1
|
Wang Y, Sun Y, Zhang X, Wang S, Huang X, Xu K, Liu Y, Huang Y, Xu J, Wei X, Cheng H, Pan L, Wang J, Gu Z. A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes. J Am Chem Soc 2025; 147:4167-4179. [PMID: 39869523 DOI: 10.1021/jacs.4c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8+ T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection. A therapeutic that can reverse new-onset T1D without harming the immune system remains urgently needed. Herein, we have constructed cellular vesicles presenting granzyme B-responsive fusion proteins (designated aCD8-GrzBcs-IL2) composed of a single-chain variable fragment of anti-CD8 antibodies and a mutein interleukin-2 (IL2). aCD8-GrzBcs-IL2 is designed to simultaneously inhibit CD8+ T cells and promote Treg cells, especially when CD8+ T cells are attacking β-cells. In vitro, these cellular vesicles can inhibit the cell-killing effect of CD8+ T cells and enhance the expansion of Treg cells. Notably, intravenous administration of aCD8-GrzBcs-IL2-expressed cellular vesicles reversed newly onset diabetes in 77.8% of nonobese diabetic (NOD) mice without reducing blood CD3+ T cells and CD8+ T cells, indicating a favorable safety profile.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuwen Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Kairui Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqi Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Liqiang Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Liangzhu Laboratory, Hangzhou 311121, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Wang X, Huang J, Guo M, Zhong Y, Huang Z. Aggregation-Caused Quenching Dyes as Potent Tools to Track the Integrity of Antitumor Nanocarriers: A Mini-Review. Pharmaceuticals (Basel) 2025; 18:176. [PMID: 40005990 PMCID: PMC11859028 DOI: 10.3390/ph18020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer has become one of the major causes of death worldwide. Chemotherapy remains a cornerstone of cancer treatment. To enhance the tumor-targeting efficiency of chemotherapy agents, pharmaceutical scientists have developed nanocarriers. However, the in vivo structural integrity and dynamic changes in nanocarriers after administration are not well understood, which may significantly impact their tumor-targeting abilities. In this paper, we propose the use of environmentally responsive fluorescent probes to track the integrity of antitumor nanocarriers. We compare three main types of dyes: fluorescence resonance energy transfer (FRET) dyes, aggregation-induced emission (AIE) dyes, and aggregation-caused quenching (ACQ) dyes. Among them, ACQ dyes, possessing sensitive water-quenching properties and easily detected "on-off" switching behavior, are regarded as the most promising choice. We believe that ACQ dyes are suitable for investigating the in vivo fate of antitumor nanocarriers and can aid in designing improved nanoformulations for chemotherapy agents.
Collapse
Affiliation(s)
| | | | | | - Yiling Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 510006, China; (X.W.); (J.H.); (M.G.)
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 510006, China; (X.W.); (J.H.); (M.G.)
| |
Collapse
|
3
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
4
|
Luong AD, Buzid A, Luong JHT. Important Roles and Potential Uses of Natural and Synthetic Antimicrobial Peptides (AMPs) in Oral Diseases: Cavity, Periodontal Disease, and Thrush. J Funct Biomater 2022; 13:jfb13040175. [PMID: 36278644 PMCID: PMC9589978 DOI: 10.3390/jfb13040175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous epithelial cells and sometimes leukocytes release AMPs as their first line of defense. AMPs encompass cationic histatins, defensins, and cathelicidin to encounter oral pathogens with minimal resistance. However, their concentrations are significantly below the effective levels and AMPs are unstable under physiological conditions due to proteolysis, acid hydrolysis, and salt effects. In parallel to a search for more effective AMPs from natural sources, considerable efforts have focused on synthetic stable and low-cytotoxicy AMPs with significant activities against microorganisms. Using natural AMP templates, various attempts have been used to synthesize sAMPs with different charges, hydrophobicity, chain length, amino acid sequence, and amphipathicity. Thus far, sAMPs have been designed to target Streptococcus mutans and other common oral pathogens. Apart from sAMPs with antifungal activities against Candida albicans, future endeavors should focus on sAMPs with capabilities to promote remineralization and antibacterial adhesion. Delivery systems using nanomaterials and biomolecules are promising to stabilize, reduce cytotoxicity, and improve the antimicrobial activities of AMPs against oral pathogens. Nanostructured AMPs will soon become a viable alternative to antibiotics due to their antimicrobial mechanisms, broad-spectrum antimicrobial activity, low drug residue, and ease of synthesis and modification.
Collapse
Affiliation(s)
- Albert Donald Luong
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY 14215, USA
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - John H. T. Luong
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
- Correspondence: or
| |
Collapse
|
5
|
Hussain B, Kasinath V, Ashton-Rickardt GP, Clancy T, Uchimura K, Tsokos G, Abdi R. High endothelial venules as potential gateways for therapeutics. Trends Immunol 2022; 43:728-740. [PMID: 35931612 PMCID: PMC10804419 DOI: 10.1016/j.it.2022.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
High endothelial venules (HEVs) are specialized blood vessels that support the migration of lymphocytes from the bloodstream into lymph nodes (LNs). They are also formed ectopically in mammalian organs affected by chronic inflammation and cancer. The recent arrival of immunotherapy at the forefront of many cancer treatment regimens could boost a crucial role for HEVs as gateways for the treatment of cancer. In this review, we describe the microanatomical and biochemical characteristics of HEVs, mechanisms of formation of newly made HEVs, immunotherapies potentially dependent on HEV-mediated T cell homing to tumors, and finally, how HEV-targeted therapies might be used as a complementary approach to potentially shape the therapeutic landscape for the treatment of cancer and immune-mediated diseases.
Collapse
Affiliation(s)
- Bilal Hussain
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Thomas Clancy
- Division of Surgical Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kenji Uchimura
- University Lille, CNRS, UMR8576 - UGSF - Unite de Glycogiologie Structurale et Functionelle, 59000 Lille, France
| | - George Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Wang W, Teng Y, Xue JJ, Cai HK, Pan YB, Ye XN, Mao XL, Li SW. Nanotechnology in Kidney and Islet Transplantation: An Ongoing, Promising Field. Front Immunol 2022; 13:846032. [PMID: 35464482 PMCID: PMC9024121 DOI: 10.3389/fimmu.2022.846032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Organ transplantation has evolved rapidly in recent years as a reliable option for patients with end-stage organ failure. However, organ shortage, surgical risks, acute and chronic rejection reactions and long-term immunosuppressive drug applications and their inevitable side effects remain extremely challenging problems. The application of nanotechnology in medicine has proven highly successful and has unique advantages for diagnosing and treating diseases compared to conventional methods. The combination of nanotechnology and transplantation brings a new direction of thinking to transplantation medicine. In this article, we provide an overview of the application and progress of nanotechnology in kidney and islet transplantation, including nanotechnology for renal pre-transplantation preservation, artificial biological islets, organ imaging and drug delivery.
