1
|
D’Antona AM, Lee JM, Zhang M, Friedman C, He T, Mosyak L, Bennett E, Lin L, Silverman M, Cometa F, Meade C, Hageman T, Sousa E, Cohen J, Marquette K, Ferguson D, Zhong X. Tyrosine Sulfation at Antibody Light Chain CDR-1 Increases Binding Affinity and Neutralization Potency to Interleukine-4. Int J Mol Sci 2024; 25:1931. [PMID: 38339208 PMCID: PMC10855961 DOI: 10.3390/ijms25031931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Structure and function of therapeutic antibodies can be modulated by a variety of post-translational modifications (PTM). Tyrosine (Tyr) sulfation is a type of negatively charged PTM that occurs during protein trafficking through the Golgi. In this study, we discovered that an anti-interleukin (IL)-4 human IgG1, produced by transiently transfected HEK293 cells, contained a fraction of unusual negatively charged species. Interestingly, the isolated acidic species exhibited a two-fold higher affinity to IL-4 and a nearly four-fold higher potency compared to the main species. Mass spectrometry (MS) showed the isolated acidic species possessed an +80-Dalton from the expected mass, suggesting an occurrence of Tyr sulfation. Consistent with this hypothesis, we show the ability to control the acidic species during transient expression with the addition of Tyr sulfation inhibitor sodium chlorate or, conversely, enriched the acidic species from 30% to 92% of the total antibody protein when the IL-4 IgG was co-transfected with tyrosylprotein sulfotransferase genes. Further MS and mutagenesis analysis identified a Tyr residue at the light chain complementarity-determining region-1 (CDRL-1), which was sulfated specifically. These results together have demonstrated for the first time that Tyr sulfation at CDRL-1 could modulate antibody binding affinity and potency to a human immune cytokine.
Collapse
Affiliation(s)
- Aaron M. D’Antona
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Julie M. Lee
- Translational Clinical Sciences, Pfizer Discovery & Early Development, 610 Main Street, Cambridge, MA 02139, USA
| | - Melvin Zhang
- Inflammation and Immunology Research Unit, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA
| | - Clarence Friedman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Tao He
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Lidia Mosyak
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Eric Bennett
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Laura Lin
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Maddison Silverman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Funi Cometa
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Caryl Meade
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Tyler Hageman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Eric Sousa
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Justin Cohen
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Kimberly Marquette
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Darren Ferguson
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Xiaotian Zhong
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| |
Collapse
|
2
|
Gedi V, Duarte F, Patel P, Bhattacharjee P, Tecza M, McGourty K, Hudson SP. Impact of Propeptide Cleavage on the Stability and Activity of a Streptococcal Immunomodulatory C5a Peptidase for Biopharmaceutical Development. Mol Pharm 2023; 20:4041-4049. [PMID: 37406301 PMCID: PMC10410607 DOI: 10.1021/acs.molpharmaceut.3c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Posttranslational modifications of proteins can impact their therapeutic efficacy, stability, and potential for pharmaceutical development. The Group AStreptococcus pyogenesC5a peptidase (ScpA) is a multi-domain protein composed of an N-terminal signal peptide, a catalytic domain (including propeptide), three fibronectin domains, and cell membrane-associated domains. It is one of several proteins produced by Group AS. pyogenesknown to cleave components of the human complement system. After signal peptide removal, ScpA undergoes autoproteolysis and cleaves its propeptide for full maturation. The exact location and mechanism of the propeptide cleavage, and the impact of this cleavage on stability and activity, are not clearly understood, and the exact primary sequence of the final enzyme is not known. A form of ScpA with no autoproteolysis fragments of propeptide present may be more desirable for pharmaceutical development from a regulatory and a biocompatibility in the body perspective. The current study describes an in-depth structural and functional characterization of propeptide truncated variants of ScpA expressed inEscherichia colicells. All three purified ScpA variants, ScpA, 79ΔPro, and 92ΔPro, starting with N32, D79, and A92 positions, respectively, showed similar activity against C5a, which suggests a propeptide-independent activity profile of ScpA. CE-SDS and MALDI top-down sequencing analyses highlight a time-dependent propeptide autoproteolysis of ScpA at 37 °C with a distinct end point at A92 and/or D93. In comparison, all three variants of ScpA exhibit similar stability, melting temperatures, and secondary structure orientation. In summary, this work not only highlights propeptide localization but also provides a strategy to recombinantly produce a final mature and active form of ScpA without any propeptide-related fragments.
Collapse
Affiliation(s)
- Vinayakumar Gedi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Francisco Duarte
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Pratikkumar Patel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Promita Bhattacharjee
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Malgorzata Tecza
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Kieran McGourty
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sarah P. Hudson
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
3
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
4
|
Sharman JP, Kirchhoff CF, Rifkin RM. Analytical similarity as base for rituximab biosimilars in lymphoid malignancies in the clinic: a PF-05280586 case study. Future Oncol 2022; 18:1499-1510. [DOI: 10.2217/fon-2021-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The availability of biosimilars in oncology has provided an opportunity for increased patient access to biologic therapies. However, healthcare professional perceptions concerning the relatively limited clinical data sufficient to support their regulatory approval may contribute to varied uptake and use. We review key aspects of the development program for the rituximab biosimilar PF-05280586 (Ruxience™) that supported its approval for lymphoid malignancies, to illustrate the rationale for an abbreviated clinical program. In particular, we describe the extensive analytical assessment, comprising sensitive techniques that established similarity with the reference product in key product attributes, underlying structure, function, potency, safety and quality, which formed the foundation for a successful development program, culminating in a confirmatory comparative clinical trial in patients with follicular lymphoma.
