggest an important role for TG2 in the adhesion and migration of infiltrating monocytes during white matter lesion formation. Moreover, in grey matter lesions, TG2 is mainly present in microglial cells together with some β1-integrin, whereas fibronectin is absent in these lesions. These data imply an alternative role for microglial-derived TG2 in grey matter lesions, e.g. cell proliferation. Further research should clarify the functional role of TG2 in monocytes or microglial cells in MS lesion formation.
Collapse
Affiliation(s)
- Nathaly Espitia Pinzon
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Esther Stroo
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Bert A. ‘t Hart
- Biomedical Primate Research Center, Department of Immunobiology, Rijswijk, The Netherlands
- University Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| | - John G. J. M. Bol
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Benjamin Drukarch
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Jan Bauer
- Center for Brain Research, Department of Neuroimmunology, Vienna, Austria
| | - Anne-Marie van Dam
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Hanson AM, Gambill J, Phomakay V, Staten CT, Kelley MD. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells. PLoS One 2014; 9:e93005. [PMID: 24671180 PMCID: PMC3966848 DOI: 10.1371/journal.pone.0093005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.
Collapse
Affiliation(s)
- Amanda M. Hanson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica Gambill
- College of Medicine, University of Arkansas Medical Sciences, Little Rock, Arkansas, United States of America
| | - Venusa Phomakay
- College of Medicine, University of Arkansas Medical Sciences, Little Rock, Arkansas, United States of America
| | - C. Tyler Staten
- College of Pharmacy, Harding University, Searcy, Arkansas United States of America
| | - Melissa D. Kelley
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Seta N, Okazaki Y, Miyazaki H, Kato T, Kuwana M. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells. PLoS One 2013; 8:e74246. [PMID: 24066125 PMCID: PMC3774638 DOI: 10.1371/journal.pone.0074246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/31/2013] [Indexed: 12/14/2022] Open
Abstract
Background We previously described a primitive cell population derived from human circulating CD14+ monocytes, named monocyte-derived multipotential cells (MOMCs), which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s) derived from circulating CD14− cells. The present study was conducted to identify factors that induce MOMC differentiation. Methods We cultured CD14+ monocytes on fibronectin in the presence or absence of platelets, CD14− peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. Results The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF)-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1′s critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14+CXCR4high cell population. Conclusion The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.
Collapse
Affiliation(s)
- Noriyuki Seta
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuka Okazaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Miyazaki
- Innovative Drug Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd., Takasaki, Japan
| | - Takashi Kato
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | - Masataka Kuwana
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|