Collapse
Affiliation(s)
- Wei Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya Teng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ji-Ji Xue
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hong-Kai Cai
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yu-Biao Pan
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Xing-Nan Ye
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
7
|
Hussain B, Kasinath V, Madsen JC, Bromberg J, Tullius SG, Abdi R. Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS NANO 2021; 15:17124-17136. [PMID: 34714050 PMCID: PMC9050969 DOI: 10.1021/acsnano.1c04707] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted delivery of therapeutics through the use of nanoparticles (NPs) has emerged as a promising method that increases their efficacy and reduces their side effects. NPs can be tailored to localize to selective tissues through conjugation to ligands that bind cell-specific receptors. Although the vast majority of nanodelivery platforms have focused on cancer therapy, efforts have begun to introduce nanotherapeutics to the fields of immunology as well as transplantation. In this review, we provide an overview from a clinician's perspective of current nanotherapeutic strategies to treat solid organ transplants with NPs during the time interval between organ harvest from the donor and placement into the recipient, an innovative technology that can provide major benefits to transplant patients. The use of ex vivo normothermic machine perfusion (NMP), which is associated with preserving the function of the organ following transplantation, also provides an ideal opportunity for a localized, sustained, and controlled delivery of nanotherapeutics to the organ during this critical time period. Here, we summarize previous endeavors to improve transplantation outcomes by treating the organ with NPs prior to placement in the recipient. Investigations in this burgeoning field of research are promising, but more extensive studies are needed to overcome the physiological challenges to achieving effective nanotherapeutic delivery to transplanted organs discussed in this review.
Collapse
Affiliation(s)
- Bilal Hussain
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joren C. Madsen
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
8
|
Emerson AE, Slaby EM, Hiremath SC, Weaver JD. Biomaterial-based approaches to engineering immune tolerance. Biomater Sci 2021; 8:7014-7032. [PMID: 33179649 DOI: 10.1039/d0bm01171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of biomaterial-based therapeutics to induce immune tolerance holds great promise for the treatment of autoimmune diseases, allergy, and graft rejection in transplantation. Historical approaches to treat these immunological challenges have primarily relied on systemic delivery of broadly-acting immunosuppressive agents that confer undesirable, off-target effects. The evolution and expansion of biomaterial platforms has proven to be a powerful tool in engineering immunotherapeutics and enabled a great diversity of novel and targeted approaches in engineering immune tolerance, with the potential to eliminate side effects associated with systemic, non-specific immunosuppressive approaches. In this review, we summarize the technological advances within three broad biomaterials-based strategies to engineering immune tolerance: nonspecific tolerogenic agent delivery, antigen-specific tolerogenic therapy, and the emergent area of tolerogenic cell therapy.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
9
|
Reshma VG, Mohanan PV. Assessment of Immunotoxicity and Oxidative Stress Induced by Zinc Selenium/Zinc Sulphide Quantum Dots. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.597382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although ZnSe/ZnS quantum dots (QDs) have emerged as apparently less hazardous substitute to cadmium-based QDs, their toxicity has not been fully understood. Huge levels of ROS production and associated difficulties comprise the underlying reason for nanomaterial toxicity in cells. This will cause both immunotoxicity and genotoxicity. In the current work, Zinc Selenium/Zinc Sulphide (ZnSe/ZnS) QDs was synthesized, characterized and analyzed for its role in oxidative stress induction in two cell lines (HepG2 and HEK) and Swiss Albino mice. ROS production and influence of catalase activity in ROS production measured by DCFHDA assay in both HepG2 and HEK cells after exposure to ZnSe/ZnS QDs. Assessment of nitrile radical formation carried out by griess reagent. Level of GSH is assessed as a marker for oxidative stress induced by QDs. Cell death induced after exposure to ZnSe/ZnS QDs investigated by Calcein AM-PI live dead assay. Apoptotic DNA ladder assay carried out for studying the potential of ZnSe/ZnS QDs to induce DNA fragmentation. In vivo bio-nano interaction was studied by exposing Swiss Albino mice to ZnSe/ZnS QDs via i.v. and i.p. injection. Antioxidant assays were carried out in brain and liver homogenates to study the oxidative stress. LPO, GSH, GPx, GR and SOD are considered as biomarkers for the stress analysis. Blood brain barrier (BBB) integrity also studied. Spleenocytes proliferation assay was carried out to study the immunotoxicity response. ZnSe/ZnS QDs do not induce visible oxidative stress upto a concentration of 50 μg/ml. Cell death occurs at higher concentration (100 μg/ml) caused by ROS production. Overall study apparently provide attentive information that ZnSe/ZnS QDs is not capable of eliciting any serious damages to liver and brain tissues which in turn substantiates its applicability in biomedical applications.
Collapse
|
10
|
Picco AS, Mondo GB, Ferreira LF, de Souza EE, Peroni LA, Cardoso MB. Protein corona meets freeze-drying: overcoming the challenges of colloidal stability, toxicity, and opsonin adsorption. NANOSCALE 2021; 13:753-762. [PMID: 33232428 DOI: 10.1039/d0nr06040b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Freeze-drying of nanoparticle suspensions is capable of generating stable nanoformulations with improved storage times and easier transportation. Nonetheless, nanoparticle aggregation is likely induced during freeze-drying, which reduces its redispersibility upon reconstitution and leads to undesirable effects such as non-specific toxicity and impaired efficacy. In this work, bovine serum albumin (BSA) is described as a suitable protectant for silica nanoparticles (SNPs), which result in solid structures with excellent redispersibility and negligible signs of aggregation even when longer storage times are considered. We experimentally demonstrated that massive system aggregation can be prevented when a saturated BSA corona around the nanoparticle is formed before the lyophilization process. Furthermore, the BSA corona is able to suppress non-specific interactions between these nanoparticles and biological systems, as evidenced by the lack of residual cytotoxicity, hemolytic activity and opsonin adsorption. Hence, BSA can be seriously considered for industry as an additive for nanoparticle freeze-drying since it generates solid and redispersible nanoformulations with improved biocompatibility.