Collapse
Affiliation(s)
- Jeff P Sharman
- Willamette Valley Cancer Institute & Research Center, US Oncology, Eugene, OR 97401, USA
| | | | - Robert M Rifkin
- Rocky Mountain Cancer Centers, US Oncology Research, Denver, CO 80218, USA
| |
Collapse
|
5
|
Millán-Martín S, Carillo S, Füssl F, Sutton J, Gazis P, Cook K, Scheffler K, Bones J. Optimisation of the use of sliding window deconvolution for comprehensive characterisation of trastuzumab and adalimumab charge variants by native high resolution mass spectrometry. Eur J Pharm Biopharm 2020; 158:83-95. [PMID: 33212184 DOI: 10.1016/j.ejpb.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
The biopharmaceutical industry continues to develop mAb-based biotherapeutics in increasing numbers. Due to their complexity, there are several critical quality attributes (CQAs) that need to be measured and controlled to guarantee product safety and efficacy. Charge variant analysis is a widely used method to monitor changes in product quality during the manufacturing process of monoclonal antibodies (mAbs) and, together with a bottom-up peptide centred approach, acts as a key analytical platform to fulfil regulatory requirements. Native MS measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact proteins such as mAbs. The resulting native mass spectrum of a mAb is characterized by a narrower charge-state envelope that simplifies the spectra and also condenses the ion signals into fewer peaks, increasing the signal-to-noise ratio. Algorithmic spectral deconvolution is needed for routine accurate and rapid molecular weight determination, and consequently, multiple deconvolution algorithms have evolved over the past decade. Here, we demonstrate the utility of the sliding window algorithm as a robust and powerful deconvolution tool for comprehensive characterisation of charge variant analysis data for mAbs. Optimum performance is evaluated by studying the impact of critical software parameters on detection, identification and relative quantitation of protein isoforms. By combining molecular mass and retention time information, it was possible to identify multiple modifications on adalimumab and trastuzumab, both IgG1 mAbs, including lysine truncation, deamidation and succinimide formation, along with the N-glycan distribution of each of the identified charge variants. Sliding window deconvolution also provides a key benefit of low abundant variant detection in a single analysis and the ability to detect co-eluting components with different relative abundances. The studied mAbs demonstrate the algoritms applicability for efficient data processing of both simple and complex mAbs analysed using pH gradient cation exchange chromatography coupled to native mass spectrometry.
Collapse
Affiliation(s)
- Silvia Millán-Martín
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Sara Carillo
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Florian Füssl
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Jennifer Sutton
- Thermo Fisher Scientific, 55 River Oaks Parkway, San José, CA 95134, United States
| | - Paul Gazis
- Thermo Fisher Scientific, 55 River Oaks Parkway, San José, CA 95134, United States
| | - Ken Cook
- Thermo Fisher Scientific, Stafford House, 1 Boundary Park, Hemel Hempstead HP2 7GE, United Kingdom
| | - Kai Scheffler
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland.
| |
Collapse
|
6
|
Glycoproteomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:413-434. [PMID: 33205259 DOI: 10.1007/10_2020_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. As such, comprehensive information about glycosylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies also require extensive documentation of the comprehensive analyses of glycosylation-related critical quality attributes (CQAs) during the development, manufacturing, and release of biosimilars. Mass spectrometry has catalysed tremendous advancements in the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a perspective overview on the MS-based technologies relevant for biotherapeutic product characterisation with an emphasis on the recent developments that allow determination of glycosylation features such as site of glycosylation, sialic acid linkage, glycan structure, and content.
Collapse
|
7
|
Nabizadeh Z, Minuchehr Z, Shabani AA. Rational Design of Hyper-glycosylated Human Chorionic Gonadotropin Analogs (A Bioinformatics Approach). LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200225101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Protein pharmaceuticals routinely display a series of intrinsic physicochemical instabilities during their production and administration that can unfavorably affect their therapeutic effectiveness. Glycoengineering is one of the most desirable techniques to improve the attributes of therapeutic proteins. One aspect of glycoengineering is the rational manipulation of the peptide backbone to introduce new N-glycosylation consensus sequences (Asn-X-Ser/Thr, where X is any amino acid except proline).Methods:In this work, the amino acid sequence of human chorionic gonadotropin (hCG) was analyzed to identify suitable positions in order to create new N-glycosylation sites. This survey led to the detection of 46 potential N-glycosylation sites. The N-glycosylation probability of all the potential positions was measured with the NetNGlyc 1.0 server. After theoretical reviews and the removal of unsuitable positions, the five acceptable ones were selected for more analyses. Then, threedimensional (3D) structures of the selected analogs were generated and evaluated by SPDBV software. The molecular stability and flexibility profile of five designed analogs were examined using Molecular Dynamics (MD) simulations.Results:Finally, three analogs with one additional N-glycosylation site (V68T, V79N and R67N) were proposed as the qualified analogs that could be glycosylated at the new sites.Conclusion:According to the results of this study, further experimental investigations could be guided on the three analogs. Therefore, our computational strategy can be a valuable method due to the reduction in the number of the expensive, tiresome and time-consuming experimental studies of hCG analogs.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Dept. and Center for Biotechnology Research, Semnan University of Medical Sciences, Semnan, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology (IIEB), National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran
| | - Ali Akbar Shabani
- Dept. and Center for Biotechnology Research, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
Zhong X, Jagarlapudi S, Weng Y, Ly M, Rouse JC, McClure K, Ishino T, Zhang Y, Sousa E, Cohen J, Tzvetkova B, Cote K, Scarcelli JJ, Johnson K, Palandra J, Apgar JR, Yaddanapudi S, Gonzalez-Villalobos RA, Opsahl AC, Lam K, Yao Q, Duan W, Sievers A, Zhou J, Ferguson D, D'Antona A, Zollner R, Zhu HL, Kriz R, Lin L, Clerin V. Structure-function relationships of the soluble form of the antiaging protein Klotho have therapeutic implications for managing kidney disease. J Biol Chem 2020; 295:3115-3133. [PMID: 32005658 PMCID: PMC7062171 DOI: 10.1074/jbc.ra119.012144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Indexed: 01/28/2023] Open
Abstract
The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and β-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139.