Collapse
Affiliation(s)
- Agustin S Picco
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, Brazil.
| | | | | | | | | | | |
Collapse
|
11
|
Velluto D, Bojadzic D, De Toni T, Buchwald P, Tomei AA. Drug-Integrating Amphiphilic Nanomaterial Assemblies: 1. Spatiotemporal control of cyclosporine delivery and activity using nanomicelles and nanofibrils. J Control Release 2021; 329:955-970. [PMID: 33086102 PMCID: PMC7904645 DOI: 10.1016/j.jconrel.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Immunomodulatory therapies are limited by unavoidable side effects as well as poor solubility, stability, and pharmacokinetic properties. Nanomaterial-based drug delivery may overcome these limitations by increasing drug solubility, site-targeting, and duration of action. Here, we prepared innovative drug-integrating amphiphilic nanomaterial assemblies (DIANA) with tunable hydrophobicity, size, and morphology, and we evaluated their ability to deliver cyclosporine A (CsA) for immunomodulatory applications. We synthesized amphiphilic block copolymers made of poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS) and poly(ethylene glycol)-oligo(ethylene sulfide) (PEG-OES) that can self-assemble into solid core nanomicelles (nMIC, with ≈20 nm diameter) and nanofibrils (nFIB, with ≈5 nm diameter and > 500 nm length), respectively. nMIC and nFIB displayed good CsA encapsulation efficiency (up to 4.5 and 2 mg/mL, respectively in aqueous solution), superior to many other solubilization methods, and provided sustained release (>14 and > 7 days for the nMIC and nFIB) without compromising CsA's pharmacological activity. Treatment of insulin-secreting cells with unloaded DIANAs did not impair cell viability and functionality. Both CsA-loaded DIANAs inhibited the proliferation and activation of insulin-reactive cytotoxic T cells in vitro. Subcutaneous injections of CsA-loaded DIANAs in mice provided CsA sustained release, decreasing alloantigen-induced immune responses in the draining lymph node at lower doses and reduced administration frequency than unformulated CsA. While nMIC solubilized higher amounts and provided more sustained release of CsA in vitro, nFIB enhanced cellular uptake and promoted local retention due to slower trafficking in vivo. DIANAs provide a versatile platform for a local immune suppression regimen that can be applied to allogeneic cell transplantation.
Collapse
Affiliation(s)
- Diana Velluto
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Teresa De Toni
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Alice A Tomei
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
12
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
13
|
Nagy A, Robbins NL. The hurdles of nanotoxicity in transplant nanomedicine. Nanomedicine (Lond) 2019; 14:2749-2762. [DOI: 10.2217/nnm-2019-0192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanomedicine has matured significantly in the past 20 years and a number of nanoformulated therapies are cleared by regulatory agencies for use across the globe. Transplant medicine is one area that has significantly benefited from the advancement of nanomedicine in recent times. However, while nanoparticle-based therapies have improved toxicological profiles of some drugs, there are still a number of aspects regarding the biocompatibility and toxicity of nanotherapies that require further research. The goal of this article is to review toxicological profiles of immunosuppressant therapies and their conversion into nanomedicine formulations as well as introduce future challenges associated with current in vitro and in vivo toxicological models.
Collapse
Affiliation(s)
- Amber Nagy
- 59th Medical Wing, Office of Science & Technology, Joint Base San Antonio-Lackland, TX 78236, USA
| | - Nicholas L Robbins
- 59th Medical Wing, Office of Science & Technology, Joint Base San Antonio-Lackland, TX 78236, USA
| |
Collapse
|
14
|
Gao W, Wang L, Wang K, Sun L, Rao Y, Ma A, Zhang M, Li Q, Yang H. Enhanced Anti-inflammatory Activity of Peptide-Gold Nanoparticle Hybrids upon Cigarette Smoke Extract Modification through TLR Inhibition and Autophagy Induction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32706-32719. [PMID: 31411854 DOI: 10.1021/acsami.9b10536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Overwhelming uncontrolled inflammation is the hallmark of pathophysiological features of many acute and chronic inflammatory diseases, such as sepsis and allergy and autoimmune disorders. It is important to develop potent pharmacological interventions to effectively control such detrimental inflammatory reactions in these diseases. Recently, we have developed a special class of peptide-gold nanoparticle hybrid system that can inhibit Toll-like receptor 4 (TLR4) signal transduction pathways and decrease its downstream inflammatory responses. Herein, we serendipitously discovered that a tiny amount of cigarette smoke extract (CSE, 1%) was able to significantly enhance the inhibitory activity of the hybrids on TLR4-mediated inflammatory responses. Mechanistically, it was found that active components in CSE were able to adsorb onto the hybrids and largely increased their cellular uptake in THP-1 cell-derived macrophages. Such high cellular uptake not only enhanced the inhibition on the endosomal acidification required for TLR4 activation but also contributed to autophagy induction and subsequent antioxidant protein expression. Consequently, this duel action strengthened the anti-inflammatory activity of the hybrids in cells and in an acute lung injury (ALI) mouse model. This work aids our fundamental understanding of nanoparticles regulating the innate immune responses. It also provides a new way to design potent anti-inflammatory nanotherapeutics for inflammatory diseases such as ALI.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 201620 , China
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital , Tongji University , Shanghai 200120 , China
| | - Lu Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 201620 , China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 201620 , China
| | - Liya Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 201620 , China
- School of Biomedical Engineering , Tianjin Medical University , Tianjin 300070 , China
| | - Yafei Rao
- Department of Pulmonary and Critical Care Medicine , Zhengzhou University , Zhengzhou 450052 , China
| | - Aying Ma
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 201620 , China
| | - Min Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 201620 , China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 201620 , China
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital , Tongji University , Shanghai 200120 , China
| | - Hong Yang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 201620 , China
- School of Biomedical Engineering , Tianjin Medical University , Tianjin 300070 , China
| |
Collapse
|
15
|
Arshad L, Jantan I, Bukhari SNA. Enhanced immunosuppressive effects of 3,5-bis[4(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one, an α, β-unsaturated carbonyl-based compound as PLGA- b-PEG nanoparticles. Drug Des Devel Ther 2019; 13:1421-1436. [PMID: 31118577 PMCID: PMC6503188 DOI: 10.2147/dddt.s185191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has been revealed to possess strong in vitro and in vivo immunosuppressive effects. Purpose: The aim of present study was to prepare and characterize BBP-encapsulated polylactic-co-glycolic acid-block-polyethylene glycol (PLGA-b-PEG) nanoparticles and to evaluate its in vivo efficacy against innate and adaptive immune responses. Methods: Male BALB/c mice were orally administered with BBP alone and BBP- encapsulated nanoparticles equivalent to 5, 10 and 20 mg/kg of BBP in distilled water for a period of 14 days. The immunomodulatory potential was appraised by determining its effects on non-specific and specific immune parameters. Results: The results showed that BBP was successfully encapsulated in PLGA-b-PEG polymer with 154.3 nm size and high encapsulation efficiency (79%) while providing a sustained release for 48 hours. BBP nanoparticles showed significant enhanced dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity, reactive oxygen species (ROS) production, serum levels of ceruloplasmin and lysozyme, immunoglobulins and myloperoxidase (MPO) plasma levels when compared to unencapsulated BBP. Enhanced dose-dependent inhibition was also observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines, and reduction in rat paw oedema in BBP nanoparticles treated mice. At higher doses the suppressive effects of the BBP nanoparticles on various cellular and humoral parameters of immune responses were comparable to that of cyclosporine-A at 20 mg/kg. Conclusion: These findings suggest that the immunosuppressive effects of BBP were enhanced as PLGA-b-PEG nanoparticles.