| | - Srinath Jagarlapudi
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Yan Weng
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Mellisa Ly
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Jason C Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Kim McClure
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Tetsuya Ishino
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Yan Zhang
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Eric Sousa
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Justin Cohen
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Boriana Tzvetkova
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Kaffa Cote
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Keith Johnson
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Joe Palandra
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - James R Apgar
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Suma Yaddanapudi
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | | | - Alan C Opsahl
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Khetemenee Lam
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Qing Yao
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Weili Duan
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Annette Sievers
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Jing Zhou
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Darren Ferguson
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Aaron D'Antona
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Richard Zollner
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Hongli L Zhu
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Ron Kriz
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Laura Lin
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Valerie Clerin
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139.
| |
Collapse
|
9
|
Sabbir MG. Progesterone induced Warburg effect in HEK293 cells is associated with post-translational modifications and proteasomal degradation of progesterone receptor membrane component 1. J Steroid Biochem Mol Biol 2019; 191:105376. [PMID: 31067491 DOI: 10.1016/j.jsbmb.2019.105376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
Progesterone (P4) is a major steroid hormone that has important effects on metabolism. The progesterone receptor membrane component 1 (PGRMC1) is a non-canonical P4 binding protein. The biological functions affected by PGRMC1 include cholesterol/steroid biosynthesis and metabolism, iron homeostasis and heme trafficking, autophagy, regulation of cell cycle and proliferation, cell migration and invasion. PGRMC1 has been an attractive target for therapeutic intervention in cancer and neurodegenerative disorders due to its biological role in promoting cell survival. P4 has been used in a number of clinical applications and is considered neuroprotective. The involvement of PGRMC1 in P4-mediated regulation of cellular glucose metabolism is not well studied. PGRMC1 is a 21 kDa protein but complex post-translational modifications (PTMs) lead to the existence of several high molecular mass proteins whose molecular function, intracellular distribution, and physiological relevancies are not fully known. Therefore, in this study, P4-PGRMC1-mediated cellular glucose metabolism and PTMs of PGRMC1 were studied using wild-type and CRISPR/Cas9 mediated PGRMC1 knockout (KO) human embryonic kidney-derived (HEK293) cell lines. A 70 kDa (p70) and 100 kDa (p100) PGRMC1 proteins were identified that are predominantly associated with endoplasmic reticulum/mitochondria and nuclear fractions in the cells, respectively. Phosphorylation, acetylation, ubiquitination, and sumoylation of native PGRMC1 under serum starvation were identified which provided an explanation for the higher molecular masses. This study indicates that P4-PGRMC1 signaling caused a rapid increase in glycolysis in the presence of oxygen (aerobic glycolysis) and a corresponding decrease in cellular respiration, known as the Warburg effect. Further, it was demonstrated that the P4-induced increase in glycolysis is associated with rapid proteasomal degradation of the p70 and reduction of the nuclear p100 protein level. P4 treatment also caused significant alteration in the dynamics of PGRMC1 PTMs and its association with potential interacting proteins. Overall, this study provides a hitherto unknown aspect of P4-PGRMC1 mediated signaling that changes basic cellular metabolism in HEK293 cells.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
10
|
Sifniotis V, Cruz E, Eroglu B, Kayser V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies (Basel) 2019; 8:E36. [PMID: 31544842 PMCID: PMC6640721 DOI: 10.3390/antib8020036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Therapeutic antibody technology heavily dominates the biologics market and continues to present as a significant industrial interest in developing novel and improved antibody treatment strategies. Many noteworthy advancements in the last decades have propelled the success of antibody development; however, there are still opportunities for improvement. In considering such interest to develop antibody therapies, this review summarizes the array of challenges and considerations faced in the design, manufacture, and formulation of therapeutic antibodies, such as stability, bioavailability and immunological engagement. We discuss the advancement of technologies that address these challenges, highlighting key antibody engineered formats that have been adapted. Furthermore, we examine the implication of novel formulation technologies such as nanocarrier delivery systems for the potential to formulate for pulmonary delivery. Finally, we comprehensively discuss developments in computational approaches for the strategic design of antibodies with modulated functions.
Collapse
Affiliation(s)
- Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Barbaros Eroglu
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
11
|
Kim YJ, Paik SH, Han SK, Lee S, Jeong Y, Kim JY, Kim CW. Quality by Design characterization of the perfusion culture process for recombinant FVIII. Biologicals 2019; 59:37-46. [DOI: 10.1016/j.biologicals.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 11/27/2022] Open
|
12
|
Mortazavi M, Shokrgozar MA, Sardari S, Azadmanesh K, Mahdian R, Kaghazian H, Hosseini SN, Hedayati MH. Using chemical chaperones to increase recombinant human erythropoietin secretion in CHO cell line. Prep Biochem Biotechnol 2019; 49:535-544. [PMID: 30990119 DOI: 10.1080/10826068.2018.1479865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recombinant protein production, over-expressed genes induce unfolded protein response (UPR), overloaded protein aggregation in endoplasmic reticulum and its expansion. In this study, we have used 16 chemicals to improve erythropoietin production in engineered CHO cells and tried to study the mechanism of reducing protein aggregation in each treatment. Endoplasmic reticulum expansion was studied through endoplasmic reticulum specific labeling with utilizing fluorescent glibenclamide and its molecular chaperones expression were studied by real-time polymerase chain reaction. The increase in the mRNA level of EPO and endoplasmic reticulum chaperones GRP78/BiP, XBP1, ATF6, and ATF4 in different chemical treatments were not related to ER expansion. On the other hand, ER expansion in beta alanine, beta cyclodextrin and taurine treatments resulted in increased EPO secretion. Dramatically increase in EPO expression in conjugated linoleic acid, spermidine, trehalose, and maltose (19, 20, 16, and 19-fold, respectively) did not increase erythropoietin productivity, but betaine which did not caused ER expansion, with minor increase in EPO gene expression increase EPO productivity. The results indicated that betaine increase EPO secretion in engineered CHO cell line without relation to ER expansion and molecular chaperones expression.
Collapse
Affiliation(s)
- Mehri Mortazavi
- a National Cell Bank of Iran (NCBI), Pasteur Institute of Iran , Tehran , Iran
| | | | - Soroush Sardari
- b Unit of Drug Design and Bioinformatics, Department of Medical Biotechnology, Biotechnology Research Center , Pasteur Institute of Iran , Tehran , Iran
| | - Kayhan Azadmanesh
- c Department of Virology , Pasteur Institute of Iran , Tehran , Iran
| | - Reza Mahdian
- d Department of Molecular Medicine , Pasteur Institute of Iran , Tehran , Iran
| | - Hooman Kaghazian
- e Department of Recombinant Biopharmaceutical Production , Pasteur Institute of Iran , Karaj , Iran
| | | | - Mohammad Hossein Hedayati
- g Department of Quality Control , Production and Research Complex, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
13
|
Sabbir MG. Loss of Ca 2+/Calmodulin Dependent Protein Kinase Kinase 2 Leads to Aberrant Transferrin Phosphorylation and Trafficking: A Potential Biomarker for Alzheimer's Disease. Front Mol Biosci 2018; 5:99. [PMID: 30525042 PMCID: PMC6256988 DOI: 10.3389/fmolb.2018.00099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine kinase that is activated following an increase in the intracellular Ca2+ concentration and activates multiple signaling cascades that control physiologically important neuronal processes. CaMKK2 has been implicated in schizophrenia, bipolar disease, neurodegeneration, and cancer. Using isoelectric focusing (IEF) and mass spectrometry-based proteomic analysis, it was found that knockdown (KD) of CaMKK2 in cultured adult primary dorsal root ganglion (DRG) neurons resulted in the reduction of transferrin (TF) phosphorylation at multiple functionally relevant residues which corresponded to loss of an acidic fraction (pH~3-4) of TF. In vitro studies using CRISPR/Cas9 based CaMKK2 knockout (KO) HEK293 and HepG2 cells lines validated previous findings and revealed that loss of CaMKK2 interfered with TF trafficking and turnover. TF is an iron transporter glycoprotein. Abnormal accumulation of iron and/or deregulated Ca2+ homeostasis leads to neurodegeneration in Alzheimer's disease (AD). Therefore, it was hypothesized that aberrant CaMKK2 in AD may lead to aberrant phosphorylated transferrin (P-TF: pH~3-4 fraction) which may serve as a hallmark biomarker for AD. A significant reduction of P-TF in the brain and serum of CaMKK2 KO mice and a triple-transgenic mouse model of AD (3xTg-AD) supported this hypothesis. In addition, analysis of early (< 65 years) and late-stage (>65 years) postmortem human AD cerebrospinal fluid (CSF) and serum samples revealed that aberrant P-TF (pH~3-4 fraction) profile was associated with both early and late-stage AD compared to age-matched controls. This indicates P-TF (pH~3-4 fraction) profile may be useful as a minimally invasive biomarker for AD. In addition, this study provides a link between aberrant CaMKK2 with TF trafficking and turnover which provides a novel insight into the neurodegeneration process.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
14
|
McKinnon RA, Cook M, Liauw W, Marabani M, Marschner IC, Packer NH, Prins JB. Biosimilarity and Interchangeability: Principles and Evidence: A Systematic Review. BioDrugs 2018; 32:27-52. [PMID: 29344876 PMCID: PMC5814534 DOI: 10.1007/s40259-017-0256-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The efficacy, safety and immunogenicity risk of switching between an originator biologic and a biosimilar or from one biosimilar to another are of potential concern. OBJECTIVES The aim was to conduct a systematic literature review of the outcomes of switching between biologics and their biosimilars and identify any evidence gaps. METHODS A systematic literature search was conducted in PubMed, EMBASE and Cochrane Library from inception to June 2017. Relevant societal meetings were also checked. Peer-reviewed studies reporting efficacy and/or safety data on switching between originator and biosimilar products or from one biosimilar to another were selected. Studies with fewer than 20 switched patients were excluded. Data were extracted on interventions, study population, reason for treatment switching, efficacy outcomes, safety and anti-drug antibodies. RESULTS The systematic literature search identified 63 primary publications covering 57 switching studies. The reason for switching was reported as non-medical in 50 studies (23 clinical, 27 observational). Seven studies (all observational) did not report whether the reasons for switching were medical or non-medical. In 38 of the 57 studies, fewer than 100 patients were switched. Follow-up after switching went beyond 1 year in eight of the 57 studies. Of the 57 studies, 33 included statistical analysis of disease activity or patient outcomes; the majority of these studies found no statistically significant differences between groups for main efficacy parameters (based on P < 0.05 or predefined acceptance ranges), although some studies observed changes for some parameters. Most studies reported similar safety profiles between groups. CONCLUSIONS There are important evidence gaps around the safety of switching between biologics and their biosimilars. Sufficiently powered and appropriately statistically analysed clinical trials and pharmacovigilance studies, with long-term follow-ups and multiple switches, are needed to support decision-making around biosimilar switching.
Collapse
Affiliation(s)
- Ross A McKinnon
- School of Medicine, Flinders University, Bedford Park, GPO Box 2100, Adelaide, SA, 5001, Australia.