Collapse
Affiliation(s)
- Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Ibrahim Jantan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Al Jouf University, Aljouf, Sakaka, Saudi Arabia
| |
Collapse
|
16
|
Liddicoat AM, Lavelle EC. Modulation of innate immunity by cyclosporine A. Biochem Pharmacol 2019; 163:472-480. [PMID: 30880061 DOI: 10.1016/j.bcp.2019.03.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
Cyclosporine A has long been known to suppress T cell responses by inhibiting the production of IL-2, which drives T cell proliferation, enabling its use as a therapeutic for transplantation or autoimmunity. However, cyclosporine A also impacts on innate immune cells including dendritic cells, macrophages and neutrophils. In dendritic cells, which are essential for T cell priming, cyclosporine A can modulate both expression of surface molecules that engage with T cells and cytokine secretion, leading to altered induction of T cell responses. In macrophages and neutrophils, which play key antimicrobial roles, cyclosporine A reduces the production of cytokines that can play protective roles against pathogens. Some of these molecules, if produced in the context of chronic disease, can also contribute to pathology. There have been a number of elegant recent studies addressing the mechanisms by which cyclosporine A can modulate innate immunity. In particular, cyclosporine A inhibits the release of mitochondrial factors that stimulate the production of type 1 interferons by innate immune cells. This review addresses the emerging literature on modulation of innate immune responses by cyclosporine A, its resultant impact on adaptive immune responses and how this offers potential for new therapeutic applications.
Collapse
Affiliation(s)
- Alex M Liddicoat
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin 2, Ireland.
| |
Collapse
|
17
|
Lee PC, Zan BS, Chen LT, Chung TW. Multifunctional PLGA-based nanoparticles as a controlled release drug delivery system for antioxidant and anticoagulant therapy. Int J Nanomedicine 2019; 14:1533-1549. [PMID: 30880963 PMCID: PMC6396665 DOI: 10.2147/ijn.s174962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Ischemia/reperfusion (I/R) injury causes the generation of many ROS such as H2O2 and leads to vascular thrombosis, which causes tissue damage. Purpose In this investigation, poly (lactideco-glycolide) (PLGA)-based nanoparticles are used for their anticoagulant and antioxidant properties in vascular therapy. Methods Both heparin and glutathione are entrapped on PLGA-stearylamine nanoparticles by layer-by-layer interactions. Results The drug release rate is successfully controlled with only 10.3% of the heparin released after 96 hours. An H2O2-responsive platform is also developed by combining silk fibroin and horse peroxidase to detect H2O2 in this drug delivery system. Besides, hyaluronic acid was decorated on the surface of nanoparticles to target the human bone marrow mesenchymal stem cells (hBMSCs) for cell therapy. The results of an in vitro study indicate that the nanoparticles could be taken up by hBMSCs within 2 hours and exocytosis occurred 6 hours after cellular uptake. Conclusion We propose that the multifunctional nanoparticles that are formed herein can be effectively delivered to the site of an I/R injury via the hBMSC homing effect. The proposed approach can potentially be used to treat vascular diseases, providing a platform for hBMSCs for the controlled delivery of a wide range of drugs.
Collapse
Affiliation(s)
- Pei-Chi Lee
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan,
| | - Bo-Shen Zan
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan,
| | - Li-Ting Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan,
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan, .,Drug Delivery Department, Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang Ming University, Taipei 112, Taiwan,
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To evaluate role of the lymph node in immune regulation and tolerance in transplantation and recent advances in the delivery of antigen and immune modulatory signals to the lymph node. RECENT FINDINGS Lymph nodes are a primary site of immune cell priming, activation, and modulation, and changes within the lymph node microenvironment have the potential to induce specific regulation, suppression, and potentially tolerance. Antigen enters the lymph node either from tissues via lymphatics, from blood via high endothelial venules, or directly via injection. Here we review different techniques and materials to deliver antigen to the lymph node including microparticles or nanoparticles, ex-vivo antigen presenting cell manipulation, and use of receptor conjugation for specific intralymph node targeting locations. SUMMARY The promising results point to powerful techniques to harness the lymph node microenvironment and direct systemic immune regulation. The materials, techniques, and approaches suggest that translational and clinical trials in nonhuman primate and patients may soon be possible.
Collapse
|
19
|
Gammon JM, Jewell CM. Engineering Immune Tolerance with Biomaterials. Adv Healthc Mater 2019; 8:e1801419. [PMID: 30605264 PMCID: PMC6384133 DOI: 10.1002/adhm.201801419] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases, rejection of transplanted organs and grafts, chronic inflammatory diseases, and immune-mediated rejection of biologic drugs impact a large number of people across the globe. New understanding of immune function is revealing exciting opportunities to help tackle these challenges by harnessing-or correcting-the specificity of immune function. However, realizing this potential requires precision control over the interaction between regulatory immune cues, antigens attacked during inflammation, and the tissues where these processes occur. Engineered materials-such as polymeric and lipid particles, scaffolds, and inorganic materials-offer powerful features that can help to selectively regulate immune function during disease without compromising healthy immune functions. This review highlights some of the exciting developments to leverage biomaterials as carriers, depots, scaffolds-and even as agents with intrinsic immunomodulatory features-to promote immunological tolerance.