| | - Matthew Cook
- John Curtin School of Medical Research, Australian National University and Canberra Hospital, Canberra, ACT, Australia
| | - Winston Liauw
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- University of New South Wales, Kensington, NSW, Australia
| | | | - Ian C Marschner
- Department of Statistics, Macquarie University, North Ryde, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences and ARC Centre of Nanoscale Biophotonics, Macquarie University, North Ryde, Australia
- Institute for Glycomics,, Griffith University, Southport, QLD, Australia
| | - Johannes B Prins
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Camacho-Jiménez L, Sánchez-Castrejón E, Díaz F, Aguilar MB, Muñoz-Márquez ME, Ponce-Rivas E. Cloning and expression of the recombinant crustacean hyperglycemic hormone isoform B2 (rCHH-B2) and its effects on the metabolism and osmoregulation of the Pacific white shrimp Litopenaeus vannamei. Gen Comp Endocrinol 2017; 253:33-43. [PMID: 28842215 DOI: 10.1016/j.ygcen.2017.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/26/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023]
Abstract
Crustacean hyperglycemic hormones (CHHs) are multifunctional neuropeptides ubiquitous in crustaceans. In Litopenaeus vannamei, CHH-B2 is a CHH eyestalk isoform whose expression has been shown to vary with enviromental conditions, suggesting its relevance for ecophysiological performance of shrimp, controlling processes related to metabolism and osmo-ionic regulation. To study the involvement of CHH-B2 in these processes, we cloned and expressed a recombinant version with a free C-terminal glycine (rCHH-B2-Gly) in the methylotrophic yeast Pichia pastoris. The rCHH-B2-Gly peptide secreted to the culture medium was purified by RP-HPLC and used for in vivo glucose, triglyceride, and osmoregulation dose-response analyses with juvenile shrimp. The peptide was also amidated at the C-terminus using an α-amidating enzyme to produce rCHH-B2-amide. The shrimp showed a dose-dependent effect of rCHH-B2-Gly to hemolymph glucose and triglyceride levels, inducing maximal increases by injecting 500 and 1000pmol of hormone, respectively. Additionally, 10pmol of hormone was sufficient to reduce the hypo-osmoregulatory capacity of shrimp at 35‰. These findings suggest that CHH-B2 has regulatory roles in carbohydrate and lipid metabolism, and a potential involvement in osmoregulation of L. vannamei. Injection of 100pmol of rCHH-B2-amide increased glucose and triglyceride levels by 15 and 28%, respectively in comparison with rCHH-B2-Gly, suggesting an important role for the C-terminal amidation. Additionally, an in silico structural analysis done with the CHH-B1 and rCHH-B2-Gly peptides suggests that the C-terminal region may be relevant for the activity of the L. vannamei isoforms and explain the functional divergence from other crustacean CHH/CHH-like peptides.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Laboratorio de Biología Celular y Molecular, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Ensenada, B. C., C.P. 22860, Mexico
| | - Edna Sánchez-Castrejón
- Laboratorio de Biología Celular y Molecular, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Ensenada, B. C., C.P. 22860, Mexico
| | - Fernando Díaz
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Ensenada, B. C., C.P. 22860, Mexico
| | - Manuel B Aguilar
- Laboratorio de Neurofarmacología Marina, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, Juriquilla, Querétaro C.P. 76230, Mexico
| | - Ma Enriqueta Muñoz-Márquez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC), Av. Tecnológico s/n Mesa de Otay, Tijuana, B. C., C.P. 22390, Mexico
| | - Elizabeth Ponce-Rivas
- Laboratorio de Biología Celular y Molecular, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Ensenada, B. C., C.P. 22860, Mexico.
| |
Collapse
|
16
|
Shestopal SA, Hao JJ, Karnaukhova E, Liang Y, Ovanesov MV, Lin M, Kurasawa JH, Lee TK, Mcvey JH, Sarafanov AG. Expression and characterization of a codon-optimized blood coagulation factor VIII. J Thromb Haemost 2017; 15:709-720. [PMID: 28109042 DOI: 10.1111/jth.13632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 08/31/2023]
Abstract
Essentials Recombinant factor VIII (FVIII) is known to be expressed at a low level in cell culture. To increase expression, we used codon-optimization of a B-domain deleted FVIII (BDD-FVIII). This resulted in 7-fold increase of the expression level in cell culture. The biochemical properties of codon-optimized BDD-FVIII were similar to the wild-type protein. SUMMARY Background Production of recombinant factor VIII (FVIII) is challenging because of its low expression. It was previously shown that codon-optimization of a B-domain-deleted FVIII (BDD-FVIII) cDNA resulted in increased protein expression. However, it is well recognized that synonymous mutations may affect the protein structure and function. Objectives To compare biochemical properties of a BDD-FVIII variants expressed from codon-optimized and wild-type cDNAs (CO and WT, respectively). Methods Each variant of the BDD-FVIII was expressed in several independent Chinese hamster ovary (CHO) cell lines, generated using a lentiviral platform. The proteins were purified by two-step affinity chromatography and analyzed in parallel by PAGE-western blot, mass spectrometry, circular dichroism, surface plasmon resonance, and chromogenic, clotting and thrombin generation assays. Results and conclusion The average yield of the CO was 7-fold higher than WT, whereas both proteins were identical in the amino acid sequences (99% coverage) and very similar in patterns of the molecular fragments (before and after thrombin cleavage), glycosylation and tyrosine sulfation, secondary structures and binding to von Willebrand factor and to a fragment of the low-density lipoprotein receptor-related protein 1. The CO preparations had on average 1.5-fold higher FVIII specific activity (activity normalized to protein mass) than WT preparations, which was attributed to better preservation of the CO structure as a result of considerably higher protein concentrations during the production. We concluded that the codon-optimization of the BDD-FVIII resulted in significant increase of its expression and did not affect the structure-function properties.
Collapse
Affiliation(s)
- S A Shestopal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J-J Hao
- Poochon Scientific, Frederick, MD, USA
| | - E Karnaukhova
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Y Liang
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - M V Ovanesov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - M Lin
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J H Kurasawa
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - T K Lee
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J H Mcvey
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - A G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
17
|
Zhang B, Shanmugaraj B, Daniell H. Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr Opin Chem Biol 2017; 38:17-23. [PMID: 28229907 DOI: 10.1016/j.cbpa.2017.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
Abstract
After approval of the first plant-made biopharmaceutical by FDA for human use, many protein drugs are now in clinical development. Within the last decade, significant advances have been made in expression of heterologous complex/large proteins in chloroplasts of edible plants using codon optimized human or viral genes. Furthermore, advances in quantification enable determination of in-planta drug dosage. Oral delivery of plastid-made biopharmaceuticals (PMB) is affordable because it eliminates prohibitively expensive fermentation, purification processes addressing major challenges of short shelf-life after cold storage. In this review, we discuss recent advances in PMBs against metabolic, inherited or infectious diseases, and also mechanisms of post-translational modifications (PTM) in order to increase our understanding of functional PMBs.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | - Balamurugan Shanmugaraj
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| |
Collapse
|
18
|
Ashton L, Brewster VL, Correa E, Goodacre R. Detection of glycosylation and iron-binding protein modifications using Raman spectroscopy. Analyst 2017; 142:808-814. [DOI: 10.1039/c6an02516a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have used Raman spectroscopy and chemometrics to determine protein modification as a result of glycosylation and iron binding.
Collapse
Affiliation(s)
- Lorna Ashton
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Victoria L. Brewster
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Elon Correa
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Royston Goodacre
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| |
Collapse
|
19
|
Hong J, Lee Y, Lee C, Eo S, Kim S, Lee N, Park J, Park S, Seo D, Jeong M, Lee Y, Yeon S, Bou-Assaf G, Sosic Z, Zhang W, Jaquez O. Physicochemical and biological characterization of SB2, a biosimilar of Remicade® (infliximab). MAbs 2016; 9:364-382. [PMID: 28005456 PMCID: PMC5297515 DOI: 10.1080/19420862.2016.1264550] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A biosimilar is a biological medicinal product that contains a version of the active substance of an already authorized original biological medicinal product. Biosimilarity to the reference product (RP) in terms of quality characteristics, such as physicochemical and biological properties, safety, and efficacy, based on a comprehensive comparability exercise needs to be established. SB2 (Flixabi® and Renflexis®) is a biosimilar to Remicade® (infliximab). The development of SB2 was performed in accordance with relevant guidelines of the International Conference on Harmonisation, the European Medicines Agency, and the United States Food and Drug Administration. To determine whether critical quality attributes meet quality standards, an extensive characterization test was performed with more than 80 lots of EU- and US-sourced RP. The physicochemical characterization study results revealed that SB2 was similar to the RP. Although a few differences in physicochemical attributes were observed, the evidence from the related literature, structure-activity relationship studies, and comparative biological assays showed that these differences were unlikely to be clinically meaningful. The biological characterization results showed that SB2 was similar to the RP in terms of tumor necrosis factor–α (TNF-α) binding and TNF-α neutralization activities as a main mode of action. SB2 was also similar in Fc-related biological activities including antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, neonatal Fc receptor binding, C1q binding, and Fc gamma receptor binding activities. These analytical findings support that SB2 is similar to the RP and also provide confidence of biosimilarity in terms of clinical safety and efficacy.
Collapse
Affiliation(s)
- Juyong Hong
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Yuhwa Lee
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Changsoo Lee
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Suhyeon Eo
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Soyeon Kim
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Nayoung Lee
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Jongmin Park
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Seungkyu Park
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Donghyuck Seo
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Min Jeong
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Youngji Lee
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Soojeong Yeon
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - George Bou-Assaf
- b Department of Analytical Development , Biogen, Inc. , Cambridge , MA , USA
| | - Zoran Sosic
- b Department of Analytical Development , Biogen, Inc. , Cambridge , MA , USA
| | - Wei Zhang
- b Department of Analytical Development , Biogen, Inc. , Cambridge , MA , USA
| | - Orlando Jaquez
- c Department of Medical Affairs , Biosimilars , Biogen , Zug , Switzerland
| |
Collapse
|
20
|
Investigation of the interactions of critical scale-up parameters (pH, pO 2 and pCO 2) on CHO batch performance and critical quality attributes. Bioprocess Biosyst Eng 2016; 40:251-263. [PMID: 27752770 PMCID: PMC5274649 DOI: 10.1007/s00449-016-1693-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022]
Abstract
Understanding process parameter interactions and their effects on mammalian cell cultivations is an essential requirement for robust process scale-up. Furthermore, knowledge of the relationship between the process parameters and the product critical quality attributes (CQAs) is necessary to satisfy quality by design guidelines. So far, mainly the effect of single parameters on CQAs was investigated. Here, we present a comprehensive study to investigate the interactions of scale-up relevant parameters as pH, pO2 and pCO2 on CHO cell physiology, process performance and CQAs, which was based on design of experiments and extended product quality analytics. The study used a novel control strategy in which process parameters were decoupled from each other, and thus allowed their individual control at defined set points. Besides having identified the impact of single parameters on process performance and product quality, further significant interaction effects of process parameters on specific cell growth, specific productivity and amino acid metabolism could be derived using this method. Concerning single parameter effects, several monoclonal antibody (mAb) charge variants were affected by process pCO2 and pH. N-glycosylation analysis showed positive correlations between mAb sialylation and high pH values as well as a relationship between high mannose variants and process pH. This study additionally revealed several interaction effects as process pH and pCO2 interactions on mAb charge variants and N-glycosylation pattern. Hence, through our process control strategy and multivariate investigation, novel significant process parameter interactions and single effects were identified which have to be taken into account especially for process scale-up.
Collapse
|
21
|
Chiang AW, Li S, Spahn PN, Richelle A, Kuo CC, Samoudi M, Lewis NE. Modulating carbohydrate-protein interactions through glycoengineering of monoclonal antibodies to impact cancer physiology. Curr Opin Struct Biol 2016; 40:104-111. [PMID: 27639240 DOI: 10.1016/j.sbi.2016.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
Diverse glycans on proteins impact cell and organism physiology, along with drug activity. Since many protein-based biotherapeutics are glycosylated and these glycans have biological activity, there is a desire to engineer glycosylation for recombinant protein-based biotherapeutics. Engineered glycosylation can impact the recombinant protein efficacy and also influence many cell pathways by first changing glycan-protein interactions and consequently modulating disease physiologies. However, its complexity is enormous. Recent advances in glycoengineering now make it easier to modulate protein-glycan interactions. Here, we discuss how engineered glycans contribute to therapeutic monoclonal antibodies (mAbs) in the treatment of cancers, how these glycoengineered therapeutic mAbs affect the transformed phenotypes and downstream cell pathways. Furthermore, we suggest how systems biology can help in the next generation mAb glycoengineering process by aiding in data analysis and guiding engineering efforts to tailor mAb glycan and ultimately drug efficacy, safety and affordability.