Collapse
Affiliation(s)
- Joshua M. Gammon
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA ; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, Baltimore VA Medical center, 10. N Green Street, Baltimore, Maryland 21201, USA; Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Gao W, Wang Y, Xiong Y, Sun L, Wang L, Wang K, Lu HY, Bao A, Turvey SE, Li Q, Yang H. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomater 2019; 85:203-217. [PMID: 30597258 PMCID: PMC8960115 DOI: 10.1016/j.actbio.2018.12.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening condition of critically-ill patients, characterized by overwhelming inflammatory responses in the lung. Multiple lines of evidence suggest that the excessive activation of Toll-like receptor 4 (TLR4) plays an important role in this detrimental lung inflammation. Recently, we developed a unique class of peptide-gold nanoparticle (GNP) hybrids that act as potent nano-inhibitors of TLR4 signaling by modulating the process of endosomal acidification. In this study, we aimed to identify the key physiochemical factors that could further strengthen the anti-inflammatory activity of these nano-inhibitors, including the nanoparticle size, the density of peptides coating the nanoparticle surface, as well as the number of the effective amino acid phenylalanine (F) residues in the peptide sequence. Among these factors, we found that the nanoparticle size could significantly affect the TLR4 inhibition. Specifically, the peptide-GNP hybrids with a GNP core of 20 nm (P12(G20)) exhibited the most potent inhibitory activity on TLR4 activation and its downstream cytokine production among those with a GNP core of 13 nm (P12(G13)) and 5 nm (P12(G5)) in THP-1 cell-derived macrophages. This size-dependent anti-inflammatory effect of the hybrid P12 was also observed in a lipopolysaccharide (LPS)-induced mouse model of ALI. It was found that P12(G20) was superior to P12(G13) in prolonging the survival of mice experiencing lethal LPS challenge, decreasing the acute lung inflammation, and alleviating diffuse alveolar damage in the lungs. Interestingly, P12(G20) could also promote long-term tolerance to endotoxin. Detailed mechanistic studies demonstrated that when compared to the smaller P12(G13), the larger P12(G20) had higher cellular uptake and a stronger endosomal pH buffering capacity, contributing to its enhanced therapeutic effects on reducing TLR4 activation in vitro and in vivo. Overall, this study suggests that nanoparticle size is one key factor determining the anti-inflammatory potency of the peptide-GNP hybrids, and the hybrid P12 may serve as a promising, novel class of nanotherapeutics for modulating TLR signaling to treat ALI/ARDS. STATEMENT OF SIGNIFICANCE: We have developed a new class of nanoparticle-based inhibitors (i.e., peptide-GNP hybrids) targeting TLR4 signaling in macrophages. Through evidence-based engineering of the nanoparticle size, surface peptide ligand density and effective amino acid (phenylalanine, F) chain length, we identified a peptide-GNP hybrid, P12(G20), with enhanced anti-inflammatory activity. Specifically, P12(G20) was more potent in reducing inflammation in THP-1 cell-derived macrophages and in a LPS-induced ALI mouse model. More interestingly, P12(G20) facilitated long-term protection against lethal LPS challenge in vivo and induced endotoxin tolerance in vitro. We anticipate that these new hybrids would serve as the next generation anti-inflammatory nano-therapeutics for the treatment of ALI/ARDS or other acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Yulu Wang
- Department of Pulmonary and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ye Xiong
- Department of Pulmonary and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liya Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Lu Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Henry Y Lu
- BC Children's Hospital Research Institute, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Aihua Bao
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China; Department of Pulmonary and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China.
| | - Hong Yang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China.
| |
Collapse
|
21
|
Haji Mansor M, Najberg M, Contini A, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur J Pharm Biopharm 2018; 125:38-50. [DOI: 10.1016/j.ejpb.2017.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 12/28/2022]
|
22
|
Fattahi A, Ghiasi M, Mohammadi P, Hosseinzadeh L, Adibkia K, Mohammadi G. Preparation and physicochemical characterization of prazosin conjugated PLGA nanoparticles for drug delivery of flutamide. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000417228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ali Fattahi
- Kermanshah University of Medical Sciences, Iran
| | | | | | | | | | | |
Collapse
|
23
|
Dangi A, Luo X. Harnessing Apoptotic Cells for Transplantation Tolerance: Current Status and Future Perspectives. CURRENT TRANSPLANTATION REPORTS 2017; 4:270-279. [PMID: 29177124 PMCID: PMC5697727 DOI: 10.1007/s40472-017-0167-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The use of donor apoptotic cells is an emerging therapy for inducing transplantation tolerance. In this review, we will discuss current understanding of mechanisms of this approach, as well as crucial aspects necessary for successful translation of this approach to clinical transplantation. RECENT FINDINGS Transplantation tolerance by donor apoptotic cells is mediated by their homeostatic interaction with recipient phagocytes, and subsequent expansion of suppressor cell populations as well as inhibition of effector T cells via deletion and anergy. To ensure their tolerogenicity, it is critical to procure non-stressed donor cells, and to induce and arrest their apoptosis at the appropriate stage prior to their administration. Equally important is the monitoring of dynamics of recipient immunological status, and its influences on tolerance efficacy and longevity. Emerging concepts and technologies may significantly streamline tolerogen manufacture and delivery of this approach, and smooth its transition to clinical application. SUMMARY Hijacking homeostatic clearance of donor apoptotic cells is a promising strategy for transplantation tolerance. Timing is now mature for concerted efforts for transitioning this strategy to clinical transplantation.