Collapse
Affiliation(s)
- Austin Wt Chiang
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA
| | - Shangzhong Li
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Philipp N Spahn
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA
| | - Anne Richelle
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA
| | - Chih-Chung Kuo
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Mojtaba Samoudi
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA.
| |
Collapse
|
22
|
Immunogenicity of Biotherapeutics: Causes and Association with Posttranslational Modifications. J Immunol Res 2016; 2016:1298473. [PMID: 27437405 PMCID: PMC4942633 DOI: 10.1155/2016/1298473] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 12/21/2022] Open
Abstract
Today, potential immunogenicity can be better evaluated during the drug development process, and we have rational approaches to manage the clinical consequences of immunogenicity. The focus of the scientific community should be on developing sensitive diagnostics that can predict immunogenicity-mediated adverse events in the small fraction of subjects that develop clinically relevant anti-drug antibodies. Here, we discuss the causes of immunogenicity which could be product-related (inherent property of the product or might be picked up during the manufacturing process), patient-related (genetic profile or eating habits), or linked to the route of administration. We describe various posttranslational modifications (PTMs) and how they may influence immunogenicity. Over the last three decades, we have significantly improved our understanding about the types of PTMs of biotherapeutic proteins and their association with immunogenicity. It is also now clear that all PTMs do not lead to clinical immunogenicity. We also discuss the mechanisms of immunogenicity (which include T cell-dependent and T cell-independent responses) and immunological tolerance. We further elaborate on the management of immunogenicity in preclinical and clinical setting and the unique challenges raised by biosimilars, which may have different immunogenic potential from their parent biotherapeutics.
Collapse
|
23
|
Jefferis R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J Immunol Res 2016; 2016:5358272. [PMID: 27191002 PMCID: PMC4848426 DOI: 10.1155/2016/5358272] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs), including quality control (QC) in the endoplasmic reticulum (ER) and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs) both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA); aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs) are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs), a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.
Collapse
Affiliation(s)
- Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Berry BN, Dobrowsky TM, Timson RC, Kshirsagar R, Ryll T, Wiltberger K. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture. Biotechnol Prog 2015; 32:224-34. [DOI: 10.1002/btpr.2205] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/10/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Brandon N. Berry
- Biogen Inc; 250 Binney Street 02142 Cambridge Massachusetts United States
| | | | - Rebecca C. Timson
- Biogen Inc; 250 Binney Street 02142 Cambridge Massachusetts United States
| | - Rashmi Kshirsagar
- Biogen Inc; 250 Binney Street 02142 Cambridge Massachusetts United States
| | - Thomas Ryll
- Biogen Inc; 250 Binney Street 02142 Cambridge Massachusetts United States
| | - Kelly Wiltberger
- Biogen Inc; 5000 Davis Drive 27709 Research Triangle Park North Carolina United States
| |
Collapse
|
25
|
Rouiller Y, Bielser JM, Brühlmann D, Jordan M, Broly H, Stettler M. Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems. Biotechnol Prog 2015; 32:160-70. [DOI: 10.1002/btpr.2186] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/12/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Yolande Rouiller
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - Jean-Marc Bielser
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - David Brühlmann
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - Martin Jordan
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - Hervé Broly
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| | - Matthieu Stettler
- Merck Serono SA; Route De Fenil 25, ZI B Corsier-sur-Vevey 1804 Switzerland
| |
Collapse
|
26
|
Wu H, Truncali K, Ritchie J, Kroe-Barrett R, Singh S, Robinson AS, Roberts CJ. Weak protein interactions and pH- and temperature-dependent aggregation of human Fc1. MAbs 2015; 7:1072-83. [PMID: 26267255 PMCID: PMC4966490 DOI: 10.1080/19420862.2015.1079678] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/29/2023] Open
Abstract
The Fc (fragment crystallizable) is a common structural region in immunoglobulin gamma (IgG) proteins, IgG-based multi-specific platforms, and Fc-fusion platform technologies. Changes in conformational stability, protein-protein interactions, and aggregation of NS0-produced human Fc1 were quantified experimentally as a function of pH (4 to 6) and temperature (30 to 77 °C), using a combination of differential scanning calorimetry, laser light scattering, size-exclusion chromatography, and capillary electrophoresis. The Fc1 was O-glycosylated at position 3 (threonine), and confirmed to correspond to the intact IgG1 by comparison with Fc1 produced by cleavage of the parent IgG1. Changing the pH caused large effects for thermal unfolding transitions, but it caused surprisingly smaller effects for electrostatic protein-protein interactions. The aggregation behavior was qualitatively similar across different solution conditions, with soluble dimers and larger oligomers formed in most cases. Aggregation rates spanned approximately 5 orders of magnitude and could be divided into 2 regimes: (i) Arrhenius, unfolding-limited aggregation at temperatures near or above the midpoint-unfolding temperature of the CH2 domain; (ii) a non-Arrhenius regime at lower temperatures, presumably as a result of the temperature dependence of the unfolding enthalpy for the CH2 domain. The non-Arrhenius regime was most pronounced for lower temperatures. Together with the weak protein-protein repulsions, these highlight challenges that are expected for maintaining long-term stability of biotechnology products that are based on human Fc constructs.
Collapse
Affiliation(s)
- Haixia Wu
- Department of Chemistry and Biochemistry; University of Delaware; Newark, DE USA
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Kristopher Truncali
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Julie Ritchie
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Rachel Kroe-Barrett
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Sanjaya Singh
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Anne S Robinson
- Department of Chemical and Biomolecular Engineering; Tulane University; New Orleans, LA USA
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark, DE USA
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark, DE USA
| |
Collapse
|
27
|
Kumar SR. Industrial production of clotting factors: Challenges of expression, and choice of host cells. Biotechnol J 2015; 10:995-1004. [PMID: 26099845 DOI: 10.1002/biot.201400666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/25/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored.