Collapse
Affiliation(s)
- Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
24
|
Ascorbic acid tethered polymeric nanoparticles enable efficient brain delivery of galantamine: An in vitro-in vivo study. Sci Rep 2017; 7:11086. [PMID: 28894228 PMCID: PMC5594022 DOI: 10.1038/s41598-017-11611-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this work was to enhance the transportation of the galantamine to the brain via ascorbic acid grafted PLGA-b-PEG nanoparticles (NPs) using SVCT2 transporters of choroid plexus. PLGA-b-PEG copolymer was synthesized and characterized by 1H NMR, gel permeation chromatography, and differential scanning calorimetry. PLGA-b-PEG-NH2 and PLGA-b-mPEG NPs were prepared by nanoprecipitation method. PLGA-b-PEG NPs with desirable size, polydispersity, and drug loading were used for the conjugation with ascorbic acid (PLGA-b-PEG-Asc) to facilitate SVCT2 mediated transportation of the same into the brain. The surface functionalization of NPs with ascorbic acid significantly increased cellular uptake of NPs in SVCT2 expressing NIH/3T3 cells as compared to plain PLGA and PLGA-b-mPEG NPs. In vivo pharmacodynamic efficacy was evaluated using Morris Water Maze Test, Radial Arm Maze Test and AChE activity in scopolamine induced amnetic rats. In vivo pharmacodynamic studies demonstrated significantly higher therapeutic and sustained action by drug loaded PLGA-b-PEG-Asc NPs than free drugs and drug loaded plain PLGA as well as PLGA-b-mPEG NPs. Additionally, PLGA-b-PEG-Asc NPs resulted in significantly higher biodistribution of the drug to the brain than other formulations. Hence, the results suggested that targeting of bioactives to the brain by ascorbic acid grafted PLGA-b-PEG NPs is a promising approach.
Collapse
|
25
|
Kakizawa Y, Lee JS, Bell B, Fahmy TM. Precise manipulation of biophysical particle parameters enables control of proinflammatory cytokine production in presence of TLR 3 and 4 ligands. Acta Biomater 2017; 57:136-145. [PMID: 28069499 DOI: 10.1016/j.actbio.2017.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 11/29/2022]
Abstract
The biophysical parameters governing nanoparticle (NP)-cell interactions significantly affect biological responses, particularly in the application of NP-based immunotherapeutics. Modulation of the surface biophysical character of NPs can be achieved via introduction of amino acids, which offer the ability to fine tune a range of biophysical parameters of interest. We employed this approach using monodisperse silica NPs coated with numerous poly(amino acid)s (PAAs). The NPs were incubated with dendritic cells (DCs) in conjunction with TLR ligands and production of IL-1β from DCs and IFNγ from T cells primed by these DCs were measured. These key cytokines can prognosticate the efficacy of the NP platform as a potential vaccine or active cellular immunotherapy carrier. IL-1β production showed a correlation with both NP size and degree of hydrophobicity. High IFNγ secretion from T cells was shown to be correlated with both the hydrophobicity and charge of the NPs used to activate the DCs. Other cytokines were also screened in order to compare the immune responses. The results of this study highlight the importance of nanoparticle biophysical parameters and the selection of TLR ligands to the rational design of nanoparticle-based vaccines and immunotherapies. STATEMENT OF SIGNIFICANCE The manuscript describes a systematic investigation into the effects of biophysical parameters of nanoparticles (NPs) on immune cells. Modulation of the biophysical character of the NP surface can be achieved by introduction of amino acids on monodisperse silica NPs, introducing a range of tunable biophysical parameters of interest, i.e. distinct sizes, different surface charges and varying degrees of surface hydrophobicity. We examine internalization of the NP in dendritic cells (DCs) and measure a myriad of cytokines, including IL-1β and IFNγ, which prognosticate the efficacy of the NPs as a potential vaccine (IL-1β metric) or active cellular immunotherapy carrier (IFNγ metric). Two different TLR ligands (a viral TLR3 ligand and a bacterial TLR4 ligand) were used along with the PAA NPs to compare their costimulatory immunogenicity. We strongly believe that this study will provide crucial information to many readers of Acta Biomaterialia and further drive the use of nanoparticle platforms in modulating immune responses.
Collapse
Affiliation(s)
- Yoshinori Kakizawa
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA; New Frontiers Research Laboratories, Toray Industries, Inc., Kanagawa 248-8555, Japan
| | - Jung Seok Lee
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA
| | - Brendan Bell
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA
| | - Tarek M Fahmy
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA; Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Patel K, Atkinson C, Tran D, Nadig SN. Nanotechnological Approaches to Immunosuppression and Tolerance Induction. CURRENT TRANSPLANTATION REPORTS 2017; 4:159-168. [PMID: 29057203 DOI: 10.1007/s40472-017-0146-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Several preclinical studies have engineered nanoparticles for immune regulation, and have shown promising results in the fields of autoimmunity and cancer. In solid organ transplantation, the use of nanoparticle-based immune regulation has only just begun to emerge but holds significant promise for the improvement of our current standard of care immunosuppressive regimens. In this review, we will shed light on the current status of nanoparticle-engineered immunotherapeutics, and the potential application of these technologies to the field of organ transplantation. Further we discuss different strategies for delivery and potential cellular targeting moieties that could be utilized to obviate the need for high dose systemic immunosuppressive regimens. RECENT FINDINGS Recent studies have shown the potential of immunosuppressive laden nanoparticles to increase bioavailability, drug release, and specifically target immune cell compartments as methods to provide recipient immunosuppressive sparing strategies. SUMMARY Nanoparticle centered immunosuppressive strategies hold the potential to usher in a new era in transplant recipient management and could hold the key to minimizing off-target effects of immunosuppressants, along with prolonging transplant survival.
Collapse
Affiliation(s)
- Kunal Patel
- Department of Surgery, Division of Transplantation, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carl Atkinson
- Department of Surgery, Division of Transplantation, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
- South Carolina Investigators in Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Danh Tran
- Department of Surgery, Division of Transplantation, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Satish N Nadig
- Department of Surgery, Division of Transplantation, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery, Division of Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
- South Carolina Investigators in Transplantation, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
27
|
Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action. Oncotarget 2016; 6:21379-94. [PMID: 26041888 PMCID: PMC4673272 DOI: 10.18632/oncotarget.4091] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/12/2015] [Indexed: 01/10/2023] Open
Abstract
The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.