Collapse
|
28
|
Sepahi M, Kaghazian H, Hadadian S, Norouzian D. Investigation of purification process stresses on erythropoietin peptide mapping profile. Adv Biomed Res 2015; 4:114. [PMID: 26261816 PMCID: PMC4513318 DOI: 10.4103/2277-9175.157836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/02/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Full compliance of recombinant protein peptide mapping chromatogram with the standard reference material, is one of the most basic quality control tests of biopharmaceuticals. Changing a single amino acid substitution or side chain diversity for a given peptide changes protein hydrophobicity and causes peak shape or retention time alteration in a peptide mapping assay. In this work, the effect of different stresses during the recombinant erythropoietin (EPO) purification process, including pH 4, pH 5, and room temperature were checked on product peptide mapping results. MATERIALS AND METHODS Cell culture harvest was purified under stress by different chromatographic techniques consisting of gel filtration, anionic ion exchange, concentration by ultrafiltration, and high resolution size exclusion chromatography. To induce more pH stresses, the purified EPO was exposed to pH stress 4 and 5 by exchanging buffer by a 10 KDa dialysis sac overnight. The effects of temperature and partial deglycosylation (acid hydrolysis) on purified EPO were also studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping analysis. Removal of sialic acid by mild hydrolysis was performed by exposure to two molar acetic acid at 80°C for 3 h. RESULTS No significant effect was observed between intact and stressed erythropoietin peptide mapping profiles and SDS-PAGE results. To validate the sensibility of the technique, erythropoietin was partially acid hydrolyzed and significant changes in the chromatographic peptide map of the intact form and a reduction on its molecular weight were detected, which indicates some partial deglycosylation. CONCLUSIONS Purification process does not alter the peptide mapping profile and purification process stresses are not the cause of peptide mapping noncompliance.
Collapse
Affiliation(s)
- Mina Sepahi
- Department of Recombinanit Biopharmaceutical Production, Pasteur Institute of Iran, Karaj, Iran
| | - Hooman Kaghazian
- Department of Recombinanit Biopharmaceutical Production, Pasteur Institute of Iran, Karaj, Iran
| | - Shahin Hadadian
- Department of Quality Control, Pasteur Institute of Iran, Karaj, Iran
| | - Dariush Norouzian
- Department of Pilot Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
29
|
Borisov OV, Alvarez M, Carroll JA, Brown PW. Sequence Variants and Sequence Variant Analysis in Biotherapeutic Proteins. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Oleg V. Borisov
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Melissa Alvarez
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - James A. Carroll
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Paul W. Brown
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| |
Collapse
|
30
|
Rao VA. Perspectives on Engineering Biobetter Therapeutic Proteins with Greater Stability in Inflammatory Environments. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Yalak G, Vogel V. Ectokinases as novel cancer markers and drug targets in cancer therapy. Cancer Med 2014; 4:404-14. [PMID: 25504773 PMCID: PMC4380966 DOI: 10.1002/cam4.368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 01/13/2023] Open
Abstract
While small-molecule kinase inhibitors became the most prominent anticancer drugs, novel combinatorial strategies need to be developed as the fight against cancer is not yet won. We review emerging literature showing that the release of several ectokinases is significantly upregulated in body fluids from cancer patients and that they leave behind their unique signatures on extracellular matrix (ECM) proteins. Our analysis of proteomic data reveals that fibronectin is heavily phosphorylated in cancer tissues particularly within its growth factor binding sites and on domains that regulate fibrillogenesis. We are thus making the case that cancer is not only a disease of cells but also of the ECM. Targeting extracellular kinases or the extracellular signatures they leave behind might thus create novel opportunities in cancer diagnosis as well as new avenues to interfere with cancer progression and malignancy.
Collapse
Affiliation(s)
- Garif Yalak
- Harvard Medical School/Harvard School of Dental Medicine, Department of Developmental Biology, Harvard University, Boston, Massachusetts, 02115; Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | | |
Collapse
|
32
|
Wani R, Nagata A, Murray BW. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology. Front Pharmacol 2014; 5:224. [PMID: 25339904 PMCID: PMC4186267 DOI: 10.3389/fphar.2014.00224] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/17/2014] [Indexed: 12/26/2022] Open
Abstract
The perception of reactive oxygen species has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g., cancer). New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically distinct alterations to the protein (e.g., sulfenic/sulfinic/sulfonic acid, disulfides). These post-translational modifications (PTM) are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.
Collapse
Affiliation(s)
- Revati Wani
- Oncology Research Unit, Pfizer Worldwide Research and Development San Diego, CA, USA
| | - Asako Nagata
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development San Diego, CA, USA
| | - Brion W Murray
- Oncology Research Unit, Pfizer Worldwide Research and Development San Diego, CA, USA
| |
Collapse
|
33
|
Rouiller Y, Périlleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog 2014; 30:571-83. [DOI: 10.1002/btpr.1921] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Yolande Rouiller
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Arnaud Périlleux
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Marie-Noëlle Vesin
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Matthieu Stettler
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Martin Jordan
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| |
Collapse
|
34
|
Niero EL, Rocha-Sales B, Lauand C, Cortez BA, de Souza MM, Rezende-Teixeira P, Urabayashi MS, Martens AA, Neves JH, Machado-Santelli GM. The multiple facets of drug resistance: one history, different approaches. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:37. [PMID: 24775603 PMCID: PMC4041145 DOI: 10.1186/1756-9966-33-37] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
Some cancers like melanoma and pancreatic and ovarian cancers, for example, commonly display resistance to chemotherapy, and this is the major obstacle to a better prognosis of patients. Frequently, literature presents studies in monolayer cell cultures, 3D cell cultures or in vivo studies, but rarely the same work compares results of drug resistance in different models. Several of these works are presented in this review and show that usually cells in 3D culture are more resistant to drugs than monolayer cultured cells due to different mechanisms. Searching for new strategies to sensitize different tumors to chemotherapy, many methods have been studied to understand the mechanisms whereby cancer cells acquire drug resistance. These methods have been strongly advanced along the years and therapies using different drugs have been increasingly proposed to induce cell death in resistant cells of different cancers. Recently, cancer stem cells (CSCs) have been extensively studied because they would be the only cells capable of sustaining tumorigenesis. It is believed that the resistance of CSCs to currently used chemotherapeutics is a major contributing factor in cancer recurrence and later metastasis development. This review aims to appraise the experimental progress in the study of acquired drug resistance of cancer cells in different models as well as to understand the role of CSCs as the major contributing factor in cancer recurrence and metastasis development, describing how CSCs can be identified and isolated.
Collapse
Affiliation(s)
- Evandro Luís Niero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av, Prof, Lineu Prestes, 1524, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|