Collapse
|
28
|
Guan Q, Sun S, Li X, Lv S, Xu T, Sun J, Feng W, Zhang L, Li Y. Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:24. [PMID: 26704541 DOI: 10.1007/s10856-015-5641-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the therapeutic efficiency of monomethoxy polyethylene glycol-poly(lactic-co-glycolic acid) (mPEG-PLGA) co-loaded with syringopicroside and hydroxytyrosol as a drug with effective targeting and loading capacity as well as persistent circulation in vivo. The nanoparticles were prepared using a nanoprecipitation method with mPEG-PLGA as nano-carrier co-loaded with syringopicroside and hydroxytyrosol (SH-NPs). The parameters like in vivo pharmacokinetics, biodistribution in vivo, fluorescence in vivo endomicroscopy, and cellular uptake of SH-NPs were investigated. Results showed that the total encapsulation efficiency was 32.38 ± 2.76 %. Total drug loading was 12.01 ± 0.42 %, particle size was 91.70 ± 2.11 nm, polydispersity index was 0.22 ± 0.01, and zeta potential was -24.5 ± 1.16 mV for the optimized SH-NPs. The nanoparticle morphology was characterized using transmission electron microscopy, which indicated that the particles of SH-NPs were in uniformity within the nanosize range and of spherical core shell morphology. Drug release followed Higuchi kinetics. Compared with syringopicroside and hydroxytyrosol mixture (SH), SH-NPs produced drug concentrations that persisted for a significantly longer time in plasma following second-order kinetics. The nanoparticles moved gradually into the cell, thereby increasing the quantity. ALT, AST, and MDA levels were significantly lower on exposure to SH-NPs than in controls. SH-NPs could inhibit the proliferation of HepG2.2.15 cells and could be taken up by HepG2.2.15 cells. The results confirmed that syringopicroside and hydroxytyrosol can be loaded simultaneously into mPEG-PLGA nanoparticles. Using mPEG-PLGA as nano-carrier, sustained release, high distribution in the liver, and protective effects against hepatic injury were observed in comparison to SH.
Collapse
Affiliation(s)
- Qingxia Guan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shuang Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xiuyan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shaowa Lv
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Ting Xu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jialin Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Wenjing Feng
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Liang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Yongji Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
29
|
Guada M, Beloqui A, Kumar MNVR, Préat V, Dios-Viéitez MDC, Blanco-Prieto MJ. Reformulating cyclosporine A (CsA): More than just a life cycle management strategy. J Control Release 2016; 225:269-82. [PMID: 26829101 DOI: 10.1016/j.jconrel.2016.01.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/01/2023]
Abstract
Cyclosporine A (CsA) is a well-known immunosuppressive agent that gained considerable importance in transplant medicine in the late 1970s due to its selective and reversible inhibition of T-lymphocytes. While CsA has been widely used to prevent graft rejection in patients undergoing organ transplant it was also used to treat several systemic and local autoimmune disorders. Currently, the neuro- and cardio-protective effects of CsA (CiCloMulsion®; NeuroSTAT®) are being tested in phase II and III trials respectively and NeuroSTAT® received orphan drug status from US FDA and Europe in 2010. The reformulation strategies focused on developing Cremophor® EL free formulations and address variable bioavailability and toxicity issues of CsA. This review is an attempt to highlight the progress made so far and the room available for further improvements to realize the maximum benefits of CsA.
Collapse
Affiliation(s)
- Melissa Guada
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Beloqui
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - M N V Ravi Kumar
- Department of Pharmaceutical Sciences, Texas A&M Health Science Center, College Station, TX 77845, USA
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Maria Del Carmen Dios-Viéitez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, E-31008 Pamplona, Spain
| | - Maria J Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, E-31008 Pamplona, Spain.
| |
Collapse
|
30
|
Formulation Strategy for the Delivery of Cyclosporine A: Comparison of Two Polymeric Nanospheres. Sci Rep 2015; 5:13065. [PMID: 26268451 PMCID: PMC4535033 DOI: 10.1038/srep13065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/14/2015] [Indexed: 11/26/2022] Open
Abstract
A wide range of nanoparticles has been explored for the delivery of highly hydrophobic drugs, but very few publications provide comparative data of the performance of different nanoparticles. To address this need, this publication compares poly(lactic-co-glycolic acid) (PLGA) nanoparticles and nanospheres made from tyrosine-derived tri-block copolymers (termed TyroSpheres) for their respective performance as carriers for cyclosporine A (CSA). Using previously reported data on PLGA, we followed similar experimental protocols to evaluate the in vitro characteristics of TyroSpheres. Although there are some similarities between the two particle systems for the delivery of CSA, such as effective encapsulation and epidermal skin penetration, several differences were notable. First, the methods of preparation were different, i.e., self-assembly and emulsion-diffusion-evaporation process for TyroSpheres and PLGA, respectively. Second, TyroSpheres provided 7-day diffusion-controlled release, whereas PLGA nanoparticles provided >21-day erosion-controlled release. Third, the size of TyroSpheres was measured to be ~60–70 nm irrespective of drug loading, whereas the size of PLGA nanoparticles (~100–250 nm) was dependent on drug loading and the method of preparation. Overall, this publication provides a direct comparison between two different types of nanoparticles and illuminates the respective advantages and disadvantages, using CSA as a model for the release of highly hydrophobic drugs.
Collapse
|
31
|
Patel SP, Vaishya R, Pal D, Mitra AK. Novel pentablock copolymer-based nanoparticulate systems for sustained protein delivery. AAPS PharmSciTech 2015; 16:327-43. [PMID: 25319053 DOI: 10.1208/s12249-014-0196-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
The design, synthesis, and application of novel biodegradable and biocompatible pentablock (PB) copolymers, i.e., polyglycolic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polyglycolic acid (PGA-PCL-PEG-PCL-PGA) and polylactic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polylactic acid (PLA-PCL-PEG-PCL-PLA) for sustained protein delivery, are reported. The PB copolymers can be engineered to generate sustained delivery of protein therapeutics to the posterior segment of the eye. PB copolymers with different block arrangements and molecular weights were synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance ((1)H-NMR), gel permeation chromatography (GPC), and X-ray diffraction (XRD) spectroscopy. Immunoglobulin G (IgG) was selected as a model protein due to its structural similarity to bevacizumab. The influence of polymer molecular weight, composition, and isomerism on formulation parameters such as entrapment efficiency, drug loading, and in vitro release profile was delineated. Crystallinity and molecular weight of copolymers exhibited a substantial effect on formulation parameters. A secondary structure of released IgG was confirmed by circular dichroism (CD) spectroscopy. In vitro cytotoxicity, cell viability, and biocompatibility studies performed on human retinal pigment epithelial cells (ARPE-19) and/or macrophage cell line (RAW 264.7) demonstrated PB copolymers to be excellent biomaterials. Novel PB polymers may be the answer to the unmet need of a sustained release protein formulation.
Collapse
|
32
|
Jyothi KR, Beloor J, Jo A, Nguyen MN, Choi TG, Kim JH, Akter S, Lee SK, Maeng CH, Baik HH, Kang I, Ha J, Kim SS. Liver-targeted cyclosporine A-encapsulated poly (lactic-co-glycolic) acid nanoparticles inhibit hepatitis C virus replication. Int J Nanomedicine 2015; 10:903-21. [PMID: 25673987 PMCID: PMC4321639 DOI: 10.2147/ijn.s74723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Therapeutic options for hepatitis C virus (HCV) infection have been limited by drug resistance and adverse side effects. Targeting the host factor cyclophilin A (CypA), which is essential for HCV replication, offers a promising strategy for antiviral therapy. However, due to its immunosuppressive activity and severe side effects, clinical application of cyclosporine A (CsA) has been limited as an antiviral agent. To overcome these drawbacks, we have successfully developed a liver-specific, sustained drug delivery system by conjugating the liver-targeting peptide (LTP) to PEGylated CsA-encapsulated poly (lactic-co-glycolic) acid (PLGA) nanoparticles. Furthermore, our delivery system exhibited high specificity to liver, thus contributing to the reduced immunosuppressive effect and toxicity profile of CsA. Finally, targeted nanoparticles were able to effectively inhibit viral replication in vitro and in an HCV mouse model. As a proof of principle, we herein show that our delivery system is able to negate the adverse effects of CsA and produce therapeutic effects in an HCV mouse model.
Collapse
Affiliation(s)
- K R Jyothi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jagadish Beloor
- Department of Bioengineering and Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Ara Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Minh Nam Nguyen
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Hwan Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Chi Hoon Maeng
- Department of Medical Oncology and Hematology, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Hyung Hwan Baik
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Andorko JI, Hess KL, Jewell CM. Harnessing biomaterials to engineer the lymph node microenvironment for immunity or tolerance. AAPS JOURNAL 2014; 17:323-38. [PMID: 25533221 PMCID: PMC4365095 DOI: 10.1208/s12248-014-9708-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/27/2014] [Indexed: 01/06/2023]
Abstract
Nanoparticles, microparticles, and other biomaterials are advantageous in vaccination because these materials provide opportunities to modulate specific characteristics of immune responses. This idea of “tuning” immune responses has recently been used to combat infectious diseases and cancer, and to induce tolerance during organ transplants or autoimmune disease. Lymph nodes and other secondary lymphoid organs such as the spleen play crucial roles in determining if and how these responses develop following vaccination or immunotherapy. Thus, by manipulating the local microenvironments within these immunological command centers, the nature of systemic immune response can be controlled. This review provides recent examples that harness the interactions between biomaterials and lymph nodes or other secondary lymphoid organs to generate immunity or promote tolerance. These strategies draw on mechanical properties, surface chemistry, stability, and targeting to alter the interactions of cells, signals, and vaccine components in lymph nodes. While there are still many unanswered questions surrounding how best to design biomaterial-based vaccines to promote specific structures or functions in lymph nodes, features such as controlled release and targeting will help pave the way for the next generation of vaccines and immunotherapies that generate immune responses tuned for specific applications.
Collapse
Affiliation(s)
- James I Andorko
- Fischell Department of Bioengineering, University of Maryland, 2212 Jeong H. Kim Engineering Building, College Park, Maryland, 20742, USA
| | | | | |
Collapse
|
34
|
Carmona-Ribeiro AM, de Melo Carrasco LD. Novel formulations for antimicrobial peptides. Int J Mol Sci 2014; 15:18040-83. [PMID: 25302615 PMCID: PMC4227203 DOI: 10.3390/ijms151018040] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/30/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Letícia Dias de Melo Carrasco
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
35
|
Ilinskaya AN, Dobrovolskaia MA. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol 2014; 171:3988-4000. [PMID: 24724793 PMCID: PMC4243973 DOI: 10.1111/bph.12722] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle interactions with various components of the immune system are determined by their physicochemical properties such as size, charge, hydrophobicity and shape. Nanoparticles can be engineered to either specifically target the immune system or to avoid immune recognition. Nevertheless, identifying their unintended impacts on the immune system and understanding the mechanisms of such accidental effects are essential for establishing a nanoparticle's safety profile. While immunostimulatory properties have been reviewed before, little attention in the literature has been given to immunosuppressive and anti-inflammatory properties. The purpose of this review is to fill this gap. We will discuss intended immunosuppression achieved by either nanoparticle engineering, or the use of nanoparticles to carry immunosuppressive or anti-inflammatory drugs. We will also review unintended immunosuppressive properties of nanoparticles per se and consider how such properties could be either beneficial or adverse.
Collapse
Affiliation(s)
- A N Ilinskaya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederick, MD, USA
| | - M A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederick, MD, USA
| |
Collapse
|
36
|
Azzi JR, Sayegh MH, Mallat SG. Calcineurin inhibitors: 40 years later, can't live without ... THE JOURNAL OF IMMUNOLOGY 2014; 191:5785-91. [PMID: 24319282 DOI: 10.4049/jimmunol.1390055] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Calcineurin inhibitors (CNIs) revolutionized the field of organ transplantation and remain the standard of care 40 years after the discovery of cyclosporine. The early impressive results of cyclosporine in kidney transplant recipients led to its subsequent use in other organ transplant recipients and for treatment of a variety of autoimmune diseases as well. In this review, we examine the discovery of CNIs, their mechanism of action, preclinical and clinical studies with CNIs, and the usage of CNIs in nontransplant recipients. We review the mechanisms of renal toxicity associated with CNIs and the recent efforts to avoid or reduce usage of these drugs. Although minimization strategies are possible, safe, and of potential long-term benefit, complete avoidance of CNIs has proven to be more challenging than initially thought.
Collapse
Affiliation(s)
- Jamil R Azzi
- Renal Division, Transplantation Research Center, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
37
|
Tang L, Gabrielson NP, Uckun FM, Fan TM, Cheng J. Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates. Mol Pharm 2013; 10:883-92. [PMID: 23301497 DOI: 10.1021/mp300684a] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The size of a nanomedicine strongly correlates with its biodistribution, tissue penetration, and cell uptake. However, there is limited understanding how the size of nanomedicine impacts the overall antitumor efficacy. We designed and synthesized camptothecin-silica nanoconjugates (Cpt-NCs) with monodisperse particle sizes of 50 and 200 nm, two representative sizes commonly used in drug delivery, and evaluated their antitumor efficacy in murine tumor models. Our studies revealed that the 50 nm Cpt-NC showed higher anticancer efficacy than the larger analogue, due presumably to its faster cellular internalization and more efficient tumor accumulation and penetration. Our findings suggest that nanomedicine with smaller sizes holds great promise for improved cancer therapy.
Collapse
Affiliation(s)
- Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|